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1. Introduction

Invariant manifolds play a crucial role in understanding
the behavior of dynamical systems and ordinary differen-
tial equations, providing geometric structures that orga-
nize the state space and reveal fundamental aspects of a
system'’s long-term dynamics. These invariant sets, partic-
ularly stable and unstable manifolds, organize the dynam-
ical behavior, such as serving as the separation between dif-
ferent basins of attraction. Through their intersections and
foliations, the manifolds determine the qualitative struc-
ture of the flow. While computational methods for study-
ing these structures have advanced significantly, visualiz-
ing and intuitively grasping their complex geometries re-
mains challenging.

This article introduces a novel approach to address this
challenge: 3D printing tangible, physical representations
of invariant manifolds, as shown in Figures 1-4. In this
article, we describe the details of designing printable mani-
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folds with enough detail so that—along with the provided
code—a reader will be able to apply these techniques to
design and print their own examples. This approach not
only enhances our ability to visualize and study these in-
tricate structures but also provides new pedagogical tools
for teaching concepts in dynamical systems theory. Re-
lated work includes design of 3D printed chaotic attrac-
tors [LST20, BPB23, Gagl8] and creation of crocheted in-
variant manifolds [OK04]. These previous efforts address
a fundamentally different computational problem: exist-
ing 3D printing studies focus on chaotic attractors, created
from one-dimensional trajectory curves, which are part of
an attracting set and are therefore easily found by start-
ing from any nearby initial condition and removing tran-
sient behavior. Computing invariant manifolds is a signifi-
cantly more challenging problem; invariant manifolds are
not attractors, and thus finding them is much more deli-
cate than starting at any nearby point. In addition, print-
ing two-dimensional invariant manifolds is more difficult
than printing single trajectories, as surfaces consist of more
than one trajectory and thus require geometric reconstruc-
tion.

The process of transforming invariant manifolds for
flows into physical 3D printed objects involves three dis-
tinct phases, each with its own computational and tech-
nical challenges. The first phase focuses on generating
an accurate numerical representation of the manifold. It
consists of two parts: computing the local manifold, and
computing the global manifold. For local manifold gen-
eration, we employ the Parameterization Method, a tech-
nique which provides high-order approximations of the in-
variant manifold on a fundamental domain near the equi-
librium solution. Computing the global manifold is done
using a uniform arclength integration scheme, allowing us
to extend the manifold to a desired size.
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Figure 1. Top: A 3D printed stable manifold of the origin for
the Lorenz system (10). Bottom: A 3D printed unstable
manifold in the Arneodo—Coullet-Tresser system (11) with
B8 =0.4and u = 0.863.

The second phase addresses the crucial transition from
a mathematical object to a printable 3D model. This
requires implementing appropriate meshing schemes to
create a triangulated surface representation. A key chal-
lenge here is the generation of a “thickened” version of the
manifold—converting the idealized surface of zero thick-
ness into a physically printable object with appropriate
thickness and structural integrity. The meshing algorithm
must also account for potential self-intersections and en-
sure proper orientation of surface normals.
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Figure 2. 3D printed unstable manifolds of equilibria in the
Langford system (12). Top left: Unstable manifold of p; ~ 1.94
(e = 0.95) with complex multilobe structure and cutout
revealing internal geometry. Top right/bottom: Two views of
unstable manifold of p; ~ 1.84 (a = 0.806) showing spiral
structure from above and 3D profile. Grid structure printing
provides an alternative to cutouts for displaying intricate
details.

The final phase involves preparing the model for ac-
tual physical printing using slicing software. This stage
requires careful consideration of multiple printing param-
eters: material selection, support structure generation for
overhanging features, optimal build plate orientation to
minimize supports while maintaining structural integrity,
and layer height settings to balance print quality with pro-
duction time. The choice of these parameters significantly
impacts both the visual quality and the structural stability
of the final printed manifold. Additionally, considerations
must be made for the scale of the printed object, ensuring
that fine geometric details are preserved while maintaining
printability and handling requirements.

We end this introduction with a comment on the va-
lidity of our prints as reflecting true mathematical ob-
jects. There is great current interest in assuring rigor
in mathematical visualization, such as in the upcom-
ing conference “Rigorous Illustrations—Their creation and
evaluation for mathematical research” [BDHHS26]. The
visualization of manifolds used here fits squarely into
the intersection of visualization and rigor; several of
these manifolds have been rigorously validated using
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computer-assisted proofs. Although the software used for
rigorous validation differs from what is suited for visualiza-
tion, the mathematical theory and methods are the same.
The field is being disseminated through a number of work-
shops and summer schools, such as the recent SLMath
graduate summer school “Computer-Assisted Proofs in Ap-
plied Mathematics” in July 2025 [JS25]. For general results
on the validation of invariant manifolds see for example
[MJ18, CLMJ18]. The particulars are given for the Lorenz
system (top of Figure 1) in [KKMJ18] and for the Langford
system (Figure 2) in [CFMJ20]. Similar methods could
also be used for the Arneodo-Coullet-Tresser model (bot-
tom of Figure 1).

Our paper proceeds as follows. We do not assume that
the reader has a background in either invariant manifolds
or 3D printing. Therefore we start by reviewing key con-
cepts in the study of invariant manifolds in Section 2. In
Section 3, we present the Parameterization Method for lo-
cal manifold calculation. Section 4 discusses global mani-
fold computation. Section 5 details the process of convert-
ing mathematical structures into printable models. Sec-
tion 6 demonstrates our approach through three example
systems. We conclude, in Section 7, with practical guide-
lines for reproducing and generalizing our results, provid-
ing references to our code repository in Section 8.

2. Stable Manifolds

A dynamical system describes evolution under a consistent
set of rules. This very general class includes systems gov-
erned by principles in many different fields, including ap-
plications in physical, biological, chemical, and social sci-
ences. In this paper, we restrict to the case in which the
state variable x € R", and our dynamical system can be
written as a nonlinear ordinary differential equation of the
form

x = f(x), (1)
where f : R" - R" is a smooth function. Let ¢,(x) repre-
sent the solution of the differential equation at time ¢ with
initial condition x, and assume that ¢,(x) is well defined
forallt € R.!

A set W is an invariant set if x € W, then ¢,(x) € W for
all t. As a first example, consider a homogeneous linear
equation X = Ax, where x € R", and A is an n by n matrix.
If v is an eigenvalue of A with associated eigenvalue 1 € R,
then the line through the origin parallel to v is an invariant
set containing the solution e*'v. Another invariant set is
the stable subspace E¥, defined as the subspace spanned by
the ng linearly independent generalized eigenvectors asso-
ciated with eigenvalues with negative real part. This space
is characterized as the unique set of initial conditions such
thatlim,_,, ¢;(x) — 0, where convergence is exponentially

Ut is always possible to reparameterize time so that this is the case.
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Figure 3. Different perspectives of the 3D printed stable
manifold of the Lorenz system (10) at the origin. Top: Two
views of the larger model showing the characteristic spiral
structure and complex geometry. Bottom: Comparison with a
smaller version (held in hand for size reference),
demonstrating that the same data can be used for various
print sizes.

fast. Likewise, the unstable subspace E* of generalized
eigenvectors associated with eigenvalues with positive real
part, is invariant. It is characterized as the unique set of ini-
tial conditions such that lim;_, _, ¢,(x) — 0, where conver-
gence is exponentially fast. If A is hyperbolic, i.e., all eigen-
values have nonzero real part, then dim(E%)+dim(E*) = n.
Figure 5a shows the case of

A= (_01 g) )

U1 = (LO)’ E’ = {(X’J’) : y= 0}
v, =(0,1), E* ={(x,y) : x =0}

In this case,
/11 = —1,
/12 = 2,
For nonlinear systems (1) (i.e., where f is nonlinear)
the stable manifold theorem guarantees that near an equilib-
rium p, there are invariant sets which are analogs of the
stable and unstable subspaces, called local stable and un-

stable manifolds. The linearization of the differential equa-
tion at equilibrium p is given by

y = Df(p)y. (3)
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This linear equation has the closed form solution e4y,,
where y(0) = y, is any initial condition. We refer to p as a
hyperbolic whenever D f(p) is hyperbolic.

Definition 2.1 (Stable and unstable manifolds). Assume
that p is a hyperbolic equilibrium for (1). Define the fol-
lowing set of points in R".
1. Global stable manifold (W#*(p)): The set of all ini-
tial conditions x such that ¢;(x) converges to p for
t — oo.
2. Global unstable manifold (W*(p)): The set of all
initial conditions x such that ¢,(x) converges to p for
[ —> —o0.

The following theorem locally characterizes the stable
and unstable manifolds.?

Theorem 2.2 (Stable manifold theorem [GH83]). Assume
that p is a hyperbolic equilibrium for (1) with corresponding
linearization (3). For matrix A = Df(p), let ng and n,, denote
the number of eigenvalues (with multiplicity) with negative and
positive real parts respectively. Since p is hyperbolic, ng+n,, = n.
Then for sufficiently small € > 0, there exist unique invariant
dynamical sets, known as local stable and unstable manifolds,
defined as follows:

Wine(P) ={x € W*(p) : ¢4(x) € B:(p),t 2 0}, ()
Wise(p) ={x € W¥(p) : ¢.(x) € B.(p),t < 0}.
These local manifolds are surfaces through p that are as smooth
as f, with dimensions ng, n,, respectively. Let ES and E* be the

stable and unstable subspaces corresponding to y = Ay. At p,
the local manifolds are tangent to E® and E" respectively.

As an example, consider the equation
)’Cl = —xl, )'62 = 2x2 - x% (5)
The linearization of this equation is X = Ax for A in (2), as
in Figure 5a. By direct calculation, the general solution is
given by x,(t) = cye™! and x,(t) = c3/4e™% + c,e?!, where
1, ¢, € R are arbitrary. A direct verification shows that

WS(p) ={(x1,x,) : x, = x{/4} and
W(p) ={(x1,x3) : x, = 0}.
See Figure 5b. We have not explained how we came up

with these equations; in the next section, we will give a
constructive method for calculating invariant manifolds.

(6)

3. Local Structure

A powerful technique developed by Cabré, Fontich, and
de la Llave [CFdIL03] enables the computation of local sta-
ble and unstable manifolds. In particular, the method in-
volves finding a parameterization of the local manifold by
using its invariance, providing a characterization of the lo-
cal behavior of all solutions starting near an equilibrium.

2We assume a hyperbolic equilibrium, even though the theorem holds in a more
general setting.
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Figure 4. 3D prints of intersecting global manifolds in the
Langford system. Top: 2D unstable manifold of equilibrium
point p, (left); 2D stable manifold of equilibrium point p,
(right). Bottom: View showing intersection between
manifolds with one protruding through the other. Langford
system parameter values are given in Section 6.

We first recall the Hartman-Grobman theorem, which lo-
cally linearizes dynamics near hyperbolic equilibria.

Theorem 3.1 (Hartman-Grobman). Assume that p is a
hyperbolic equilibrium for (1), with corresponding linearized
equation (3). Then there exists §,s > 0 and a homeomorphism
h : By(0) = Bs(p) such that h is a conjugacy between solutions
of the linear equation and solutions of the nonlinear equation.
That is, for any y € B;(0),

¢:(h() = h(e*4y).
This implies that h maps trajectories of the linear equation to tra-

jectories of the nonlinear equation, while preserving their topol-
ogy and orientation.

The Parameterization Method proceeds as follows.
Consider (1) with a hyperbolic equilibrium point p, where
f : R®™ - R"is a real analytic vector field. Assume
Df(p) is diagonalizable® with distinct eigenvalues satisfy-
ing certain nonresonance conditions. Let the eigenvalues

3The diagonalizability assumption simplifies the recursive computation of coeffi-
cients but is not essential as Newton's method may be used.
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Figure 5. Phase portraits for (a) linear system x; = —x;, X, = 2x, showing E* and E¥%; (b) nonlinear system (5) showing W* and

WU from (6). Gray arrows indicate vector field directions.

be partitioned as {1};, with Re(4{) < 0 and {A¥};%, with
Re(A¥) > 0, with corresponding eigenvectors {£5}%, and
{€¥1™,. As before, let h be the conjugacy function given
by the Hartman-Grobman theorem, and let 6 € R"s with
|8] < 1. Consider the vector vy in the stable linear subspace
ES given by vy = 6, + -+ + Gnsfsns. Then using the scale
parameter s, define the parameterization P of the stable
manifold by

P(0) = h(svy). (7)

This gives a parameterization P : B;(0) ¢ R"s — R" for

1oc(p). Using the same argument as before, differentiat-
ing this equation with respect to ¢t and setting t = 0, we see
that

F(P(8)) = DP(O)AG, (8)

where A is the diagonal matrix with the eigenvalues AL,
i = 1,..,n; on the diagonal. In order to approximate P,
we write P(0) as a series solution, and use equation (8) to
solve for the coefficients in the series. In the previous ex-
ample, we were able to compute an exact formula for the
stable manifold, but in general we can only approximate

the series for P with a finite number of terms. In particular

. N j
we refer to the truncated series P(6) = ), k=1 ijQ{ 6% as an

order N approximation. For a more detailed explanation and
implementation of the Parameterization Method, one can
refer to [FJ20]. Note that this numerical method assumes
sufficient smoothness of the vector field. The accuracy of
the approximation improves as the order N increases, sub-
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ject to the radius of convergence of the series. Addition-
ally, the choice of scale parameter s in (7) affects the size
of the computed local manifold patch. Optimal selection
of s depends on the specific system properties and desired
visualization region.

Now in order to be able to 3D print our results, we are
focusing on the case of a three-dimensional phase space.
In this case, the only possibilities are that the equilib-
rium has stable (resp. unstable) manifolds of dimension
0(3),1(2),2(1), or 3(0). The first and last case are uninterest-
ing, as one of the two manifolds is locally the whole space.
Therefore we only consider the cases where the stable and
unstable manifolds are dimensions 1 and 2 or 2 and 1.
Computing the one-dimensional manifold is completely
analogous but more straightforward to calculate than the
two-dimensional one, and therefore we give a detailed de-
scription on computing the two-dimensional manifold.*
A general algorithm to compute the local stable manifold
proceeds as follows. We determine our desired order N.
We compute the stable eigenvalues and use them to initial-
ize the coefficients in the series approximation for P. We
iteratively compute the values of these coefficients up to
order N. We then evaluate P(6) at the points furthest from
the equilibrium p, i.e., on the circle Cy = {6 : |0 — p| = 1}.
This topological circle is the set of points that we use in
order to compute the global stable manifold (described in
the next section). The unstable manifold computation is

4Code is provided for both the one- and two-dimensional manifolds.
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completely analogous; note that the two manifolds must
be computed separately.

Before stating the general case, we give a basic under-
standing of the method by finding a parameterization of
the local stable manifold by returning to the nonlinear ex-
ample from Equation (5) in Section 2. Recall that (5) has
a hyperbolic equilibrium p = 0 and the linearized equa-
tion has eigenvalues ,; = —1 < 0 and 4, = 2 > 0, with
corresponding eigenvectors v; = (1,0) and v, = (0,1).
Thus ES = span(v;), the x-axis, and E* is the y-axis. By
the stable manifold theorem, we know that Wj}.(p) is a
one-dimensional curve that intersects p = 0, and is tan-
gent to the x-axis at 0. By the Hartman-Grobman theo-
rem, we know that there exists h : By(0) — Bgs(p) such
that h(x-axis) = W .(p). We use this to define a parame-
terization P(6) for the stable manifold as follows. For every
|6] < 1, define P(6) = h((6,0)).

We now use the Hartman-Grobman theorem to find
an equation for P. Since 4; is —1 we know that the lin-
ear solution starting at (8,0) has value ¢4 = (e7!6,0) at
time t. Therefore the conjugacy equation for h implies
¢,(P(8)) = P(e~'0). Differentiating the equation with re-
spect to t, setting t = 0, and rearranging the terms, the
conjugacy equation (8) gives f(P(8)) = —6DP(6). We now
write P(0) in the form of a Taylor series

P(e) ) + ale + a292 + 0(63)
~ \bg + b6 + b,0% + 0(6%)

where ay = by = 0 since p = 0 is contained in the stable
and unstable manifolds. We find the rest of the coefficients
by substituting P into the conjugacy equation, giving that
—6DP(6) = f(P(6)), which implies

—0(a; + 2a,0 + 3a;6?)
—6(b, + 2b,0)

_ —(a,6 + a,6?) 3
= (2(b16 + b,0%) — (0,0 + a,022) T OO

Solving term-by-term, we find that for the first component:
a, is arbitrary (we choose a; = 1), and a; = 0 for k > 1;
and for the second component: b; = 0, b, = 1/4, and
b, = 0 for k > 2. Therefore, B(6) = 0 and B(8) = %eZ,

revealing that the stable manifold is given by: x, = x}/4,
as stated when we first introduced the equation.

In designing the 3D prints, the Parameterization
Method is performed in Matlab, yielding a data file with
a set of points in R3 lying on a circle that surrounds the
equilibrium within the invariant manifold. For example,
in Figure 6, Matlab produces the red disk, and the data file
consists of points on the boundary of this disk. The red
disk is the hole in the middle of the manifold in Figure 3
(bottom).
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4. Global Structure

Now that we have a characterization of the local behavior,
we describe the global stable and unstable manifolds: They
are obtained from the respective local manifolds by letting
points in the local manifolds evolve by direct integration.
That is,

w3(p) = | $:(Wise(0), WH(p) = | $«(W (D).

t<0 t>0

Thus once the local manifold has been determined, we
need to integrate to obtain the global manifold. Many dif-
ferent numerical methods for computing global manifolds
are described in the comprehensive book of Krauskopf,
Osinga, and Galan-Vioque [KOGV07], papers of Dellnitz
and Junge [DHVMZ16], Krauskopf et al. [KOD*05], Hen-
derson [Hen05], and Haro [HCF* 16]. Note that the global
manifolds are in general unbounded, so the best we can do
is to integrate these equations up to some distance from
the equilibrium. In some cases, this simply involves start-
ing on the boundary of the local stable (resp. unstable)
manifold, and integrating backward in time for ¢ from 0
to —T (resp. T) to get an additional portion of the global
stable (unstable) manifold. However, in general this is not
possible to integrate simply.

Specifically, let Cy be the circle of points furthest from
p on the local manifold. In order to ensure that the points
are well spaced, we reparameterize C, with respect to the
arclength parameterization given by the curve ry(n) where
7 varies from 0 to 1 and 7,(0) = ry(1). We wish to inte-
grate this curve backward (forward) in time. That is, we
wish to solve the following ordinary differential equation,
where we allow the solution y to depend on the indepen-
dent variable ¢ but also on the variable #, as this allows us
to parameterize the set of initial conditions:

%(y(t, n) = f(y(t,m)) , where y(0,7) = ro(9).

While it is possible to write a numerical solver to compute
this, since our goal is to create a printable mesh, we can
also take advantage of built-in solvers that represent solu-
tions as parameterized surfaces, meaning that we can take
advantage of built-in meshing algorithms.

If the eigenvalues A4; and 1, are complex conjugates,
then they have the same stretching factor, and the method
of direct integration works to give a nice depiction of the
global manifold without further modification. However,
if 1; < 1,, this method lead to unequal stretching during
the integration process, and as T grows the stretching be-
comes so extreme that our integration essentially only cap-
tures a single dimension of the manifold, see Figure 6a.

A solution to this stretching problem [KOD%05] is
to integrate in such a way that the time is parameter-
ized by arclength, see Figure 6b. Assume the origi-
nal differential equation is given by X = f(x), where
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Figure 6. Comparison of integration methods for computing
the global stable manifold of the Lorenz system (10). Red

inner regions represent the local stable manifold W .(p) at

the origin. (a) With real, distinct eigenvalues 1; < 1,, direct
integration causes unequal stretching. (b) Arclength
parameterization resolves this issue.

x = (x1,%,X3), and f(x) = (fi(x), f2(x), f3(x)). Denote
Ifll = V(1)) + (f(0))? + (f5(x))2. Our reparameter-

ized differential equation is given by

dr _j0 di_ 1
& =L & L ©)

This yields the same trajectories as the original equation,
but the time rescaling implies that along the curve in the
global manifold with a fixed value of 7, all the points are
the same geodesic distance from the starting curve r,. In
addition to this modification of our original vector field,
if we calculate with the initial conditions for too long, the
resulting points will start to bunch up in small regions,
thereby not representing the full behavior along a topo-
logical circle. Therefore, we break our full length T into K
time steps of length T/K. Before any time step from T; to
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Tj41, we find a reparametrization of the outermost points
with even spacing via arclength, i.e., of the computed circle
of points at time T;.

In the design of the 3D prints, the arclength parameteri-
zation of the global manifold is created in Mathematica.
Because of the way that Mathematica stores mesh struc-
tures for surfaces, this allows us to turn the surface into
a printable object using built-in commands, as described

in the next section.

5. Printing Details

Having established the basic principles and general com-
putational methods for generating invariant manifolds, we
now turn to the practical challenges of transforming these
mathematical structures into physical objects.

Advances in additive manufacturing technology have
revolutionized the creation of mathematical objects
[SLR19, LAC17]. From industrial prototyping to educa-
tional visualization [Seg12], new techniques and mate-
rials continue to enable increasingly sophisticated prints
[Zas20]. These developments, coupled with the standard-
ization of 3D printing workflows [JCW*22], provide the
foundation for tackling the unique challenges of printing
invariant manifolds.

However, despite these technological advances, the spe-
cific task of converting computed manifold data into 3D-
printable models requires careful consideration of both
numerical accuracy and the physical constraints of addi-
tive manufacturing. Our methodology addresses several
key challenges, including mesh/surface generation, struc-
tural stability, and the preservation of mathematical fea-
tures through the printing process. In what follows, we
give an overview of our pipeline from numerical data to
finished print.

We start by describing the design, done in our case in
the software packages Matlab, Mathematica, and in one
case Blender. We follow this by a discussion of setting up
for printing, which is done using a slicer which gives the
precise instructions to the printer as to where to place fila-
ment and in which order.

Focusing first on the method of design of a printable
mesh (usually stored in an stl file), the main problem that
we need to overcome is that a parameterized surface is
not actually a solid, in that it contains no volume. In
order to be able to print a surface, we need some way
to thicken it so that it can print. There are various ways
to do this, but we have found that the most reliable way
to do it is by using a Matlab program which performs
the Parameterization Method for computing local invari-
ant manifolds; followed by bringing the data into Math-
ematica, see for example makeTorenzmanifold.nb in
the Github repository (Section 8), in order to gener-
ate the object using the built-in integration methods for
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creating and printing parameterized surfaces. Starting
from the points on the circle in the invariant manifold
(provided by Matlab) we use a Mathematica Module en-
titled redistributePoints to create even spacing on
the circle, and use Interpolation to parameterize the
circle with components f0,g0, and h0. We create the
global invariant manifold using the differential equation
solver NDSolve, which allows us to specify an initial
value to be the curve given by {fO[x],g0[x],h0[x]}.
We solve the differential equation for time T, result-
ing in a parameterized surface of points. We convert
surfaces to three-dimensional printable shells using the
ParametricPlot3D command with the Thickness
modifier. Here we scale the function by a uniform fac-
tor in order to control the exact thickness. A good rule
of thumb is that the object should be at least 1.5-2 mm®
thick to avoid a lack of structural stability.

While in most of the figures, we have created the full
manifold surfaces, we have also developed two other meth-
ods of design in order to be able to see the internal struc-
tures that would otherwise be hidden by the surface. Fig-
ure 2 shows the first of these methods: we have created a
grid instead of a full surface. In order to do this, instead
of integrating the entire local manifold circle of points, we
applied the NDSolve command up to time T for a finite
number of evenly spaced points along the curve. These
points alone would not be connected, and the resulting
print would be a bit like a bowl of spaghetti. In order to
give rigidity to the grid, we add circles of points at fixed (ar-
clength parameterized) time steps, appearing like a sparse
version of the concentric blue-green circles seen in Fig-
ure 6b In addition, we demonstrate another way to show
the internal structure by using the software Blender to re-
move a “pie slice” cut into a manifold see Figure 2; to ac-
complish this, we imported a premade stl into Blender and
used Boolean operations to find the set difference of our
manifold and a shape of our choosing—in this case, a solid
pie-shaped wedge.

There are many other ways that one might consider per-
forming the calculations, and we have in fact tried several
other methods, with quite unsatisfying results. For exam-
ple, we tried using built-in thickening methods in the soft-
ware Blender to create the solid object, but invariant man-
ifolds are sufficiently complex objects that in general we
end up with a mesh file with significant structural errors
that make it unprintable. We also tried to do the entire
calculation in Matlab, computing the object using triangu-
lation mesh and solidification methods that have been cre-
ated for Matlab. Again here, the problem is that although

SFor large values of T, we need to divide up and use the commands
redistributePoints, Interpolation, and NDSolve N times,
each for time T/N.

SUnits for 3D printing are millimeters.
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in theory it appears to create a perfectly meshed object, we
often find that it does not successfully print due to holes
and incorrect normals as a result of meshing issues.

We now consider the specifics of how to print once the
object has been designed, though this is not a completely
separate issue, as usually design is done with ease of print-
ing in mind. The choices described are made within the
slicer software. We used the Cura slicer, but we have not
found the choice of slicer to be critical. One principle to
keep in mind is that it is much easier to print an object
if it has a flat bottom rather than a round, nonuniform,
or pointy bottom. For example, the Lorenz manifold in
Figure 1 is printed with a base attached both for an attrac-
tive display and also so that it has a flat base for printing.
The bottom manifold is already flat enough in the orienta-
tion shown that it does not have to print with a base. The
objects in Figure 4 are printed in two halves so that each
has a flat base and are glued together after the printing is
complete. Another principle of printing is that if there are
overhangs, where parts on top have nothing underneath,
then the object will need to be printed with supports. In
some cases, a clever choice of orientation will avoid too
many supports, but with objects this complex, there will
never be a way to avoid all supports. For a single extrusion
printer, we have found tree supports to be the best choice
as they are easier to remove. We have printed all of the de-
picted objects with a dual extrusion printer, meaning that
for the single color objects, we use the second extruder for
dissolvable filament. For example, without dissolvable fil-
ament, it would be close to impossible to make a good
print of the designs used for Figure 2, since they have in-
ternal overhangs, and it would not be possible to remove
internal supports.

We cannot use dissolvable filament in Figure 4, since in
this case we are using the two colors to depict the two inter-
secting manifolds—which is why we are forced to print in
two halves and glue them together. In particular, we have
created an stl file for each separate manifold. To print both
at the same time, we load both files into the slicer, select-
ing a different extruder to print each file.

As a final note on the printing process, there are a num-
ber of other 3D printing technologies that would yield
excellent results in the printing of invariant manifolds.
In particular, selective laser sintering and resin printing
are higher cost methods that generally give much higher
quality prints than the fused-deposition modeling (FDM)
printers that we used. Such methods would be quite excit-
ing to try, but we did not have access to these technologies.

6. List of Dynamical Systems

To demonstrate the effectiveness of our computational ap-
proach and visualization pipeline, we examine three dy-
namical systems of particular interest. These systems serve
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as compelling test cases, illustrating both the robustness
of our method and its ability to reveal intricate geomet-
ric structures through three-dimensional visualization and
physical reproduction.

Example 6.1 (Stable manifold of the Lorenz system). The
Lorenz system is a three-dimensional system of ordinary
differential equations defined by the vector field

XxX=0(y—x), y=¢x—y—xz, z=xy-—pz

(10)

with standard parameters ¢ = 10, ¢ = 28, and 8 = 8/3,
where we consider the equilibrium at the origin p =
(0,0,0). Originally developed by Lorenz (1963) as a sim-
plified model of atmospheric convection, this system is a
classical example of sensitive dependence on initial con-
ditions, where nearby trajectories diverge dramatically un-
der the flow. For the standard parameter values, trajecto-
ries converge to the famous butterfly attractor, also known
as the Lorenz attractor, which occupies a small region in
R3. This attractor is particularly intriguing from a geo-
metric perspective, as it exists between a one-dimensional
and two-dimensional object, possessing a fractal dimen-
sion that characterizes it as a strange attractor, making it
a fundamental example in the study of chaotic dynamical
systems.

To visualize the stable manifold of the Lorenz system at
p with classical parameters o = 10, ¢ = 28, and 8 = 8/3, we
first linearize, noticing that there are two stable eigenvalues
A~ —22.8 < 1, ® —2.7 (as well as one unstable eigen-
value 1; =~ 11.8 > 0). Figure 6a shows how stretched the
manifold would be if we did not use the arclength param-
eterization. The global manifold structure is computed up
to T = 180 with 100 total intermediate time steps. The
resulting 3D print is shown in Figure 3.

Example 6.2 (Unstable manifold of the Arneodo-Coullet-
Tresser system). The Arneodo-Coullet-Tresser system de-
scribes a three-dimensional dynamical system that ex-
hibits Shilnikov chaos. The system is defined by the vector
field

X=y, y=2z z=-y—-Pz+ux(1-x), (11)

with the parameters § = 0.4 and u = 0.863 where Shilnikov
chaos is known to occur. Originally proposed as a simple
model demonstrating spiral chaos, this system is particu-
larly notable for its explicit exhibition of Shilnikov-type
homoclinic orbits. The system possesses two equilibria: a
saddle-focus at the origin p; = (0,0,0) and a second equi-
librium point p, = (1,0, 0) that undergoes various bifurca-
tions as parameters change, ultimately leading to the for-
mation of a Shilnikov attractor.

To visualize the Shilnikov attractor of the Arneodo sys-
tem at § = 0.4 and u = 0.863, we note that DF(p,) has
unstable eigenvalues 4; , ~ 0.1542 + 1.0930i. Since these
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are complex conjugates, we will not need to use the ar-
clength parameterization for our global manifold calcula-
tions. The global manifold is computed to T = 22. The
resulting 3D printed manifold is shown in Figure 1.

Example 6.3 (Stable and unstable manifolds of the Lang-
ford system). The Langford system describes a three-
dimensional dynamical system that exhibits both Hopf
and cusp bifurcations. The system is defined by the vec-
tor field

X =(z—B)x—8y
y=06x+(z—pBy

3
z’:f+ocz—%—(x2+y2)(1+sz)+§'zx3,

(12)

with classical parameters ¢ = 0.25, 7 = 0.6, § = 3.5,
B = 0.7, ¢{ = 0.1, and bifurcation parameter « > 0. Orig-
inally derived by truncating a normal form of a simulta-
neous Hopf/cusp bifurcation to second order, the system
includes an additional third-order term that breaks axial
symmetry. The system serves as a model for dissipative vor-
tex dynamics and rotating viscous fluids, featuring a z-axis
invariant subsystem and rich dynamics including periodic
orbits and multiple equilibrium solutions.

To visualize the intersection of global invariant mani-
folds in the Langford system with parameters o = 1.1022,
=078 =351y=06 ¢ =01 and ¢ = 0.25, we cal-
culate that the system has three equilibria on the z-axis:
p; ~ (0,0,2.05), p, ~ (0,0,—1.43), and p; ~ (0,0, —0.61).
For the equilibrium p,, the linearization DF(p,) has eigen-
values 4; , ~ 1.35 + 3.50i and 43 ~ —3.08, corresponding
to a saddle-focus with a two-dimensional unstable man-
ifold and a one-dimensional stable manifold. For the
equilibrium p,, the linearization DF(p,) has eigenvalues
A12 & —2.13 +£3.50i and A3 = —0.95, indicating a sink with
complex conjugate eigenvalues. The presence of complex
conjugate eigenvalues implies that we will not need to pa-
rameterize with respect to arclength when computing the
global manifold structure.

Figure 4 shows intersections of the resulting structures:
the global unstable manifold of p, with T = 9.5 and the
global stable manifold of p; with T = 2.3. We see that
these two manifolds intersect transversally along curves.

Figure 2 shows 3D printed unstable manifolds for two
different @ parameter values. The yellow filamentary struc-
ture (in the right images) represents the 2D unstable man-
ifold of the equilibrium point p; ~ 1.84 for &« = 0.806,
while the purple surface shows the 2D unstable manifold
of p; ~ 1.94 for ¢ = 0.95 generated using set difference
techniques. The yellow invariant manifolds were com-
puted using a numerical integration method that approxi-
mates the global invariant structure by iteratively applying
the flow to an initial set of points along the local manifold,
with interpolation between successive iterations.
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7. Conclusions

This article has presented a comprehensive computational
pipeline for visualizing and physically realizing invariant
manifolds of dynamical systems through 3D printing. Our
approach combines careful mathematical computation
with modern manufacturing techniques, enabling both
theoretical study and tactile exploration of these complex
geometric structures. The methodology has been success-
fully demonstrated by computing and visualizing invari-
ant manifolds associated with three dynamical systems:
the stable manifold at the origin of the Lorenz system,
the unstable manifold of a saddle-focus for the Arneodo-
Coullet-Tresser system, and the intersecting stable and un-
stable manifolds of equilibrium solutions in the Langford
system, showcasing the versatility and robustness of our
approach.

The reproduction of these results begins with careful sys-
tem definition and analysis. For any dynamical system
of interest, one must first clearly define the vector field
and identify relevant equilibrium solutions. The choice
of system parameters significantly influences the manifold
structure and should be selected based on the specific phe-
nomena one wishes to study. Our computational pipeline
then proceeds with the local manifold computation im-
plemented in our provided Matlab/Mathematica scripts.
This crucial step requires attention to numerical parame-
ters, particularly the order of parameterization N and the
scaling factor, which should be adjusted based on the sys-
tem's properties and desired accuracy.

Global manifold generation follows where the local
manifold boundaries are evolved to capture the complete
invariant structure. This phase demands careful monitor-
ing of numerical stability during time integration and may
require adaptive step-size control. The resulting geometric
data undergoes appropriate transformations to ensure op-
timal visualization while maintaining mathematical accu-
racy. The process concludes with the preparation for 3D
printing, where computed surfaces are exported to stan-
dard formats (stl or obj) and processed through slicing
software such as Cura to generate the necessary G-code for
physical realization. That is, the slicer creates precise in-
structions to the printer for how hot to heat the filament,
the path of motion, and where to extrude the filament.

As discussed in Section 5, several challenges commonly
arise during implementation. Numerical stability issues
can emerge during the integration of highly sensitive sys-
tems, necessitating careful choice of tolerance parame-
ters and integration schemes. Mesh quality must be
maintained throughout the computation, often requir-
ing smoothing algorithms that preserve geometric accu-
racy. The physical printing process presents its own chal-
lenges, particularly in optimizing model orientation to
minimize support structures while ensuring structural in-

14 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

tegrity. These challenges can be addressed through care-
ful parameter selection and monitoring of intermediate re-
sults at each stage of the pipeline.

8. Code Repository

All code implementing the algorithms and visualization
pipeline described in this article is available in our open-
source repository: lhttns: //github _com/esanderl7R0)
[Z3DPrintinalnvariantManifolds.
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