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Preface

On September 19-21, 2005, the Department of Mathematics of the University of
Turin guested a “WORKSHOP ON DYNAMICS”. We invited six among the speakers
to write a survey for this special issue of the Journal. Song Jiang, Huseyin Koçak,
Jean Mawhin, James Yorke and Fabio Zanolin wrote a paper with coauthors, moreover
Matteo Franca’s survey is based on the seminar delivered by Russell Johnson at the
Workshop.

Some of the articles present new results in a more general framework, so they
also have the character of a survey even if they are research papers.

The following topics in Dynamics are studied: Explosion in dimensions 1–3,
Periodic solutions of difference equations, Compressible viscous flows, A Dynamical
approach to the p-Laplace equation, Shadowing in ODEs, Periodic points and chaos
for nonlinear Hill equations.

We are grateful to the authors and to all the other speakers of the Workshop for
their enthusiastic participation.

Hisao Fujita Yashima, Gaetano Zampieri
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EXPLOSIONS IN DIMENSIONS ONE THROUGH THREE

Abstract. Crises are discontinuous changes in the size of a chaotic attractor as a parameter is
varied. A special type of crisis is an explosion, in which the new points of the attractor form
far from any previously recurrent points. This article summarizes new results in explosions
in dimension one, and surveys previous results in dimensions two and three. Explosions
can be the result of homoclinic and heteroclinic bifurcations. In dimensions one and two,
homoclinic and heteroclinic bifurcations occur at tangencies. We give a classification of one-
dimensional explosions through homoclinic tangency. We describe our previous work on the
classification of planar explosions through heteroclinic tangencies. Three-dimensional het-
eroclinic bifurcations can occur without tangencies. We describe our previous work, which
gives an example of such a bifurcation and explains why three-dimensional crossing bifurca-
tions exhibit unstable dimension variability, a type of non-hyperbolic behavior which results
in a breakdown of shadowing. In addition, we give details for a new scaling law for the
parameter-dependent variation of the density of the new part of the chaotic attractor.

1. Introduction

Crises of chaotic attractors are discontinuous changes in the size of an attractor as a pa-
rameter is varied. Crises are the most easily observed and most often described global
bifurcations. A classic example of a crisis is the onset of the period three window in the
bifurcation for the logistic map f (x) = μx(1 − x) [31], in which the attractor changes
discontinuously from consisting of an uncountable collection of points to containing
only one period three orbit.

A specific type of crisis is an explosion, which is a bifurcation in which new
recurrent points form discontinuously far from any previously recurrent points. An
explosion is stronger than a crisis, since a crisis can be caused by the mere merging of
an attractor and a pre-existing chaotic saddle.

In this article, we review results on explosions in one, two, and three dimen-
sions, as well as stating open problems on explosions. We proceed as follows: Sec-
tion 2 outlines classifications of explosions at homoclinic and heteroclinic tangencies
in one and two dimensions. It is also possible to have explosions far from tangency
but as a result of a tangency. We give a simple example of this in one dimension. In
two dimensions, we give a topological description of the well-studied two-dimensional
example of this phenomenon for the Ikeda attractor. The ultimate goal is a complete
classification of one- and two-dimensional explosions. Section 3 describes a type of
three-dimensional bifurcation in which explosions occur without tangencies. The sec-
tion includes a numerical example of such a bifurcation. Section 4 presents a new
scaling law for the parameter-dependent change in the density of the newly formed
piece of the chaotic attractor. Section 4.3 describes some interesting numerical impli-
cations of tangency-free explosions as the onset of unstable dimension variability, a

∗J.A.Y. was partially supported by NSF 0104087.

1



2 K.T. Alligood - E. Sander - J.A. Yorke

specific type of non-hyperbolic behavior.

2. Explosions via tangency

Let fλ be a one-parameter family of functions. An explosion occurs at a parameter
value λ0 and a point x which is not recurrent prior to the bifurcation but is recurrent
at the bifurcation. Clearly a saddle node bifurcation for either a fixed point or periodic
orbit gives rise to an explosion point. In addition, the existence of explosion points is
often the result of bifurcations involving tangencies between the stable and unstable
manifolds of fixed or periodic points. In this section, we describe classes of explosions
arising from homoclinic and heteroclinic tangency. The ultimate goal is a full under-
standing and classification of all types of explosions. In this direction, Palis and Takens
made the following conjecture for planar one-parameter families of diffeomorphisms.
We have extended this conjecture to include one-parameter families of one-dimensional
maps as well.

CONJECTURE 1 (Palis and Takens [25]). Explosions within generic one-para-
meter families of smooth one-dimensional maps or smooth two-dimensional diffeo-
morphisms are the result of either a tangency between stable and unstable manifolds of
fixed or periodic points or a saddle node bifurcation of a fixed or periodic point.

Newhouse, Palis, and Takens have shown that this statement is true in the case
when the limit set is still finite at the bifurcation point [24]. Bonatti, Diaz, and Viana
point out that this question can also be posed from a probabilistic point of view, in
which case they conjecture the opposite conclusion [6]. In one dimension, we believe
this problem to be tractable. In two dimensions an answer depends on a detailed clas-
sification of the accessibility of periodic points and their manifolds on the boundary of
a basic set [4].

We now give some basic definitions. Let f : Rk × R → Rk be a C1-smooth
one-parameter family of C2 diffeomorphisms, k = 1, 2, 3 where we use two notations
interchangeably: f (x, λ) = fλ(x). For the definition of an explosion it is more natural
to use the concept of chain recurrence rather than recurrence:

DEFINITION 1. For an iterated function g, there is an ε-chain from x to y
when there is a finite sequence {z0, z1, . . . , zN } such that z0 = x, zN = y, and
d(g(zn−1), zn) < ε for all n.

If there is an ε-chain from x to itself for every ε > 0 (where N > 0), then x
is said to be chain recurrent [7, 8]. The chain recurrent set is the set of all chain
recurrent points. For a one-parameter family fλ, we say (x, λ) is chain recurrent if x
is chain recurrent for fλ.

If for every ε > 0, there is an ε-chain from x to y and an ε-chain from y to x,
then x and y are said to be in the same chain component of the chain recurrent set.

Note that the chain recurrent set and the chain components are invariant under
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forward iteration.

DEFINITION 2 (Chain explosions). A chain explosion point (x, λ0) is a point
such that x is chain recurrent for fλ0 , but there is a neighborhood N of x such that on
one side of λ0 (i.e. either for all λ < λ0 or for all λ > λ0), no point in N is chain
recurrent for fλ.

Note that in the above definition, at fλ0 , x is not necessarily an isolated point
of the chain recurrent set. A well studied example of this is the explosion that occurs
at a saddle node bifurcation on an invariant circle. The chain recurrent set consists of
two fixed points prior to bifurcation and the whole circle at and in many cases after
bifurcation. In subsequent usage, if the distinction is not important, we will refer to
recurrent points rather than always saying chain recurrent.

2.1. One dimension

This section describes a classification of explosions via homoclinic tangencies in one
dimension which appears in [2]. Although one dimension would seem to be the easiest
case, there are some key differences between one- and two-dimensional explosions
which are not simplifications in one dimension. For example, for a diffeomorphism,
homoclinic and heteroclinic orbits require the existence of saddle points with stable
and unstable manifolds of dimension at least one. However, since a one-dimensional
map is in general noninvertible, it is possible to have fixed or periodic points with one-
dimensional unstable manifolds and a non-trivial zero-dimensional stable manifolds.
Marotto terms such points snap-back repellers [22]. It is not possible to reverse the
dimensions of the stable and unstable manifolds; the existence of a homoclinic orbit
to an attracting fixed point requires a multivalued map [29]. In addition, the chain
recurrent set is not invariant under backwards iteration of a noninvertible map, so the
discussion of explosions in one dimension includes cases in which a point is not an
explosion point, but the preimages are explosion points. As this is a broad survey, the
statements and proofs of the results below are only sketches. The full details appear
in [2].

Let f be a one variable function with a repelling fixed point x0. Let y and
k be such that y is a kth preimage of x0, and assume that a sequence of preimages
of y converge to x0. Then y is contained in an orbit which limits both forwards and
backwards to x0. That is, y is a homoclinic point for x0. Homoclinic points for periodic
orbits are defined by replacing f with some appropriate iterate f m . Notice that for
diffeomorphisms, all orbits through homoclinic points are homoclinic orbits. For one-
dimensional maps, there may be many non-homoclinic orbits through a homoclinic
point.

Since the stable manifold of a homoclinic point is zero-dimensional, a homo-
clinic tangency is a tangency of the graph of the map at a homoclinic point. That is, a
homoclinic tangency occurs if the graph of f has a horizontal tangent at a homoclinic
point.
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yURp

Figure 1: A one-dimensional map with a repelling fixed point p with positive deriva-
tive. The point y is a homoclinic tangency point. Since y is contained in a non-crossing
orbit, by Theorem 2, y is not an explosion point. The unstable manifold branch UR is
an interval shown by a thick line on the x-axis.

Assume that fλ is a C1 smooth family of C2 maps and that the point x0(λ)

(which we write as x0) is a repelling fixed point.

THEOREM 1 (No explosions with negative derivative at x0, Alligood, Sander,
Yorke [2]). If f has a negative derivative at x0, and y is homoclinic to x0, at λ0, then
(y, λ0) is not an explosion point.

The idea is that images of a neighborhood of y map across preimages of a
neighborhood of y, implying that there is a periodic point near y, which persists under
perturbation of the parameter. Therefore y is arbitrarily close to recurrent points prior
to the tangency bifurcation.

Now consider the case of a positive derivative at x0. Assume that a homoclinic
orbit limits to the local right (resp. left) branch of the unstable manifold of x0. Let y
be a homoclinic tangency point within this orbit. Then for some k, f k

(y) = x0. If the
graph of the map f k−1 near f k−1

(y) is below (resp. above) the horizontal line, we call
the homoclinic orbit a crossing orbit. A homoclinic orbit that is not crossing is called
a non-crossing orbit.

THEOREM 2 (No explosions for non-crossing bifurcations [2]). Assume that y
is contained in a non-crossing homoclinic orbit, then y is not an explosion point.

The proof is very similar to the case of negative derivative at x0. Namely, an
image of a neighborhood of y covers a preimage of the same neighborhood, implying
that y is not an explosion point. This situation is depicted in Figure 1.

Closely related to crossing and non-crossing orbits, we can distinguish the two
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U

Figure 2: In this figure, y is a homoclinic tangency point in a crossing orbit, contained
in UR , but not UL . Therefore y is an explosion point. The preimage z of y is also an
explosion point. The interval UR is shown by a thick line as in Figure 1. UL is denoted
by a dashed line slightly above the x-axis.

manifold branches UR and UL , being the iterates of the local right and lefthand branches
of the unstable manifold of x0. The union of UL and UR is the entire unstable manifold
of x0. If {(UL ∩ UR) \ x0} is not empty, then the intersection must contain either all of
UL or all of UR . For example, UR may contain points both to the left and to the right
of UL . See Figures 2 and 3. We can show that if y ∈ UR , and the kth image of every
neighborhood of y contains points in {UR \ x0}, then y is not an explosion point.

Under certain generic conditions, we can show a converse to the non-crossing
orbit theorem: If y is in a crossing orbit, then y is an explosion point [2].

We are interested not only in explosion points which are themselves tangency
points, but also in points which are explosion points far from tangencies, but are caused
by a tangency. Since the chain recurrent set is invariant under forwards iteration, the
image of non-crossing tangency point is a non-explosion point. However, there may
be explosion points with iterates that are non-explosion points. For example, Figure 3
shows points of which are not tangency points but are preimages of tangency points.
We can prove that for a generic one-parameter family, there are explosion points at
UR (such as i and j depicted in the figure) if there are points in UR which map to
a tangency (such as y) on the other side, even though the tangency point is not an
explosion point [2].
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LU
R

py i j

U

Figure 3: The tangency point y is contained in UL ∩ UR , and is thus not an explosion
point. However, the preimages i and j of y are explosion points. UR and UL are
depicted again with a solid and dashed line respectively.

(a) (b)

S

p

F(S)

S

p

F(S)

Figure 4: Homoclinic tangency points in the plane may or may not be explosion points.
A set S and a large iterate f K

(S) = F(S). In (a), it is never possible for the homoclinic
tangency point to be an explosion point. In part (b), it depends on the eigenvalues.
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2.2. Tangencies in two dimensions

In two dimensions, a heteroclinic intersection is a hallmark for chaotic behavior in the
form of a Smale horseshoe. Thus a homoclinic tangency is a bifurcation point. It is not
always an explosion point. Figure 4(a) shows a configuration of stable and unstable
manifolds at a homoclinic tangency which can never be an explosion, since there is
a horseshoe forming locally prior to tangency. In Figure 4(a), the situation is not so
clear, since a large iterate of a rectangular set S may or may not map across itself
under a large iterate. In fact, whether this is a possible explosion point depends on the
relative strength of contraction and expansion at the fixed point p. Palis and Takens [25]
classified homoclinic explosion bifurcations, as shown in Figure 4 by describing which
planar homoclinic tangencies can be explosion points as a function of the placement
of the tangency point, sign of the eigenvalues, and area contraction or expansion of the
map.

An explosion can also occur as a result of tangencies between stable and unsta-
ble manifolds of different fixed or periodic points: heteroclinic tangencies. In this case,
in order for a heteroclinic tangency to result in any sort of recurrence, there needs to
be a means of return. A natural way is another heteroclinic intersection, resulting in a
heteroclinic cycle. These ideas are given in the following definitions.

DEFINITION 3 (n-connection). An n-connection is a sequence of points {ρ1, t1,
ρ2, t2, . . . , ρn} such that for all i , ρi is a fixed point, and for each i < n, ti is a
heteroclinic point such that ti ∈ W u

(ρi ) ∩ W s
(ρi+1).

DEFINITION 4 (Cycle). A cycle is an n-connection {ρ1, t1, ρ2, t2, . . . , ρn} such
that ρn = ρ1.

Generically, we can assume a unique tangency in a cycle, with all other hetero-
clinic intersections being transverse. Thus any heteroclinic cycle can be reduced to a
heteroclinic cycle containing only two periodic or fixed points. In a previous paper [1],
we gave necessary and sufficient conditions for planar heteroclinic bifurcations to re-
sult in explosions. The classification does not involve eigenvalue conditions and area
contraction/expansion conditions. Rather, the classification is a set of necessary and
sufficient conditions for explosions at heteroclinic tangency based on the configuration
of the manifolds, in addition to another “chain” condition on the behavior. Figure 5
shows two heteroclinic cycles with a tangency. In (a), any curve which is arbitrarily
close to the heteroclinic cycle necessarily intersects both the unstable manifold of p
and the stable manifold of q, whereas in (b), this is not the case. The tangency point in
(a) is an explosion point and in (b) it is not; just as in the one-dimensional case, the key
to an explosion is that different points of the cycle are on opposite sides of a dividing
manifold. Therefore, any ε-chain must cross the cycle. Such heteroclinic tangency
explosion bifurcations are known as crossing bifurcations.
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(a) (b)

p

qy
X

y

p

q

Figure 5: Heteroclinic cycles with a tangency at y. In (a), all curves close to the cycle
intersect both the unstable manifold of p and the stable manifold of q (intersection
shown with an X ). Under the chain condition, the point y is an explosion point. In (b),
it is possible to draw a curve arbitrarily close to the cycle which does not intersect the
stable manifold of q. The point y is never an explosion point.

2.3. Explosions far from tangencies and planar gap filling

A planar explosion far from tangency but through a tangency occurs at a crisis bifur-
cation of the Ikeda map. This example has been studied by a number of authors, such
as [17, 26]. Prior to bifurcation, there is a small attractor surrounded by an unstable
chaotic saddle set. The set has noticable gaps, in which there are no recurrent points.
After the bifurcation, the new attractor includes both the old attractor and the saddle
set. In addition, the gaps in the recurrent set are filled in. This occurs in a discontin-
uous manner at the bifurcation value. Thus the points in the gaps at the bifurcation
parameter are all explosion points. This discontinuous change in the recurrent set is a
result of a heteroclinic tangency.

Figure 6 depicts the geometry of manifolds of a heteroclinic cycle that give rise
to gap filling. The tangency point y is contained simultaneously in a crossing and a
non-crossing orbit. Thus y is not an explosion point. However, there are points on the
non-crossing orbit which are explosion points. There is an attractor with its boundary
being the unstable manifold branch of p including the tangency. The basin of attrac-
tion includes all points below the stable manifold branch of q including the tangency.
Therefore all points of the upper unstable manifold branch of q (in green in the figure
for the color online version) are in the basin of attraction. After the bifurcation, these
points become recurrent. Robert et al. [27] showed that this topological construction
occurs during gap filling as a result of a heteroclinic cycle with a tangency for a pair of
period five orbits of the Ikeda map.
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Figure 6: A geometric description of gap filling. The unstable manifold branch of p
with the tangency encloses an attractor. This attractor only includes points “inside”
the non-crossing inner cycle prior to tangency. When the tangency pushes through, the
attractor also includes points “on the outside” – that is, on the crossing cycle.

3. Three-dimensional crises

There are many theoretical results and analyses of planar examples of crises, whereas
relatively little is known about three-dimensional examples. In three dimensions, Diaz
and Rocha [12, 13] described explosions that occur as the result of a non-tangency het-
eroclinic bifurcation. In [3], we have adapted these results to show that a crisis in a
three-dimensional attractor can occur at a heteroclinic bifurcation without tangencies.
After the crisis, the attractor contains two fixed points with different numbers of un-
stable directions. The existence of such an attractor is known as unstable dimension
variability (UDV), and has been studied in the physics literature [5, 9, 10, 18, 20, 21,
19, 23, 28, 30, 32]. It is of particular interest, as unstable dimension variability results
in nonshadowability.

We start by describing the topological dynamics of the example. To understand
the role of the heteroclinic orbit in an attractor crisis, we need to be able to describe
when there is a transverse heteroclinic orbit connecting two periodic points. We then
need to know how a heteroclinic cycle can form. The dynamics can be similar to
the planar case. Namely, when two three-dimensional periodic points have the same
number of unstable directions, then a bifurcation must occur through tangency. Fur-
thermore, since surfaces divide three-dimensional space, the heteroclinic cycles with
explosions in this case parallel the two-dimensional case.

We now consider the case in which the two periodic points have a different
number of unstable directions (1 and 2). Assume that q is a fixed point with two
unstable directions, whereas p is a fixed point which only has one unstable direction.
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(a) (b)

k

q
p

S(p)

U(q)

S(q)

U(p)

U(p)

q
p

k

S(q)

U(q)

S(p)

(c)

p

q

U(p)

k

S(q)

U(q)

S(p)

Figure 7: A heteroclinic bifurcation in three dimension without tangencies. (a) At
the bifurcation, the one-dimensional manifolds intersect at k. The two-dimensional
manifolds can either intersect with (b) or without (c) a twist.

(For simplicity, we have chosen fixed points, but the statements below also hold for
periodic points.) For a heteroclinic cycle, we assume that a transverse intersection
occurs between the manifolds of q and p. This must necessarily be an intersection of
the two two-dimensional manifolds: the unstable manifold of q and the stable manifold
of p. Either the transverse intersection of stable and unstable manifolds contains non-
invariant components [11], or the intersection persistently connects the two periodic
points. We assume the latter case, depicted in Figure 7. This implies that the one-
dimension invariant manifolds form the boundaries of the respective two-dimensional
manifolds. That is, the unstable manifold of q is bounded by the unstable manifold of
p, and the stable manifold of q is the boundary of the stable manifold of p.

Consider a bifurcation parameter value for which the two one-dimensional man-
ifolds intersect. This is not a tangency bifurcation, since generically these manifolds
will not share a common tangent space, as in Figure 7(a). However, since the one-
dimensional manifolds are the boundaries of two-dimensional manifolds, a bifurcation
occurs at the intersection of the one-dimensional manifolds.

Diaz and Rocha use this construction with the assumption that the unstable strip
and the two-dimensional stable manifold intersect without a twist, as shown in Fig-
ure 7(b). In this case, the intersection point between the one-dimensional manifolds is
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(a) (b)

Figure 8: A numerical example of a heteroclinic bifurcation in three dimensions with-
out tangencies. There are two saddle fixed points, p and q. (a) Prior to bifurcation, the
attractor contains p but does not contain q. It is contained in the closure of a portion
of U (q). (b) At bifurcation, there is an explosion in which new points become part of
the attractor. However, the density of the new part of the attractor is low.

an explosion point: Prior to bifurcation, p and q are isolated recurrent points; all points
near U (p) map far from S(q), never returning near p. Likewise, no point in U (q) in-
tersects S(q), making q isolated in the recurrent set as well. After bifurcation, there
is a basic set containing transverse homoclinic points to both q and p. This implies
that there is a basic set containing both q and p, fixed points with different numbers of
unstable directions. The basic set in this example is in general unstable. This is a coun-
terpart of the explosions at tangency points in the one- and two-dimensional cases. If
there is an attractor involved, the crisis here would correspond to a blowout bifurcation,
in which the entire attractor ceases to exist after the bifurcation point.

We are interested in the three-dimensional counterpart of planar gap filling. That
is, the case in which the intersection between the one-dimensional manifolds is not and
explosion point, but there are explosions occuring through this point. Gap filling corre-
sponds to the case when the manifold U (q) twists at the bifurcation, as in Figure 7(c).
Thus, prior to bifurcation there are homoclinic points to p, and after bifurcation there
are homoclinic points to q. The intersection is not an explosion point, but there may
be other explosion points occuring when the dynamics change. We have constructed
the first numerical example of this type of three-dimensional crossing bifurcation, as
depicted in Figure 8. Prior to bifurcation, there is an attractor contained in the unstable
manifold strip bounded by U (p) and the strong unstable manifold of p. Points feed
into the attractor from the inaccessible side of U (q). After bifurcation, this region be-
comes accessible. As in the planar case, points are now able to return to this newly
accessible side, resulting in an explosion in the size in the attractor. It also turns out
that after bifurcation, the attractor displays unstable dimension variability. Numerically
computed stable and unstable manifolds for the example appearing in [3] are displayed
in Figure 8.
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K

C* C−C*

Schematic

Figure 9: Scaling of the iterate length in the old part of the attractor as a function of the
parameter.

4. Scaling laws for attractor density

Immediately after a crisis, there is a very low density of points in the new attractor.
This low density is known as intermittency in the case of the period three window
of the logistic map [31]. For planar homoclinic and heteroclinic tangency crises, the
scaling of the low density of the new points as a function of the parameter was analyzed
in the 1980’s, as we describe in the section below. We have used similar methods to
write down a scaling law for three-dimensional bifurcations without tangencies.

Consider a crisis in which the attractor before tangency is denoted Aold , and the
new part of the attractor appearing at tangency is denoted Anew. Consider any dense
orbit. Define τ as the orbit length in Aold between visits to Anew, and K as the mean
of τ . For large τ , P(τ ) ∝ K −1exp(τ/K ). The density of Anew can be approximated
by the reciprocal of K . The variation in density can be analyzed using scaling near the
bifurcation point c = c∗. Notice that after the bifurcation lim|c−c∗|→0 K = ∞. We ex-
pect K to increase exponentially as |c−c∗| approaches zero, as depicted schematically
in Figure 9.

4.1. Scaling in two dimensions

Grebogi, Ott, Yorke [14, 15, 16] stated scaling laws for a planar homoclinic or hetero-
clinic bifurcation with a quadratic tangency. In the heteroclinic case such as depicted
in Figure 6, we briefly describe the calculation used in order to illustrate its heavy
reliance on the existence of a tangency. Let L be the lobe formed at y after passing
through tangency. Then the following formula holds:

A(L) = � · w = m(c − c∗) · √
c − c∗.
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The density of the new part of the attractor depends on this area, in that this is the only
way for points in Aold to enter Anew. The square root in this formula is due to the
quadratic tangency. Let Ln = f n

(L). Then A(Lm) = M A(L), where M depends on
the eigenvalues of q. These are the key ingredients giving rise to the scaling law.

4.2. A new scaling law in three dimensions

For the three-dimensional non-tangency bifurcation described in Section 3, we have
demonstrated numerically that there is a linear relationship between the logarithm of
the mean transient length K and the logarithm of the distance from the bifurcation
parameter (cf. [3]).

Denote the eigenvalues of q by |λ1| > |λ2| > 1 > |μ|, and those of p by
|β1| < |β2| < 1 < |α|. The set of points in the attractor (and thus on the two-
dimensional unstable manifold U (q)) which exit Aold must do so by coming very close
to the unstable manifold of p. Starting near p, the area of U (q) within ε of U (p) is
approximated using α and β2. We also need to know the fraction of points which
exit Aold near U (p) which re-enter the attractor. This is done using the two unstable
eigenvalues for the linearization at q. The estimate leads to the new scaling law, which
give good agreement with numerical calculation. It states that the mean transient length
is K (η) = η

γ , where

γ = 1 + log |λ1|
log |λ2| + log |α|

log |β2| .

4.3. Unstable dimension variability

The low density of the new part of the attractor has interesting numerical implications
in terms of testing for unstable dimension variability. Precisely, near the parameter at
which a crisis occurs, the standard test for UDV is not applicable.

In an attractor with a dense orbit which exhibits UDV, we know that the dense
orbit comes arbitrarily close to the stable manifold of each fixed or periodic saddle
point. Thus it is possible to find a sequence within the dense orbit which stays close to
a fixed or periodic point for any prescribed number of iterates after any finite transient
is removed. For simplicity, assume p and q are fixed points with different numbers
of unstable directions in an attractor which exhibits UDV. Since the middle Lyapunov
exponent of the fixed points have opposite signs, the orbit must have arbitrarily long
finite time sequences with the middle Lyapunov exponent being negative, and arbitrar-
ily long finite time sequences with the middle Lyapunov exponent being positive. The
standard test for UDV uses this fluctuation of Lyapunov exponents around zero [10].

In the case of UDV after a crossing bifurcation, although it is theoretically cor-
rect that the Lyapunov exponents fluctuate around zero, the density of the attractor is
quite low near the newly added fixed point. Therefore, it is computationally infeasible
to use the Lyapunov exponent test for UDV. See [3] for detailed numerical calculations
illustrated using the example depicted in Figure 8.
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