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Abstract
We explore the stability of floating objects at a two-fluid interface through
mathematical modeling and experimentation. Our models are based on stan-
dard ideas of center of gravity, center of buoyancy, and Archimedes’ Principle
extended to the two-fluid scenario. We investigate floating shapes with uni-
form, two-dimensional cross sections and identify analytically and/or com-
putationally a potential energy landscape that helps identify stable and
unstable floating orientations. We compare our analyses and computations to
experiments on floating objects designed and created through 3D printing.
Additionally, the paper includes open problems for further study.

Keywords: stability, floating, archimedes’ principle, two-fluid interface

1. Introduction

Most students who take a course in Physics encounter Archimedes’ Principle. As typically
presented, Archimedes’ Principle states that the upward buoyant force on an object fully or
partially submerged in a fluid is equal to the weight of the displaced fluid. Known for more
than two millenia, the concept is as essential to historical discussions of fluid physics as it is
fundamental to modern marine vessel architecture. It is ubiquitous in everyday life in the
kitchen, at the beach, and in most places where solid objects encounter a body of water, large
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or small. Archimedes’ Principle is the fundamental principle behind standard techniques used
in fluid and solid density metrology [1]. For example, in the food science industry, the density
of liquids such as milk or alcohol are determined by measuring the volume displaced by a
carefully-calibrated hydrometer floating in the liquid. To measure the density of broken glass
from a crime scene using the ‘sink/float method’, forensic scientists submerge glass shards in
a fluid of known density and then mix in a more dense fluid drop by drop until the shards
become neutrally-buoyant and reveal their precise density [2, 3]. This forensics application is
a chemical analog of Galileo’s Thermometer, in which thermally-driven density changes
exploit Archimedes’ Principle to predict temperature.1 Of course, Archimedes’ earliest
investigative application determined the volume and then density of a complex shape (i.e. a
gold crown).

For freely floating objects, the question of their stability is a fascinating and very rich area
for which even relatively simple shapes give rise to surprising complexity. Again the story
starts with Archimedes. A modern interpretation of Archimedes’ original results on the
stability of a floating right paraboloid is beautifully summarized by Rorres [5]. In particular,
Rorres presents visualizations of the equilibrium surfaces in a three-dimensional space
defined by the relative density of the right paraboloid, its base angle, and its tilt angle (see
figures 4 and 5 in that work). These give a modern-day visualization of the stable floating
solutions identified by Archimedes as well as Rorres’ completion addressing additional cases
in which the waterline intersects the base of the paraboloid. Rorres highlights features in these
diagrams referred to as ‘fold catastrophes’ that correspond to events mimicking shape-change
(e.g. melting) induced iceberg tumbling as well as soil liquifaction-induced structure toppling.

Even long floating objects with uniform cross section that can effectively be treated as
two-dimensional have proved to be quite rich in terms of stability classification. The circular
cross section case is a notable exception. As anyone who has watched professional lum-
berjack log-rolling competitions—or tried such a feat themselves—knows, there is no pre-
ferred stable orientation in terms of the log’s two-dimensional circular cross section. Ulam
posed the question as to whether there are long floating objects of uniform density with cross
sections other than the circle that have no preferred stable orientation. Curiously, such objects
—known as Ulam shapes—do exist. Understanding and classifying such objects continues to
attract much interest (see [6–9]). Of additional note, Ryabod [10] very recently showed a
higher-dimensional version of an Ulam shape: a set of fully three-dimensional convex shapes
which are not balls but still float stably in every position.

The case of a long object with square cross section and uniform density is an excellent
example of a floating shape with a non-trivial but analytically tractable stability picture. The
stable floating orientations of this shape were first computed by Reid [11] to reveal that
depending on the density ratio, ρobj/ρfluid, an entire family of orientations, including ‘flat side
up’, ‘corner up’, and, notably, any orientation in between those could be observed. This
situation was explored very recently by Feigel and Fuzailov [12] with both an elegant
theoretical derivation and an accompanying set of table-top experiments that demonstrated
precisely these novel predictions for the floating square. A number of other, mostly theor-
etical, studies have considered other shapes such as rectangles [13], equilateral triangles [14],
as well as some three-dimensional shapes such as a cube, an octahedron, and a tetra-
hedron [15].

Our group has recently explored the case of the floating square with the possibility of an
offset center of gravity as well as more general cases of two-dimensional shapes with any

1 It is worth noting that for complex fluids, the precise details of the fluid mixture and its density require careful
attention in the context of Archimedes’ Principle (Physics Today, September 2012, Mark Wilson) [4].
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specified polygonal cross section [16]. We included with these predictions results from an
experimental study in which we floated 3D printed shapes matching the shapes studied
theoretically. We used a potential energy formulation, based on ideas in Gilbert [8], to
identify stable orientations. In one series of experiments, we floated 3D printed shapes with a
square cross section and a hole along the long axis into which we could insert a nail. We
observed both theoretically and experimentally that the stability predictions in terms of
orientation angle versus density ratio evolved away from the predictions for the uniform
square (e.g. Reid [11], Feigel and Fuzailov [12]) when the center of gravity was offset,
breaking the four-fold symmetry of the floating square. In addition to these studies we 3D-
printed more complex shapes, and showed how the experimentally observed stable floating
orientations compared with our theoretical predictions.

There has been considerable interest and attention paid to the problem of floating objects
and surface tension effects. Keller [17] characterized the equilibrium force balance and
identified the modifications to the classical buoyant force on the object. This work provides an
elegant reinterpretation of Archimedes’ Principle when surface tension forces are present.
Floating objects subject to buoyant and surface tension forces have been the subject of a
recent review (Vella [18]) and have been studied for various geometries including, for
example, long floating cylinders of circular cross section (Lee and Kim [19], Naylor and Tsai
[20]), circular, triangular, and hexagonal cross sections (Liu et al [21]), as well as arbitrary
cross sections (Zhang et al [22]).

The problem of multiple floating objects and surface tension effects has also attracted
significant attention. As anyone who has observed their floating cold cereal in a bowl may
have noted, this is a nontrivial problem even for spherical objects (e.g. Vella and Mahadevan
[23]). Some of these studies have incorporated the influence of a nonzero density in the upper
fluid or even continuous density stratification (e.g. Vella and coworkers [18, 24, 25], Lee [26],
Magnaudet and Mercier [27], and Cooray et al [28]). When dynamics of falling objects are
the focus, effects related to impact and entrainment of the upper fluid also come into play (e.g.
Magnaudet and Mercier [27], Li et al [29], and McLaughlin and coworkers [30–32]).
Dynamics associated with imbalances in horizontal forces are also quite fascinating. Such
studies include the work of Burton et al [33] and Janssens et al [34, 35] who have explored
horizontal propulsion of an object due to Marangoni forces, which have many applications,
including biolocomotion [36].

In the present paper we focus exclusively on fluid statics and do not incorporate surface
tension into our models. Our theory, which incorporates the two-fluid form of Archimedes’
Principle, departs from previous studies by carefully reexamining the potential energy
argument of Gilbert [8] to update this for the two-fluid (two-density) problem. We demon-
strate the connection of this potential energy formulation to that of the single-fluid setting. In
the appendix, we show an N-fluid extension of this argument, but we focus our experiments
only on single- and two-fluid configurations. In this work, we have the following objectives:

• We extend arguments for floating objects at an air–fluid interface (i.e. with density of air
neglected) to the case of floating objects at the interface between two fluids, each of
nonzero density. Our theory will show how the two-fluid case can be effectively mapped
back to the single-fluid case. We explore this also experimentally with different one- and
two-fluid combinations including water, mineral oil (less dense than water), and corn
syrup (more dense than water). Figure 1 shows examples of three different objects under
consideration floating at an oil–water interface.

• We use long shapes with uniform cross section, but allow any cross-sectional shape that
can be approximated by a polygon. We then use 3D printing to generate these nontrivial
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shapes to float and compare the observations to our predictions. We provide descriptions
and publicly-available code [37] so that interested readers with access to 3D printing and
Matlab may explore their own related studies. We point out successes and challenges
associated with floating these objects in single- and two-fluid systems.

• We additionally explore stability predictions by varying the density of the object for a
given shape (experimentally by controlling the 3D printed ‘infill’ settings) as well as by
floating the same object in fluids of different densities. In doing so, we shall demonstrate
an example of what we refer to as ‘density-induced tipping’ where we observe
experimentally the catastrophic-type orientation transitions as the density of the fluid is
slowly altered.

The paper is organized as follows. In section 2 we give definitions and theoretical results.
In order to make sure the discussion is self-contained, section 2.1 contains a set of physical
definitions and concepts. We then give needed modifications to apply these ideas to the two-
fluid interface in section 2.2. In section 3, we describe the methodology of our numerical and
experimental work. In section 3.1 we explain how the theory is implemented computationally
for the prediction of stable floating configuration for long objects with an arbitrary cross
section. Section 3.2 describes methods for design and 3D printing of floating objects.
Section 4 gives the results of our floating experiments with water, syrup, oil, and combina-
tions therein, comparing and contrasting them with the theory. In particular, we have done
experiments using a variety of density ratios for three different cross sections: a square in
section 4.1, an arrow in section 4.2, and a letter G in section 4.3. In section 4.4, we describe
the effects of time variation and present density induced tipping. In section 5 we give
conclusions and future plans.

2. Theoretical results

Here we review basic definitions and concepts associated with static floating objects including
center of gravity, center of buoyancy, and Archimedes’ Principle. Specifically we address
how these, along with a definition of potential energy, are framed in the two-fluid context.

2.1. Archimedes’ Principle and other physical concepts

Consider an object described by a continuous density function ρobj(x, y, z) within a domain
3

3W Î . The mass of the object is given by

M x y z V, , d .obj obj
3

∭ ( )r=
W

Figure 1. Long uniform density objects with fixed cross sections floating at an oil–
water interface. From left to right: the Square, the Arrow, and the Letter G.
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If the object has a fixed cross section Ω and length L with density independent of z, then

L x y z x y M L x y A0, , , , , , and , d .3 obj obj obj obj∬[ ] ( ) ( ) ( )r r rW = W ´ = =
W

If the object additionally has uniform density (i.e. ρobj is constant) and its fixed cross sectional
area is Aobj then

M A L. 1obj obj obj ( )r=

Definition 1 (Center of Gravity, Centroid). The center of gravity, which is the balance
point of the object, is given by

G G G
M

x y z x y z V, ,
1

, , , , d . 2x y z
obj

obj
3

∭⟨ ⟩ ⟨ ⟩ ( ) ( )r=
W

For a fixed cross section object of length L with density independent of z, this becomes

G G G
L

M
x y x y A G

L
, , , d , and

2
. 3x y z

obj
obj∬⟨ ⟩ ⟨ ⟩ ( ) ( )


r= = =

W

If the object has uniform density, then the center of gravity coincides with the centroid.

Definition 2 (Center of buoyancy). The center of buoyancy of an object submerged in a
single fluid of constant density ( x y z, ,f ( )r = constant) is the center of gravity of the fluid that
has been displaced by the object, i.e. the centroid of the submerged domain. If the submerged
domain subW has volume Vsub then

B B B
M

x y z x y z V
V

x y z V, ,
1

, , , , d
1

, , d , 4x y z
f

f
subsub sub

∭ ∭⟨ ⟩ ⟨ ⟩ ( ) ⟨ ⟩ ( )r= =
W W

where M Vf f subr= is the mass of the displaced fluid. As with the center of gravity, for an

object of length L with fixed cross section, Bz
L

2
= , and B B B,x y⟨ ⟩


= can be computed with a

double integral.

As noted earlier, we will generally be working with long objects whose cross sections are
polygons. This significantly simplifies the computations of quantities such as G


and B


. To

establish the notation we will use, a cross section Ω is a polygon with vertices

x y x y x y x y, , , ,..., , , , , 5N N1 1 2 2 1 1{( ) ( ) ( ) ( )} ( )

given in counterclockwise orientation. For such a polygon, the area and center of gravity have
closed form expressions given by

A x x y y
1

2
,

k

N

k k k kobj
1

1 1( )( )å= + -
=

+ +

and

G
A

x x x x y y

G
A

y y y y x x

1

6
,

1

6
. 6

x
k

N

k k k k k k

y
k

N

k k k k k k

obj 1

2
1 1

2
1

obj 1

2
1 1

2
1

( )( )

( )( ) ( )

å

å

= + + -

=
-

+ + -

=
+ + +

=
+ + +
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For the proof of these statements, see [16]. Given a location of the waterline, y= h, the cross
section of the submerged portion of the object is also a polygon (since the waterline is a
straight line) whose area, Asub(h), is a function of h. Therefore, the center of buoyancy B


can

also be calculated using equations like equation (6) once the submerged points are identified.

Principle 2.1 (Archimedes). The upward buoyant force exerted on an object wholly or
partially submerged is equal to the weight of the displaced fluid.Note that the displaced fluid
can be a single fluid of constant density, two fluids each with their own density, or a fluid with
continuous density stratification. See Keller [17] for a reinterpretation of this when surface
tension is present and the waterline is not flat. In the present work we neglect surface tension
effects, and so in the case of a single constant density fluid, Archimedes’ Principle can be
expressed as

M g V g,obj f subr=

where g is acceleration due to gravity, ρf is the density of the fluid, and Vsub is the volume of
the submerged portion of the object. The quantity ρfVsubg is exactly the vertical component of
the force that arises due to the hydrostatic pressure integrated over the fluid–solid interface.
For an object of uniform density ρobj and uniform cross section this implies

R
V

V

A h

A
. 7

obj

f

sub

obj

sub 0

obj

( ) ( )
r

r
= = =

We refer to R as the density ratio of the object. This equation shows that Archimedes’
Principle determines the height of the waterline, y= h0, of an object at equilibrium with no
other external forces.

For density ratio 0< R< 1, equation (7) implies that h0 is determined by W(h0)= 0 where
W given by

W h R
A h

A
.sub

obj
( ) ( )

= -

Note that W is a continuous function of h. If h is sufficiently small, the object lies entirely
above the water, Asub(h)= 0, and W(h)> 0. If h is sufficiently large, Asub(h)= Aobj, and W
(h)= R− 1< 0. By the Intermediate Value Theorem, this implies that for some h between
these two values Archimedes’ Principle is satisfied, i.e. W(h= h0)= 0. For any 0< R< 1, the
object floats partially submerged at the air–fluid interface. From a computational point of
view, for a polygonal shapeW(h) can be evaluated using only vertices of the polygon (and the
submerged portion thereof) and the waterline height h0 can be obtained by solving a root-
finding problem. For the results reported in this paper we have used the bisection method for
solving this root-finding problem.

Archimedes’ Principle can be satisfied for any rotation of an object, but this, by itself, does
not establish stability of a given equilibrium floating configuration. To address stability, we
will establish a potential energy for each fixed orientation of the object, such that the local
minima of this energy give the object’s stable floating configurations. To do so, it is con-
venient to work in a reference frame where the object is fixed and the waterline moves. In
particular, given an angle θ, let n̂( )q be the unit normal vector orthogonal to the waterline. In
the reference frame fixed to the object, the center of gravity is independent of θ and R,
whereas the center of buoyancy varies with both θ and R. The stable floating configurations
for a single-fluid case (e.g. air density equals zero) can be determined by finding the minima
of the following potential energy function U(θ, R), previously described in [8] and used
in [14, 16].
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Definition 3 (Potential energy). At equilibrium, the (scalar) potential energy of a floating
object is given by

U R M g n G B R, , , 8obj( ) ˆ( ) · ( ( )) ( )
 

q q q= -

where ‘·’ indicates a dot product. See Gilbert [8].Given R and waterline orientation θ we can
determine the submerged region Ωsub and its area Asub consistent with Archimedes’ Principle,
and thus B R,( )


q . Then, equation (8) establishes the potential energy U(θ, R) as a continuous

function of θ and R.

2.2. Floating objects at the two-fluid interface

The previous discussion, particularly the details of the potential energy formulation, describes
an object floating partially submerged in a single fluid, where the upper fluid (e.g. air) has
negligible density. In this section, we extend the classical concepts to objects floating at the
interface between two fluids of different density. We show that the two-fluid case fits neatly
into the previous single-fluid framework, with a reinterpretation of the density ratio R and the
potential energy function. The two-fluid problem can be stated as follows.

Question 2.1 (Two-fluid problem). Given an object fully submerged in fluid 1 and partially
submerged in fluid 2 (see figure 2); how can we determine its stable floating orientations?

Here we restrict ourselves to the case of a uniform density object with fixed cross section.
Consider the situation shown in figure 2. In particular, for an object of constant density ρobj
floating at the interface between two fluids with densities ρ1 and ρ2, we have

.1 obj 2r r r< <

Let Ω=Ω1∪Ω2 where Ω1 is the cross section of the object contained in fluid 1, with area
A1, and Ω2 the cross section in fluid 2 with area A2. Thus

A A A V A A L A Land . 9obj 1 2 obj 1 2 obj( ) ( )= + = + =

Let M1= ρ1A1L and M2= ρ2A2L denote the masses of the displaced fluids.

Figure 2. A schematic diagram of the two-fluid problem. Fluid 1 has density ρ1, and
fluid 2 has density ρ2, and the green dashed line is the two-fluid interface. The object’s
cross section consists of two pieces: Ω1, displacing fluid 1, and Ω2 displacing fluid 2.
M1 and M2 are the corresponding masses of the displaced fluids. Point D


is an arbitrary

point on the air–fluid interface. We assume the object lies completely below the red
dashed line, the top of fluid 1.
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We can rewrite the center of gravity from equation (3) as

G x y A x y A

x y A x y A

, d , d ,

, d , d . 10

L

M

A

obj obj

1

obj 1 2

obj 1 2

( )
( )

∬ ∬

∬ ∬

⟨ ⟩ ⟨ ⟩

⟨ ⟩ ⟨ ⟩ ( )


r r= +

= +

W W

W W

Definition 4 (Centroids of ,1 2W W ). Let B1


be the centroid for 1W and B2


be the centroid for

2W . That is,

B
A

x y A B
A

x y A
1

, d and
1

, d . 111
1

2
21 2

∬ ∬⟨ ⟩ ⟨ ⟩ ( )
 

= =
W W

Since both fluids have constant density these can be rewritten as

B
L

M
x y A B

L

M
x y A, d and , d . 121

1
1 2

2
2

1 2

∬ ∬⟨ ⟩ ⟨ ⟩ ( )
 

r r= =
W W

From equations (10) and (11) one can deduce that

G
A

A B A B B
A

A
B B

1
. 13

obj
1 1 2 2 2

1

obj
1 2( ) ( ) ( )

     
= + = + -

Definition 5 (Center of buoyancy for the two-fluid interface). Using the notation above,
the center of buoyancy of the object at the two-fluid interface can be written as

B
L

M M
x y x y A x y

x y

x y
, , d , where ,

if ,

if ,
.

1 2
f f

1 1

2 2obj

⎧
⎨⎩

∬ ⟨ ⟩ ( ) ( )
( )
( )


r r

r
r

=
+

=
Î W
Î WW

Using equation (12) we can write B

as:

B
M M

M B M B B
M

M M
B B

1
. 14

1 2
1 1 2 2 2

1

1 2
1 2( ) ( ) ( )

     
=

+
+ = +

+
-

Note that from equations (13) and (14) the center of gravity G

and the center of buoyancy

B

are both on the line segment connecting the centroids B1


and B2


. Further, since ρ1< ρ2,

M

M M

A

A A

A

A A

A

A
.1

1 2

1 1

1 1 2 2

1

1 2

1

obj

r
r r+

=
+

<
+

=

It follows that B

is closer to B2


than G


is. That is, in terms of their vertical components, B


is

always lower than G

for an object with uniform density.

Archimedes’ Principle says that in the absence of other forces (e.g. surface tension), the
balance of forces when the object is at equilibrium requires M1g+M2g=Mobjg. That is,

M M M . 151 2 obj ( )+ =

In terms of densities and areas this can be written as

A A A . 161 1 2 2 obj obj ( )r r r+ =

Together, equations (9) and (16) give a system of equations for A1 and A2 which can be
solved to get
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A A A Aand . 171 obj
2 obj

2 1
2 obj

obj 1

2 1

( )
r r

r r

r r

r r
=

-

-
=

-

-

In view of equation (16), note that equation (14) becomes

B B
A

A
B B . 182

1

obj

1

obj
1 2( ) ( )

   r
r

= + -

Comparing this with equation (13) shows that the exact position of B

is between G


and B2


.

Figure 3 shows two examples of the four points B2


, B

, G

, and B ;1


under the conditions stated

so far, these four points are always collinear. We give further interpretations of this figure
below, as our discussion so far does not address stability of configurations satisfying
Archimedes’ Principle. First, we make one more important observation.

Combining equations (13) and (18) allows us to eliminate B1


to find that

G B k G B , 192( ) ( )
   
- = -

where k is a θ-independent constant given by

k 1 .1

obj

r
r

= -

The subtle, and perhaps unremarkable, result in equation (19) turns out to plays a key role
in the potential energy formulation for the two-fluid system. In particular, the following
theorem extends the potential energy in definition 3 to the two-fluid system and at the same
time provides an elegant mapping back to the single-fluid system.

Theorem 2.1 (Potential energy in the two-fluid interface). Using the notation established
in this section, there exists a constant k independent of the orientation of the object, and a
suitably-defined density ratio R̃ such that

U R M gn G B kM gn G B R, , , 20obj obj 2( ˜) ˆ · ( ) ˆ · ( ( ˜)) ( )
   

q q= - = -

under the conditions established by Archimedes’ Principle, M M M1 2 obj+ = .

Figure 3. An object floating at a two-fluid interface: on the left, the object is in a stable
floating configuration, where B B G, ,2

  
, and B1


align vertically. On the right, the object

is in an unstable position, where the four points are still collinear, but the line is not
vertical. In this figure on the right, the arrows indicate the downward gravitational force
at G

and the upward buoyant force at B;


these forces would cause the object to rotate

counterclockwise. In these examples we have used R 0.2obj 1 2 1
˜ ( ) ( )r r r r= - - =

and ρ1/ρobj = 0.5 (note this means ρ2/ρobj = 3).
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Before giving the proof of this result, we pause to give insight for what it provides. For a
fixed object, we determine the value of the density ratio R̃, and for this value of R̃ we consider
U as a function of θ only. The θ values for which the potential energy has local minima
correspond to stable floating configurations for this object. For this fixed R̃ case, the
Archimedes’ Principle is a significant constraint on the locations of G


and B


relative to

centroids B1


and B2


. In particular, as long as R0 1˜< < these two vectors, along with B1


and

B2


will always be distinct and collinear with their vertical components arranged in the order

B B G B, , ,2 1

   
. If R 0˜ or R 1˜ , then the object is fully submerged in a single fluid, and we

are no longer in the two-fluid case. Figure 3 shows two example configurations, one stable (on
the left) and one unstable (on the right). In the stable configuration on the left the four points
are vertically-aligned. In the configuration on the right, although the object is in a position
where Archimedes’ Principle is satisfied, the non-vertical alignment of G


and B


would cause

the object to rotate in the counter-clockwise direction.
The above paragraph discusses the four vectors B B G, ,2

  
, and B1


, but we do not need to

compute all of them in the search for potential energy minima. In the end, we only needG

and

B2


. This follows from the result in equation (19) that the difference G B

 
- is proportional to

the difference G B2

 
- with the constant of proportionality k= 1− ρ1/ρobj. The first form of

the potential energy in (20), involving directly the difference G B
 
- , indicates that the two-

fluid potential energy takes the same form as the single-fluid potential energy. In either
situation, the essential physical quantities are the center of gravity and the center of buoyancy.
The key difference, of course, is that to compute B


for the two-fluid system one must account

for the displacement of fluid 1 and fluid 2. The second form of the potential energy in (20), in
contrast to the first form, involves directly the difference G B2

 
- along with a constant k,

which indicates that the two-fluid potential energy, like the single-fluid potential energy, can
be computed in terms of the centroid of the displaced lower fluid (fluid 2). In particular, one
need not compute B1


(and one need not compute B


). Now, recall that in the single-fluid case,

the appropriate density ratio R̃ was ρobj/ρf. In the two-fluid configuration with two different
densities ρ1 and ρ2 the relative density ratio (ρobj− ρ1)/(ρ2− ρ1) has already made an
appearance in Archimedes’ Principle and is a leading candidate for R̃.2 These together imply
that in order to find stable floating configurations at the two-fluid interface, the calculation
will be the same as in the single-fluid case, with one important caveat associated with the
density ratio. Note that specification of the constant k requires a value of ρ1/ρobj, however,
while this scales the two-fluid potential energy the value of k does not modify in any way the
configurations for which local minima of the potential energy are achieved. The proof of
theorem 2.1 outlined below, which generalized the discussion of the potential energy in
Gilbert [8], reveals the subtlety of how the relevant features of the potential energy needed to
assess stability require only the relative density ratio (ρobj− ρ1)/(ρ2− ρ1) and, critically, the
displaced lower fluid.

Proof. The potential energy function is defined to be the sum of functions:

U U U ,G B( )q = +

where UG is the potential energy due to gravity and the object’s mass, and UB is the potential
energy due to buoyancy. First, the work done against gravity to lift the object relative to a
reference point on the air–fluid interface, denoted by D


, is given by

2 Spoiler Alert: see equation (26).
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U M gn G D , 21G obj ˆ · ( ) ( )
 

= -

where, as in the previous section, n̂ represents a unit vector normal to the uppermost (air–
fluid) interface, in this context in the opposite direction to the gravity vector—i.e. g gn̂


= - .

Next, we define UB as the work required to lift displaced fluid from its original position in the
submerged region to reference point D


. This is a general statement that would apply for fluid

with variable density x y z, ,f ( )r with total fluid mass Mf . That is,

U M gn D B , 22B f ˆ · ( ) ( )
 

= -

where B

is the center of buoyancy associated with the displaced fluid computed using the

variable density form in equation (4). Archimedes Principle requires that
M M M Mf 1 2 obj= + = so that

U M gn D B . 23B obj ˆ · ( ) ( )
 

= -

Combining equations (21) and (23) gives the potential energy of the object. That is:

U M gn G D D B M gn G B . 24obj obj( ) ˆ · (( ) ( )) ˆ · ( ) ( )
     

q = - + - = -

Combining this with equation (19) shows immediately that

U kM gn G B , 25obj 2( ) ˆ · ( ) ( )
 

q = -

where k 1 1 objr r= - is independent of orientation and only depends on the density
ratio 1 objr r .

In norder to complete the proof, we need to define the constant R̃. From equations (11) and
(17), the term M B LA Bobj 2 obj 2

 
= depends only on the ratio

A

A
R, 262

obj

obj 1

2 1

≔ ˜ ( )
r r

r r
=

-

-

which defines the relative density ratio R̃ given in the statement of the proof. ,

We emphasize the takeaway message of this theorem: Although the primitive form of
potential energy clearly involves the center of buoyancy, and hence contributions from the
displaced fluids in region Ω1 and Ω2, an alternate form can be expressed in terms of the center
of gravity and the centroid of the displaced fluid 2. Specifically, terms related to B1


do not

appear. The potential energy identified in equation (25) has the same form as the single-fluid
result in equation (8) if we write

U R M gn G B R, ,obj( ˜) ˜ ˆ( ) · ( ˜( ˜))
 

q q q= -

where M kM M Aobj obj obj 1 obj˜ r= = - is the effective mass of the object already submerged in

fluid 1, B R,˜( ˜)

q is the center of buoyancy of the displaced lower fluid region Ω2 whose area,

A2, satisfies A A R2 obj ˜= (Archimedes’ Principle). This formulation recovers the standard
single-fluid results when ρ1= 0 and R obj 2

˜ r r= .
To summarize, the two-fluid problem can be solved in exactly the same way as the single-

fluid case with the caveat that the density ratio be interpreted as R obj 1 2 1
˜ ( ) ( )r r r r= - - . In

the appendix, we show that for an object floating across three or more fluid layers, it is no
longer possible to write G B

 
- in a way that depends only on a single displaced-fluid’s

centroid. That is, the general N-fluid case does not map directly back to the single-fluid case.
In the next section, we will give more details of the logistics for the two-fluid predictions, and
then describe how we create floating objects to test these predictions.
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3. Methods

In the previous section, we presented a theoretical framework by which one can identify the
stable orientations of long objects with fixed cross section floating at the interface between
two fluids. In section 3.1, we implement this theory numerically in order to predict stable
floating configurations. In section 3.2, we describe the process of creating such objects using
3D printing and discuss practical details for testing the theory experimentally. The software
used in this section is publicly available, cf. the Iceberg Project [37].3 We hope to inspire
others to try such floating experiments. The needed equipment and supplies are fairly modest.

3.1. Numerical methods for prediction

We now outline how to predict stable floating configurations for objects with fixed cross
sections. All of the computations shown here have been performed using the Matlab code
PotentialEnergyFloat, a portion of our Iceberg Project software [37].

Consider an object with a polygonal cross section, defined by counterclockwise-oriented
vertices {(x1, y1), ..., (xN, yN), (x1, y1)} as in equation (5). Our computations and experiments
concentrate on three main shapes: the square, the arrow, and the letter G, as in figure 4. The
first, second, and third points are depicted in red, green, and blue (indicating counterclockwise
orientation). The first two of these shapes can be described quite simply by polygons. For
example, the square is defined by vertices {(1, −1), (1, 1), (−1, 1), (−1, 1)}. The arrow is
similarly given by four vertices (plus the repeated one). In contrast, the letter G is a much
more complicated polygon involving 2106 vertices. However, there is no difference in either
the theory or computation, except that the computations take longer.

Given a (polygonal) shape and a density ratio Rä (0, 1) we can compute the potential
energy landscape. Recall that the relevant two-fluid density ratio is given by
R= (ρobj− ρ1)/(ρ2− ρ1) (see equation (26)) which includes the single-fluid special case
where ρ1= 0. Figure 5 shows the computed value of

U U M g .obj¯ ( ˜ )=

Figure 4. The Square, Arrow, and Letter G cross sections that we will use in our
experiments. The orientations as shown in this figure correspond to θ= 0. Positive
(negative) θ corresponds to rotation of the object in the clockwise (counter-clockwise)
direction.

3 A portion of the code was originally written for [16], but it has since been significantly expanded.
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Since M gobj˜ is independent of θ, we can view this as equivalent to potential energy, in the
sense that it has the same local minima, and therefore gives a measure of the stable
configurations. The figure shows Ū as a function of the object orientation for the square (top
row), the arrow (middle row) and the Letter G (bottom row) at various fixed values of R. The
orientation angle θ represents the clockwise orientation of the object relative to the waterline
with the reference configuration, θ= 0, corresponding to the orientations shown in figure 4.
Alternatively, one can view θ as a counterclockwise orientation of the waterline with the
object fixed. In either view, the angles associated with the local minima of the potential
energy correspond to stable floating configurations of the object, in the absence of surface
tension and other external forces.

The top row of figure 5 shows the potential energy function Ū for the square for R= 0.2,
0.25, 0.3. In the R= 0.2 case, the square has four stable floating configurations, at angles
θ= 0, 90, 180, 270 degrees (i.e. flat side up). For R= 0.25, the square has eight stable floating
configurations, and for R= 0.3, there are again four stable states, but this time with angles
θ= 45, 135, 225, 315 degrees (i.e. corner up). These stable configurations for the square have
been studied previously by Reid [11] and by Feigel and Fuzailov [12] for the single-fluid
context. We emphasize here that their theory applies also for the two-fluid cases but with R
given by equation (26).

The second row of figure 5 shows the potential energy of the arrow for R= 0.2, 0.4, 0.6,
corresponding to three, four, and four stable floating configurations, respectively. Since the

Figure 5. Potential energies Ū for different shapes and R values: top row: the square for
R= 0.2, 0.25, 0.3. Middle row: the arrow for R= 0.2, 0.4, 0.6. Bottom row: the letter
G for R= 0.1, 0.5, 0.9.
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potential energy at fixed R is a smooth function, we can use numerical minimization tech-
niques in order to find the local minima—i.e. the stable floating orientations. The stable
floating orientations of the arrow for R= 0.2 are (to the nearest degree) computed to be
θ= 120, 240, 360 (aka 0) degrees. These three stable configurations are depicted in figure 6
along with photographs of an arrow with R= 0.2 in oil (upper fluid) and syrup (lower fluid)
showing experimental realizations of these stable floating configurations. We also list stable
floating configurations for the other two R values depicted in figure 5 (middle row): for
R= 0.4, θ= 39, 127, 233, 321 degrees; and for R= 0.6, θ= 53, 141, 219, 307 degrees.

All of the square and arrow stable configurations shown in figure 5 are quite pronounced,
and we would not expect that small perturbations would affect them significantly. The third
row of figure 5 shows the potential energy for the Letter G for R= 0.1, 0.5, 0.9. In contrast to
the potential energy functions for the arrow and the square, there are stable configurations
(local minima of the potential energy) for the letter G where small perturbations would be
likely to destroy or significantly change its stability. For R= 0.5 there are four stable points at
orientations θ= 51, 143, 231, 323 degrees and, while all qualify as stable equilibria, the local
potential energy well is not very deep at 51 and 231, and intuitively these would seem to be
less stable than the two others at 143 and 323. At R= 0.9 there are three stable points at
orientation θ= 16, 168, 277 degrees. Although the value R= 0.1 looks like it would also
have three stable points, there are only two stable points for θ= 97 and 348 degrees. What
about the point at θ= 195 degrees? At a slightly smaller density ratio, R= 0.09, this is a
stable point but, nearby, at R= 0.1, the point at θ= 195 is no longer a local minimum. A
bifurcation has occurred between these values. Even at R= 0.09, a floating object in this
configuration could easily be perturbed by the slightest inconsistency in distribution of mass

Figure 6. The top three plots show the predicted stable floating orientations of the arrow
for R= 0.2. These are the orientations with θ= 120, 240, 360 (aka 0) degrees
respectively. The lower three photographs show the observed floating orientations for
an arrow at an oil–syrup interface (red line) where the predicted density ratio is
also 0.2.
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or any slight disturbance of the fluid(s). Therefore, in cases such as these for the Letter G, we
would expect that these stable points may be hard to observe experimentally due to the natural
fluctuations in mass distribution of the physical objects and in a floating tank of non-theor-
etical fluid.

Bifurcations do occur for the square and arrow cases as well. Figure 7 shows the potential
energy of the arrow for three different values of R near 0.7. Here the local minima are so close
to the tipping point that finding a third floating configuration would be extremely difficult and
the theoretically-predicted stable configuration may disappear due to small fluctuations. This
sensitivity is a general hallmark of behavior near bifurcation.

In order to get a more global picture of the stable floating orientations for all values of R,
instead of only finding the stable orientations for a fixed value of R, we will compile these
stable angles for all values of R in a θ versus R bifurcation diagram. We display such
diagrams below for our experiments with these three shapes (the square, the arrow, and the
letter G). We note that such figures contains a lot more information, but at the expense of
being able to see information on whether the local minimum is at the onset of a bifurcation,
and therefore susceptible to disappear due to fluctuations. In subsequent figures, we will plot
such figures with angles measured in radians, and on the range (−π, π). This change from
degrees on (0, 360) to this range can be accomplished using the following formula:

180
mod 180, 360 180 . 27radian degree( ( ) ) ( )q

p
q= + -

3.2. Experimental design

In order to test our theoretical predictions, we need a way to create a long object with the
same fixed cross section that we have used for our numerical simulations. To this end, we
have developed a method using Matlab and OpenSCAD for converting any digital image for a
cross section into a 3D-printable object with this cross section cf the DesignFloat portion
of the Iceberg Project package [37]. With a fully digital version of the cross section, we can

Figure 7. This graph shows the potential energy Ū for the arrow for R= 0.65, 0.7, 0.75.
This shows the transition between four stable configurations (upper curve) and three
stable configurations (lower curve). The middle curve occurs close to a bifurcation
point, and for this R value it would be very hard to distinguish experimentally whether
there are three or four stable configurations.
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compute the exact volume and the stable floating configurations for the particular object we
have printed, even when the object has a complex cross section.

We print using PLA, a type of plastic which has a density heavier than water. However, we
are able to modify the uniform density by adjusting the infill density of the print, thereby
allowing us to create floating objects with the same shape and different densities over a wide
variety of densities. Figure 8 shows an example of a partially printed large arrow with 80%
infill density using the ‘grid’ infill pattern.4 We can see that this print is very uniform
throughout the object. For prints above about 20% infill, we previously found that a uniform
density estimate is reasonable [16]. This citation also suggests how to estimate the density of
the object prior to printing it. Once printed, we measured the mass of the object, and then
established its (uniform) density ρobj by dividing the mass by the calculated volume. Based on
this and the densities of water, syrup, and mineral oil5 listed in table 1 we obtain the R values
for all of our floating objects. Figure 9 shows our experimental set up with a small arrow
floating at an oil–water interface.

4. Experimental results

Here we report various experimental results and comparisons with our theoretical predictions.
In our experiments, we used objects with three different cross sectional shapes—square,
arrow, and letter G—as shown in figure 4. The squares all had the same dimensions but with
different infills to control ρobj (see table 1). We used arrows and Letter G shapes with both
large and small cross section and a variety of infills (see table 1). An example of a partially-
printed large cross section arrow is shown in figure 8. The squares and small cross section
objects were all designed to be ‘long’ in the third dimension. The large cross section objects
were relatively short in the third direction (approximately 1 inch) but when these objects were
floated, we gently constrained the object so that its axis in the third dimension remained
parallel with the fluid–fluid interface (as if it were a long object).

Although our theory can be applied to predict stable orientations for long objects with any
cross section, experiments with such objects are not without some difficulties that are worth

Figure 8. These images show a partially-printed large arrow with 80% infill. The ruler
shows one inch markings.

4 Other infill patterns would work as well, but we recommend using a 2D infill pattern rather than a 3D infill pattern
in order to keep a fixed cross section.
5 We used Bluewater Chemgroup mineral oil and Karo light corn syrup with real vanilla.
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pointing out. As noted above, our model does not account for surface tension effects. The
Bond number, Bo= (ρ2− ρ1)gℓ

2/γ where ℓ is a representative length scale for our objects
and γ is the relevant fluid–fluid surface tension, measures the buoyant force relative to surface
tension forces. For air–water γ= 72× 10−3 N m−1 and g≈ 10 m s−2. For an object with
ℓ≈ 10−2 m (small objects) and ℓ≈ 10−1 m (large objects), the Bond number is

10 1000 ( ) ( )- . For the two-fluid systems under consideration the Bond numbers involves
the density difference ρ2− ρ1 which for all combinations we have considered is less than
ρwater. We feel our large cross section objects are relatively insensitive to surface tension
effects. We anticipate that some of the discrepancies observed between our theory and
experiments, especially for the smaller objects, may be attributed to surface tension.

Another issue we point out here and discuss more below, especially for the two-fluid
configurations, is the effect of entrainment of one fluid in another fluid of different density.
For example, when experimenting with an object floating at an oil–water interface the
observed floating orientation can be sensitive to the way in which the object reaches the
interface. If, for example, the oil–water layers are set up first and then the object is dropped
through the oil to the oil–water interface an entrained layer of oil may surround the entire

Table 1. Density, mass, and volume measurements for the fluids and 3D printed
objects. Multiple measurements of the oil and syrup densities gave error estimates for
these quantities. We used PLA density measurement estimates from [16]. For each
shape the multiple mass measurements correspond to different objects; for example, we
used six different square cross-section objects. Uncertainties in the masses are based on
multiple measurements on different scales. Volume uncertainties are based on
dimension uncertainties for each object.

Description Parameter Value

ρPLA 1.15 ± 0.02 g cm−3

Density ρwater 1.0 g cm−3

ρoil 0.83 ± 0.01 g cm−3

ρsyrup 1.36 ± 0.03 g cm−3

Square Msquare [11.45; 19.18; 50.34; 50.92; 51.56; 55.69]
± 0.3 g

(3 cm × 3
cm × 6 cm)

Vsquare 54 ± 1 cm3

Arrow Msmallarrow [26.8; 27.42; 32.06; 43.08] ± 0.1 g
(Small) Vsmallarrow [33.9; 33.9; 33.9; 44.5] ± 0.5 cm3

Arrow Mbigarrow [180.6; 180.8] ± 1 g
(Big) Vbigarrow 200.74 ± 5 cm3

Letter G MsmallG [15.03; 39.9; 36.03] ± 0.1 g
(Small) VsmallG 40.2 ± 1 cm3

Letter G MbigG [332.7; 455.5] ± 1 g
(Big) VbigG 561.4 ± 10 cm3

Eur. J. Phys. 45 (2024) 055001 D M Anderson et al

17



object and modify its effective buoyancy at least over time scales for which the entrained oil
drains off of the object (out of the water layer region). On the other hand, if the object is first
floating at a air–water interface and oil is slowly filled to submerge the object the same
entrainment of oil by the object does not occur but some entrainment of water into the oil may
occur. We have typically used the former approach but have made tests using the latter
approach. A few other experimental challenges are pointed out in the conclusion.

We explore two key aspects of the theory by floating a variety of 3D printed shapes and
sizes in different fluid systems. The first prediction of the theory follows directly from
Archimedes’ Principle which relates the submerged (cross sectional) area A2 to the known
(cross sectional) area of the object and the appropriate object and fluid densities. To test this
prediction in our experiments we define the experimentally-observed density ratio

R
A

A
, 28obs

2
obs

obj
obs

( )=

where A2
obs is the experimentally-observed area below the fluid–fluid interface and Aobj

obs is the
experimentally-observed total area of the object. Both of these areas are measurable from
photographs taken during the experiments. To be precise, A2

obs is taken to be the area of the
object below a straight line connecting two far-field points on the fluid–fluid interface. We
can then compare this observed density ratio with the expected density ratio
R= (ρobj− ρ1)/(ρ2− ρ1) where the object and fluid densities are measured independently.
The second prediction of the theory involves the stable floating orientation(s) for a given
density ratio. These predicted orientations are the minima of the potential energy landscapes
for each fixed R, as outlined earlier. Since the theoretically-predicted stable orientations
depend on the density ratio, we compare our experimentally-observed floating orientations to
these theoretical predictions with both the observed Robs and expected R values in mind.

Figure 9. This image shows an example of our experimental set up used to float the
smaller objects, here shown with an arrow at an oil–water interface with the lower fluid
(water) dyed green. The ruler shows one inch markings.
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4.1. The square cross section

We first examine objects with square cross sections (i.e. ‘squares’). As noted earlier, this case
has been examined by a number of authors and most recently by Feigel and Fuzailov [12].
Feigel and Fuzailov derived theoretical results for the stable orientations as a function of the
density ratio R and explored these experimentally for a range of density ratios near R= 0.25.
As we have argued, the theory applies not only for squares floating at an air–fluid interface
but also for squares at a two-fluid interface. As a demonstration of this we show several
experimental measurements in figure 10 for squares floating in various single fluids (water,
oil, syrup) as well as at a two-fluid interface (e.g. oil–water).

The plot on the left of figure 10 shows the experimentally-observed density ratio Robs

versus the expected density ratio. Six different squares were used, each corresponding to
different colored markers in the plot (see also table 1). We report Robs for each observed stable
orientation; for example, four slightly different values of Robs are shown by the black ‘!’
corresponding to four observed stable floating orientations of that object in the oil–water
system. Note that the cyan ‘!’ (with R≈ 0.6, oil–water interface) and the cyan ‘◦’ (near
R≈ 0.94, air–water interface) represent the same physical object. These data generally show
that these objects float with close to the expected submerged area of the lower fluid; a minor
exception for the square is the oil–water system (see the data denoted by cyan and black ‘!’).

The middle plot of figure 10 compares the observed stable floating orientations at the
observed density ratio (‘◦’= air–water, ‘◊’= air–syrup, ‘!’= oil–water; see also table 2)
versus the theoretical predictions for these square objects. The right plot of figure 10 shows
the same results except that the observed angles are plotted at the theoretically-expected
density ratio. The solid curves in these plots correspond to the theoretical prediction of Feigel
and Fuzailov [12] given by their equations (5) and (16), symmetrically and periodically
extended to cover the full range of angles [−π, π]. We show this full range in order to assess
the symmetry of the experimentally-observed floating orientations in comparison to the
theoretical symmetry of the square. That is, we report all observed floating orientations on
[−π, π], which in some cases is four and others eight consistent with the theory. We have also
confirmed that our general-purpose code predictions for squares agrees with the Feigel and
Fuzailov theory. While most of these experimental data correspond to different square
objects, note that the case of the cyan ‘!’ (near R≈ 0.6, oil–water interface) and the cyan ‘◦’
(near R≈ 0.94, air–water interface) represent the same physical object. This confirms
experimentally a key message that the same object floating at an air–water interface can have
a different equilibrium floating configuration at an oil–water interface.

Figure 10. Square: the left plot shows the observed density ratio versus the expected
density ratio. Experimental observations are indicated by symbols (‘◦’= air–water,
‘◊’= air–syrup, ‘!’= oil–water). Each different color corresponds to one of six
different squares. In the middle plot, experimental data are plotted using Robs. In the
right plot, experimental data are plotted using R.
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4.2. The arrow cross section

We next examine objects with arrow-shaped cross sections (referred to below as ‘arrows’).
This shape has not been explored previously and so we have used our general purpose code to
obtain theoretical predictions for stable floating orientations as a function of density ratio.

The plot on the left of figure 11 shows the experimentally-observed density ratio Robs

versus the expected density ratio, R. Six different arrows were used (four smaller arrows—
red, green, blue, magenta—and two larger arrows—cyan and black) and multiples of these
were floated in different fluid–fluid systems (see tables 1 and 2). We see that the arrows with
relatively large density ratio (e.g. 0.8 or higher) seem to have observed density ratios close to
the expected density ratios. Data for the oil–water system (denoted by symbol ‘!’) have
observed density ratios that are considerably smaller than the expected density ratio. We
discuss this observation further below. The middle plot of figure 11 compares the observed
stable floating orientations at the observed density ratio. The right plot of figure 11 shows the
same results except that the observed angles are plotted at the theoretically-expected density

Figure 11. Arrow: the left plot shows the observed density ratio versus the expected
density ratio. Experimental observations are indicated by symbols (‘◦’= air–water,
‘,’= air–oil, ‘◊’= air–syrup, ‘!’= oil–water, ‘✡’= oil–syrup, ‘å’= oil–water/
modified filling). Each different color corresponds to one of six different arrows. In
the middle plot, experimental data are plotted using Robs. In the right plot, experimental
data are plotted using R. Note that the oil–syrup example (✡) corresponds to the three
experimental images in figure 6.

Table 2. Symbols for the experimental data for different fluid–fluid systems. Note that
in the first three, the first ‘fluid’ is air, corresponding to the one layer cases. The case
listed as ‘oil–water (mod)’ uses a modified protocol in which the object is first floated at
the air–water interface and oil is poured carefully onto the water surface to minimize/
eliminate possible entrainment of oil by the object that occurs in our standard protocol
for the oil–water system.

◦ Air–water
, Air–oil
◊ Air–syrup
! Oil–water
" Water–syrup
✡ Oil–syrup
å Oil–water (mod)
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ratio. The solid curves in these plots correspond to the theoretical prediction from our general
purpose code.

As is clear in the left plot of Robs versus R, in some of these cases (notably the oil–water
system marked by ‘!’ and ‘å’) there is a significant difference between the observed and
expected density ratio. We mention two possible explanations for these observations: (A)
surface tension may play a significant role in providing a non-negligible vertical force that
effectively ‘lifts’ the object higher than expected, (B) entrainment of the upper (oil) occurs
when the object is submerged through the oil to the oil–water interface and this entrained oil
fully or partially coats the object and provides a measure of additional buoyancy not
accounted for in our model. The estimated Bond number suggests that surface tension could
play a role for the smaller arrows but likely not for the larger arrows. We do observe that the
agreement between observed and theoretically-expected density ratio is better with the larger
arrows (the black and cyan ‘!’) compared to the small arrows (the red and green ‘!’).

To investigate the influence of entrainment of the oil, we repeated one of the experiments
using a modified tank-filling protocol. We first note that our standard protocol for floating an
object at an oil–water interface is to set up the oil–water layers first and then drop the object in
though the oil and let it settle on the oil–water interface. As is know for related experiments
studying effects of entrainment for falling beads (e.g. see McLaughlin and coworkers
[30–32]), as the object falls through the oil and reaches the underlying water layer, it carries
with it an effective personal floatation device in the form of a relatively buoyant layer of oil as
it descends into the water layer. Eventually, this oil layer will drain upwards back to the upper
oil region but the time scale for this to occur we believe is longer than the time we have
waited to make observations. In the modified protocol, we float the object first at an air–water
interface and then carefully add an oil layer so that at least the portion of the object already in
the water does not have a coating of oil. These experiments are shown by the symbol ‘å’.
These do show an observed density ratio closer to the expected density ratio. That said, there
is still a discrepancy which could be explained in part by (A). We further comment that while
this may be a better experimental protocol for the oil–water system it is also much more
difficult and time consuming to collect data as measurement of each orientation of each object
would require draining and refilling the oil layer. An alternative approach is to allow a much
longer time to elapse before making a measurement so that any entrained oil drains from the
water portion. However, the time scale for the entrained oil to drain off the object is probably
quite long.6

In terms of the stable orientations, these are shown in the middle and right plots of
figure 11. The best comparisons occur in the middle plot when the experimentally-observed
angles are plotted against the experimentally-observed density ratio. This provides the best
test of the stable angle prediction in the sense that we use a density ratio known to be
consistent with the experiments and Archimedes’ Principle. We observe that the best com-
parisons are for the largest density ratios (heaviest objects) and for regions of the bifurcation
diagram away from the transition points near density ratios of 0.3 and 0.7.

6 A balance of viscous forces and gravity forces suggests μV/ℓ2 ∼ Δρg where μ is the fluid viscosity, V is a draining
velocity scale, ℓ is a length scale, and Δρ is the density difference (e.g. ρwater − ρoil). If we identify a time scale T
required for draining using V ∼ ℓ/T then T ∼ μ/(Δρgℓ). For water the viscosity is μ ∼ 10−3 Pa s and for mineral oil
the literature suggests a viscosity 10–100 times greater. For a length scale ℓ ∼ 10−2 m this gives T ∼ 10 s for air–
water but maybe a 100–1000 times longer for oil–water since not only is the oil viscosity larger but the density
difference, ρwater − ρoil, is smaller.
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4.3. The letter G cross section

We have previously shown that for a square with an offset center of gravity [16] the four-fold
symmetry is broken and, for these off-center squares, the stable orientation branches can
become discontinuous (e.g. see figure 13 in [16]). The letter G, which we explore next, also
has discontinuous branches in the stable floating orientation as a function of density ratio even
in the uniform density case.

The plot on the left of figure 12 shows the experimentally-observed density ratio Robs

versus the expected density ratio. Five different letter G’s (three smaller ones—red, green,
blue—and two larger ones—cyan and black) and multiples of these were floated in different
fluid–fluid systems (see also table 1). The Robs versus R are in good agreement with the
exception, again, of the oil–water system (the red and green ‘!’).

There appears to be reasonable agreement between some of the experimentally-observed
orientations and the theoretically-predicted ones for the Letter G, as can be seen in middle/
right plots of figure 12. These tend to occur along the two continuous solution branches that
extend across the full range of density ratios. There also appear to be regions in parameter
space, especially for larger R and angles roughly in the [0, π] range where experimentally-
observed orientations do not appear to match the theory. Roughly these correspond to
orientations in which the ‘round’ part of the letter G is above water. In some sense, the more
the cross section resembles a circle, the more ambiguous will be the preferred floating
orientations.7 Two cases of note are the large letter G’s plotted in cyan and black, both with
the ‘◦’ symbol (air–water interface). The cyan ‘◦’ near R= 0.6 show excellent agreement
with the predicted orientations. The black circles near R= 0.83 are in excellent agreement for
the highest and lowest angles. However, two intermediate solutions are also observed when
the theory formally predicts that they should not be observed. A closer inspection of the

Figure 12. Letter G: the left plot shows the observed density ratio versus the expected
density ratio. Experimental observations are indicated by symbols (‘◦’= air–water,
‘,’= air–oil, ‘◊’= air–syrup, ‘!’= oil–water). The different colors correspond to
different arrows used experimentally; we floated five different Letter G’s (three smaller
ones—red, green, blue—and two larger ones—cyan and black) and multiples of these
were floated in different fluid–fluid systems. In the middle plot, experimental data are
plotted using Robs. Here the red curves corresponds to the computed theoretical
prediction while the scattered blue dots correspond to theoretically-predicted stable
floating configurations when the center of gravity is perturbed using a random
perturbation of 1% the size of the object. In the right plot, experimental data are plotted
using R with the blue curves the same as the red curves in the middle plot. Note that
there are a few experiments with R near 1 for which we were not able to extract
observed density ratios.

7 Log-rolling on a letter G is probably only slightly easier than on a proper log.
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theory, however, when a small change is made in the center of gravity of the object shows that
there appear to be many nearly-stable solutions in this region. In particular, the middle plot of
figure 12 shows the theoretical prediction as the red curves along with a large collection
of blue points computed by allowing a small random perturbation (1% the size of the object)
of the object’s center of gravity. The results of this plot demonstrate that throughout the
region between the two main red curves, especially for larger density ratios, there are nearby
solutions if one allows even a small perturbation of the center of gravity. We think that
potential energy landscape of the letter G has, in many instances (as demonstrated by the
noisy set of equilibria), only weak departures from uniformity in θ. Surface tension is
expected to be a small effect especially for these large Letter G shapes, however, it may still
impact experimental observations in cases such as these that are only weakly stable and/or
where there appear to be nearby stable solutions.

Figure 13. (a) The three fluids case of oil, water (colored green), and syrup on day 0.
(b) Over time, the water and syrup diffused, resulting in a diffuse interface region and a
syrup-water mixture, causing the U to rotate clockwise. (b1) Taken from the left figure
on day 0, (b2) day 8; (b3) day 15, (b4) day 56 (note: the U is still well away from the
bottom of the tank).
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4.4. Time variation and density-induced tipping

In this section, we give a short discussion of two specific cases of tipping due to time
variation in the study of floating objects. In fact, there are many other mechanisms in which
one may observe tipping transitions. We will address these further in future work.
Figure 13(a) shows a case of floating multiple objects at three different two-fluid interfaces in
a tank layered with three fluids: syrup as the bottom layer, water (dyed green) in the middle,
and oil as the top layer.8 The letter G floats at an air–oil interface, the letter M at the oil–water
interface, and the letter U at the water–syrup interface. We left this container sitting for
several weeks (56 d) and, over that time period, we observed that the letter U rotated from
slightly tipped (2 o’clock position) to all the way upside down (6 o’clock position), see
figures 13(b1)–(b4). A cloudiness in the water–syrup interface is also visible in these images.
That is, the syrup and water mixed via diffusion, and therefore the effective fluid density has
changed. This mixture is no longer a two-fluid interface, since it now contains a murky
intermediate layer in which the fluid density varies continuously between ρ1 and ρ2. In order
to understand this ‘density-induced tipping’, a new model for floating in the murky, con-
tinuously varying density, layer is required. We do not know if the Letter U would have
continued to rotate after day 56, as the experiment had to be halted when the syrup started
to mold.

In another case of time variation, we also observed that the letter M on day 0 appeared to
be floating very high on the water with notable oil–water interface deflection. Its configuration
on day 56 (image not included) showed it considerably deeper in the water with an almost
perfectly flat oil–water interface suggesting that the initial interface deflection is perhaps
related to entrainment of the oil as the Letter M was dropped through the oil layer (and the
oil’s slow escape from the interstices of the M over hours/days). As previously mentioned,
this may also be related to the fact that in our arrow and letter G experiments, the observations
and measurements for the oil–water system appeared to be the ones furthest from theoretical
predictions.

5. Conclusions

In this work, we have extended the ideas of Archimedes’ Principle and of [16] and [8] to
create a model for identifying the stable floating configurations of a 3D-printed object with
uniform cross section at a two-fluid interface. As was done for the single-fluid case, we found
the potential energy as a function of orientation and density ratio. A key result we showed
here is that one can use the same potential energy formula for both single- and two-fluid cases
with a simple reinterpretation of how the density ratio, R, is calculated. In particular, a useful
result is that the two-fluid potential energy can be written in terms of the displaced lower fluid
—the direct calculation of the displaced upper fluid is not required. Using this two-fluid
potential energy and Archimedes’ Principle, we identified the minima of these potential
energy functions which correspond to the stable floating configurations for the object. In the
appendix, we extended some of these ideas to the N-fluid configuration and showed that this
more complicated setup does not map directly back to the single-fluid problem as does the
two-fluid system.

We also developed a set of programs that input a 2D digital image of a cross section and
produce a set of points from which a 3D printable object with the input shape can be created.

8 Note that this is not the multiple fluid layer scenario described in the appendix as each object here is in contact with
at most two fluids.
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This workflow enables not only the numerical prediction of stable floating orientations for
these objects but also the creation, via 3D printing, of physical objects of the exact same
shape that can be floated. In the present study we explored shapes with square cross section,
an arrow-shaped cross section, and a cross section of the Letter G.

As a final note, we point out that turning theoretical models into physical experiments
always comes with a fair share of issues (or maybe more optimistically, opportunities). Some
of these we have already mentioned, such as surface tension, the entrainment of oil in the oil–
water system, and fluid–fluid diffusion over long time scales. Here we touch on a few other
experimental challenges that we encountered. First of all, working with syrup is extremely
slow, sticky, difficult, and messy.9 Oil is slightly better. For objects in water, it was relatively
easy to explore different floating orientations (for example the 8 stable equilibria in some
cases for the square) as the object could be readily rotated and, if necessary, dabbed quickly
with a towel to remove a center-of-gravity-changing puddle on the exposed part of the object.
However, syrup easily coats the objects and it was simply not possible to rotate the object to a
new configuration as the syrup coating would add significant mass, completely changing the
object’s stable floating configuration. This issue necessitated tedious washing, rinsing, and
drying steps to prepare the object for another float. We encountered other difficulties with the
large prints. First, due to size limitations of the printer, it was not possible to print the new
objects with a correspondingly long cross section. Instead, we printed them relatively short in
the third dimension, and created a cage-like structure to hold the print in a fixed, upright,
floating position lengthwise. Second, we found that the larger size prints had small incon-
sistencies and were in some cases no longer watertight, even over the rather short time scales
of our experiments. We found that the water-repellant coating Rustoleum, as was used by [20]
in their experiments with wooden objects, did not work well with the PLA plastic of our
prints. In the end, we used a polyurethane spray on varnish10 which we found to be quite
effective in keeping water out. This was confirmed by measuring the object’s mass before and
after the floating experiments.

Despite these challenges, we have demonstrated in our work that it is possible to print and
float physical objects with essentially unlimited two-dimensional cross-sectional shapes, at
single- and two-fluid interfaces and, using Archimedes’ Principle and an accompanying
potential energy function, to predict these observations.
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Appendix. The N-fluid interface

A natural extension of the two-fluid case is an object with constant density, ρobj, floating
across N� 2 fluid layers. In this situation, N horizontal fluid layers with densities
0� ρ1< ρ2<K< ρN each with its own prescribed layer thickness are arranged (for example
in a tank). We assume the lowest layer, with largest density ρN, is sufficiently deep so that the
lowest part of the object is not in contact with the bottom of tank. We allow for the possibility
that the upper layer has zero density (e.g. as one might assume for air). We assume that
0< ρobj< ρN so that the object does not sink through all the layers. Unless otherwise indi-
cated, there are no further assumptions about the relation between ρobj and the other fluid
layer densities. Below we outline equilibrium conditions required for this situation and
comment on the special cases with N= 2 and N= 3 layers.

The first two requirements are that the object is completely submerged in these N layers
and that Archimedes’ Principle applies. For a sufficiently long object with uniform cross
sectional area Aobj, these conditions are stated as
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We have already argued in the main text that the potential energy associated with a static
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is the centroid of the displaced fluid of layer i. Then, observe that
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To interpret the summation in this expression, we define the center of buoyancy associated
with displaced fluid in layers 2 through N as 


with densities measured relative to the density

of fluid layer 1. That is
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Further, by eliminating A1 from Archimedes’ Principle in (29) we find that
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It follows that
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Therefore, using equation (35) the potential energy associated with the N-fluid system,
assuming the case ρobj≠ ρ1, can be written as
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is given by equation (38).

Note that for the N= 2 case discussed in the main text

A

A
B B , 402 1 2

obj 1 obj
2 2

( )
( )

( )
  r r

r r
=

-
-

=

since Archimedes’ Principle in that case implies ρobjAobj= ρ1A1+ ρ2A2=
ρ1(Aobj− A2)+ ρ2A2. That is, in this case 
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However, for an object floating across three fluids, N= 3, we have
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which, in general, is not the centroid of the region displaced by fluid 2 and fluid 3. That is,
knowledge of the centroid of the displaced fluid 2 and 3 regions does not, by itself, provide
enough information to determine the form of the potential energy. In the N= 3 case with air,
oil, and water layers two experimental scenarios would be readily accessible: (A)
ρair< ρoil< ρobj< ρwater, or (B) ρair< ρobj< ρoil< ρwater. The first case could be achieved
by floating the object initially at an air–water interface, slowing adding an oil layer on the
water layer until, eventually, the object would be floating submerged at a two-fluid oil–water
interface. The second scenario can be similarly achieved except that since ρobj< ρoil,
eventually, as the oil layer thickness becomes sufficiently large, the object would be raised out
of the water and float at the air–oil interface. The intermediate scenarios in either cases (A) or
(B) in which the object floats across the air–oil–water system would have a potential energy
function that, in general, depends on the thickness of the intervening oil layer.
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