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A crisis is a global bifurcation in which a chaotic attractor has a discontinuous change in size or
suddenly disappears as a scalar parameter of the system is varied. In this Letter, we describe a global
bifurcation in three dimensions which can result in a crisis. This bifurcation does not involve a tangency
and cannot occur in maps of dimension smaller than 3. We present evidence of unstable dimension
variability as a result of the crisis. We then derive a new scaling law describing the density of the new
portion of the attractor formed in the crisis. We illustrate this new type of bifurcation with a specific
example of a three-dimensional chaotic attractor undergoing a crisis.
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Introduction.—Crises of chaotic attractors are probably
the most easily observed and most often described global
bifurcations. Descriptions and analysis of crises for two-
dimensional systems began in the early 1980’s [1].
Typically, these descriptions involved the structure of
underlying stable and unstable manifolds of periodic sad-
dles in the attractor. Experimental studies followed, and
within a decade, numerical invariants and methods of
quantifying crises were developed. For example, in [2,3]
magnoelastic ribbon experiments showed crisis-induced
intermittency and confirmed the related theory of critical
exponents. Models of laser systems continue to provide
examples of chaotic attractors which undergo crises. Of
particular current interest are experimental studies of semi-
conductor lasers with optical injection or optical feedback
[4–6] and spatially coupled semiconductor laser arrays,
(see [7] for crises occurring in a system of two coupled
microchip lasers). Most of these examples are parame-
trized two-dimensional systems or projections onto one
or two variables. For invertible two-dimensional maps,
crises are observed to occur as a result of tangencies of
stable and unstable manifolds of underlying saddle orbits
in the attractor. In higher-dimensional maps such as the
example presented here, crises can occur without tangen-
cies. Figure 1(a) shows a chaotic attractor of a three-
dimensional map, whose formula is given later. As a scalar
parameter is varied, the system undergoes a twisted cross-
ing bifurcation, and the attractor jumps discontinuously in
size [Fig. 1(b)]. This bifurcation has not been previously
described in the physics literature.

Unstable dimension variability.—A key difficulty which
must be understood in modeling higher-dimensional dy-
namical systems is the phenomenon of unstable dimension
variability (UDV): an attractor has UDV if it contains
periodic orbits with different numbers of unstable direc-
tions. (See [8,9] for introductory papers.) With UDV, an
attractor has a (finite time) Lyapunov exponent which can

fluctuate around zero, causing computer generated trajec-
tories to be unshadowable [10–12]. The first examples
were typically of coupled chaotic systems that had sym-
metries and/or synchronization manifolds [13,14]. Among
physical models displaying these phenomena is the analy-
sis of UDV in the double rotor in [15]. A mechanism for the
development of UDV in more general coupled systems is
given in [12,16]. An example of a three-dimensional map
with UDVappears in [17]; this example, however, is not the
result of a crossing bifurcation. In the present Letter we
demonstrate numerically that the attractor depicted in
Fig. 1(b) has UDV.

Chaotic invariant sets are filled with fixed points and
periodic point saddles (or repellers) whose stable and
unstable manifolds cross in heteroclinic orbits. An inver-
tible two-dimensional map cannot have an invariant set
displaying UDV: in two dimensions, saddle points all have
one unstable dimension. In three dimensions, however,
there can be a heteroclinic connection between a saddle
with a two-dimensional unstable manifold and a saddle
with a one-dimensional unstable manifold. The attractor in

FIG. 1 (color online). The attractor for a crossing bifurcation
as in Eq. (2) (a) before and (b) after the crisis. The bifurcation
occurs at the parameter for which the fixed point q becomes part
of the attractor. The jump in the size of the attractor is discon-
tinuous with respect to parameter (but with small density, which
then increases).
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Fig. 1 has this type of heteroclinic connection throughout
the parameter range shown.

Numerical verification of UDV using power laws.—In
order to conclude that UDV occurs, we verify directly that
two fixed points of different index are both contained
within the attractor. This is done by verifying that the
scaling of the probability distribution of the attractor near
each fixed point agrees with the following analytical esti-
mate for the pointwise dimension, similar in flavor to the
Lyapunov dimension at a fixed point: For a fixed parame-
ter, consider a fixed point saddle q having two unstable
directions with corresponding eigenvalues j�1j, j�2j> 1
and one stable direction corresponding to j�j< 1. Starting
with a unit box around the fixed point q, the probability
P��� that a point enters a box of side length � is approxi-
mately �2��1�2�

�k, where�k � �. Thus with two unstable
directions, the pointwise dimension is logP���= log� �
2� �logj�1j � logj�2j�=j logj�jj. Similarly, for a saddle
fixed point p with eigenvalues j�j> 1, j�1j< j�2j< 1,
logP���= log� � 1� logj�j=j logj�2jj.

Figure 2 shows that there is good agreement between the
pointwise dimension and the computed probability distri-
bution for the attractor near each of the two fixed points.

We have chosen to use a direct route for verifying UDV
rather than the more common method of computing fluc-
tuations near zero in finite time Lyapunov exponents. For
one thing, since we possess detailed information about the
topology of the example, a direct method is straightfor-
ward. More fundamentally, for � near the bifurcation
value, the density of the global attractor is small near the
fixed point q (see the discussion below), meaning that for
long orbits, the behavior at p dominates, forcing the middle
Lyapunov exponent to be negative. For our example, if
�0:4<�< 0, and the total orbit length is M � 108, then

the calculated maximum length (denoted by T) of a subset
of this long orbit with positive finite time Lyapunov ex-
ponent is around 30. This is not surprising: Any orbit �
with positive finite time middle Lyapunov exponent must
be near p and q in proportion to the relative strengths of the
middle Lyapunov exponents of q and p. In our example,
Lp � �1 and Lq � 0:5. Thus � comes near q twice as
often as near p. However, the calculation above shows that
on average orbits stay near p longer than near q. By a
rough calculation, in a length 108 orbit in the attractor, the
orbit is expected to stay close to q for a maximum of
log�108�= log��1�2� � 18 consecutive iterates, meaning
T � 27. For larger T the problem is not computationally
feasible. For example, we predict that for T � 100, we
would need M � 1045.

This low density near the second fixed point is always
present for a crossing bifurcation, but is not limited to this
case. We conjecture that detection of UDV via Lyapunov
exponents will miss many cases in which UDV is present.
We believe that this is the first example clearly demonstrat-
ing the distinction between the definition of UDV and
feasible computation of UDV using Lyapunov exponents
fluctuating near zero.

A new scaling law for attractor density.—We have de-
veloped a new power law for the scaling of the density of
the new part of the attractor after the crisis occurs. Let Aold

be the chaotic attractor prior to the bifurcation point, and
let Anew be the new part of the attractor that only appears
after the bifurcation. Let � be the number of iterates within
Aold between visits to Anew. For a particular orbit, � varies
sensitively on initial conditions. However, one typically
sees an exponential probability distribution of the form
P��� / K�1 exp���=K�, for large � where K is the mean
transient length [1]. This has been verified for our numeri-
cal example. In the planar case, it was shown in the 1980’s
that the mean lifetime K � K��� as a function of the
parameter � is a power law. The power law for planar
crises occurring as a result of both homoclinic and hetero-
clinic tangencies was established by Grebogi et al. [1].
Figure 3 shows that for the example of a crossing bifurca-
tion given here, K��� exhibits power law behavior.
However, since a crossing cycle is a nontangency bifurca-
tion, the relationship between the slope of this line is not
given by the traditional two-dimensional equations. Our
new power law is based on the geometry of the three-
dimensional bifurcation, as we now describe: The function
K��� � ��. The exponent � is given by

 � � 1�
logj�1j

logj�2j
�

logj�j
logj�2j

; (1)

where j�1j> j�2j> 1> j�j and j�j> 1> j�2j> j�1j
are the eigenvalues for the fixed points q and p, respec-
tively. The derivation of this scaling law will appear in
another paper. The comparison between prediction and
computed values is shown in Fig. 3.
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FIG. 2 (color online). The scaling of the fraction P��� of the
attractor points near fixed points (a) q and (b) p for the system in
Eq. (2). The dots and crosses are shown for � � �0:2625 and
� � �0:1525, respectively. The slopes of the lines in (a) (using
ten values of �) are 2:78� 0:3. The error comes from a combi-
nation of mismatch in the linear fit and global fluctuations with
respect to the parameter. The scaling predicted using power laws
is plotted with a solid line. The slope is 2.599, with variation of
0.003 as � varies (hence only one line is plotted). After removing
transient behavior, an orbit of length 108 was used. Similarly, in
(b), P��� has slope is 1:57� 0:1 with prediction 1:52� 0:01.
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Geometry of crossing bifurcations.—An interesting dis-
tinction between a two-dimensional and a three-
dimensional ambient space is the nature of heteroclinic
orbits at crossings of stable and unstable manifolds. Such
crossings in two-dimensional maps result generically in
isolated heteroclinic points. (A planar map with a con-
nected segment of heteroclinic points can be perturbed to
one with isolated heteroclinic points.) In three-dimensional
maps, two two-dimensional invariant manifolds can inter-
sect in a 1D curve which cannot be perturbed away. See
Fig. 4, in which p and q are hyperbolic fixed points with
one-dimensional unstable manifold U�p� and one-
dimensional stable manifold S�q�, respectively. The two-
dimensional unstable manifold of q, U�q�, intersects the

two-dimensional stable manifold of p, S�p�. We refer to
the 1D curve of heteroclinic points as a connecting arc.

The configuration of Fig. 5 depicts a global bifurcation
that occurs at ��, at which U�p� intersects S�q� at the point
k [Fig. 5(b)]. Note that the intersection is not a tangency.
For �< ��, U�p� is to the right of S�q� [Fig. 5(a)]. For
�> ��, U�p� is to the left of S�q� [Fig. 5(c)]. Any nearby
one-parameter family exhibits the same phenomena. It is
this construction that we call a crossing bifurcation. A
crossing bifurcation only occurs in a system with periodic
orbits with different numbers of unstable directions.

Two types of crossing bifurcations.—The type of crisis
occurring at a crossing bifurcation depends on more global
properties: in particular, it depends on whether the mani-
fold U�p� is twisted or not. If U�p� is not twisted, as
illustrated in Fig. 6(a), then for �< ��, there are both
homoclinic points to p and homoclinic points to q; for �>
��, there are none. Diaz et al. [18,19] analyzed the un-
twisted case and showed that there is UDV for a large set of
parameters prior to bifurcation, depending on the particular
choice of generic maps.

IfU�p� twists aroundU�q� [Fig. 6(b)], thenU�q� crosses
S�p� near k, for �< ��, resulting in recurrent behavior
before the bifurcation. In the example, the fixed point q is
not in the chaotic attractor. There is a chaotic attractor
containing p in this parameter range which then undergoes
a crisis at ��. After the bifurcation, U�q� continues to cross
S�p�, and now also crosses S�q�. The codimension two
orbit flip bifurcation of vector fields [20] has a similar
twisting of manifolds to the crossing bifurcation; however,
the orbit flip is a homoclinic bifurcation and is thus not
related to UDV.

An example of a crossing bifurcation.—The following is
an example of a twisted crossing bifurcation. The three-
dimensional map is of the form
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FIG. 5 (color online). The geometry of a crossing bifurcation.
As a bifurcation parameter � varies, the curve U�p� crosses the
curve S�q� from right to left.
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FIG. 3 (color online). The mean number of iterates K remain-
ing in Aold (as defined in the text) prior to entering Anew as a
function of j�� ��j. For a crossing bifurcation, K��� obeys a
power law. The bifurcation point �� � �0:1320 is found by
optimizing the linear fit. After removing transient behavior, an
orbit of length 107 was used. The solid line shows the scaling law
from Eq. (1). The slope of the line fitting the numerical data is
�1:50� 0:06. The predicted slope is�1:55 with a fluctuation of
0.01 as � varies.

FIG. 4 (color online). A crossing bifurcation is characterized
by the fact that Aold lies in a strip of the two-dimensional
manifold U�q� bounded by the one-dimensional unstable mani-
fold U�p� and the strong unstable manifold of q. The manifolds
and attractor for the system in Eq. (2) are shown (a) prior to
bifurcation and (b) after bifurcation. The point y is the first
intersection of U�p� and S�q�. S�p� \U�q� includes the line
segment connecting q to p. [S�p� is not shown.] Color corre-
sponds to the z coordinate.
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 �x; y; z�� �h1�x; z�; G��x; y�; h2�x; z��; (2)

where h�x; z� � �2:12� x2 � 0:3z; x�, is the two-
dimensional Hénon map, chosen in a parameter regime
where there is a saddle fixed point (x1, z1) with x1 � z1 �
0:94 452 within the attractor, such that the unstable mani-
fold of this fixed point limits to the entire Hénon attractor.
That is, the projection of the global attractor to the xz plane
is the Hénon attractor. Note that the line CL �
f�x1; y; z1�:y 2 Rg is invariant. Fixed points p and q both
lie on line CL and are thus of the form p � �x1; yp; z1�,
q � �x1; yq; z1�. The line segment parallel to the y axis
connecting p to q is constructed to be the connecting arc
previously described. That is, restricting to CL, q is an
unstable fixed point, and p is a stable fixed point. Between
p and q orbits converge forwards to p and backwards to q.
Far away from the line CL, G��x; y� is constructed so that
there is a twist in the unstable manifold strip between
p and q. Specifically, G��x; y� � g�y�	1� tanh�2x�
=2�

L��y�	1� tanh�2x�
=2, where g�y� � 1� e�1:7y�y2
, and

L��y� � �� �1� y�=3.
Thus near CL, G��x; y� � g�y�, where g�y� is has a

stable and unstable fixed point with a connecting segment
between them. Far from CL, G��x; y� � L��y�, where L�
is a linear function with negative slope. This has the effect
of adding a twist to the unstable manifold, as shown in
Fig. 4.

As the parameter � varies, the one-dimensional unstable
manifold of p shifts. At the bifurcation parameter �� the
unstable manifold of p intersects the one-dimensional
stable manifold of q. See Fig. 4.
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FIG. 6 (color online). For a crossing bifurcation, the two-
dimensional manifolds are either (a) untwisted or, (b) as in our
example, twisted.
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