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Abstract. We investigate bifurcations in the chain recurrent set for a particular class
of one-parameter families of diffeomorphisms in the plane. We give necessary and
sufficient conditions for a discontinuous change in the chain recurrent set to occur at a
point of heteroclinic tangency. These are also necessary and sufficient conditions for an
�-explosion to occur at that point.

1. Introduction
Large scale invariant sets of planar diffeomorphisms can vary discontinuously in size with
changes in parameters. Global bifurcations of observable sets, such as crises of attractors
or metamorphoses of basin boundaries, are the most easily detected and probably the
most often described in scientific literature. (For a partial list of references, see [12].)
For example, Figure 1 shows a jump in the size of a chaotic attractor of the Ikeda map, as
the attractor merges with an unstable invariant Cantor set. At the bifurcation parameter,
it is not just that two invariant sets merge to form a larger attractor. Gaps in the unstable
invariant set fill in suddenly as the bifurcation parameter is passed. These gaps do not fill
in gradually: they are of positive width larger than a uniform constant for every parameter
prior to bifurcation. For a further discussion of this example, see Robert et al [11].

The key to the investigation of changes in invariant sets is the set of recurrent points,
i.e. points x such that x ∈ ω(x). The discontinuous appearance of new recurrent points at
global bifurcations, as occurs in the gaps in the example above, is called an explosion in
the recurrent set. Explosions in the non-wandering set, called �-explosions, are described
in [8]. In our context, it is more natural to work with the set of chain recurrent points,
which includes both the set of non-wandering points and the set of recurrent points.
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FIGURE 1. Explosions in the Ikeda map. Invariant sets for the Ikeda map fλ : R2 → R
2 before and after

bifurcation. The map is given by fλ(x, y) = (0.85 + 0.9(x cos τλ − y sin τλ), 0.85 + 0.9(x sin τλ + y cos τλ)),
where τλ = 0.4 − λ/(1 + x2 + y2). The black set shown in (a) is a numerically calculated orbit filling out an
observed chaotic attractor at λ = λ0 ≈ 7.268 848 94. For every λ > λ0, the orbit occupies the larger attractor
shown in black in (b). This is a discontinuity in the size of the chaotic attractor. In addition to the attractor,
(a) also contains an unstable invariant Cantor set, as shown in gray. Note that there are gaps in the saddle. In (b)
all points of the saddle are contained in the attractor. The gaps fill in discontinuously at λ0; the points in the gaps

are explosion points at λ = λ0.

We concentrate on explosions in the chain recurrent set, which we refer to as chain
explosions. (The definition of a chain explosion appears in §2.) In fact, all of the chain
explosions treated in this paper are also explosions in both the non-wandering and recurrent
sets. This is discussed at greater length in the closing remarks.

It has often been noted that explosions may occur when there is a tangency between
stable and unstable manifolds. When is a point of homoclinic tangency an explosion
point? Palis and Takens [8] gave a partial answer to this question in their classification
of homoclinic �-explosions. Let pλ be a saddle fixed point for a dissipative family of
orientation preserving planar maps fλ with a homoclinic tangency. Assume coordinates
have been chosen so that pλ is at the origin, the stable manifold is locally the horizontal
axis and the tangency point lies on the upper branch of the unstable manifold. Palis and
Takens showed that if the family is area contracting, then generically if the upper branch of
the unstable manifold approaches tangency from the upper half plane as parameter λ varies,
then the tangency point is not an explosion point (see Figure 2). More generally, Palis
and Takens gave conditions on the placement of the tangency point, sign of eigenvalues
and area contraction or expansion of the map, under which an explosion does not occur at
the point of homoclinic tangency. They assumed that prior to the bifurcation parameter, the
map is persistently hyperbolic. They did not give sufficient conditions for an explosion,
though in each of the cases which they could not rule out, they showed that there exist
examples such that the introduction of a point of homoclinic tangency is an explosion at
the bifurcation parameter.

In this paper, for a certain class of maps we give both necessary and sufficient conditions
for heteroclinic tangencies to be explosion points in two dimensions. A heteroclinic
tangency point is an explosion point only under rather restrictive conditions; under our
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FIGURE 2. A non-explosion. This homoclinic tangency at y for an area–contracting map fλ, has no sudden jump
in the recurrent set. There is an invariant Cantor set of points in B ∩ f n

λ (B) that are recurrent prior to tangency.
The tangency point is a limit of these recurrent points.
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FIGURE 3. An explosion in the heteroclinic case. (a) An explosion occurs at y as a parameter is varied.
The unstable branch U4 is shown in the basin of an attracting fixed point. Therefore it does not cross the stable
manifold of p. The point y is contained in a unique ‘cycle’ (Definition 3.4). That is, y is contained in the sequence
of points (p, y, q, z, p), which alternate between fixed and heteroclinic. The first and last points are the same,
and consecutive points are connected by compact connected pieces of stable and unstable manifolds. The path
of the cycle is the union of the connecting pieces of stable and unstable manifolds. (b) The occurrence of an
explosion corresponds to the fact that this is a ‘crossing cycle’. That is, any perturbation of the path of the cycle,

such as the dotted line, always crosses both Wu(p) and Ws(q).

hypotheses, the configuration shown in Figure 3(a) gives rise to an explosion as a parameter
is varied. In contrast, the configuration shown in Figure 4(a) does not give rise to an
explosion. In fact, in Figure 4 there are transverse homoclinic points arbitrarily near y.
This implies the existence of recurrent points arbitrarily near y before tangency. This is
not necessarily true of the situation in Figure 3. When there is a unique ‘cycle’ of
alternating stable and unstable manifolds through y (Definition 3.4), it is possible to give
a heuristic description of the difference between these two situations. Consider the closed
curve formed by the manifold branches connecting y, q, z, and p. In the first case, any
perturbation of this closed curve is another closed curve which crosses both Wu(p) and
Ws(q), see the dotted line in Figure 3(b). This is a crossing cycle (Definition 3.7). The fact
that there are no other cycles containing y (Definition 3.8, ‘crossing point’) implies that
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FIGURE 4. A non-explosion in the heteroclinic case. (a) No explosion occurs at y. (b) The lack of explosion
corresponds to the fact that there are closed curves near the path of the cycle through y, such as the dotted line,

which do not cross Ws(q).

there is an explosion (Theorem 5.2). In contrast, in the second case it is possible to perturb
the closed curve of manifold branches from y to itself so that the new curve does not cross
both Wu(p) and Ws(q). The dotted line shown in Figure 4(b) is such a curve; it does
not cross Ws(q). This is not a crossing cycle and can never give rise to an explosion
(Theorem 4.1). For more details, see §§3–5.

In investigating the heteroclinic case, in contrast to Palis and Takens’ work on
explosions at homoclinic tangencies, we make no assumption about area contraction,
expansion, or on persistence of hyperbolicity. Rather, we consider which branches of
manifolds are involved (see the definition of a crossing point) and the way in which these
branches intersect (see H4 and H4′).

The rest of the paper proceeds as follows. Sections 2 and 3 contain definitions and
hypotheses. Section 4 contains necessary conditions for heteroclinic points to be chain
explosions. Section 5 contains sufficient conditions for chain explosions to occur at
heteroclinic tangencies. The theorems in §4 and §5 are stated in terms of heteroclinic
points between fixed point saddles. In §6 we examine more completely the structure of
invariant manifolds within the chain classes of fixed points. In §7 the case of heteroclinic
points between periodic points is discussed. In §8, we explain how our results apply to
explosions in the non-wandering and recurrent sets.

2. Changes in the chain recurrent set
We now give a series of definitions related to the notion of chain recurrence.

Definition 2.1. For an iterated function g, there is an ε-chain from x to y when there is a
finite sequence {z0, z1, . . . , zN } such that z0 = x, zN = y, and d(g(zn−1), zn) < ε for
all n.

If there is an ε-chain from x to itself for every ε > 0 (where N > 0), then x is said to be
chain recurrent [4, 5]. The chain recurrent set is the set of all chain recurrent points. For a
one-parameter family fλ, we say (x, λ) is chain recurrent if x is chain recurrent for fλ.

If for every ε > 0, there is an ε-chain from x to y and an ε-chain from y to x, then x

and y are said to be in the same chain component of the chain recurrent set.
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Throughout the paper, we use the following notation and assumptions.

(H1) f : R
2 × R → R

2 is a C1-smooth one-parameter family of C2 diffeomorphisms.

In the homoclinic case, if f satisfies H1, and if the stable and unstable manifolds to a
fixed point saddle p intersect only at p for λ < λ0, intersect in a tangency at λ = λ0, and
cross for λ > λ0, then there is a bifurcation in the chain recurrent set of fλ at λ = λ0.
If no other intersections between stable and unstable manifolds occur, then there are no
homoclinic orbits before λ0, so the saddle fixed point is its own chain component. At λ0,
all points in the homoclinic orbit become part of this chain component. This sudden jump
in the chain component of the fixed point is sometimes, but not always, a sudden jump in
the entire chain recurrent set, since the newly formed homoclinic points may be limits of
points in another chain component (see Figure 2, in which a homoclinic tangency produces
a merging of two pre-existing chain components). Distinguishing between jumps in the
chain recurrent set and jumps in chain components is quite important, as physically it
corresponds to whether or not it is possible to predict bifurcations using the chain recurrent
set.

In the following definition, we describe jumps in the entire chain recurrent set, as
opposed to jumps in components (as shown in Figure 2; cf. ‘�-explosion’ in §8).

Definition 2.2. (Chain explosions) A chain explosion point (x, λ0) is a point such that x

is chain recurrent for fλ0 , but there is a neighborhood N of x such that on one side of λ0

(i.e. either for all λ < λ0 or for all λ > λ0), no point in N is chain recurrent for fλ.
Note that at fλ0 , x is not necessarily an isolated point of the chain recurrent set.

3. Bifurcations through tangency
We now consider the case of a chain explosion at a heteroclinic point. Similar concepts
have been previously explored by Hurley [7] and Patterson [10]. We assume the existence
of a non-degenerate heteroclinic tangency at the bifurcation parameter. This is made
precise by the following assumptions.

(H2) fλ0 has (at least) two hyperbolic saddle fixed points called p and q . There is a unique
continuation of these points for all nearby λ, so we will also refer to their continuations as
p and q .

Remark 3.1. Section 7 describes the case in which p and q are periodic points rather than
fixed points.

Definition 3.2. (Generic tangency point) Let (y, λ0) be an intersection point between a
branch of the unstable manifold Wu(p) and a branch of the stable manifold Ws(q).
(A branch of manifold W(r) is a connected component of W(r) \ r .) (y, λ0) is a generic
tangency point if for fλ0 , there is a tangency at y between Wu(p) and Ws(q), locally, the
manifolds do not cross and the two manifolds are not identical on some neighborhood.
On one side of λ0, the local pieces of manifold intersect transversally, and on the other
side of λ0, the manifolds do not locally intersect. Furthermore, at parameter λ0, the orbit
of tangency of y is unique: there are no other orbits of tangencies between stable and
unstable manifolds of fixed points.
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(a) (b)

FIGURE 5. Four-point cycles. We only consider four-point cycles: two fixed points, one transverse heteroclinic
point and one heteroclinic tangency point. Any cycle with a tangency that has more than four points, such as
the six in (a), results in a four-point cycle (b). In this figure, (a) has thick lines to show the branches connecting
cycle {p, y, q, s, r, t, p}; branch U(q) limits on branch U(r) and thus crosses branch S(p). (b) The thick lines

connecting the corresponding four-point cycle {p, y, q, l, p} are shown.

(H3) Assume that (y, λ0) is a generic tangency point.

In order for the tangency point (y, λ0) to be chain recurrent, ε-chains must return to y.
One natural way for this to occur is for there to be an intersection between a branch of
Wu(q) and a branch of Ws(p). Specifically, we give a definition of an n-connection, as a
precursor to the introduction of cycles [9].

Definition 3.3. (n-connection) An n-connection is a sequence of points {!1, t1, !2, t2,

. . . , !n} such that for all i, !i is a fixed point, and for each i < n, ti is a heteroclinic
point such that ti ∈ Wu(!i) ∩ Ws(!i+1).

Definition 3.4. (Cycle) A cycle is an n-connection {!1, t1, !2, t2, . . . , !n} such that
!n = !1.

Remark 3.5. In what follows, we consider cycles consisting of only two fixed points and
two heteroclinic points. Under assumption H3, the fact that we only consider this type of
cycles is not a restriction, since as a consequence of the λ-lemma, if Wu(q) and Ws(r)

cross, and Wu(r) and Ws(p) cross, then Wu(q) and Ws(p) cross [6, 12]. Therefore,
the existence of any cycle containing a tangency implies the existence of a cycle with
four distinct points containing that same tangency. Technically, although this cycle is a
three-connection, we refer to it as a ‘four-point cycle’ (see Figure 5).

A cycle consists only of heteroclinic and fixed points which are corner points on an
alternating sequence of branches of stable and unstable manifolds. In the course of this
paper, we also keep track of which manifold branches contain each point of a cycle, as
described in the following remark.

Remark 3.6. (Labeling and placement of branches) If {p, y, q, z, p} forms a cycle at λ =
λ0, then by hypothesis H3, the orbit of y is the only orbit of tangency, so the manifolds must
cross at z. It is possible to distinguish branches of stable and unstable manifolds according
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FIGURE 6. Crossing cycles. Cycles {p, y, q, z, p} contain a tangency. In each cycle, iterates of U1 in a
neighborhood of y converge to U4. That is, U1 and U4 are on the same side of Sa . Likewise, backward iterates
of Sa in a neighborhood of y converge to Sc. Thus Sa and Sc are on the same side of U1. In both (a) and (b),

cycles {p, y, q, z, p} are crossing cycles. Points y and z are candidates for crossing points.

to their placement with respect to the tangency point y. In this remark, we describe the
labeling of branches when p and q have positive eigenvalues. We discuss the negative
eigenvalue case in Remark 3.9.

Label the branch of Wu(p) containing the tangency point y as U1. Label the other
branch of Wu(p) as U2. Let the branch of Ws(q) containing y be Sa , and let the other
branch be Sb.

We still need to distinguish branches of Wu(q) and of Ws(p). Since U1 does not cross
Sa at y by hypothesis H3, one can describe the branch of Wu(q) on the same side of Sa as
U1 by looking at the location of forward iterates of local pieces of U1. Namely, if iterates
of local pieces of U1 near y converge to a branch of Wu(q), then U1 and that branch are
on the same side of Sa . If two branches are not on the same side of Sa , they are on the
opposite side of Sa . That is, one branch of Wu(q) is on the same side of Sa as U1 and
the other on the opposite side. Give the label U4 to the branch of Wu(q) on the same side
of the segment of Sa as U1. Give the label U3 to the opposite side branch.

Similarly we can distinguish the two branches of Ws(p) as being on the same side or
opposite side of U1 as Sa by looking at the location of backward iterates of local pieces of
Sa near y. Let Sc be the branch of Ws(p) on the same side of the segment of U1 as Sa .
Let the opposite side branch be Sd (see Figures 6 and 7).

Define S(z) to be the branch of Ws(p) containing z (either Sc or Sd ). Define U(z) to be
the branch of Wu(q) containing z (either U3 or U4).

Definition 3.7. (Crossing cycle) Consider a cycle {p, y, q, z, p} containing p and q , where
f satisfies H1, p and q satisfy H2 and have positive eigenvalues, and y is a tangency point
satisfying H3. (We discuss the negative eigenvalue case in Remark 3.9.) This cycle is
a crossing cycle if the following two conditions are satisfied. (a) The branch of Wu(q)

containing z and the branch of Wu(p) containing y are on opposite sides of the branch
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FIGURE 7. Non-crossing cycles. This cycle is not a crossing cycle. Hence by Theorem 4.1, neither y nor z is an
explosion point.
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FIGURE 8. Symmetry of the conditions for a crossing cycle. If f has a crossing cycle, then so does f −1.

of Ws(q) containing y. (b) The branch of Ws(p) containing z and the branch of Ws(q)

containing y are on opposite sides of the branch of Wu(p) containing y.
Using the branch labels listed above in Remark 3.6, a cycle {p, y, q, z, p} is a crossing

cycle if (a) U(z) = U3, and (b) S(z) = Sd . That is, y is a tangency in U1 ∩ Sa , and
z ∈ U3 ∩ Sd .

The two conditions comprising the definition of a crossing cycle have a great deal of
symmetry. Namely, if f has a crossing cycle, then f −1 also does. Replacing f by f −1

interchanges the labels U1 and Sa as well as the labels U3 and Sd (see Figure 8).

Definition 3.8. (Crossing point) A heteroclinic point is called a crossing point of fλ0 if it
is contained exclusively in crossing cycles at λ = λ0. That is, it is contained in a crossing
cycle and each cycle containing it is a crossing cycle (see Figure 6).

Remark 3.9. If p and/or q have negative eigenvalues, it is still possible to define a crossing
cycle. The branches Sa , Sb , U1 and U2 are defined as before. The other branches are
more complicated. For instance, both branches of Wu(q) may be on the same side of Sa

as U1 (i.e. iterates of U1 near y converge to both branches of Wu(q)). This is not a serious
problem; in the negative eigenvalue case, a cycle is a crossing cycle when (a) U(z) and U1

are not on the same side of Sa and (b) S(z) and Sa are not on the same side of U1.
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FIGURE 9. Horseshoes in non-crossing cycles. In a non-crossing cycle, there are transverse homoclinic points,
and thus hyperbolic periodic points, converging to the tangency point. Therefore the tangency point cannot be a

chain explosion point.

In some cases of negative eigenvalues, there may never be a crossing cycle. Specifically,
in a cycle where q has an eigenvalue less than −1, the branch or branches of Wu(p)

containing the orbit of y limit on both branches of Wu(q). Therefore U1 is on the same
side as both branches of Wu(q), and the cycle is never a crossing cycle. Likewise, if p

has an eigenvalue between 0 and −1, then the branch or branches of Ws(q) containing the
orbit of y limit on both branches of Ws(p). That is, the branch of Ws(q) containing y is
on the same side as both branches of Ws(p). The cycle is never a crossing cycle. Due to
the fact that f is a diffeomorphism, we know that the determinant of the Jacobian always
has the same sign. Therefore, there are seven cases in which p and/or q has a least one
negative eigenvalue. Of these, the only case for which there may be a crossing point is that
in which p has an eigenvalue less than −1, q has an eigenvalue between 0 and −1, and the
other two eigenvalues are positive.

4. Necessary conditions for chain explosions
The relationship between a crossing cycle and a chain explosion results from the fact
that whenever a cycle is not a crossing cycle, stable and unstable manifolds of the same
point can access each other, and end up intersecting transversally infinitely often near the
tangency point. Therefore, there are periodic points converging to the tangency point,
implying that the tangency point is not a chain explosion point (see Figure 9). This is the
content of the following theorem, which gives necessary conditions for a chain explosion
at a heteroclinic point. The theorem is applied by observing that if a heteroclinic point is
not a crossing point, then it is not an explosion point.

THEOREM 4.1. Assume that f satisfies H1–H3, that (x, λ0) is a chain explosion point,
and that x is a heteroclinic point contained in a cycle of fλ0 . Then x is in a cycle with a
tangency, and x is a crossing point of fλ0 .

Remark 4.2. This theorem also holds for periodic points with the definitions given in §7.

Remark 4.3. Note that the point x satisfying the hypothesis of the above theorem may be
contained in multiple cycles. That is, x may be contained in two cycles such that not all
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FIGURE 11. Limit points give rise to tangencies. (a) The case of point y being a limit of points on U1.
(b) We believe that in general, unless U1 and Sa cross near y, y is a tangency point between Sa and an unstable

manifold for some other periodic point r . This case is discussed in §6.

of the points of the second cycle are iterates of points of the first cycle. For example, the
point y in Figure 10 is in both a crossing cycle and a non-crossing cycle. A chain explosion
point may be a non-tangency point, even though the chain explosion comes as a result of
a tangency. In Figure 10, points y and z are not crossing points, but w is a crossing point.
The situation shown in Figure 10 illustrates the mechanism causing the global bifurcation
shown in Figure 1 [11]. At the bifurcation parameter for the Ikeda attractor, there are
chain explosions as a result of a tangency, though the tangency point itself is not a chain
explosion point.

Remark 4.4. By looking at cycles, we are restricting to the case of intersection between
unstable manifold Wu(p) and stable manifold Ws(q). Another common case is one
in which the unstable manifold Wu(p) limits on the stable manifold Ws(q) at point y

(see Figure 11). We believe that if there are no prior intersections between the stable and
unstable manifolds, then in general the point y is in fact a point of tangency between stable
manifold Ws(q) and some other unstable manifold Wu(r), for a fixed or periodic point r .
See the discussion in §6.
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Proof of Theorem 4.1. We give the proof for the case in which all eigenvalues are positive,
commenting on other cases at the end of the proof.

Assume that x is contained in a cycle of fλ0 . Label points as described in Remark 3.6.
The reader may wish to refer to Figures 6 and 7 for this labeling scheme.

First, suppose the cycle containing x does not have a tangency. If heteroclinic points
in a cycle are all at points at which stable and unstable manifolds cross, then there
exist hyperbolic periodic points arbitrarily near every heteroclinic point in the cycle at
parameter λ0. These points persist under any small perturbation of fλ0 . Thus (x, λ0) is not
a chain explosion point.

Now suppose that x is on a cycle with a tangency, and x is not a crossing point of
fλ0 . Then x is contained in a non-crossing cycle. There are two types of non-crossing
cycles with tangencies: (1) a cycle containing a point at which U4 and Ws(p) intersect
transversally; (2) a cycle containing a point at which Sc and Wu(q) intersect transversally.
The non-crossing point x is either the tangency point (which we label y) or the point at
which Wu(q) and Ws(p) cross (which we label z) of one of these two types of cycles.
In the case of type (1), the λ-lemma implies that pieces of Ws(p) converge to Ws(q) on
the same side as U4. However, by definition of U4, this is on the same side of Sa as U1.
Therefore, pieces of Ws(p) cross U1 arbitrarily near tangency point y. Thus there are
hyperbolic periodic points near y. These will persist under any small perturbation of fλ0 .
Therefore (y, λ0) is not a chain explosion point.

In addition, by a modification of the λ-lemma, pieces of U1 intersect Sd arbitrarily close
to z. This implies that (z, λ0) is not a chain explosion point.

Similarly, in the case of a type (2) cycle, the λ-lemma implies that pieces of Wu(q)

converge to Wu(p) on the same side as Sc. However, by the definition of Sc, this is on
the same side of U1 as branch Sa . Therefore Wu(q) crosses Sa arbitrarily near y, and
(y, λ0) is not a chain explosion point. Furthermore, the λ-lemma also implies that Wu(q)

converges to itself, and therefore crosses Ws(p) arbitrarily close to z, implying that (z, λ0)

is not a chain explosion point. Therefore every cycle containing x must be a crossing cycle.
This completes the proof, assuming all eigenvalues are positive.

In the case in which at least one eigenvalue of p or q is negative, let x be on a non-
crossing cycle of f at λ0. Then either x or f (x) is on a non-crossing cycle for f 2.
By the argument above for positive eigenvalues, either (x, λ0) or (f (x), λ0) is not a chain
explosion point for f 2. In either case, (x, λ0) is not a chain explosion point for f . ✷

5. Sufficient conditions for chain explosions at tangency
We need a precise way of describing the existence of ε-chains from one point to another.
This motivates the following definition.

Definition 5.1. Define the positive chain set by

Ch+(u) = {x : there exists an ε-chain from u to x for all ε > 0},
and the negative chain set by

Ch−(v) = {x : there exists an ε-chain from x to v for all ε > 0}.
Define the chain set from u to v as Ch(u, v) = Ch+(u) ∩ Ch−(v).
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We now state an assumption for the case in which Ch(a, b) is non-empty.
The assumption is quite restrictive. However, in the next section we show that in our
specific case of a = q and b = p, the assumption is a consequence of a rather natural
set of conditions on how points move from saddle to saddle under f when there is only
one tangency. Note that this assumption specifies which branches of stable and unstable
manifolds have to cross.

(H4 from a to b) Let a and b be hyperbolic saddle fixed points. If there are points of
Ch(a, b) on branch U(a), and if there are also points of Ch(a, b) on branch S(b), then
U(a) crosses S(b).

We need one more hypothesis before stating the main theorem of this section.

(H5: uniform bound on the chain recurrent set) There is a neighborhood ( of λ0 and a
bounded set V ⊂ R

2 such that for all λ ∈ (, the chain recurrent set of fλ is contained
in V .

THEOREM 5.2. Assume fλ satisfies H1–H3, H4 from q to p, and H5. Then the tangency
point (y, λ0) is a chain explosion point if and only if y is a crossing point for fλ0 .

This theorem is stronger than Theorem 4.1; for a point of tangency, it gives both
necessary and sufficient conditions for a chain explosion to occur. In addition, we do
not need to assume here that y is contained in a cycle. This follows from the hypotheses.
Again, this theorem holds for periodic points. The appropriate definitions are given in §7.

The proof of Theorem 5.2 crucially relies on the following lemmas. The first lemma
shows that ε-chains from a point u to a point v imply the existence of ε-chains from images
and preimages of u to images and preimages of v.

LEMMA 5.3. Assume g is a diffeomorphism. Let u and v be such that v ∈ Ch+(u) and as
ε → 0, there are ε-chains from u to v which are arbitrarily long. Then for all integers k,
gk(v) ∈ Ch+(u). Furthermore, all points in the forward and backward limit sets of v are
contained in Ch+(u).

Similarly, if u ∈ Ch−(v), then for all integers k, gk(u) ∈ Ch−(v). Furthermore, all
points in the forward and backward limit sets of u are contained in Ch−(v).

It is straightforward to show that as ε → 0, there exist ε-chains which are arbitrarily
long in the following two cases:
(a) if u and v are not in the same orbit; or
(b) if u = v is a chain recurrent point.

Proof. If v ∈ Ch+(u), then if k > 0, it is clear that gk(v) ∈ Ch+(u). Given ε, there
is a δ small enough that if {u, z1, . . . , zN−2, zN−1, v} is a δ-chain from u to v, then
{u, z1, . . . , zN−2, g−1(v)} is an ε-chain from u to g−1(v). This shows that g−1(v) ∈
Ch+(u). For any k < 0, the proof that gk(v) ∈ Ch+(u) follows recursively from the fact
that g−1(v) is contained in the set. The inclusion of the forward and backward limit sets of
v follows from the fact that Ch+(u) is closed. The proofs of the rest of the statements are
similar. ✷

The following lemma shows that a chain between fixed points implies a chain between
points on unstable and stable manifolds of the fixed points.
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LEMMA 5.4. Assume that g is a C2 diffeomorphism of the plane with hyperbolic saddle
point a. If z ∈ Ch+(a), z �= a, then there is a point u ∈ Wu(a), u �= a, such that
u ∈ Ch(a, z). Likewise, if w ∈ Ch−(a), w �= a, then there is a point s ∈ Ws(a), s �= a,
such that s ∈ Ch(w, a).

Proof. Choose a small neighborhood U of a not containing z such that g is conjugate to
a linear saddle on U . It is possible to choose V , a compact subset of U not containing a

(a ring around a), such that for sufficiently small ε, any ε-chain starting at a and leaving U

must pass through V . Furthermore, as ε → 0, ε-chains from a to z limit on Wu(a) in V .
This implies the existence of a point u ∈ Wu(a) such that u ∈ Ch(a, z). The second case
has a similar proof. ✷

The chain recurrent set is not necessarily closed under limits of functions, as the
following example shows.

Example 5.5. Let fn : R
2 → R

2 be the identity outside the disk of radius n centered at
the origin, and let each point inside the open disk be mapped to the right (with the vertical
direction fixed). This can be done such that limn→∞ fn = f exists, and every point is
mapped to the right by f , by a distance bounded away from zero. The chain recurrent set
of f is empty. For all n, the chain recurrent set of fn is the entire plane.

The next lemma states that under H5, limits of chain recurrent points are chain recurrent,
even when the parameter is varied.

LEMMA 5.6. Let gλ be a continuous family of diffeomorphisms satisfying H5. If {(tk, λk)}
is a sequence converging to (t0, λ0), and each tk is chain recurrent for gλk , then t0 is chain
recurrent for gλ0 .

Proof. Using the uniform bound on the chain recurrent set from H5, we assume that B is
a compact set containing a one-ball of all chain recurrent points for all gλ. For each k, let
Ck be a periodic 1/k-chain through tk for the map gλk . We can choose all Ck in B by the
assumptions on B. Ck is a compact set. In the Hausdorff metric on compact sets, there is
a subsequence of {Ck} converging to a set C ⊂ B. C is closed, so t0 ∈ C. Next we show
that for every q ∈ C, and all ε > 0, there is an ε-chain for gλ0 from q to itself, and this
chain is contained entirely in C. At that point, we are done since t0 ∈ C, implying t0 is
chain recurrent.

It remains to show the existence of a periodic ε-chain of gλ0 from q to itself. First make
the following choices of k and δ.
(1) Choose K0 sufficiently large that if k > K0 then on B, d(gλk , gλ0) < ε/4. This is

possible because g is continuous with respect to the parameter, so we have uniform
continuity on compact sets.

(2) Choose δ < ε/4 so that on B, if d(x, y) < δ then d(gλ0(x), gλ0(y)) < ε/4. Again,
this is due to the uniform continuity on compact sets.

(3) Choose k > K0 so that:
(a) 1/k < ε/4; and
(b) d(Ck, C) < δ;
where distance is measured in the Hausdorff metric.
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Recall that Ck = (pk
1, . . . , pk

j ) is the periodic ε/4-chain through tk . Choose points

x1, . . . , xj in C such that d(xi, pk
i ) < δ for all 1 ≤ i ≤ j , and xi = q for some i. Extend

this sequence periodically so that xi+j = xi . Then xi is a periodic ε-chain for gλ0 since

d(gλ0(xi), xi+1) < d(gλ0(xi), gλ0(pk
i )) + d(gλ0(pk

i ), gλk (pk
i ))

+ d(gλk (pk
i ), pk

i+1) + d(pk
i+1, xi+1)

< ε. ✷

Proof of Theorem 5.2. We give the proof for positive eigenvalues, commenting on cases of
negative eigenvalues at the end of the proof. We first show that if y is a chain explosion
point, then y is contained in a cycle. If (y, λ0) is a chain explosion point, then for λ = λ0,
y is chain recurrent. Since p is in the negative limit set of y, and q is in the positive limit set
of y, by Lemma 5.3 with u = v = y, Ch(q, p) is non-empty. It follows from Lemma 5.4
that there are points τ ∈ Ws(p) and ϕ ∈ Wu(q) such that ϕ, τ ∈ Ch(q, p). By H4 from q

to p the manifolds cross. Therefore y is contained in a four-point cycle. By Theorem 4.1,
y is a crossing point.

Now we assume that (y, λ0) is not a chain explosion point and show that y is not a
crossing point at λ0. If y does not lie on a crossing cycle at all, we are done. We assume
that y is contained in a crossing cycle, and proceed to show that y must also be contained
in some additional cycle.

Since y is contained in a crossing cycle at λ0, it is chain recurrent. Furthermore, by
hypothesis H3, there is a continuation yλ for λ > λ0 such that each yλ is chain recurrent,
being part of a transverse cycle. Since y is not a chain explosion point, there must be a
sequence {(xk, λk)}, converging to (y, λ0) from one side (say λk < λ0) such that each xk

is chain recurrent for fλk .
Let U1, U2, U3, U4, Sa, Sb, Sc, and Sd be the respective manifold branches of p and q ,

where the labeling is as in Remark 3.6. Then there are three possibilities. First, there are
an infinite number of points of {xk} on the U4 side of the continuation of Sa . Second, there
are an infinite number of {xk} on the continuation of Sa . Third, there are an infinite number
of points of {xk} on the U3 side of the continuation of Sa .

Case 1. Assume there are an infinite number of xk on the U4 side of the continuation
of Sa . By continuity, any iterate of xk is chain recurrent for fλk . Since q is a saddle point
for each parameter value, iterates zk of the xk’s converge to a point z on U4. (The xk’s
are mapped to zk’s by different iterates of f for different k’s.) By Lemma 5.6, z is chain
recurrent at λ0. In addition, z is in Ch−(y) at λ0, since for any ε, there is a k such that zk

is within ε of z, xk is within ε of y, and there is an ε-chain from zk to y (by continuity, this
must be true for large enough k). Thus there is an ε-chain from z to y. This means that
there are points on U4 in Ch−(p) at λ0, since f −k(y) converges to p. By Lemma 5.4, there
are points on U4 and points on Ws(p) such that the chain set between them is non-empty
at λ0. That is, there are points on U4 and on a branch of Ws(p) contained in Ch(q, p).
Therefore by H4, U4 crosses Ws(p). This implies that y is in a non-crossing cycle.

Case 2. Assume there are an infinite number of xk on the continuation of Sa . We know
that at λ0, inverse images of Sa converge to Sc. Therefore, by the same reasoning as in
Case 1, there are points on Sc in Ch+(y) at λ0. Therefore y is in a non-crossing cycle.
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Case 3. If there are an infinite number of xk on the U3 side of the continuation of Sa ,
then by an argument similar to Case 1, there are points on Sc in Ch+(y) at λ0. By the same
reasoning as before, Wu(q) crosses Sc at λ0. Therefore y is in a non-crossing cycle.

This completes the proof for positive eigenvalues. In the case of negative eigenvalues
at either p or q , assume that y is contained in a crossing cycle at λ0 and that (y, λ0) is not
a chain explosion point for f . Then (y, λ0) is not a chain explosion point for f 2. By the
argument above for positive eigenvalues, y is contained in a non-crossing cycle for f 2

at λ0. Therefore y is contained in a non-crossing cycle for f at λ0. ✷

6. Chains from a to b

In this section, we explain the restrictive assumption H4. We start with a lemma
describing precisely how the stable and unstable manifolds of a and b interact if there
is an n-connection from a to b. This depends on the minimum number of points needed in
an n-connection from a to b. The following result shows that an n-connection with only
one tangency implies the existence of a connection with at most two fixed points on each
side of the tangency.

LEMMA 6.1. Assume that f is a C2 diffeomorphism with hyperbolic fixed points, and
at most one tangency of the type described in H3. The existence of an n-connection
from hyperbolic fixed point a to fixed point b implies the existence of a two-, three-, or
four-connection from a to b.

Proof. As in Remark 3.5, if U(!i−1) crosses S(!i ), and U(!i) crosses S(!i+1), then by
the λ-lemma U(!i−1) crosses S(!i+1). If there is no tangency, then by the λ-lemma there
is a connection {a, t, b}. Suppose tk is a unique point of tangency (of the type in H3) in the
n-connection {a, t1, !2, t2, . . . , !k, tk, . . . , b} and that there is no two- or three-connection.
Then, by repeated use of the λ-lemma, U(a) crosses S(!k) at some point r , and U(!k+1)

crosses S(b) at some point s. Thus there is a four-connection {a, r, !k, tk, !k+1, s, b}. ✷

LEMMA 6.2. Let a and b be fixed points, and assume there is an n-connection from a

to b. Under the hypotheses of Lemma 6.1, there is a two-, three-, or four-connection from
a to b. Under these same hypotheses, if there is a two-connection from a to b, then the
stable manifold S(b) of b and the unstable manifold of U(a) of a intersect. If the smallest
connection between a and b is a three-connection, then U(a) limits on points of S(b). If the
smallest connection between a and b is a four-connection {a, t1, !2, t2, !3, t3, b}, then
U(a) limits on points of S(!3), and there is a well-defined branch of U(!3) containing t3.
This branch is on the opposite side of S(!3) from U(a).

See Figure 12 for examples of all three possible connections. The proof of this lemma
follows from repeated application of the λ-lemma, along similar lines to the proof of
Lemma 6.1.

Knowing that the chain set from a to b is non-empty is not sufficient to imply the
existence of an n-connection from a to b. However, we conjecture that generically such
a non-empty chain set from one fixed point to another implies hypothesis H4′ below.
Note that the truth of the above conjecture would imply that the case in which y is a
limit point of Wu(p) on Ws(q), where the manifolds do not cross nearby, reduces to the
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tb

a

U(a)

S(b)

(a) (b)

(c)

FIGURE 12. Situations in which the smallest n-connection from a to b is (a) a two-connection, (b) a three-
connection, and (c) a four-connection. In (b) and (c), there is necessarily a tangency. In (c), U(a) and S(b) are

on opposite sides of S(!3).

case that y is a tangency between an unstable manifold Wu(r) and stable manifold Ws(q)

(as in Figure 11). By Lemma 6.2, the following assumption is automatically satisfied if
there is an n-connection from a to b.

(H4′: chain condition from a to b) Let a and b be hyperbolic saddle fixed points for a
diffeomorphism. Assume that there are points in Ch(a, b) on branches U(a) and S(b).
Then one of the following holds.

(a) Branch U(a) intersects branch S(b); they either cross or are tangent.
(b) Branch U(a) limits on an orbit of branch S(b), but does not intersect S(b) along

this orbit, and there are tangencies at points of this orbit. Points of the orbit are
tangencies between S(b) and another unstable manifold branch (see, for example,
Figure 12(b)).

(c) There are two other saddle points !2 and !3 in Ch(a, b) such that branch U(a) limits
on a tangency t2 between U(!2) and S(!3). Furthermore, there is a well-defined
branch U(!3) on the opposite side of S(!3) from U(a). This branch U(!3) contains
points of Ch(a, b), but no limit points of U(a) (see, for example, Figure 12(c)).

These hypotheses include, but are not limited to, the cases shown in Figure 12; in (b)
and (c) of the figure, U(a) and S(b) do not intersect, but the chain set Ch(a, b) contains a
point of tangency. Note, however, that it is possible to satisfy the chain condition from a

to b, where Ch(a, b) is non-empty, without having an n-connection from a to b.

LEMMA 6.3. If f satisfies H1–H3, and H4′ from q to p, then f satisfies H4 from q to p.
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Proof. Assume that Ch(q, p) contains points on branches of Wu(q) and Ws(p). We label
these branches Ua(q) and S1(p) respectively. If H4′(a) holds, then the fact that there
is a unique tangency means that Ua(q) and S1(p) must cross, implying H4. If H4′(b)
holds, then there is a tangency on S1(p). However, the unique tangency y is on Ws(q).
Stable manifolds do not intersect, thus H4′(b) does not occur. If H4′(c) holds, then !2 = p,
and !3 = q . We know that Ua(q) limits on Ws(p), and the other branch of Wu(q), which
we denote Ub(q), contains points of Ch(q, p). However, the chain condition holds again
with U(a) = Ub(q). This arrives at a contradiction, since there is no opposite side branch
at q . Therefore condition (a) of H4′ must hold. ✷

Remark 6.4. (Functions satisfying the chain condition) If a one-parameter family fλ is
area-contracting, orientation-preserving, all fixed points are hyperbolic, the family satisfies
H1–H3 and H5, and Wu(q) is bounded, then we conjecture that Theorem 5.2 still holds
if we replace hypothesis H4 (or H4′) by the following topological assumption, related to
the notion of prime end rotation number [3]. The prime end rotation numbers associated
with the branches of Wu(q) are both zero, such as occurs with no previous crossings of the
stable and unstable manifolds of q .

7. Periodic points
In this section, we consider heteroclinic tangencies between periodic points. Many of
the results carry over without much comment to this case. Here are the necessary
modifications, assuming the periodic orbits have positive eigenvalues.

(H2p) fλ0 has (at least) two hyperbolic saddle periodic points p and q in distinct orbits of
least periods n and m respectively.

Remark 7.1. The case in which p and q are in the same orbit is actually more closely
related to the case of a homoclinic orbit than to that of a heteroclinic orbit, in that
considerations of area contraction or expansion are significant. This is the ‘rotary tangency’
considered in [1, 2].

An n-connection for periodic orbits is precisely the same as the fixed point case, but with
the fixed points replaced by periodic points. That is, it is a sequence {!1, t1, !2, t2, . . . , !n}
so that ti are as before, but !i are periodic. Likewise, a cycle is an n-connection with
!1 = !n. As before, using the λ-lemma, we can assume that a cycle with a unique orbit of
tangency contains periodic points from only two orbits.

The following is a definition of a crossing cycle for a cycle with one orbit of tangency
and two distinct periodic points. It requires that at every point in the orbit of tangency,
the local picture is like a crossing cycle for fixed points. That is, at every tangency point
in the cycle, the branches of stable and unstable manifolds must be on opposite sides.

Definition 7.2. (Crossing cyclep) Consider a cycle with a unique orbit of tangency and
two distinct periodic points with positive eigenvalues. This cycle is of the form
{p1, y1, q1, p2, y2, q2, . . . , yN , qN, pN = p}. All pi are in the same orbit, as are qi

and yi . However, f (pr) is not necessarily equal to pr+1. Let p be least period n and
q least period m. This cycle is a crossing cycle if the following conditions hold for every
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k ≤ N . (1) The branch of Wu(qk) and the branch of Wu(pk) contained in the cycle are
on opposite sides of Ws(qk). That is, under f m, local pieces of the branch of Wu(pk)

near yk converge to qk on the opposite side from the branch of Wu(qk) contained in the
cycle. (2) The branch of Ws(qk) and the branch of Ws(pk) contained in the cycle are on
opposite sides of Wu(pk). That is, under f −n, local pieces of the branch of Ws(qk) near
yk converge to pk on the opposite side from the branch of Ws(pk) contained in the cycle.

As before, a crossing point is a point exclusively contained in a crossing cycle.
Using these new definitions, Theorem 4.1 holds in the periodic case.

THEOREM 7.3. If a heteroclinic point is also an explosion point, then it is a crossing point.

Proof. Assume that the point v is contained in a cycle that is not a crossing cycle.
Then there is some iterate f r(v) such that the local picture is not that of a crossing cycle.
This means either (1) the branch of Ws(f −r (p)) in the cycle crosses Wu(q) on the same
side as the tangency branch of Wu(p); or (2) the branch of Wu(f r(q)) which crosses
Ws(p) is an image of the branch of Wu(q) on the same side of Ws(q) as the tangency
branch of Wu(p). In either case, this implies the existence of transverse homoclinic points
converging to f r

λ0
(v). Thus (f r

λ0
(v), λ0) is not a chain explosion point, which means that

(v, λ0) is not a chain explosion point. ✷

The restatement of Theorem 5.2 requires a version of the chain condition for periodic
orbits as follows.

(H4p from a to b) Let a and b be hyperbolic saddle periodic points. Assume that there
are points of Ch(a, b) on branch U(a). Assume also that there are points of Ch(a, b) on
branch S(b). Then an iterate of U(a) crosses S(b).

The conclusions of Theorem 5.2 remain valid, once the fixed point hypotheses are
replaced by the corresponding periodic hypotheses.

THEOREM 7.4. Assume that fλ satisfies H1, H2p, H3, H4p from q to p, and H5.
The tangency point (y, λ0) is a chain explosion point if and only if it is a crossing point
for fλ0 .

Proof. Assume the hypotheses above. Assume that at fλ0 , the point y is a point of tangency
between Wu(p) and Ws(q), but (y, λ0) is not a chain explosion point. Using hypothesis
H4p and the same reasoning as in the fixed point case, either: (1) there is a branch U of
some iterate Wu(f r(q)), 1 ≤ r ≤ n, of the branch of Wu(q) on the same side of Ws(q)

as the tangency branch of Wu(p), such that U crosses Ws(p); or (2) the branch of Ws(p)

on the same side of Wu(p) as Ws(q) crosses Wu(f −r (q)), where 1 ≤ r ≤ m. It only
remains to show that this non-crossing local picture fills out to a non-crossing cycle. This
follows from the fact that iterates of branches of stable and unstable manifolds eventually
map onto themselves again. ✷

8. Closing remarks
As mentioned in the introduction, previous work on explosions gives results for sudden
changes in the non-wandering set [8, 9] at homoclinic tangency. For completeness, we
give the definition of non-wandering points here. For more details, see Robinson [12].
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Definition 8.1. (Non-wandering points) For a diffeomorphism g, a point x is non-
wandering if for every neighborhood U of x, there is an n > 0 such that gn(U) ∩ U

is non-empty. The set of all non-wandering points for g is called the non-wandering set,
denoted by �(g).

For all diffeomorphisms g, the recurrent set is contained in �(g), and �(g) is contained
in the chain recurrent set. However, there may be chain recurrent points which are not
contained in �(g). The proof of Theorem 4.1 shows that if there is a non-crossing
cycle, then prior to tangency there are transverse homoclinic points converging to each
heteroclinic point in the cycle. This means that the heteroclinic points are neither
�-explosions nor explosions in the set of recurrent points. Under hypotheses H1–H5,
if y is a crossing point for fλ0 , then (y, λ0) is a chain explosion point. Specifically, the
proof shows that prior to tangency, there are no chain recurrent points near y, and thus no
non-wandering or recurrent points. Furthermore, after passing through tangency, there are
transverse heteroclinic points (contained in cycles) near y. Thus there are non-wandering
and recurrent points near y. This implies y is an �-explosion point and an explosion
point in the recurrent set. Therefore Theorems 4.1 and 5.2 hold for explosions in the
non-wandering and recurrent sets.

We end with a comment on more general types of explosions. For planar
diffeomorphisms, the situation of tangencies between stable and unstable manifolds to
fixed and periodic points is by no means the most general situation. Chain explosions
points can occur as a result of tangencies between generalized stable and unstable
manifolds (to basic sets). They can also occur due to saddle-node type bifurcations, in
which the saddle and node could each be part of a larger chain component. We conjecture,
similar to the conjecture in [9, 11], that in the plane this list is complete. That is, all chain
explosions occur as a result of either generalized saddle-node bifurcations or tangencies
between stable and unstable manifolds.
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