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Abstract – The Birkhoff Ergodic Theorem asserts under mild conditions that Birkhoff averages
(i.e. time averages computed along a trajectory) converge to the space average. For sufficiently
smooth systems, our small modification of numerical Birkhoff averages significantly speeds the con-
vergence rate for quasiperiodic trajectories —by a factor of 1025 for 30-digit precision arithmetic—
making it a useful computational tool for autonomous dynamical systems. Many dynamical sys-
tems and especially Hamiltonian systems are a complex mix of chaotic and quasiperiodic behaviors,
and chaotic trajectories near quasiperiodic points can have long near-quasiperiodic transients. Our
method can help determine which initial points are in a quasiperiodic set and which are chaotic.
We use our weighted Birkhoff average to study quasiperiodic systems, to distinguishing between
chaos and quasiperiodicity, and for computing rotation numbers for self-intersecting curves in the
plane. Furthermore we introduce the Embedding Continuation Method which is a significantly
simpler, general method for computing rotation numbers.

Copyright c© EPLA, 2016

Introduction. – Periodicity, quasiperiodicity, and
chaos are the only three types of commonly observed dy-
namical behaviors in both deterministic models and ex-
periments [1]. A quasiperiodic orbit of a map T lies on a
closed curve (or torus in higher dimensions) X, such that
by a smooth change of coordinates, the dynamics of T
becomes pure rotation on the circle (respectively, torus)
by a fixed irrational rotation number(s) ρ; that is, after
the change in coordinates, the map on each coordinate θi

becomes θi �→ θi + ρi mod 1.
Our improved method for computing Birkhoff averages

for quasiperiodic trajectories enables the computation of
rotation numbers, which are key parameters of these or-
bits. It also allows computation of the torus on which
an orbit lies and of the change of coordinates that con-
verts the dynamics to a pure rotation. Our time series
data is not appropriate for an FFT, but there is a stan-
dard way of computing such a change of coordinates using

Newton’s method to find Fourier series coefficients; see for
example [2] by Jorba.

These quasiperiodic orbits occur in both Hamiltonian
and more general systems [3–14]. Luque and Villanueva [3]
have published an effective method for computing rota-
tion numbers, see their fig. 11. On restricted three-body
problems, they get 30-digit precision for rotation num-
bers using N ≈ 2 × 106 trajectory points while we get
30-digit precision with N = 20000. In this paper, they
apply their technique to rotation numbers and not other
function integrals, but see also [15], where they used a
slower convergence method for Fourier series. More detail
about our results here can be found in [16] (numerical)
and Corollary 2.1 from [17] (theoretical). We should note
that the Birkhoff approach (and ours) assumes we have a
trajectory on the (quasiperiodic) set.

Distinguishing between quasiperiodic and chaotic be-
havior in borderline cases is a difficult and important
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current topic of research for both models and experiments
in physics [18–21] and biology [22,23], and finding good
numerical methods is a subject of active study [24]. The
coexistence of chaos and quasiperiodicity arbitrarily close
to each other in a fractal pattern makes this detection a
difficult problem. Recently proposed methods [25,26] suc-
cessfully distinguish between different invariant sets, but
the methods suffer from extremely slow convergence due to
their reliance on the use of Birkhoff averages. By combin-
ing [25,26] with our method of weighted Birkhoff averages,
we are able to distinguish between chaos and quasiperiod-
icity with excellent accuracy, even in cases in which other
methods of chaos detection such as the method of Lya-
punov exponents, fail to give decisive answers.

The Birkhoff average. – For a map T , let xn = Tnx
be either a chaotic or a quasiperiodic trajectory. The
Birkhoff average of a function f along the trajectory is

BN (f)(x) :=

N−1
∑

n=0

(1/N)f(Tn(x)). (1)

Under mild hypotheses the Birkhoff Ergodic Theorem con-
cludes that BN (f)(x) →

∫

fdµ as N → ∞ where µ is an
invariant probability measure for the trajectory’s closure.
This relationship between the time and space averages is
incredibly powerful, allowing computation of

∫

fdµ when-
ever a time series is the only information available. How-
ever, the convergence of the Birkhoff average is slow, with
an error of at least the order N−1 for a length N trajectory
in the quasiperiodic case.

Weighted Birkhoff (WBN ) average. Instead of using
Birkhoff’s uniform weighting of f(xn), our average of these
values gives very small weights to the terms f(xn) when n
is near 0 or N . Set w(t) := exp(−[t(1−t)]−1) for t ∈ (0, 1)
and = 0 elsewhere. Define the Weighted Birkhoff average
(WBN ) of f as follows:

WBN (f)(x) :=

N−1
∑

n=0

ŵn,Nf(xn), (2)

where ŵn,N = w(n/N)/ΣN−1
j=0 w(j/N). WBN (f) has the

same limit
∫

f as the Birkhoff average but on quasiperiodic
trajectories WBN (f) converges to that limit with 30-digit
precision faster than BN by a factor of about 1025. (There
is no increase in convergence rate for chaotic trajectories.)
Intuitively, the improvement arises since the weight func-
tion w vanishes at the ends, and thus gets rid of edge
effects. We have proved [17] that if (xn) is a quasiperiodic
trajectory and f and T are infinitely differentiable (i.e.
C∞), then our method has “super-convergence” to

∫

fdµ,
i.e. for each integer m there is a constant Cm for which

|WBN (f) −
∫

fdµ| ≤ CmN−m, for all N ≥ 0.

The assumptions on w are that it is infinitely differen-
tiable; that w(t) and all its derivatives are both 0 at t = 0

and t = 1; and
∫ 1

0
w(t)dt > 0.

A more general class of such C∞ weight functions for
p ≥ 1 is w[p](t) := exp(−[t(1 − t)]−p) for t ∈ (0, 1) and
= 0 elsewhere. Our examples use w = w[1] here, but
w[2] is even faster when requiring 30-digit precision. It
is no faster when requiring 15-digit precision. The above
constant Cm depends on i) w(t) and its first m derivatives;
ii) the function f(t); and iii) the rotation number(s) of
the quasiperiodic trajectory or more precisely, the small
divisors arising out of the rotation vector. We do not have
a sharp estimate on the size of the term Cm.

As a result of this speed, we are able to obtain high
precision values for

∫

fdµ with a short trajectory and rel-
atively low computational cost, largely independent of the
choice of the C∞ function f . We get high-accuracy re-
sults for rotation numbers and change of coordinates to a
pure rotation for the Standard Map and the three-body
problem. For a higher-dimensional example and further
details, see [16].

In creating WBN , we were motivated by “apodization”
in optics (especially astronomy and photography), where
diffraction that is caused by edge effects of lenses or mir-
rors can be greatly decreased. Our weighting method is
reminiscent of both Hamming windows and Hann (or Han-
ning) filters for a Fourier transform on small windows (see
for example, [27–29]. The analogue of w usually has only
a couple derivatives = 0 at the end points t = 0, 1 and so
convergence rate is only slightly better than the conver-
gence rate of the standard Birkhoff method [16].

Testing for chaos. – WBN also provides a quanti-
tative method of distinguishing quasiperiodic trajectories
from chaotic trajectories. Along a trajectory xn, we can
compare the value of WBN (f) along the first N iter-
ates with WBN (f) along the second N iterates, i.e. we
consider ∆N = WBN (f)(x) − WBN (f)(TN (x)). For a
quasiperiodic orbit, we expect |∆N | to be very small. To
measure how small |∆N | is, we can count the number of
zeros after the decimal point by defining

zerosN (f)(x) = − log10 |∆N |. (3)

If the orbit is chaotic then |∆N | ∼ N−1/2 or slower, zerosN

is small. Whereas if it is quasiperiodic, both WBNf(x)
and WBN (f(TN (x))) have super convergence to

∫

fdµ
and so ∆N has super convergence to 0, implying that
zerosN is large. For example, see fig. 1. To check the ac-
curacy of our method, we tested 12, 086 initial conditions
on the diagonal {x = y} for the Standard Map (eq. (4)).
We found that 99.8 per cent of the initial conditions for
which zerosN > 18 for N = 20000 are in fact quasiperiodic
(based on the criterion zerosN ≥ 30 for N = 108).

The (Taylor-Chirikov) Standard Map. The Standard
Map [30]

S1

(

x
y

)

=

(

x + y
y + r sin(x + y)

)

(mod 2π) (4)

is an area-preserving map on the two-dimensional torus in
which both chaos and quasiperiodicity occur for a large
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Fig. 1: (Color online) Regions of chaos and quasiperiodicity for
the Standard Map. Here r = 1.4 and zerosN is calculated with
N = 20000 and f(x, y) = sin(x + y). The value of zerosN is
indicated by color coding. The dark blue region is chaotic, and
all other colors indicate quasiperiodicity. Convergence of WBN

in the quasiperiodic region is slower (yellow to green) when the
rotation number of an orbit is close to a rational number m/n
where n is small such as 1/5 or 1/6. See Corollary 2.1 in [17]
for details of the calculation. When N is increased to 106,
almost all of the quasiperiodic points in the 500×500-point set
displayed become red.

set of parameter values. In order to distinguish the fine
structure of regions of quasiperiodic vs. chaotic behavior,
we have used the zerosN test for chaos. Figure 1 shows
the resulting distinct regions of chaos and quasiperiodicity.
A further characterization of chaos vs. quasiperiodicity
is depicted in fig. 2, where zerosN is computed for three
different functions. All points on a quasiperiodic orbit
map to the same red point in R

3. The chaotic orbits (blue)
remain spread out.

Comparison with Lyapunov exponents. Lyapunov ex-
ponents are a measure of the average stretching in each
direction: a chaotic set will have a positive Lyapunov ex-
ponent, whereas a quasiperiodic set of an area-preserving
map has no average stretching in any direction, so both
of its Lyapunov exponents are zero. The traditional nu-
merical calculation of Lyapunov exponents has a slow con-
vergence rate similar that of BN . This is compounded by
the fact that chaotic curves trapped between quasiperi-
odic rings are likely to have Lyapunov exponents quite
close to zero, mimicking the surrounding quasiperiodic-
ity. Hence a highly sensitive test is needed. The use
of zerosN is a significant improvement compared to us-
ing Lyapunov exponents. An alternative approach is to
compute Lyapunov exponents using the weighted Birkhoff
average WBN . Then one would get the convergence rates
of WBN ; see [16].

Computing rotation numbers. Assume there is a C∞

function γ : S1 → R
2 (such as the projection of a curve

Γ in higher dimensions) whose rotation number we want

Fig. 2: (Color online) A three-dimensional embedding of the
chaotic and quasiperiodic sets; (as proposed in [25,26]). For
each initial condition in a grid on the torus, we set N = 20000
and compute WBN for the three different functions indicated
on the axes. Since N = 20000 is large enough to get excel-
lent accuracy if the point is quasiperiodic, all the points on a
single orbit will yield the same (red) point in the plot. Hence
a quasiperiodic disk yields a curve. Points in the chaotic re-
gion (blue) have considerable variation so the chaotic region
results in a fuzzy shape. The gray sets are projections of
the three-dimensional set onto the three coordinate planes.
The points A (front left side) and B (back left corner) cor-
respond to the corner and center (respectively) of the torus
in fig. 1.

to know. The goal is to compute the (irrational) rotation
number ρ based only on knowledge of a trajectory γn :=
γ(nρ) where ρ is unknown to the observer.

The rotation number of γ is the rotation number of
the original curve, which is independent of the projec-
tion into R

2. Changing ρ by an integer does not change
γn, so it is only possible to determine ρ mod 1. Writing
γ̂(x) := γ(−x), we see that γn := γ(nρ) = γ̂(n(1 − ρ)).
Therefore γn has rotation number ρ and 1− ρ, depending
on which map is used to define γn, so we cannot distin-
guish ρ mod 1 from −ρ mod 1 using only the trajectory.

For P ∈ R
2 where P /∈ γ(S1), define φ(x) ∈ [0, 1]

mod 1 so that ei2πφ(x) = (γ(x) − P )/||γ(x) − P || as a
point in S1.

The winding number of γ around P is W (P ) :=
∫ 1

0
φ′(x + s)ds. Let

∆̂(x) :=

∫ x+ρ

x

φ′(s)ds,

where φ′(s) ∈ R
1 is the derivative of φ.

Write ∆̂n := ∆̂(nρ), where 1 ≤ n ≤ N . By the Ergodic
theorem

lim
N→∞

BN (∆̂n) =

∫ 1

0

∆̂n(x)dx =

∫ 1

0

∫ ρ

0

φ′(x + s)ds dx

=

∫ ρ

0

∫ 1

0

φ′(x + s)dx ds = W (P )

∫ ρ

0

ds = W (P )ρ.
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Thus the rotation number is the limit of BN (∆̂n), which
equals ρ if W (P ) = 1. Note that we cannot determine the
sign of W (P ) from γn.

We still need to find ∆̂: Write ∆(x) := (φ(x+ρ)−φ(x))
mod 1 ∈ S1. Then ∆̂(x) ∈ R is a lift of ∆(x) ∈ S1; i.e.,
they differ by an (unknown) integer m(x) := ∆̂(x)−∆(x).

Our Embedding Continuation Method. We briefly out-
line our new method for computing rotation numbers
of quasiperiodic curves, which extends to higher dimen-
sions. Let N be given; we imagine N ∼ 105 or 106.
Choose K ≥ 2 and define the delay coordinate embed-
ding Γ(x) := (γ(x), γ(x + ρ), . . . , γ(x + (K − 1)ρ)) ∈ R

2K .
We will use the Euclidean norm on R

2K . We also write
Γn := (γn, γn+1, . . . , γn+K−1). By the Whitney and Tak-
ens Embedding Theorems, for almost every smooth func-
tion γ (in the sense of prevalence), the map Γ : S1 → R

2K

is an embedding. That is, there are no self-intersections of
Γ(S1); see [31] and references therein. How Γ(S1) bends
in R

2K is hard to envision, but there will be some δ0 > 0
such that for each p ∈ Γ(S1), the set of points in Γ(S1)
that are within a distance δ0 of p is a single arc. And for
larger K, we expect the curve to be less wiggly.

Extending by continuation. We will define a function
∆̄∗ at all the points Γn so that ∆̄∗

n differs from ∆̂n by a
constant k∗. Initially we define it at just one point. Define
∆̄∗

0 := ∆0. Then ∆̂0 − ∆̄∗
0 is an integer that we will call

the afore mentioned k∗.
When ∆̄∗

n is defined at Γn, we can extend the definition
to all points Γm in a small neighborhood by continuity.
Choose the integer km for which ∆m + km is close to ∆̄∗

n

and define ∆̄∗
m to be ∆m +km. If ∆̄∗

m was already defined,
this will not change its value.

Continue extending until ∆̄∗ is defined on all of Γ(S1).
It is continuous (and smooth) because ∆̄ is. The two differ
by k∗. Notice |BN (∆̄∗

n) − BN (∆̂n)| = k∗, so BN (∆̄∗
n)

converges to ρ ± k∗. We of course use WBN .

Examples. Luque and Villanueva [32] addressed the
case of a quasiperiodic planar curve γ : S1 → C and in-
troduced what we call “the fish”. See fig. 3, left panel.

γ(x) := γ̂−1z
−1 + γ̂0 + γ̂1z + γ̂2z

2, (5)

where z = z(x) := ei2πx and γ̂−1 := 1.4 − 2i, γ̂0 :=
4.1 + 1.34i, γ̂1 := −2 + 2.412i, γ̂2 := −2.5 − 1.752i. (See
fig. 5 and eq. (31) in [32]). They chose the rotation num-
ber ρ = (

√
5 − 1)/2 so that the trajectory is γn = γ(nρ)

for n = 0, 1, · · · . The method in [32] requires a step of
“unfolding” γ, which our method bypasses. We chose
P = P1 = 7 + 4i, where |W (P1)| = 1. We applied our
embedding continuation method to define the ∆̄∗

n. Define
ρN := WBN (∆̄∗

n). Fluctuations in ρN fall below 10−30 for
N > 20000. Since we know the actual rotation number,
we can report that the error |ρ− ρN | is then below 10−30.

We call our next example “the flower”, fig. 3, right
panel. Let

γ6(x) := (3/4)z + z6, where z = z(x) := ei2πx. (6)

Fig. 3: The folded curves “the fish” in eq. (5) and “the flower”
in eq. (6). The curves wind j times around Pj .

Fig. 4: (Color online) A quasiperiodic circle for the Standard
Map with r = 1.0. Top left: the curve. Top right: the function
g(θ) = φ(θ)− θ, the periodic part of the change of coordinates
between the quasiperiodic circle and the pure rotation with
rotation ρ ≈ 0.121. Bottom left: the exponential decay of
the Fourier coefficients of g(θ), only shown for even k because
ak = 0 for all odd k . Note that |ak| = |a

−k|. Bottom right: the
super convergence of WBN for the rotation number of Standard
Map. See Corollary 2.1 from [17] for details of the calculation.
Note that the |ak| has a local maximum at k = 506. This type
of spike can occur in the presence of small divisors, but we have
verified that the spike correctly reflects the Fourier series. See
discussion.

We chose P = P1 := (0.5, 1.5) for which |W (P1)| = 1.
We use the same ρ as above. There are points Pj with
|W (Pj)| = j for j = 0 through 6, and the origin 0 has
W (0) = 6 and for our method it is essential to choose a
point P where |W (P )| = 1. We note that maxx ∆̂(x) −
minx ∆̂(x) ≈ 1.2. The Embedding Continuation Method
applied to Flower yields ρ with 30-digit precision at N =
200000.

Changing coordinates, making the map into a

pure rotation. – Given a quasiperiodic trajectory xn

40005-p4
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in phase-space M , we are able to construct a function
h : S1 → M , where S1 is the unit circle, so that h(S1) is
the quasiperiodic curve on which the xn lie. We can use
the methods described above to find a rotation number ρ
of a planar quasiperiodic curve, such as the trajectory of
the Standard Map whose image is the black curve in the
top-left panel of fig. 4.

We represent points in polar coordinates about the cen-
ter of the domain so h(θ) = (φ(θ), r(θ)), and we can write
φ(θ) = θ+g(θ), where g(θ) is a bounded periodic function.

Once we know the rotation number ρ, we can deter-
mine the Fourier series for g(θ) = Σjajσj , where σj(θ) :=
exp(i2πjθ) for each integer j. Note that σ0 ≡ 1.

Each Fourier coefficient of g(θ) is ak :=
∫ 1

0
g(θ)σ−k(θ)dθ. We compute âk := WBN (g(θ)σ−k(θ))

to approximate ak; substituting Σiaiσi for g(θ) gives,

âk = ΣiaiWBN (σi−k) = Σjaj+kWBN (σj).

We find that for the Standard Map (fig. 4), |WBN (σj)| <
10−32 when N = 4000000 and 0 < |j| ≤ 1000 . Therefore,
the error in our estimate is

|âk − ak| = |Σj �=0aj+kWBN (σj)| ≈ 10−32.

We construct g(θ) and therefore h(θ) = g(θ) + θ as a
Fourier series and discover that Fourier coefficients ak → 0
exponentially fast implying that it is real analytic (at least
to 30-digit precision).

How smooth is the typical quasiperiodic curve? First
we point out that Yamaguchi and Tanikawa [30] and Chow
et al. [33] show that the outermost limit curve of the
quasiperiodic sets in the Standard Map is not differen-
tiable. But we have chosen a typical curve, not the most
extreme. To answer this question for our curve, we exam-
ine its Fourier series. We find that the size of the Fourier
coefficients decays exponentially fast, with size < 10−30

by the 500th coefficient. See fig. 4, bottom, left. This
exponential decay rate, |ak| ≤ 10−const k, is a characteris-
tic of real-analytic functions, and we can therefore assert
that the change of coordinates (both φ(θ) and g(θ)) are
real-analytic (up to the quadruple precision of our calcu-
lation). Our calculation of the Fourier coefficients were
based on an orbit of length 106. To test the accuracy of
our computations, these coefficients were used to predict
the trajectory point after 107 iterates and the prediction
was correct by at least 22 decimal digits.

The restricted three-body problem. – Planetary
motion is an application in which one would expect a
high degree of quasiperiodicity. For example the moon’s
orbit has three rotation periods: 27.3 days, 18.60 years
and 8.85 years (see [34]). It is quasiperiodic in rotat-
ing coordinates, filling out a three-dimensional torus in
6-dimensional phase space. We consider a planar three-
body problem studied by Poincaré [35,36]. There are two
massive bodies (“planet” and “moon”) moving in circles
about their center of mass and a third body (“asteroid”)

Fig. 5: (Color online) The restricted three-body problem. Top
left: a single quasiperiodic trajectory lying on a torus. The
color indicates the value of the fourth variable p2. Top right:
Poincaré return map for a variety of quasiperiodic trajecto-
ries, marked as B1, B2, C1, and C2. The black curve in the
top-left panel corresponds to B1 and resides at q2 = 0 where
dq2/dt > 0. Bottom left: the function g(θ) = φ(θ) − θ, the
periodic part of the change of coordinates between the return
map of orbit B1 and pure rotation on a circle. Bottom right:
the exponential decay of Fourier coefficients for orbit B1, im-
plying that g is real analytic. All orbits are for Hamiltonian
H = −2.63.

whose mass is negligible, having no effect on the dynamics
of the other two, all of which move in the same plane. The
moon has mass µ = 0.1 and the planet mass is 1 − µ. We
represent the bodies in rotating coordinates with the cen-
ter of mass at (0, 0). The planet remains fixed at (−0.1, 0),
and the moon is fixed at (0.9, 0). In these coordinates, the
satellite’s location and momentum are given by the gener-
alized position vector (q1, q2) and generalized momentum
vector (p1, p2). See [16,36] for the details of the equations
of motion. The system’s Hamiltonian H(p1, p2, q1, q2), is
the same for all orbits shown. Poincaré reduced this prob-
lem to the study of the Poincaré return map for a fixed
value of H, only considering a discrete trajectory of the
values of (q1, p1) on the section q2 = 0 and dq2/dt > 0.
Thus we consider a map in two dimensions rather than a
flow in four dimensions. The top-left panel of fig. 5 shows
an orbit of the asteroid spiraling on a torus. The black
curve shows the corresponding trajectory on the Poincaré
return map which lies in the plane q2 = 0, bordered in
black. We used the order-8 Runge-Kutta method to com-
pute the Poincaré section iterates of the three-body prob-
lem with time steps of h = 2 × 10−5 [37]. The top-right
panel of fig. 5 shows the Poincaré return map for the as-
teroid for a variety of starting points, where orbit B1 is
the one shown in the top-left panel.

Using WBN , we calculate the rotation number ρ for
orbit B1, with 30-digit precision. As above we then use
WBN to calculate the Fourier coefficients for, now for B1.
See fig. 5, bottom left. In the bottom right panel of fig. 5,
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the Fourier coefficients converge exponentially fast, show-
ing that the curve is real-analytic.

Discussion. – The literature on quasiperiodicity is vast
and our goals in this paper are limited: to introduce
WBN and the Embedding Continuation Method for com-
puting rotation numbers and to give some applications.
Quasiperiodic orbits occur in a variety situations that we
have not addressed. For example Luque and Villanueva [3]
made great progress with systems having external periodic
forcing. Medvedev et al. [38] consider high-dimensional
tori that are not simply embedded. We also have not
addressed noisy systems.
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