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Degenerate Nucleation in the Cahn–Hilliard–Cook Model∗

Dirk Blömker†, Evelyn Sander‡, and Thomas Wanner‡

Abstract. Phase separation in metal alloys is an important pattern forming physical process with applications
in materials science, both for understanding materials structure and for the design of new materials.
The Cahn–Hilliard equation is a deterministic model for the dynamics of alloys which has proven
to be fundamental for the understanding of several types of phase separation behavior. However,
stochastic effects occur in any physical experiment and thus need to be incorporated into models.
While white noise is one standardly chosen option, it is not immediately clear in which way the noise
characteristics affect the resulting patterns. In this paper we study the effects of not necessarily small
colored noise on pattern formation in a stochastic Cahn–Hilliard model in the nucleation regime.
More precisely, we focus on degenerate noise which acts either on isolated eigenmodes or with a well-
defined spatial wavelength. Our studies show that the types of resulting patterns depend critically
on the spatial noise frequency, and we can explain via numerical continuation methods that if this
spatial frequency is too high, then pattern formation is significantly impaired by the underlying
structure of the system. In addition, we provide rigorous bounds on the nucleation time frame in
the degenerate stochastic setting.
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1. Introduction. Phase separation in metal alloys gives rise to many interesting and in-
triguing pattern formation phenomena, and understanding such patterns is of practical interest
in the design of new materials. If a mixture of metallic components is heated to a sufficiently
high temperature, stirred to form a homogeneous mixture, and subsequently quenched, then
several types of phase separation can occur. In this paper, we consider a specific phase
separation process called nucleation in binary alloys, which occurs when the alloy consists
predominantly of one element with significantly smaller amounts of a second one. In this
case, small droplets are observed to form within the mixture; see Figure 1. Although these
droplets form at random positions, they have a characteristic size, shape, composition, and
spacing. In this paper, we study a stochastic Cahn–Hilliard model of nucleation. Previous
studies have used space-time white noise in this equation, and in this case, large deviation
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Figure 1. Nucleation in the Cahn–Hilliard–Cook equation with white noise forcing. The images show
snapshots of a solution which originates at the homogeneous state μ = −0.59, and we choose ε = 0.005 as well
as σ = 0.050. From left to right the depicted solutions are for times t = 0.00265 · k for k = 1, . . . , 4.

results give rigorous bounds on the time to nucleation and pattern formation at nucleation [2]
at least in the small noise regime. In contrast, we concentrate on how the nature of the noise
affects the droplet size. In particular, we use degenerate noise which acts only on one or on a
small collection of modes with specific frequencies. Even though the large deviations results
no longer apply in this situation, one still expects nucleation to occur almost surely, and we
are in fact able to obtain lower bounds on the nucleation time frame. We also demonstrate
that depending on the spatial frequency of the noise, the observed nucleation patterns may
occur at completely different wavelengths due to an inherent maximal droplet count which
can be supported on a given domain size.

Cahn and Hilliard derived a fourth order partial differential equation to serve as a phe-
nomenological model for phase separation in binary alloys, written here in dimensionless form
as

(1.1)

ut = −Δ(ε2Δu+ f(u)) in Ω ,

∂u

∂ν
=
∂Δu

∂ν
= 0 on ∂Ω .

In this formulation, the function u is an order parameter; i.e., it is basically the difference of
the concentrations of the two alloy components as a function of time and space. Thus, u-values
close to −1 and 1 correspond to the two pure material components, and values in between
correspond to mixtures, with zero representing equal concentrations of both components. The
constant ε > 0 is a small dimensionless quantity modeling interaction length. The domain
Ω ⊂ R

d is bounded with appropriately smooth boundary for d ∈ {1, 2, 3}, and the nonlinearity
in the equation is given by f(u) = u− u3, implying that −f is the derivative of the standard
double-well potential F (u) = (u2−1)2/4. The Cahn–Hilliard equation generates gradient-like
dynamics with respect to the van der Waals free energy functional [34]

(1.2) Eε[u] =

∫
Ω

(
ε2

2
|∇u|2 + F (u)

)
dx .

In addition, it conserves the total mass
∫
Ω u dx, and for later reference we define the average

mass μ via

μ =
1

|Ω|
∫
Ω
u dx , where we set |Ω| =

∫
Ω
1 dx .
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It is immediate that the constant function u(t, x) ≡ μ is a solution to the Cahn–Hilliard equa-
tion which corresponds to a perfectly homogeneous mixture in the experiments. We focus on
solutions with initial conditions which are close to but different from this homogeneous state,
as generated, for example, by unavoidable small fluctuations before the quenching process. If
we define the monotone increasing sequence (κk)k∈N as the, strictly positive, eigenvalues of the
negative Laplacian −Δ subject to Neumann boundary conditions and zero mass constraint,
then one can show as in [31, 32] that the eigenvalues of the linearized Cahn–Hilliard equation
at the homogeneous equilibrium μ are given by

(1.3) ηk,ε = κk(f
′(μ)− ε2κk) for k ∈ N ,

where we restrict the dynamics of (1.1) to functions with spatial average μ. Therefore, the
homogeneous equilibrium μ is unstable when ε is sufficiently small and −1/

√
3 < μ < 1/

√
3.

This set of mass values is typically known as the spinodal region, and the associated phase
separation mechanism is called spinodal decomposition [26, 27, 32, 36]. On the other hand, the
homogeneous equilibrium is asymptotically stable for mass values μ with f ′(μ) = 1−3μ2 < 0,
i.e., for μ > 1/

√
3 or μ < −1/

√
3. Notice also that by symmetry the negative mass case is

identical to the positive mass case, since one only has to consider −u instead of u. The latter
mass condition defines the so-called nucleation region or metastable region of parameter space.

In their seminal paper, Bates and Fife [1] showed that if the total mass μ is in the nucle-
ation regime for the deterministic Cahn–Hilliard equation on one-dimensional base domains Ω,
and if the homogeneous equilibrium is perturbed in the right direction by a sufficiently large
amount, then the solution originating at the perturbed state will no longer relax to the ho-
mogeneous equilibrium but will rather converge to a lower energy state which exhibits phase
separation. Notice, however, that due to the asymptotic stability of the homogeneous state μ,
small perturbations lead to solutions which converge to μ and therefore do not exhibit phase
separation at all. In other words, the Cahn–Hilliard model (1.1) cannot explain the initial
dynamics of nucleation, as it cannot intrinsically introduce the necessary perturbation of the
initial state.

Thus, in order to study the statistical properties of the initial dynamics of nucleation, it is
necessary to consider a stochastic model. In this paper, we use the stochastic extension of the
Cahn–Hilliard model due to Cook [8] and Langer [23], which incorporates additive random
thermal fluctuations into (1.1). The resulting Cahn–Hilliard–Cook equation is also known as
“Model B” in the classification of Hohenberg and Halperin [20], and it is given by

(1.4)

ut = −Δ(ε2Δu+ f(u)) + σ · ξ in Ω ,

∂u

∂ν
=
∂Δu

∂ν
= 0 on ∂Ω .

In this formulation, the additive noise term ξ is usually chosen as a mass-conserving space-
time white noise or colored noise, and the parameter σ is a measure for the intensity of the
noise. For more details, see, for example, [4, 5, 6].

For sufficiently small noise intensity, it was shown in [2] that solution paths of the stochastic
Cahn–Hilliard–Cook model (1.4) which originate near the homogeneous state ū ≡ μ will exit
its deterministic domain of attraction with probability one, and at the time of exit these paths
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will be close to the boundary spikes which were identified in [1]. The behavior explains the
development of the minimal perturbations mentioned above. Reference [11] studied a variation
of this model for multicomponent alloys on two-dimensional base domains, showing that the
number of droplets and droplet type could be understood using a combination of scaling laws
and numerical continuation.

Both of the above studies considered essentially nondegenerate noise. But how do degen-
eracies in the noise affect the pattern formation process? For example, what happens if the
noise forcing term ξ is limited to a fixed band of noise frequencies or, in the extreme case,
to just one eigenmode of the Laplacian? We would like to point out that in this situation,
classical Freidlin–Wentzell-type results based on large deviations can no longer be applied.
Nevertheless, one would still expect the existence of a unique ergodic invariant measure which
is supported everywhere. In fact, this should be a straightforward but nontrivial modification
of the work by Hairer and Mattingly [17, 18], and it would imply that even under degenerate
noise nucleation will occur at some point with probability one. This approach is partly carried
out in [15].

In the present paper, we perform a combined numerical and theoretical study in order to
shed light on nucleation phenomena in the degenerate noise setting. In section 2 we perform
simulations for noise terms restricted to bands of frequencies of a variety of radii. We find
that droplets form in four possible ways:

• For small radius bands, droplets are oddly shaped.
• For medium radius bands, droplets form in a semiregular grid pattern, with droplet

numbers varying quadratically as a function of the radius.
• For large radius bands, the droplets take longer to form or fail to form in the expected

patterns, with an overrepresentation of boundary and corner droplets compared to the
nondegenerate case.

• For a sufficiently large spatial frequency noise forcing band, we do not observe droplet
formation in our simulations, even for relatively large noise strength.

Our results are further supported by simulations in which only one single spatial noise fre-
quency is excited. In section 3, we explain the results of the direct simulations by using
numerical equilibrium continuation for the underlying deterministic system. In particular, we
restrict our focus to a small portion of the domain, sustaining only a small number of droplets.
Via numerical continuation we show that if the domain is too small, it is not possible for a
droplet to form, or, equivalently, there is a maximum droplet count for a given domain size.
In addition to explaining the observations of the direct simulations, these results also uncover
a remarkable scaling invariance in the equilibrium bifurcation diagram and demonstrate that
path-following for small domains suffices to explain the nucleation behavior on large domains.
In section 4, we derive rigorous stochastic estimates which imply that although our degenerate
noise situation precludes the use of large deviations techniques, one can still obtain bounds
on the time frame necessary for nucleation. The paper closes with conclusions and future
directions in section 5.

2. Degenerate noise simulations. In this section we present numerical simulations of the
Cahn–Hilliard–Cook equation (1.4) subject to homogeneous Neumann boundary conditions
and driven by degenerate noise. In order to develop some intuition for the effects of this
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kind of noise, we focus on two specific degeneracies. In section 2.1 we consider band-limited
noise, meaning noise which only acts on Fourier modes whose wave vectors lie in a specified
annulus. In section 2.2 we consider the case of single mode forcing. Our numerical methods
are described briefly in section 2.3.

2.1. Band-limited simulations. In order to specify the degeneracy of the noise perturba-
tion considered, we recall that the noise process ξ = ∂tW in (1.4) is given by the generalized
derivative of a Q-Wiener processW as defined in [10], which can be written as a Fourier series
of the form

(2.1) W (t) =

∞∑
j,k=0

aj,k βj,k(t) cos(kπx) cos(jπy) with a0,0 = 0 ,

where {βj,k}j,k∈N0
denotes a family of independent real-valued standard Brownian motions,

and the numbers {aj,k}j,k∈N0 are given weights with a0,0 = 0. Note that the latter assumption
ensures that the noise process ξ in (1.4) preserves the total mass

∫
Ω u dx. The use of the

cosine basis is due to the fact that the Cahn–Hilliard–Cook model uses homogeneous Neumann
boundary conditions. In general, for other types of series we cannot easily localize the noise
in Fourier space.

By imposing additional constraints on the weights aj,k in (2.1) we can now consider differ-
ent noise processes in (1.4). In the present section, we perform simulations with band-limited
noise, which is defined as follows. Consider two radii 0 ≤ r0 < r1; then we define

aj,k =

{
1 for r0 < |(j, k)| < r1 ,
0 otherwise ,

where we use |(j, k)| = (j2 + k2)1/2 as an abbreviation for the norm of the wave vector.
For the remainder of section 2.1, we concentrate on the effect of the choice of r0 on the

total droplet count observed during nucleation in (1.4). Note that if the difference r1 − r0 is
fixed, then the total number of modes which are excited by noise increases with r0. However,
we do not find that this larger number of modes produces the most dominant effect, and
we therefore keep r1 − r0 fixed in each set of simulations. Moreover, the analytic results of
section 4 actually show that in two dimensions the effect of taking r1 − r0 as fixed, and thus
increasing the number of modes for large r0, is balanced by the stronger linear damping for
larger wave numbers. The two effects do not cancel, but in the range of r0-values which we
consider the impact is not significant.

We now turn our attention to presenting and analyzing our simulations of (1.4) driven by
band-limited noise. In each case, the simulation begins at the homogeneous state u ≡ μ at
time t = 0, and the solution snapshot is shown at a small fixed time tmax. Note that for such
simulations of the Cahn–Hilliard–Cook equation, under both degenerate and nondegenerate
noise forcing, there are no droplets at time t = 0. If the noise is sufficiently large, then
over a relatively short time nucleation occurs; i.e., the number of droplets increases. Once
the nucleation stage is completed, the dynamics transitions to a coarsening regime, during
which the droplets disappear or merge and the total droplet count decreases again. We refer
to nucleation and coarsening as two disjoint regimes. In fact, both dynamical behaviors are
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Figure 2. Simulations for the Cahn–Hilliard–Cook equation with band-limited noise with frequencies in the
range (r0, r1). From left to right, starting at the upper left, the images are for r0 = 10, 15, 16, 17, 18, 19, 20, 21,
and in all cases we choose r1 = r0 + 10. In each simulation, the solution originates at the homogeneous state
μ = −0.59 for t = 0, and each figure shows the resulting solution at time t = 0.025478. Red and blue correspond
to u = 1 and u = −1, respectively, the pure concentrations of the two metallic components, with intermediate
colors corresponding to mixtures of the metallic components. In all cases, the noise intensity is σ = 0.05, and
the interaction length is chosen as ε = 0.005. The total number of excited spatial noise frequency modes is
given by 249, 327, 343, 361, 373, 387, 405, and 419, respectively.

present at varying degrees at all times, but we have observed that, aside from a quite small
time window, one behavior significantly dominates the other. Namely, once a nucleus is
fully formed, the phase separation effectively saturates the domain and prevents any nearby
formation of new nuclei. In future work, we plan to do a more detailed study of this saturation
effect. In this paper, we are interested in the effect of degenerate noise on the initial nucleation
regime, and in particular in the associated pattern selection, which is why we have chosen to
depict the solutions when tmax is relatively small.

Our first set of simulation results is shown in Figure 2, and we refer the reader to section 2.3
for a description of our numerical methods. The eight images in the figure depict solution
snapshots as described in the previous paragraph, with band-limited noise for increasing values
of r0 from top left to bottom right. In each case, we set r1 = r0 + 10, allow the simulations
to originate at the homogeneous state u ≡ μ = −0.59, and show the solution at time tmax =
0.025478. The images clearly indicate a change in the solution behavior depending on r0.
In particular, in Figure 2 a smaller value of r0 corresponds to a larger number of droplets.
Does nucleation just occur more quickly for these smaller r0-values? In each case, we ran the
simulations over a longer time frame, and these longer-term simulations show that this is in
fact not the case. Specifically, running the simulations up to time tmax = 0.05, one can observe
that for larger r0 fewer droplets form before the simulation enters the coarsening regime. In
all cases we have confirmed that the time value t = 0.05 lies beyond the time exhibiting the
maximal droplet count. We would like to point out that the observed change in maximal
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Figure 3. Simulations for the Cahn–Hilliard–Cook equation with a narrow band of noise frequencies in the
range (r0, r1) = (n− 0.5, n + 0.5) for a number of integer values n. From left to right, the images correspond
to n = 11, 17, 23, 29. In each simulation, the solution originates at the homogeneous state μ = −0.59, and
each image shows the resulting solution at time t = 0.005096. The noise intensity is chosen as σ = 1.0, and
the interaction length is again ε = 0.005. For the four simulations, the total number of excited spatial noise
frequency modes is given by 19, 29, 37, and 44, respectively.

droplet counts is not negligible. In three different simulations with r0 = 10, the maximum
droplet count varies, but it is always in the 30’s. For r0 = 15 and r0 = 16, the maximum
droplet count is closer to 20, while for r0 = 17, 18, 19 the numbers are around 10. Finally,
for r0 = 20 and r0 = 21 the maximal droplet count drops to usually either one or zero. In
all our simulations with r0-values 21 < r0 < 40, not a single droplet nucleated up to time
tmax = 0.05. In these cases, we only expect nucleation due to large deviations type effects
on a much longer time-scale. As a final comment, we would like to point out that aside from
the change in droplet count, the simulations in Figure 2 also indicate an interesting change in
droplet configuration. For larger values of r0, droplets appear primarily at the boundary or
in the corners of the domain.

In order to better understand the effect of changes in r0 on the droplet count, we now
make the band of noise frequencies much narrower by choosing (r0, r1) = (n− 0.5, n+0.5) for
integer values n. The resulting simulations are shown in Figure 3. Notice that the number
of excited modes is now smaller by a factor of around 1/20 than in the case of large band
simulations. In order to still observe nucleation on a small time frame, we have therefore
increased the noise intensity by a factor of 20 to σ = 1.0. One can see that now the pattern
formation occurs much sooner than in the large band situation. Moreover, the images in
Figure 3 indicate that for small values of n, roughly up to the case n = 11 in the leftmost
image, droplets are oddly shaped. For midrange values of r0, starting at around n = 12,
droplets form on an almost uniform grid. However, for larger values such as n = 44, there
appear to be some missing droplets in the grid which never get resolved. Furthermore, for
sufficiently large values of r0, which are not shown in the figure, we observe the same effect
as in the large band case r1 − r0 = 10 discussed above: The droplet number decreases, the
droplets become clustered at the boundaries and corners, and finally the droplets cease to
form within the considered simulation time frame.

While the above simulations provide some qualitative intuition, a more quantitative de-
scription seems to be in order. For this, we perform a much larger number of simulations in
a variety of settings and compare the obtained average droplet counts. The results of these
simulations are contained in Figure 4. In this figure, the average droplet count data is based
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Figure 4. The top left image shows a plot of A, which denotes the square root of the mean number of
droplets, versus n, where the excited noise frequencies are contained in a narrow band of the form (r0, r1) =
(n−0.5, n+0.5). The plot shows data for n = 10, . . . , 29. For each averaged data point, we performed M = 100
runs using the same parameters as in Figure 3. In particular, each simulation uses noise intensity σ = 1.0 and
ends at time t = 0.005096. The red fit line was determined by using only the data points at n = 11, . . . , 20. The
top right image depicts A versus n for n = 8, . . . , 40, but now at the times tk = 0.005096 · k, where we consider
k = 1, 2, 3, 4. In this situation, the values of A decrease at larger times due to coarsening. For each data point,
we now performed M = 20 simulations. Finally, the bottom image shows A as a function of n for n = 8, . . . , 40
at t1 = 0.005096 and for noise intensities σ� = �, where � = 1, 2, 3. Also, in this case, M = 20 simulations
were performed for each data point. One can see that a larger noise intensity results in quicker nucleation.

on M simulations and for a range of n-values. In each graph, the vertical axis corresponds to
the square root of the mean number of droplets at a fixed time value t, and we denote this
quantity by A. This choice of quantity is clearly motivated by the almost grid-like patterns
which were observed in the two center panels of Figure 3.

We first turn our attention to the top left panel in Figure 4, which uses M = 100 simula-
tions for each data point. It shows a plot of A as a function of the band center n = 10, . . . , 29,
which indicates that A grows almost linearly for 10 ≤ n ≤ 23. The red line in the image is
a linear fit for the data points 11 ≤ n ≤ 20, which turns out to be a good fit up to n = 23.
However, starting at n = 24, the values A no longer change linearly. This is caused by the
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onset of the nucleation failure which we observed in the wide spatial frequency band simula-
tions in Figure 2. This effect becomes progressively more pronounced as n grows, such that
by n = 40, the droplets almost exclusively form on the boundary, and by n = 45 no droplets
form at all during the considered time frame.

In order to rule out insufficient simulation time or insufficient noise intensity as explana-
tions for this nucleation failure, we performed simulations up to double, triple, and quadruple
times, as well as for double and triple noise intensities. The results from these simulations
are shown in the top right and bottom panels in Figure 3, and they use M = 20 simulations
for each data point. They indicate that larger simulation time frames lead to a decrease in
droplet counts due to the onset of coarsening. Furthermore, higher noise intensities allow the
dynamics to reach the maximal droplet count earlier, and the droplet counts for larger values
of n are increased. Nevertheless, in all simulations the deviation from the linear growth regime
for A occurs at around n = 23.

Our simulations indicate somewhat similar behavior for the wide band case r1 − r0 = 10
and for the narrow band case r1 − r0 = 1. For small values of the parameter r0, the droplets
appear fairly regularly spaced in the interior and on the boundary and corners of the domain.
For larger values of r0, droplets first fail to form at some of the grid points, and then are
only created along the boundary of the underlying domain Ω. Finally, if the value of r0 is
sufficiently large, nucleation cannot be observed over the time frames used in our simulations.
We now summarize the findings of the numerics in this section.

Observation 2.1. For band-limited noise, a large band and a narrow band of excited fre-
quencies behave similarly, but this behavior depends significantly on the spatial frequency of
the band. A small spatial frequency band quickly gives rise to patterns of irregular droplet
shapes, but with a geometry based on the noise excitation. A medium spatial frequency band
gives rise to regularly shaped droplets in a geometry based on the noise excitation. A large
spatial frequency band takes longer to invoke droplets, these droplets do not fully conform to
the geometry of the excited noise patterns, and the droplets occur with over-representation
on the boundary and in the corners. Even larger spatial frequency noise does not invoke any
nucleating patterns in the time frame of our simulations.

2.2. Single forcing mode simulations. We now turn our attention to even more degen-
erate noise. While in the last section the noise acted on modes whose wave numbers fell
into specific intervals, this section is devoted to noise which acts on exactly one mode. As
before, we study the expected droplet count that can be generated in this way. Intuitively,
we would again anticipate that the droplet count rises as the wave number of the considered
mode increases, since higher frequencies correspond to a larger number and smaller size of the
connected components of the positive nodal domain of the mode. In particular, consider the
case of stochastic forcing which acts only on the (j, k)-mode given by

(2.2) ϕj,k(x, y) = cos(jπx) cos(kπy) ,

which has frequencies j/2 and k/2 with respect to the x- and the y-directions, respectively.
For each of these functions ϕj,k(x, y), their two nodal domains, i.e., the sets where the func-
tion is strictly positive or strictly negative, respectively, decompose into a specific number
of components, as shown, for example, in Figure 5. From left to right, the image contains
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Figure 5. Nodal domain patterns of the (j, k)-modes ϕj,k defined in (2.2). From left to right, the images are
for (j, k) = (1, 1), (2, 2), (2, 1), and (3, 2). In each image, positive function values correspond to red, negative
ones to blue, and green is for the value zero. If these modes are forced by noise, one would expect to see the
nucleation of 1/2, 2, 1, and 3 droplets, respectively, counted according to their fractional size.

the nodal domain patterns of the (j, k)-modes ϕj,k for (j, k) = (1, 1), (2, 2), (2, 1), and (3, 2).
In each image, positive function values correspond to red, negative ones to blue, and green
is for the value zero. If one of these modes is excited by noise, and if we assume that our
initial mass μ is less than −1/

√
3, one would expect that each component of the positive nodal

domain of ϕj,k eventually generates one droplet, or part thereof. In fact, since the noise acts
as an amplitude of the mode, these droplets should appear at the same time. For example,
for (j, k) = (1, 1) we would expect two quarter droplets to appear in opposing corners of the
domain, while for (j, k) = (3, 2) there should be one full interior droplet, three half droplets
along the three right edges, and two quarter droplets in the two corners of the left edge. For
forcing with the (j, k)-mode for j, k ∈ N, one can easily see that if we count partial droplets
as the corresponding fractions, then exactly jk/2 droplets should be generated in the domain
Ω = (0, 1)2. Furthermore, the resulting nucleation pattern should have exactly one possibly
partial droplet in each of the components of the positive nodal domain of ϕj,k.

Our first set of simulation results for single mode forcing can be found in Figure 6. As
in the previous section, solutions of (1.4) originate at the homogeneous state μ = −0.59, and
each image shows the resulting solution at time t = 0.02547784. While the interaction length
is again chosen as ε = 0.005, the intensity of the noise is increased to σ = 5, since there is
only a single forcing mode. In all of these simulations, the initial nucleation pattern is exactly
the one determined by the positive nodal domain of the corresponding eigenmode. In the first
three images, this pattern does persist up to the time of the image, and coarsening sets in at
later times. In contrast, in the remaining five cases shown in Figure 6, coarsening has already
begun. One can see that the observed nucleation patterns of the snapshots either exhibit
small defects, such as in the top right image, or have already coarsened to a longer length
scale. In the latter situations, the patterns are no longer periodic over the whole domain Ω.

For the simulations in Figure 6 the forcing modes ϕj,k have comparable values for j
and k. What happens if these numbers are significantly different in size, i.e., if the forcing
modes are very asymmetric? For the cases (j, k) = (5, 20) and (j, k) = (10, 20) this can
be seen in Figure 7, using the same parameter values and snapshot time as in the previous
simulations. In both cases, the initial nucleation pattern is exactly the one determined by
the positive nodal domain of the corresponding eigenmodes, and these are shown in the first
and third images, respectively. This initial pattern quickly coarsens for the mode ϕ20,5, where
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Figure 6. Simulations for the Cahn–Hilliard–Cook equation with single mode forcing, and with interaction
length ε = 0.005 and mass μ = −0.59. Now, only the (j, k)-mode is forced by noise, using noise intensity σ =
5.0. From left to right, the images correspond to (j, k) = (10, 10), (15, 15), (18, 17), (19, 18), (19, 19), (21, 21),
(22, 22), and (23, 22), respectively, and all solution snapshots are taken at the same time t = 0.02547784. In
all eight cases, the initial nucleation pattern is exactly the one determined by the positive nodal domain of the
corresponding eigenmode. While in the first three images this pattern persists up to the time of the image,
in the remaining cases coarsening has already begun, and the nucleation pattern either exhibits defects or has
already coarsened to a longer length scale.

Figure 7. Simulations for the Cahn–Hilliard–Cook equation with single mode forcing for both the (20, 5)-
and the (20, 10)-modes, for the same parameter values as in Figure 6, including the snapshot time. The first
two images show the nodal domains for the mode ϕ20,5, as well as the simulation snapshot, respectively. In this
case, the initial nucleation pattern is exactly the one determined by the positive nodal domain of the eigenmode,
but the droplets appear round, are closely spaced in the x-direction, and are far apart in the y-direction. At the
time of the snapshot, coarsening has set in and the droplets have merged to form long horizontal bands. The
last two images show the nodal domains for the mode ϕ20,10, as well as the simulation snapshot, respectively.
In this case, the droplets persist up to the snapshot time, but their shape fluctuates due to the noise.

the strong asymmetry leads to an unusual nucleation pattern involving elongated structures,
which are clearly generated through merging of the initial droplets along horizontal lines. For
the less asymmetric case shown in the right image, the nucleation pattern persists through
the snapshot time, but the shape of the droplets changes with the noise to form slightly
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asymmetric forms.
The simulations described in the previous two paragraphs indicate that the case of single

mode forcing exhibits features similar to those of the band-limited case discussed earlier, but
with a slight twist. In the single mode case, the components of the positive nodal domain of
the forcing mode act as seed cells for the nucleation pattern, and for reasonably small values of
the wave number |(j, k)| one in fact observes very regular and periodic patterns whose droplet
count increases with the wave number. We have also performed single mode simulations for
considerably larger wave numbers than those shown in Figures 6 and 7. In these cases, it is no
longer possible to create a nucleation pattern which supports one droplet in each component
of a nodal domain of the forcing mode. Nevertheless, on a much larger time frame, nucleation
can often still be observed, but with significantly fewer droplets than the predicted jk/2. This
effect is similar to our observations in Figure 4 and will be explained in section 3.3 below.

Before closing this section, we would like to caution the reader that the single mode
simulations are not necessarily a good indication of what kind of nucleation patterns can be
observed if the noise acts on a small number of modes with similar wave numbers. Consider, for
example, modes whose wave number deviates only slightly from a given number r; i.e., consider
wave vectors (j, k) from an extremely small neighborhood of the circle of radius r in the first
quadrant. For example, the (j, j)-mode corresponds to the ring with r =

√
2j, and forcing this

mode should lead to j2/2 droplets. In other words, for this mode, the number of generated
droplets is proportional to r2. In contrast, the (k, 0)-mode lies in the ring with radius r = k,
and it is expected to produce k/2 elongated structures, i.e., the nucleation pattern consists
of a pattern whose number of components is proportional to r. If all the modes in an entire
ring of small thickness are forced by noise, one obtains a random combination of these modes,
and it is not in general the case that the superposition of modes gives rise to a function with
similar number of components of the positive nodal domain. To the best of our knowledge,
it is still an open question to give statistical properties on the number of components of the
nodal domains for random superpositions of a certain subset of the cosine functions in the
plane. Nevertheless, we do expect that such a random superposition produces droplet patterns
of a characteristic width with quadratic growth of the number of droplets with respect to r.
In other words, we expect that the simulations for midrange values of r reflect in some sense
the patterns inherent from the frequencies of the modes. Note, however, that this heuristic
based on the radius r does not explain the dropoff in droplet counts which has been observed
in all of our simulations as r becomes large. Explaining this is the subject of section 3. The
following observation is a summary of the findings of the section.

Observation 2.2. For small and medium frequencies, the initial geometric pattern of nucle-
ation given by the excitation of a single spatial noise frequency can be described quite precisely
as the exact regular structure given by the nodal domains of the exciting mode. After initial
pattern selection, coarsening of the patterns sets in. This is particularly accentuated in the
case of a mode with asymmetric nodal domains, even leading in some cases to stripe patterns.
As in the band case, if the spatial frequency of the excited single mode is too high, the patterns
miss forming droplets in places where the nodal domain would anticipate droplet formation.
For very high spatial frequency single mode noise, no nucleation occurs in the time frame of
our simulations.
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2.3. Numerical simulation methods. To close this section, we briefly comment on the
numerical methods which were used for the above simulations. Throughout this section, we
considered the square domain Ω = (0, 1)2 and homogeneous Neumann boundary conditions.
Furthermore, in every case we chose the interaction length ε = 0.005 and total mass μ = −0.59,
which lies in the nucleation region. The simulations are performed using a linearly implicit
pseudospectral method as described, for example, in [19]. Basically, the method is implicit
in the term −Δ2u but explicit in the nonlinearity −Δf(u) and in the additive noise term.
Solutions are approximated using a truncated cosine series of the form

u(t, x, y) ≈
N−1∑
j,k=0

uj,k(t) cos(kπx) cos(jπy) with u0,0(t) ≡ μ ,

where for the simulations of the paper we use N = 256. In order to avoid aliasing, the
nonlinearity is computed using the two-dimensional discrete cosine transform with 5122 dis-
cretization points. Finally, the time integration is performed using a step size Δt ≈ 5 · 10−7.
Droplet numbers are determined using thresholding of the solution data at height 0 and then
applying computational homology techniques to calculate the value of Betti numbers to ob-
tain boundary and interior droplet information. See [11, 14] for a more detailed description
of these techniques.

3. Numerical continuation and pattern size. In the previous section we have developed
some basic intuition for nucleation phenomena driven by different types of degenerate noise.
Common to these different situations was that if the spatial frequency of the driving noise
is small, much can be inferred from the nodal domain patterns of the driven eigenmodes.
However, if the spatial frequency becomes too large, the nucleation patterns are usually gen-
erated at a much smaller spatial frequency. In fact, we saw in Figure 4 that this effect can
be quantified, and that it manifests itself in a decrease in the droplet count. In the present
section, we will explain this phenomenon through the equilibrium bifurcation structure of the
deterministic Cahn–Hilliard model (1.1).

Our approach in this section is quite different from that in the last, as rather than consider-
ing direct simulations, we instead use methods of numerical bifurcation theory. This different
approach allows us to see not only stable solutions, which are visible in direct simulations,
but also unstable solutions, which serve as organizing centers for transient behavior. Thus,
by considering this quite distinct numerical approach, we are able to gain a more complete
understanding of the droplet formation seen in the direct simulations in the previous section.
In particular, through this method, we will be able to deduce that for a fixed mass, there is a
minimum area required for a droplet to form. Thus, if our degenerate noise forces droplets to
form too close together, there will be no pattern formation at the forced length scales. Details
of this result are given in Observation 3.2.

Our study will be numerical in nature, and it uses numerical continuation methods to
study low energy equilibria. These solutions are found using the bifurcation and continuation
software AUTO [13]. As with the direct simulations, we use a spectral Galerkin method for
the continuation method, which is described in detail in [11, 21]. We begin in section 3.1 by
providing some background information on stationary states of the Cahn–Hilliard equation,
and by establishing some basic information on the droplet equilibria. In section 3.2 we track
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the location of saddle-node bifurcation points, which in some sense provide lower bounds on
the domain sizes necessary to support certain droplet configurations. This study is continued
in section 3.3, where we show the surprising fact that the specific droplet configuration plays
no significant role, and that any one of the saddle-node location curves can be used to find
a maximal droplet carrying capacity for a given domain size. Finally, section 3.4 provides
information on the typical size of the generated droplets as a function of the total mass μ.

3.1. Equilibria for the deterministic system. As a dissipative parabolic partial differen-
tial equation, the deterministic Cahn–Hilliard equation (1.1) has a compact global attractor
which describes its long-term dynamics; see, for example, [33]. This attractor is comprised
of equilibrium solutions as well as heteroclinic solutions between these stationary states. For
practical applications, however, one generally needs more information on the actual structure
of the attractor than only a statement of its existence.

For the case of one-dimensional domains such results have been obtained in the past.
Grinfeld and Novick-Cohen [16] used a phase plane analysis in combination with transversal-
ity arguments to completely describe the set of equilibria of the Cahn–Hilliard model in this
situation for every value of the total mass μ. Furthermore, Mischaikow [28] was able to es-
tablish the dynamics on the attractor by constructing a semiconjugacy to a finite-dimensional
model, based on Conley index methods. However, the latter result is only valid for mass values
in the spinodal region −1/

√
3 < μ < 1/

√
3, and little is known rigorously in the nucleation

region. See [2] for more details.
While there are partial results on one-dimensional domains Ω, the situation is wide open

in the two- and higher-dimensional cases. There are basically no rigorous results available
on the complete attractor structure, even for simple domains. The observed equilibrium
structure is generally elaborate and complex, and the bifurcation diagrams contain many
secondary and ternary bifurcations; see, for example, Figure 8. In fact, it is our belief that
finding a description of the full attractor is intractable in the higher-dimensional case. This is
particularly true in the nucleation regime, as the homogeneous trivial state has no bifurcating
branches. We would like to point out, however, that computer-assisted proofs can be obtained
to describe part of the attractor structure. See, for example, [24] for the verification of
stationary states, [25] for the existence of heteroclinics, and [37, 38] for a recent simplification
of the equilibrium verification approach.

In light of the above discussion it is not surprising that we are not attempting a full under-
standing of the attractor structure in order to explain our nucleation observations. Instead,
we focus on the equilibrium solutions which can be used to explain the nucleation failures
seen in the simulation results from the previous section. For convenience of discussion, we
introduce the new parameter

λ = 1/ε2 .

Then a function u : Ω → R is an equilibrium solution of the deterministic Cahn–Hilliard
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Figure 8. Equilibrium bifurcation structure for the Cahn–Hilliard equation (1.1) on the two-dimensional
domain Ω = (0, 1) × (0, 0.97). The left image is for total mass μ = 0, while the right image is for μ = 1/2.
In both panels, the horizontal axis uses the parameter λ = 1/ε2, and the vertical axis shows the L2(Ω)-norm
of u−μ, where u denotes the equilibrium and μ its total mass. The equilibria are colored based on their stability
index, with black for index zero, i.e., stable solutions, and red, blue, green, magenta, cyan, yellow, and dashed
black corresponding to indices 1, . . . , 7, respectively. Black dots indicate saddle-node bifurcation points.

model (1.1) if and only if it solves the nonlinear elliptic system

(3.1)

−Δ(Δu+ λf(u)) = 0 in Ω ,

∂u

∂ν
=
∂Δu

∂ν
= 0 on ∂Ω ,

μ =
1

|Ω|
∫
Ω
u dx ,

where we consider both λ and μ as bifurcation parameters. It was already pointed out in
the introduction that there is a symmetry between negative and positive values of the total
mass μ; i.e., we now restrict our attention to the case of positive mass μ > 0 without loss of
generality.

The stationary Cahn–Hilliard system (3.1) exhibits a scaling property which will be useful
later. To state this property, assume that u : Ω → R is an equilibrium for the parameter value
λ = λ0 = 1/ε20 and with total mass μ0 on the square domain Ω = (0, 1)2. Then for any real
number λn > 0 the rescaled function

x 
→ u

(√
λn
λ0

· x
)

= u (ε0/εn x)

is a solution of (3.1) for λ = λn and μ = μ0 on the rescaled domain

Ω̃ =
(
0,
√

λ0/λn

)2
.

Reformulating these statements implies that studying the set of equilibria for

(λ, μ) = (λn, μ0) on the domain Ω̃ = (0, L)2
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is equivalent to studying the set of equilibria for

(λ, μ) =
(
L2λn, μ0

)
on the domain Ω = (0, 1)2 .

This scaling argument shows that changing the size of the underlying domain while keeping λ
fixed can equivalently be viewed as changing the parameter λ on a fixed domain while the
total mass remains unaffected by the scaling.

In our situation, we are interested in stationary solutions of the deterministic Cahn–
Hilliard model with droplet structure. For the simulations shown in the last section, we
usually encounter many small droplets in the domain Ω or, equivalently, many droplets of size
of order one on a large domain. Rather than trying to find equilibrium solutions which contain
such a large number of droplets, we take the point of view used in [11, 35] that understanding
bulk effects of many droplets on a large domain can be accomplished by considering small
domains which sustain either a single droplet or a small number of droplets. Applying the
scaling argument again shows that this is equivalent to studying the fixed domain Ω = (0, 1)2,
but for relatively small values of λ, meaning that this is computationally feasible.

As mentioned earlier, our study of the equilibrium structure of (3.1) is numerical in nature.
More precisely, we use path-following techniques based on AUTO [13] to track nontrivial
solution branches of equilibrium solutions for varying parameter λ, as they bifurcate from
the known homogeneous stationary state μ. This leads to bifurcation diagrams such as those
shown in Figure 8, which were computed for the rectangular domain Ω = (0, 1) × (0, 0.97).
While at first glance this choice of domain might seem strange, it is essential to simplify the
path-following process. On the unit square, most of the bifurcation points from the trivial
homogeneous equilibrium have at least a two-dimensional bifurcation kernel, which makes
resolving all (usually) multiple bifurcating branches difficult. We therefore slightly perturb
the domain in the above way to break up these higher-dimensional bifurcation points into
simple ones. This small domain perturbation will be removed later; see our discussion at the
end of this section.

For total mass μ = 0 and 0 < λ ≤ 80 one obtains the bifurcation diagram shown on the left
in Figure 8. The horizontal line at the bottom of the figure corresponds to the homogeneous
equilibrium, and a number of branches are bifurcating from this trivial solution. The fact
that we plot the L2(Ω)-norm of u in the vertical direction, combined with the symmetries in
the equation, implies that each point on the shown nontrivial solution branches corresponds
to at least two nontrivial equilibria, and sometimes to more than two. The branches are
colored based on the stability index of the stationary states, with black corresponding to
index zero, i.e., stable solutions, and red, blue, green, magenta, cyan, yellow, and dashed
black corresponding to indices 1, . . . , 7, respectively. Notice that the Cahn–Hilliard equation
on this two-dimensional domain contains multiple stable states, and that the bifurcation
diagram is fairly elaborate. In contrast, the right panel in Figure 8 shows the bifurcation
structure of (3.1) for μ = 1/2 and 0 < λ ≤ 240, and we now plot the L2(Ω)-norm of u− μ in
the vertical direction. Note that the bifurcation points from the trivial solution now occur at
larger λ-values than in the case μ = 0, and that many of the bifurcations turn from super- to
subcritical. In this way, a number of saddle-node bifurcations are formed in the bifurcation
diagram. These saddle-node bifurcations are crucial to our discussion.
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Figure 9. Droplet equilibria for the Cahn–Hilliard equation for total mass μ = 0.6 on the domain Ω =
(0, 1)2. These solutions occur at distinct λ-values and are obtained by following solutions on the nontrivial
branches in the right image of Figure 8 with respect to increasing μ. From top left to bottom right, we label the
above solutions as 10, 11, 13, 21, 22a, 22b, 31, and 32, consistent with the branch numbering scheme used in
Figure 11 below.

We would like to point out that both mass values μ = 0 and μ = 1/2 are contained in
the spinodal region since 1/

√
3 ≈ 0.57735. One can show that as we increase the mass μ

toward 1/
√
3, all bifurcation points from the trivial solution line will converge toward posi-

tive infinity, such that for mass values μ > 1/
√
3, there are no more bifurcations from the

trivial homogeneous solution line. This is to be expected, since in the nucleation region the
homogeneous state is stable for all values of the parameter λ = 1/ε2. In other words, since
we are interested in solutions of (3.1) for mass values in the nucleation region, we cannot
simply use path-following from the trivial solution in this setting. Instead, we follow the so-
lutions along the nontrivial branches found at μ = 1/2 as we increase the mass parameter μ
into the nucleation regime. In this way, we can find nontrivial equilibrium solutions for the
Cahn–Hilliard equation in the nucleation regime which consist of a small number of droplets.
Furthermore, since we will be interested in scaling results later, it will be useful to have these
equilibrium solutions again on the unit square (0, 1)2. This can be achieved by considering the
parameter-dependent domains Ωa = (0, 1)× (0, a) and continuing the solutions from Figure 8
for fixed mass μ = 1/2 from a = 0.97 to a = 1. Note that this is possible, as the symmetry
issues that led us to consider a rectangular domain are no longer a problem, since at this step
we are considering solutions far from the homogeneous equilibrium.

The results of this sequence of three continuation computations can be found in Figure 9,
which shows a variety of equilibrium solutions of the deterministic Cahn–Hilliard model on
the domain Ω = (0, 1)2, and for mass μ = 0.6. Note that the depicted solutions occur at
distinct λ-values. From top left to bottom right, we label the solutions in the figure as 10, 11,
13, 21, 22a, 22b, 31, and 32, consistent with the branch numbering scheme used in Figure 11.
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Figure 10. Bifurcation diagrams for the quarter droplet shown in the first image of Figure 9. In the top
left image, we show the bifurcation curves corresponding to the quarter droplet for different μ-values. The
case μ = 0.6 leads to the black curve, which is not connected to the trivial solution line. Moving toward the left
from its saddle-node bifurcation point, the curves are for μ = 0.5, 0.4, . . . , 0.1. Note that for μ = 0.1, 0.2 (green)
the curves bifurcate in a pitchfork bifurcation from the homogeneous equilibrium, are strictly increasing, and
have no secondary bifurcations. In contrast, for μ = 0.3, 0.4, 0.5 (blue) the curves arise from the homogeneous
state via a subcritical pitchfork bifurcation before reversing direction in a saddle-node point. Only the black
curve, with μ = 0.6, is contained in the nucleation region. The top right image shows these six bifurcation
curves projected down onto the λ-μ-parameter plane. Moreover, the red curve in the image shows the location
of the saddle-node bifurcation points, computed also for intermediate μ-values. Finally, the two images in the
bottom row depict all this information in all three dimensions, shown from two different angles.

In particular, a label starting with jk indicates that the solution was found via a nontrivial
branch in Figure 8 arising through a bifurcation kernel at the trivial solution spanned by the
mode ϕj,k introduced in the previous section.

3.2. Location curves of saddle-node bifurcations. After the preparations of section 3.1
we can now tackle the droplet carrying capacity of a domain. This will be accomplished by
studying the bifurcation branches of the droplet equilibria shown in Figure 9.

As a first step, we consider the quarter droplet equilibrium shown in the top left image
of Figure 9 for μ = 0.6. If we keep the mass fixed and consider λ as a free parameter, this
solution lies on a smooth curve of equilibrium solutions of (3.1). The resulting solution branch
is shown in black in the top left image of Figure 10. Notice that as λ increases from zero,
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this branch is created via a saddle-node bifurcation at around λ ≈ 34.827, and its two halves
continue as smooth curves with increasing λ. As a second step, consider the black branch,
but slowly decrease the mass μ. Then this branch can be continued to a nearby curve of
solutions, and for μ = 0.5, 0.4, . . . , 0.1 the resulting curve continuations are shown in the top
left image of Figure 10, from right to left. As μ decreases from μ = 0.6, these curves initially
all originate in a saddle-node bifurcation. This is true for the cases μ = 0.5, 0.4, 0.3, which are
shown in blue. Between μ = 0.3 and μ = 0.2, the curves lose their saddle-node bifurcation
and originate via a pitchfork bifurcation from the trivial homogeneous state. This is the case
for μ = 0.2 and 0.1 shown in green. The top right image of Figure 10 shows these six solution
curves again, but projected down onto the λ-μ-parameter plane. In addition, the red curve
represents the location of the saddle-node bifurcation points for all curves originating in such a
way. Finally, the two images in the bottom row depict all this information in three dimensions,
shown from two different angles.

It is natural to wonder what the curves in Figure 10 have to do with the droplet carrying
capacity mentioned earlier. To see this, we take another look at the red curve shown in
the upper right image of the figure. Let (λ∗, μ∗) be a point on this curve. Then for fixed
mass μ = μ∗, equilibrium solutions in the form of a quarter droplet only exist for λ ≥ λ∗.
In view of our scaling discussion at the end of section 3.1, and since we keep our underlying
domain Ω fixed, we can therefore view λ∗ as a measure for the smallest domain size on which
a quarter droplet can be supported. For example, we have already seen that for μ∗ = 0.6 one
obtains λ∗ ≈ 34.827.

While the above reasoning does provide a lower bound, this bound is clearly dependent
on the quarter droplet configuration. However, Figure 9 shows that there are many other
equilibria which contain droplets, and they too should give rise to lower bounds. This is
demonstrated in Figure 11. For each of the remaining seven equilibria of Figure 9 we computed
their associated bifurcation branches with λ as bifurcation parameter, and again we find that
for certain mass values these branches originate in a saddle-node bifurcation. Collecting all
locations of saddle-node bifurcation points then furnishes the left image of Figure 11. Each
curve in this image corresponds to the location of saddle-node bifurcation points, labeled
according to the equilibria in Figure 9, and computed via two-parameter continuation. For
example, the curve labeled 10 is the same location curve as that shown in Figure 10 in
red, and the curve labeled 11 is for the equilibrium solution with two quarter droplets in
opposite corners of the domain. Both of these curves were only computed up to λ = 300,
even though they do continue for larger λ-values as well. As expected, for each of the new
equilibrium solutions we obtain lower domain size bounds which are larger than the quarter
droplet bound contained above. Furthermore, for some equilibrium solutions the saddle-node
location curves consist of two parts merging in a cusp. This is due to the fact that on some
equilibrium bifurcation curves there are two saddle-node bifurcation points. This can be seen
in the right image in Figure 8, where the fifth saddle-node bifurcation from the left lies on a
branch with a second fold.

3.3. Estimation of sustained pattern size. At first glance the saddle-node location curves
in the left image of Figure 11 seem overwhelming; for every droplet configuration and every
value of μ = μ∗ there are many lower bounds λ∗ on the domain’s size, depending on the
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Figure 11. Location curves for saddle-node bifurcation points. The left image shows the location of saddle-
node bifurcation points on the solution branches which correspond to the eight equilibria in Figure 9. The blue
curve labeled 10 is the same location curve as that shown in Figure 10 in red, while the remaining curves are for
the other seven droplet equilibria. In the right image, the same curves are shown, but now the λ-values in each
curve are scaled by the (possibly fractional) droplet count c of the associated equilibrium. In both images, the
dashed black line indicates the boundary between the spinodal regime (below) and the nucleation region (above).
Note that the curves labeled 10 and 11 in the left image are only partially computed. They do in fact continue
to the right for all values of λ.

specific equilibrium. Note, however, that in this image there appear to be only five curves
in the nucleation regime for the eight types of equilibria. In fact, there are eight curves, but
those for equilibria with labels 21, 22a, and 22b overlap exactly, as do the two curves for
labels 31 and 32. For a heuristic understanding of this, we appeal to the system energy (1.2).
Consider the contribution to the energy provided by an equilibrium containing boundary
droplets, interior droplets, or corner droplets, where μ and λ are fixed. Make the simplifying
assumption that the solution is essentially constant +1 inside the droplet and constant −1
outside the droplet, where those constants correspond to the zeros of F in (1.2). In this
case, the only contribution to the energy Eε[u] occurs in the transition layer between the
interior and exterior of the droplet, when the energy depends almost entirely on ε2 = 1/λ
times the integral of the gradient. If the three types of solutions have the same radius,
then the interior droplet has twice the circumference of the boundary droplet and four times
the circumference of the corner droplet. Therefore, we expect that if one interior droplet
solution occurs at (μ, λ), then the one boundary droplet solution would be sustained at the
same energy for parameters (μ, λ/2), and the one corner droplet solution will occur at (μ, λ/4).
More generally, for an equilibrium with any number of droplets, let c be the possibly fractional
number of droplets within the equilibrium solution. Then equilibria with the same value of c
should occur at almost the same parameter values. For the equilibria in Figure 9, we obtain
counts c = 1/4, 1/2, 4, 2, 2, 2, 3, and 3, respectively, from top left to bottom right; and the
saddle-node location curves for equilibria with the same droplet count c overlap exactly in the
nucleation region.

In fact, even more is true. Consider again a point (λ∗, μ∗) on the saddle-node location
curve for the quarter droplet. Since λ∗ is a measure for the smallest domain size supporting
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a quarter droplet, 4λ∗ should be a measure for the smallest domain size supporting a full
droplet. In other words, in order to get domain sizes for single droplets, one should be scaling
the λ-value of the location curves in the left image of Figure 11 by the associated droplet
count c. The resulting scaled curves are shown in the right image of Figure 11, and they
coincide in the nucleation region! In other words, regardless of the actual droplet structure in
the considered equilibrium, one obtains a universal curve which describes the minimal domain
size necessary for supporting a droplet as a function of the total mass μ. This leads to the
following definition.

Definition 3.1 (droplet capacity function). For the deterministic Cahn–Hilliard equation
(1.1) on the unit square Ω = (0, 1)2, we define the droplet capacity function λ = Λ(μ) in
the following way. For every mass 1/

√
3 < μ < 1 in the nucleation region the value Λ(μ) > 0

denotes the λ-coordinate of the saddle-node bifurcation point on the quarter droplet solution
branch multiplied by four.

Based on our above discussion, the droplet capacity function numerically coincides with
all of the rescaled curves shown in the right image of Figure 11. Furthermore, by using a
standard least-squares fitting approach we obtain that for μ-values in the nucleation regime
we get the approximation

(3.2) Λ(μ) ≈ 24.08392

(1− μ)1.912156
for

1√
3
< μ < 1 .

In other words, we would expect a proportionality of the form Λ(μ) ∼ (1 − μ)−2 as μ → 1.
This will be discussed in more detail in section 3.4.

We can now try to use the droplet capacity function to estimate the maximal number of
droplets which can be supported in a given domain and for given values of ε and μ in (1.1).
In view of the rescaling arguments from the end of section 3.1, we restrict our attention to the
specific domain Ω = (0, 1)2 and consider only ε and μ as variable. Domains Ω of size different
from one can then be treated via rescaling. Then we conjecture that the following holds:

(C) If the total mass μ is fixed in the nucleation region and if ε > 0, then a nucleation
simulation of the stochastic Cahn–Hilliard–Cook model (1.4) on the domain Ω = (0, 1)2

(3.3) can support at most
λ

Λ(μ)
=

1

ε2Λ(μ)
droplets ,

where λ = 1/ε2 and Λ(μ) denotes the droplet capacity function from Definition 3.1.
The above formula follows directly from the scaling arguments at the end of section 3.1, by
assuming that a domain of a given size can be equipartitioned into smaller domains, each of
which is of the minimal size necessary to support exactly one droplet.

How does the formula in (3.3) relate to our earlier simulations? For the types of degenerate
noise considered in this paper, we are forcing modes on a more or less regular grid with a
nearly fixed wavelength. The forcing wavelength is then expected to determine the single-
droplet domains. For example, consider the single mode degenerate noise case. Forcing the
mode ϕj,k excites a pattern with jk/2 droplets. At μ = −0.59 and ε = 0.005 our conjecture (C)
implies that the Cahn–Hilliard–Cook model can support at most

λ

Λ(μ)
≈ 2002 · (1− |μ|)1.912156

24.08392
≈ 301.9362
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droplets. For the (j, k)-mode this leads to the restriction

jk

2
≤ 301.9362 ⇐⇒ jk ≤ 603.8724 .

Notice that for all values of (j, k) used in Figures 6 and 7, the product jk satisfies the last
inequality, and indeed we see the initial nucleation patterns in the form of the components
of the positive nodal domains. Furthermore, our additional simulations show that even if jk
is only slightly larger than 603, nucleation in the pattern determined by the mode does not
seem to be possible.

If instead of the (j, k)-mode we force the symmetric (k, k)-mode, then according to the
above formula the maximum value k for which degenerate forcing of ϕk,k can be expected
to create a sustained nucleation droplet pattern which is determined by the nodal domains
is given by kmax = 24 = �24.5738� = �√603.8724�. This is in amazing agreement with the
results of Figure 4.

We can now return to the band-limited noise simulations from the last section. We have
seen that for large radii r0 there seem to be no nucleation events in the interior domain, and
only very few nuclei at the boundary of the domain, if at all. Our above discussion seems
to indicate that this is due to the fact that in the interior of the domain, the wave number
of seed cells is too large to allow for sustained nucleation events. We summarize this in the
following observation.

Observation 3.2. For band-limited noise, there is a radius R0 = 2/(
√
λ0ε) such that the

pattern size of the noisy perturbation is too small to ignite spontaneous nucleation for lower
band radii r0 > R0, even if the noise strength is sufficiently large and the solution is of
order O(1).

3.4. Scaling of droplet size. In the last section we have shown that the droplet capacity
function Λ introduced in Definition 3.1 can be used to determine the maximal number of
droplets which can be supported by the Cahn–Hilliard–Cook equation at the beginning of the
nucleation process. In fact, we have seen in (3.2) that for mass values μ in the nucleation
region the proportionality Λ(μ) ∼ (1− μ)−2 seems to be satisfied. We now briefly relate this
scaling to the actual observed size of the individual droplets.

We have already seen at the beginning of section 3.3 that it can be useful to think of
the droplet equilibrium solutions as being almost equal to a step function with values ±1.
In reality, of course, this is not the case. In fact, as the examples in Figure 12 show, the
equilibria at the saddle-node bifurcation points of Figure 11 are usually far from the idealized
piecewise constant situation; their function values do not even have to be close to ±1. Never-
theless, the droplets contained in the saddle-node equilibria are of circular form, and one can
therefore easily determine their radius from the numerical path-following data. This can be
accomplished in two ways. On the one hand, one can threshold the equilibrium solutions at
the level u = 0 and determine a first radius estimate r1 by measuring the maximal droplet
size in the x-direction directly. On the other hand, one can find the area A of each of the
possibly fractional droplets. Then one obtains a second estimate r2 for the radius via the
formula

√
qA/π, where q ∈ {1/4, 1/2, 1} denotes the appropriate droplet fraction contained

in the equilibrium.
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Figure 12. Geometry of the equilibrium solutions of (3.1) at the saddle-node bifurcation points. From top
left to bottom right, the images show solutions on the branches labeled 11, 13, 21, and 31, respectively, in the
nucleation region of Figure 11. The top left image is for λ = 300, and the remaining images are for λ = 550.
Since the mass values μ are all positive, the images show −u rather than u.

For the case of the quarter droplet branch labeled 10 in Figure 9 the resulting radii r1
and r2 are shown in the left image of Figure 13. We would like to point out that similar
computations for the droplets in the remaining saddle-node equilibria lead to identical curves,
after the domains have been rescaled by the total equilibrium droplet count c. In this sense,
the droplet radius as determined by the droplet capacity function Λ(μ) is determined uniquely
by the mass μ.

As it turns out, we can say even more. For this we return to the sharp interface limit,
despite the fact that the saddle-node equilibria generally do not exhibit sharp interfaces.
Assume that the function u : (0, 1) → {±1} has a negative quarter droplet in one corner of
the domain and is equal to +1 everywhere else. If we also assume that the total mass of the
function u equals μ > 0, then the radius rμ of the quarter droplet has to satisfy the identity

μ = −πr
2
μ

4
+

(
1− πr2μ

4

)
= 1− πr2μ

2
; i.e., we have rμ =

√
2(1− μ)

π
.

This sharp interface limit radius rμ is shown in the left image of Figure 13 as a solid red
line, which seems to indicate that as μ increases toward 1 this radius decreases proportionally
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Figure 13. Size of the droplets in the saddle-node equilibrium solutions leading to Figure 11. The left image
shows the radius estimates r1 and r2 described in the text for the quarter droplet solution labeled 10 in green
and dashed blue, respectively. In addition, we also show the radius rμ determined from the sharp interface limit
in red, and the scaled curve 0.6323 rμ in dashed red. The right image depicts the ratios r2/r1 and rμ/r1 as a
function of μ. While the above images are only for the quarter droplet, they remain valid for the remaining
equilibria in Figure 9 after suitable rescaling by the total equilibrium droplet count c.

to both of our numerical estimates r1 and r2. See also the right image of the figure, which
plots the ratios r2/r1 and rμ/r1 as a function of μ. Thus, it seems that in the limit μ → 1
the droplet radius is in fact predicted by the sharp interface limit, despite the equilibrium
geometries observed in Figure 12.

Observation 3.3. The saddle-node bifurcation points give a good prediction for the total
number of droplets possible at a given ε-value for a mass in the nucleation region. Although
the equilibrium solutions at the saddle-node bifurcation points do not have sharp interfaces,
when the total mass of one component significantly dominates the total mass of the other
component, the size of the droplets is proportional to the size expected by assuming sharp
interface limits, meaning that there is no transition layer between the two components. We
have given a precise formula for the droplet size in this sharp interface limit.

4. Analytic estimates for the nucleation time frame. In this section, we present analytic
bounds which address the nucleation time frame in the degenerate noise setting. The goal of
this section is to give a rigorous proof of our numerical observations from the previous two
sections in the asymptotic regime for ε → 0. Our main result is sketched in the following
observation, with the precise rigorous estimates filled in as we develop the theoretical results
throughout this section. We focus first on the linearized equation and give a brief sketch of
how the linear arguments can be carried over to the nonlinear setting of (1.4) at the end of
this section.

Observation 4.1 (solution size for the linearized problem). Consider a solution to the linear-
ized stochastic Cahn–Hilliard equation, which is given in detail below in (4.2). Then the fol-
lowing holds for two constants S0 and Sδ relating the linear damping and the noise strength
such that S0 < Sδ. These constants are defined later in Assumption 4.4.

• For noise strengths σ much smaller than 1/Sδ, the solutions of the linearized Cahn–
Hilliard–Cook model in the nucleation regime stay small over very large time intervals,
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which are almost of exponential size.
• For noise strengths σ much larger than 1/S0, and after relatively short times of or-

der max{1/|ηk | : k ∈ I}, the solutions of the linearized Cahn–Hilliard–Cook model
become large with high probability. The numbers ηk in this formulation denote the
dominant eigenvalues of the linearized Cahn–Hilliard equation, where the eigenvalues
were defined in (1.3) and the index set for the dominant eigenvalues is given in (4.1).

That is, for sufficiently small noise strengths, we are very unlikely to ever see nucleation,
whereas for sufficiently large noise strengths, we are very likely to see nucleation.

In order to fix ideas for considering how the theoretical methods in this section apply to
the numerical results in the previous sections, we state exactly what our theory shows for the
following example, leaving the details of the proof for the later parts of the section.

Example 4.2. Consider the case of band-limited noise in two space dimensions as in sec-
tion 2 on the domain Ω = (0, 1)2. In this case, for two radii 0 < r0 < r1 = r0 + d, where we
consider d fixed and vary r0, we used the index set

(4.1) I =
{
k ∈ N

2 : r0 < |k| < r1
}
.

Moreover, based on the eigenvalue formula given in (1.3), and due to the fact that f ′(μ) < 0
in the nucleation region, one obtains for all k ∈ I the inequalities

−π2r21
(
ε2π2r21 − f ′(μ)

)
< ηk < −π2r20

(
ε2π2r20 − f ′(μ)

)
.

Thus, the size of the eigenvalues ηk satisfies

ηk ∼
⎧⎨⎩

−r20 for 1 < r0 < 1/ε ,

−ε2r40 for r0 > 1/ε .

Moreover, the number of elements in the index set I is proportional to the area of the quarter
ring; i.e., we have |I| = π(r21 − r20)/4 = πd(2r0 + d)/4 ∼ r0 for r0 > 1, since we keep the ring
width d fixed. We will see later that this implies for all small δ > 0 the following bound for
the constant Sδ from the previous observation:

Sδ ∼
⎧⎨⎩

r−1+2δ
0 for 1 < r0 < 1/ε ,

ε−2+2δ r−3+4δ
0 for r0 > 1/ε .

If we fix the noise strength as σ = ετ and let r0 = ε−� with τ ≥ 0 and � ≥ 0, then we can
observe the following two scenarios for all sufficiently small 0 < ε� 1.

• If 0 ≤ � < 1, then r0 = ε−� � ε−1; i.e., we have σ2Sδ ∼ ε2τ+�(1−2δ). This implies that
with high probability there is no spontaneous nucleation on any time scale which is
a positive power in 1/ε, as long as we have 2τ + �(1 − 2δ) > 0. By the below-given
Assumption 4.4 we have δ < 1/2, and therefore this is satisfied if either τ or � is
strictly positive.

• Alternatively, if � > 1, then r0 = ε−� � ε−1; i.e., we have σ2Sδ ∼ ε2τ+3�−2+δ(2−4�).
Thus, with high probability there is no spontaneous nucleation on any time scale which
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is a positive power in 1/ε, as long as we have 2τ + �(3− 4δ)− 2+2δ > 0, and since by
Assumption 4.4 (to be stated formally below) we have δ < 1/2, this condition holds
as long as 2τ + � > 2. In fact, if we assume further that δ < 1/4, then this condition
holds for every � > 1.

In other words, as long as the radius r0 grows unboundedly as ε → 0, we do not expect to
see nucleation on time intervals whose length is polynomial in 1/ε. If, on the other hand, the
radius is of order one, then we need the noise intensity to decay toward zero with ε in order
for the same statement to hold.

Since we are mostly interested in the initial nucleation regime, rather than considering the
nonlinear equation (1.4), we restrict our attention to the linearized equation at the homoge-
neous state μ, which is given by

(4.2)

vt = −Δ(ε2Δv + f ′(μ)v) + σ · ξ in Ω ,

∂v

∂ν
=
∂Δv

∂ν
= 0 on ∂Ω

and subject to the mass constraint
∫
Ω v dx = 0. More precisely, we derive estimates for the

stochastic convolution, which is the solution of (4.2) originating at the zero initial condition.
This can be carried over to the nonlinear case, and we comment on that later. In addition,
we focus on the asymptotic regime of small interaction length 0 < ε� 1.

The remainder of the section is organized as follows. In section 4.1 we derive an upper
bound on the stochastic convolution, which can be used to rule out the formation of nucleation
droplets over large time intervals, at least in the asymptotic regime. It provides a lower bound
on the nucleation time scale, which is extremely large. After that, section 4.2 is devoted
to establishing a lower bound for the maximum norm of the stochastic convolution, which
indicates that nucleation events are likely to be triggered. We point out here that both bounds
will lead to time frames which have similar orders of magnitude. At the end of the section,
we briefly indicate how these results can be carried over to the nonlinear problem (1.4).

4.1. Upper bounds on the stochastic convolution. We begin by deriving upper bounds
on the maximum norm of the stochastic convolution. Rather than dealing directly with the
solution of (4.2), we consider a slightly more general form of the stochastic convolution. In
our setting of section 2, the noise process ξ is the generalized derivative of the Q-Wiener
process W defined in (2.1), and the latter involves a sum over N2. For the convenience of the
technical estimates in the present section, we would like to avoid the use of double indices,
and therefore a general stochastic convolution written in the following form where (k, l) ∈ N

2

is replaced by a k ∈ N
2.

Definition 4.3. Let Ω ⊂ R
d denote a bounded domain with Lipschitz boundary. Then we

consider a general stochastic convolution of the form

(4.3) WA(t, x) =
∑
k∈I

αk ·
∫ t

0
eηk(t−s) dβk(s) · ψk(x) for t ≥ 0 , x ∈ Ω ,

where I ⊂ N
d denotes an arbitrary index set. The functions ψk : Ω → R for k ∈ I are pairwise

orthogonal in the Hilbert space L2(Ω). Moreover, the real constants ηk ≤ c < 0 are strictly
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negative for all k ∈ I and uniformly bounded away from 0, and {βk}k∈I denotes a family of
independent real-valued standard Brownian motions over a common probability space (F,F ,P).
Finally, the positive coefficients αk > 0 for k ∈ I measure the noise strength of the individual
Fourier modes in the series representation (4.3).

While we delay a full comparison to our previous notation, for now recall that in section 2
we studied the two-dimensional case d = 2 with domain Ω = (0, 1)2, and the eigenvalues ηk
are given by (1.3), where μ in the nucleation region implies that ηk < 0. In fact, in the two-
dimensional case the κk are the real numbers π2(j2 + �2) for j, � ∈ N0, and the corresponding
eigenfunctions ψk are precisely the forcing modes ϕj,� defined in (2.2). Finally, we assumed
that the noise intensities satisfy αk = 1 on the index set I and are zero otherwise. For our
simulations in section 2.1, the index set I describes a quarter ring in N

2
0, while in section 2.2

we used an index set with |I| = 1.
We now turn to bounding the stochastic convolution WA. As mentioned before, our upper

bound is uniform in the space variable, i.e., with respect to the (spatial) maximum norm. Our
approach is based on classical fractional Sobolev embedding results, and it will be used to
obtain polynomial moments ofWA. This is necessary since due to the degeneracy of the driving
noise we cannot directly employ the theory of large deviations. This approach has previously
been used, for example, by Da Prato and Debussche [9], Blömker and Hairer [3], and Da Prato
and Zabczyck [10]. We believe that by extending the method of Wanner [36] or Desi, Sander,
and Wanner [12], both of which are based on results due to Kahane [22], it might be possible
to improve our estimate by deriving exponential moments of the stochastic convolution. This
in turn would lead to exponentially small probability estimates and therefore exponentially
long time scales—albeit at the expense of a significantly more involved proof. However, the
approach presented here is simple and direct and yields a result which is sufficient for our
purposes. In the following, we need an additional assumption which constrains the growth of
the eigenvalues ηk and the coefficients αk.

Assumption 4.4. In the following, we assume that the function values ψk(x) and the real
numbers |k|−1Lip(ψk) are uniformly bounded for x ∈ Ω and k ∈ I, where Lip(ψ) denotes
the global Lipschitz constant of a function ψ. In addition, we assume that there is a small
constant δ ∈ (0, 1/2) such that the estimate

(4.4) Sδ :=
∑
k∈I

α2
k ·

|ηk|δ + |k|δ + 1

|ηk| < ∞

holds.
Under our assumptions, if (4.4) holds for one δ > 0, then it holds for all smaller δ, too.

In the setting of section 2, where we consider only finite cosine sums, Assumption 4.4 is
automatically satisfied for all δ > 0, and moreover we can calculate Sδ explicitly.

Suppose now that we are in the situation of Definition 4.3 and that Assumption 4.4 is satis-
fied. In order to bound the stochastic convolutionWA uniformly with respect to both space and
time, we use the Sobolev embedding theorem for the fractional Sobolev spaceWα,p([0, T ]×Ω),
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which is defined for α ∈ (0, 1) by the norm

‖w‖Wα,p([0,T ]×Ω) =

(∫ T

0

∫
Ω
|w(t, x)|p dx dt(4.5)

+

∫ T

0

∫ T

0

∫
Ω

∫
Ω

|w(t, x)− w(s, y)|p
(|x− y|+ |t− s|)αp+d+1

dx dy dt ds

)1/p

for all w ∈Wα,p([0, T ]×Ω), where d is the dimension of Ω. If we assume that αp > d+1 holds,
then this fractional Sobolev space can be embedded into the space C0([0, T ] × Ω) according
to [30, Theorem 1, section 2.2.4]; see also [30, section 2.4.4]. Notice, however, that the resulting
embedding constant will depend on the underlying domain size, and therefore on T .

To circumvent this T -dependence, we apply the Sobolev embedding theorem not to re-
alizations of the stochastic convolution WA(·, ·), but rather to realizations of the rescaled
process WA(T ·, ·), where now the time argument is taken from the unit interval [0, 1]. That
is, there exists a T -independent constant C > 0 such that

sup
t∈[0,T ]

sup
x∈Ω

|WA(t, x)|p = sup
t∈[0,1]

sup
x∈Ω

|WA(T t, x)|p ≤ C‖WA(T ·, ·)‖pWα,p([0,1]×Ω)

=
C

T 2

∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|+ |t− s|/T )αp+d+1

dx dy dt ds

+
C

T

∫ T

0

∫
Ω
|WA(t, x)|p dx dt .

If T ≥ 1, then we further have∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|+ |t− s|/T )αp+d+1

dx dy dt ds

= Tαp+d+1

∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|T + |t− s|)αp+d+1

dx dy dt ds

≤ Tαp+d+1

∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|+ |t− s|)αp+d+1

dx dy dt ds ,

while for T ≤ 1 one obtains∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|+ |t− s|/T )αp+d+1

dx dy dt ds

≤
∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|+ |t− s|)αp+d+1

dx dy dt ds .
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Combined, these inequalities furnish the estimate

sup
t∈[0,T ]

sup
x∈Ω

|WA(t, x)|p ≤ C

T

∫ T

0

∫
Ω
|WA(t, x)|p dx dt(4.6)

+
C
(
Tαp+d+1 + 1

)
T 2

∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|+ |t− s|)αp+d+1

dx dy dt ds

for every realization of the stochastic convolution WA, as long as the norm on the right-hand
side is finite, where the constant C does not depend on T . Based on this, we introduce the
convention that from now on, the constant C denotes a generic positive constant, whose value
can change from line to line, and which might depend on Ω, on the uniform bounds for the ψk,
on α, or on p, but which does not depend on the time T . Note that the constants α and p
will be fixed later.

We continue our estimates by first providing a bound on the expectation of the right-hand
side of (4.6). To this end, throughout our discussion we use the choice

(4.7) α :=
2(d+ 1)

p
,

which implies that the Sobolev embedding always holds, and we think of p as being a very
large number. In order to bound the expected value of the double integral in the first line
of (4.6), we use the independence of the Fourier components, the fact that the expectation of
stochastic integrals vanishes, and Itô’s isometry to derive the identity

E |WA(t, x)|2 =
∑
k∈I

α2
k · E

(∫ t

0
eηk(t−s)dβk(s)

)2

· |ψk(x)|2

=
∑
k∈I

α2
k ·
∫ t

0
e2ηk(t−s)ds · |ψk(x)|2 ≤ C

∑
k∈I

α2
k

|ηk| ≤ CSδ .

For every fixed t ≥ 0 and all x ∈ Ω the real-valued random variable WA(t, x) is a centered
Gaussian variable: This is clearly satisfied if the index set I is finite, since in this caseWA(t, x)
is a sum of independent Gaussian random variables. In the case of infinite index set I, one
can derive an estimate similar to the one which establishes the convergence of the sum (4.3)
in mean square with respect to the expectation E.

Gaussianity then implies that the pth moment is always bounded by the second, and thus
we obtain the estimate

(4.8)

∫ T

0

∫
Ω
E |WA(t, x)|p dx dt ≤

∫ T

0

∫
Ω

(
E |WA(t, x)|2

)p/2
dx dt ≤ CTS

p/2
δ .

We now turn our attention to the expectation of the quadruple integral in the second line of
estimate (4.6). Also, in this case, we begin by applying independence and the Itô isometry,
which implies

E |WA(t, x) −WA(t, y)|2 =
∑
k∈I

α2
k

2|ηk|
(
1− e2tηk

) |ψk(x)− ψk(y)|2 .
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Notice that again, for fixed t ≥ 0 and x, y ∈ Ω, the difference WA(t, x) −WA(t, y) is a well-
defined real-valued Gaussian random variable. According to Assumption 4.4, the functions ψk

are uniformly bounded, and for every small value of δ ∈ (0, 2) there exists a constant C such
that

|ψk(x)− ψk(y)|2 ≤ C |ψk(x)− ψk(y)|δ ≤ C|k|δ|x− y|δ ,
where we use the bound on the Lipschitz-constant, as well as the uniform boundedness of
the ψk. Combining both of the previous estimates now yields

(4.9) E |WA(t, x)−WA(t, y)|2 ≤ C
∑
k∈I

α2
k

|ηk| |k|
δ |x− y|δ ≤ CSδ|x− y|δ .

So far we have only considered differences of the form |WA(t, x)−WA(t, y)|, i.e., differences
where the time arguments coincide and the spatial arguments differ. Now we consider the
opposite case, i.e., differences of the form |WA(t, x) −WA(s, x)|. Without loss of generality
we assume that t > s. Then the independence of increments of a Brownian motion and Itô’s
isometry imply the identity

E

(∫ t

0
eηk(t−τ) dβk(τ)−

∫ s

0
eηk(s−τ) dβk(τ)

)2

= E

(∫ s

0

(
eηk(t−τ) − eηk(s−τ)

)
dβk(τ)

)2

+ E

(∫ t

s
eηk(t−τ) dβk(τ)

)2

=

∫ s

0

(
eηkt − eηks

)2
e−2ηkτ dτ +

∫ t

s
e2ηk(t−τ) dτ

=
1

2|ηk|
(
eηkt − eηks

)2 (
e−2ηks − 1

)
+

1

2|ηk|
(
1− e2ηk(t−s)

)
.

Now we proceed by using the fact that exponential terms are bounded by one due to ηk < 0,
together with the estimate that for x ≥ 0 one has |1 − e−x| ≤ |x|, which follows easily from
the mean value theorem. For every value of δ ∈ (0, 1), one obtains

E

(∫ t

0
eηk(t−τ) dβk(τ)−

∫ s

0
eηk(s−τ) dβk(τ)

)2

≤ 1

2|ηk|
(
eηk(t−s) − 1

)2
+

1

2|ηk|
(
1− e2ηk(t−s)

)
≤ 1

2|ηk|
∣∣∣eηk(t−s) − 1

∣∣∣δ + 1

2|ηk|
∣∣∣1− e2ηk(t−s)

∣∣∣δ
≤ C

|ηk| |ηk|
δ |t− s|δ ,

where the constant C depends on δ, which in turn will be fixed later. Together with the
definition of the stochastic convolution in (4.3), the fact that the |ηk| are uniformly bounded
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away from zero, and the uniform boundedness of the functions ψk, this yields

E |WA(t, x)−WA(s, x)|2

≤ C
∑
k∈I

α2
k · E

(∫ t

0
eηk(t−τ) dβk(τ)−

∫ s

0
eηk(s−τ) dβk(τ)

)2

|ψk(x)|2

≤ C
∑
k∈I

α2
k

|ηk| |ηk|
δ |t− s|δ ≤ CSδ|t− s|δ .(4.10)

Combining (4.9) and (4.10) finally implies the estimate

(4.11) E |WA(t, x)−WA(s, y)|2 ≤ CSδ (|t− s|+ |x− y|)δ ,

where Sδ was introduced in Assumption 4.4. Before the next estimate, we fix a particular
choice of δ as follows:

(4.12) δ := 3α =
6(d + 1)

p
.

Due to (4.7), this choice of δ implies

(4.13) (δ/2 − α)p − d− 1 = 0.

Note that as long as p is chosen to be sufficiently large, the choice of δ in (4.12) can be made
sufficiently small so that Assumption 4.4 is satisfied.

With our choice of δ made, we are now in a position to obtain an estimate for the ex-
pected value of the quadruple integral in the second line of (4.6). Using Fubini’s theorem, the
Gaussianity of the difference WA(t, x)−WA(s, y), and (4.13), one obtains

E

∫ T

0

∫ T

0

∫
Ω

∫
Ω

|WA(t, x)−WA(s, y)|p
(|x− y|+ |t− s|)αp+d+1

dx dy dt ds

≤ CS
p/2
δ

∫ T

0

∫ T

0

∫
Ω

∫
Ω
(|x− y|+ |t− s|)(δ/2−α)p−d−1 dx dy dt ds

≤ CS
p/2
δ T 2 .(4.14)

We now return to our initial Sobolev embedding estimate (4.6). In preparation, we note
that according to (4.7) we have αp + d + 1 = 3(d + 1). Taking expectations on both sides
and applying the estimates in (4.8) and (4.14) finally implies the existence of a T -independent
constant C > 0 such that

E sup
t∈[0,T ]

sup
x∈Ω

|WA(t, x)|p ≤ CS
p/2
δ

(
Tαp+d+1 + 1

)
= CS

p/2
δ

(
T 3(d+1) + 1

)
for all T ≥ 0 .
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Now let 1 < q ≤ p be arbitrary. Then Hölder’s inequality applied to random variables
over (F,F ,P) implies for all T ≥ 1 the estimates

E sup
t∈[0,T ]

sup
x∈Ω

|WA(t, x)|q ≤
(
E sup

t∈[0,T ]
sup
x∈Ω

|WA(t, x)|p
)q/p

≤ Cq/pS
q/2
δ T 3(d+1)q/p ,

and by choosing p sufficiently large, this finally furnishes the following theorem, where we
replaced q again by p.

Theorem 4.5. Consider the stochastic convolution WA introduced in Definition 4.3, and
suppose that Assumption 4.4 holds. Then for arbitrary constants γ > 0 and all p > 1 there
exists a constant C > 0 such that

E sup
t∈[0,T ]

sup
x∈Ω

|WA(t, x)|p ≤ CS
p/2
δ T γ for all T ≥ 1 ,

where the constant Sδ was defined in (4.4).
With the above estimate, Chebyshev’s inequality finally implies that for all large p > 1

and all small γ > 0 there exists a constant C > 0 which depends on p and γ such that for all
threshold values θ > 0 and constants σ > 0, we have

P

(
sup

t∈[0,T ]
σ ‖WA(t, ·)‖L∞(Ω) ≥ θ

)
≤ C T γ

(
σ2Sδ

)p/2
θ−p for all T ≥ 1 ,

where the constant σ should be interpreted as the noise intensity of our stochastic process.
Thus, if the value of the product σ2Sδ � 1 is small, then on large time intervals [0, T ] the
probability that the stochastic convolution is small turns out to be close to one. In other
words, nucleation cannot occur on such time intervals unless the strength of the noise is very
large. In other words, if Υ � 1 is a fixed probability tolerance, then we have for all large
p > 1 and small γ > 0 a with constant C > 0 depending on p and γ

P

(
sup

t∈[0,T ]
σ ‖WA(t, ·)‖L∞(Ω) < θ

)
≥ 1−Υ as long as 1 ≤ T ≤ C Υ

1/γ

(
θ2

σ2Sδ

)p/2γ

.

Clearly the expression on the right varies as a positive power of the inverse noise strength 1/σ;
i.e., nucleation cannot occur on time intervals whose length is of this order.

Note that the asymptotic regime in Example 4.2 corresponds to our numerical simulations
if we choose τ = � = 0, which is exactly the regime in which we cannot exclude nucleation
on large time frames. Finally, we also see that nucleation is more unlikely for larger values
of r0, as in this case Sδ becomes very small. But in our numerical simulations, we did not
study a very large range of r0, and thus this effect did not show up. Moreover, for excessively
large values of r0 the carrying capacity of the domain was too small to sustain nucleation, and
even quite large values of the stochastic convolution WA would not trigger the spontaneous
formation of nucleii.

4.2. Lower bounds on the maximum norm. For the lower bound on the stochastic con-
volution, we give a straightforward argument which already solves the problem in our setting;
see also Example 4.2. Note, however, that one should be able to obtain much finer estimates
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by using more sophisticated methods for Gaussian processes. In our setting, we need the
following assumption.

Assumption 4.6. Consider the stochastic convolution WA introduced in Definition 4.3
and (4.3). We assume that there exists a point x∗ ∈ Ω such that ψk(x∗) = 1 for all k ∈ I.

Note that in the case of the domain Ω = (0, L)2 and homogeneous Neumann boundary
conditions, this is satisfied with x∗ = 0.

Now define Zk(t) =
∫ t
0 e

ηk(t−s) dβk(s) and αk = 1 for all k ∈ I. Then Assumption 4.6
immediately implies

WA(t, x∗) =
∑
k∈I

Zk(t) for all t ≥ 0 .

Due to the definition of the maximum and elementary probability theory, one then obtains

P

(
sup

t∈[0,T ]
‖σWA(t, ·)‖L∞(Ω) ≤ θ

)
≤ P

(
|σWA(T, x∗)| ≤ θ

)
.

Since WA(T, x∗) is in fact a centered real-valued Gaussian random variable with variance

Σ2
T =

∑
k∈I

EZk(T )
2 =

∑
k∈I

1− e2Tηk

2 |ηk| ,

we can bound the Gaussian density by its maximum value to further obtain

P

(
sup

t∈[0,T ]
‖σWA(t, ·)‖L∞(Ω) ≤ θ

)
≤ 1√

2π · σΣT

∫ θ

−θ
e−s2/(2σ2Σ2

T ) ds ≤ 2θ√
2π · σΣT

.

Notice that we have ΣT ≈ S0 for T � max{1/|ηk | : k ∈ I}. This implies that in the situation
of Example 4.2 solutions become large over the time interval [0, T ] with high probability, as
long as the noise strength σ is much larger than 1/S0. For this to hold, the time frame is given
by the relatively small time value T ∼ r−2

0 or T ∼ r−4
0 ε−2, depending on whether we have

1 < r0 < 1/ε or r0 > 1/ε, respectively. Note that in these two cases we have ε2 < T < 1 or
T < ε2, respectively. Moreover, the necessary noise level is not considerably bigger than the
threshold 1/Sδ below which no nucleation can be observed on very long time-scales. These
observations were summarized in the beginning of the section. We state these findings again,
this time with our rigorous bounds developed in the section.

Observation 4.7 (solution size for the linearized problem). Consider the stochastic convolu-
tion WA, which solves the linearized Cahn–Hilliard–Cook problem (4.2). Then the following
holds, where Sδ was introduced in Assumption 4.4.

• For noise strengths σ much smaller than 1/Sδ the solutions of the linearized Cahn–
Hilliard–Cook model (4.2) in the nucleation regime stay small over very large time
intervals, which are almost of exponential size.

• For noise strengths σ much larger than 1/S0, and after relatively short times of or-
der max{1/|ηk | : k ∈ I}, the solutions of the linearized Cahn–Hilliard–Cook model
become large with high probability.

We would like to point out that while S0 is smaller than Sδ, one does have Sδ → S0 as δ → 0.
Remark 4.8 (large values of WA do not guarantee nucleation). The results of this section

show that the solution of the linearized problem is likely to be large after relatively small
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times. Note, however, that as we have already seen, this does not guarantee nucleation. See,
for example, the large noisy fluctuations in the last two pictures of Figure 2. In these cases
the stochastic convolution WA is large, yet nuclei are not really observed. If we would increase
the radius r0 in that figure even further, then we would not see any nuclei, but only the (very
large) background noise.

We close this analytical section with a brief remark concerning rigorous bounds for the
nonlinear problem (1.4). Based on the linear results above, one can derive nonlinear bounds in
a straightforward, albeit very technical, manner. Such results involve using the mild solution
of the nonlinear problem which is defined via the variation of constants formula, as well as
bounds of the form ‖etAΔw‖∞ ≤ Ct−1/2‖w‖∞ for the linearized Cahn–Hilliard operator A.
Estimates of this type can be obtained using the Green’s functions–based approach discussed
in [7, 29]. However, since in our setting we are only interested in small amplitude solutions,
the cubic term can be rigorously estimated and shown to be much smaller.

5. Conclusions. In this paper, we studied a two-dimensional stochastic Cahn–Hilliard–
Cook equation in the nucleation regime in the case of degenerate noise. We used direct
simulations to show that if the noise is band-limited in its spatial frequency, a high frequency
noise results in a complete loss of pattern formation at the forced length scale, instead leading
to the delayed formation of nuclei with larger sizes. We then used numerical continuation
methods to show that there is a minimum domain size required to sustain a droplet. Too
high a spatial frequency forces a small local domain size, resulting in the above loss of the
specifically forced nucleation pattern. Finally, we used rigorous probabilistic methods on the
linearized equation to give the expected time of nucleation with respect to the amplitude and
spatial frequency of the degenerate noise.

To the best of our knowledge, this is the first numerical study of degenerate noise for
nucleation for the Cahn–Hilliard equation. We are able to understand the droplet structure
seen (and not seen) based on numerical continuation. Our numerics have uncovered many
interesting questions for future research. For example, we would also like to develop a better
understanding of our observed scaling laws, as well as to understand how multiple modes in-
teract. Furthermore, preliminary numerical simulations for periodic boundary conditions gave
a completely different set of behaviors; we would like to understand why, though one barrier
to fully repeating the numerical methods shown here is that due to symmetry, continuation
methods for periodic boundary conditions are trickier than for Neumann boundary conditions.
In the long term, we hope to consider our results in the context of importance sampling to
see if they allow us to draw conclusions in the context of space-time white noise. Many of the
results in this paper are numerical in nature, and many of the statements may be intractable
in terms of traditional handwritten proofs. We propose instead verifying numerical results
through the use of rigorous computational techniques.
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[15] L. Goudenège and L. Manca, Asymptotic properties of stochastic Cahn-Hilliard equation with singular
nonlinearity and degenerate noise, Stochastic Process. Appl., 125 (2015), pp. 3657–4020.

[16] M. Grinfeld and A. Novick-Cohen, The viscous Cahn-Hilliard equation: Morse decomposition and
structure of the global attractor, Trans. Amer. Math. Soc., 351 (1999), pp. 2375–2406.

[17] M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate sto-
chastic forcing, Ann. of Math. (2), 164 (2006), pp. 993–1032.

[18] M. Hairer and J. C. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-
Stokes equations, Ann. Probab., 36 (2008), pp. 2050–2091.

[19] T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-field models,
Discrete Contin. Dyn. Syst., 25 (2009), pp. 399–429.

[20] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys., 49
(1977), pp. 435–479.

[21] I. Johnson, E. Sander, and T. Wanner, Branch interactions and long-term dynamics for the diblock
copolymer model in one dimension, Discrete Contin. Dyn. Syst., 33 (2013), pp. 3671–3705.

[22] J.-P. Kahane, Some Random Series of Functions, 2nd ed., Cambridge University Press, Cambridge,
UK, 1985.

[23] J. S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys., 65 (1971), pp. 53–86.
[24] S. Maier-Paape, U. Miller, K. Mischaikow, and T. Wanner, Rigorous numerics for the Cahn-

Hilliard equation on the unit square, Rev. Mat. Complut., 21 (2008), pp. 351–426.
[25] S. Maier-Paape, K. Mischaikow, and T. Wanner, Structure of the attractor of the Cahn-Hilliard

equation on a square, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), pp. 1221–1263.
[26] S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher

dimensions. Part I: Probability and wavelength estimate, Comm. Math. Phys., 195 (1998), pp. 435–
464.

[27] S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher
dimensions: Nonlinear dynamics, Arch. Ration. Mech. Anal., 151 (2000), pp. 187–219.

[28] K. Mischaikow, Global asymptotic dynamics of gradient-like bistable equations, SIAM J. Math. Anal.,
26 (1995), pp. 1199–1224.
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