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Abstract. Cahn–Morral systems serve as models for several phase separation phenomena in multicomponent
alloys. In this paper we study the dynamical aspects of nucleation in a stochastic version of these
models using numerical simulations, concentrating on ternary, i.e., three-component, alloys on two-
dimensional square domains. We perform numerical studies and give a statistical classification for
the distribution of droplet types as the component structure of the alloy is varied. We relate these
statistics to the low-energy equilibria of the deterministic equation.
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1. Introduction. Phase separation phenomena in composite materials are of considerable
and growing interest. Part of this interest can be attributed to the wealth of intricate phe-
nomena which can be observed. In addition, the implications for the design of new materials
plays a significant role. Many composites are formed by combining materials which would
not occur naturally within a compound. On the one hand, this is responsible for obtaining
materials which exhibit novel and highly desirable properties. On the other hand, this ar-
tificial combination of the components can cause problems. In many cases, the composite
material is used under service conditions under which its components tend to separate; i.e.,
the alloy exhibits instability. Since such phase separation can profoundly impact the material
properties, understanding this process is extremely important.

In this paper we consider one such phase separation phenomenon of multicomponent
metal alloys, known as nucleation. If all the components of a metal alloy are heated to a
sufficiently high temperature, they will quickly form an almost perfect homogeneous liquid
mixture. Upon rapid quenching, the mixture solidifies. After some time, during which the
material stays more or less homogeneous, island-like regions form, which are rich in one of the
alloy’s components. Such regions, called droplets, are formed throughout the alloy, destroying
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the material’s homogeneity. They seem to form at random positions, yet they appear to be
of a characteristic size. Though the composition of droplets varies, there are only a few types
of droplet compositions observed for a given material component structure. In this paper,
we study a stochastic partial differential equation model of nucleation in order to explain the
classes of droplets which occur for a given alloy composition.

Our multicomponent alloy model is adapted from the celebrated Cahn–Hilliard equation.
Specifically, Cahn and Hilliard developed the following partial differential equation to serve as
a phenomenological model for phase separation in binary, i.e., two-component, alloys [8, 9, 10],
written here in dimensionless form as

(1)
ut = −Δ(ε2Δu+ f(u)) in Ω,

∂u

∂ν
=
∂Δu

∂ν
= 0 on ∂Ω.

The function u is essentially the difference of the concentrations of the two alloy components
as a function of space and time. Thus, u-values close to −1 and 1 correspond to the two pure
material components, and values in between correspond to mixtures, with zero representing
equal concentrations of both components. The constant ε > 0 is a small dimensionless quantity
modeling the interaction length. The domain Ω ⊂ R

n is bounded with appropriately smooth
boundary for n ∈ {1, 2, 3}, and the function −f is the derivative of a double-well potential F ,
the standard example being f(u) = u−u3. The Cahn–Hilliard equation generates gradient-like
dynamics with respect to the standard van der Waals free energy functional [40]

(2) Eε[u] =

∫
Ω

(
ε2

2
· |∇u|2 + F (u)

)
dx.

It also conserves the total mass
∫
Ω u dx. Let μ be defined as the average mass for u; i.e., let

μ =
1

|Ω| ·
∫
Ω
u dx with |Ω| =

∫
Ω
1 dx.

Using this model, Fife [23] gave the following heuristic explanation for nucleation. After
quenching, the alloy is more or less homogeneous, meaning u ≈ ū ≡ μ. The constant func-
tion ū ≡ μ is an equilibrium solution of (1), and one can easily verify that its stability depends
on the sign of the derivative f ′(μ). If μ is contained in the spinodal region {μ : f ′(μ) > 0}, then
the equilibrium ū is unstable, leading to a sudden phase separation process called spinodal
decomposition. See, for example, [4, 7, 18, 35, 36, 38, 39, 42]. On the other hand, for μ-values
in the metastable region {μ : f ′(μ) < 0}, the equilibrium ū is asymptotically stable. While this
clearly implies that for small perturbations of ū the dynamics of (1) drive the system back to
the homogeneous state, it is possible that ū is only a local minimizer of the energy (2). That
is, if we perturb the homogeneous equilibrium by a sufficiently large localized disturbance, we
might push the system into the domain of attraction of a nonhomogeneous state with lower
energy. The solution then approaches the state with lower energy, thereby leading to phase
separation.
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Figure 1. Schematic energy diagram: The homogeneous equilibrium ū, the canonical nucleus unuc, and the
global minimizer uglobal.

Bates and Fife [2] confirmed the above intuition for one-dimensional base domains Ω.
Namely, they showed that if μ is contained in the metastable region, then the following hold:

• The constant function ū ≡ μ is an asymptotically stable equilibrium of the Cahn–
Hilliard equation (1).

• There exists an equilibrium solution uglobal of (1) which is a global minimizer of the
energy (2) and which has lower energy than ū. This solution exhibits exactly one
sharp transition layer between the pure states u = −1 and u = +1.

• In addition, there exists an unstable equilibrium solution unuc of index 1 such that unuc
is almost everywhere close to μ, except for a small amplitude spike near the boundary
of the domain Ω. It is conjectured in [2] that the two branches of the one-dimensional
unstable manifold of this solution limit to ū and uglobal, respectively.

Thus, if the homogeneous equilibrium ū is perturbed in the right direction beyond the critical
nucleus unuc, then the solution of (1) will follow the unstable manifold of unuc and converge to
the decomposed global energy minimizer uglobal. See also the diagram in Figure 1. Moreover,
the necessary perturbation is relatively small in the sense that it is localized at the boundary
of the domain and of a small amplitude. Bates and Fife also describe the actual phase
separation dynamics numerically as the solution of (1) follows the unstable manifold. Thus,
their results explain the dynamics of nucleation in one space dimension once the correct type
of initial perturbation has been introduced, and assuming that the unstable manifold of the
critical nucleus has the above-stated convergence properties.

The above results do not address the question of how the initial perturbation is generated,
or—of crucial importance for materials design—whether the behavior is typical. Further,
how long does it typically take before the first droplet nucleates? If this time frame exceeds
certain thresholds, we might still be able to characterize the material as stable for all practical
purposes. Finally, the observed droplet patterns, rather than attracting, may instead be
transient pattern formation and evolve further in important ways.

To address these questions, one has to consider an extension of the Cahn–Hilliard model
due to Cook [13], which incorporates random thermal fluctuations into the model. This model
is also known as “Model B” in the classification of Hohenberg and Halperin [29]. The Cahn–



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

710 DESI, EDREES, PRICE, SANDER, AND WANNER

Hilliard–Cook equation for binary metal alloys is given by

(3)
ut = −Δ(ε2Δu+ f(u)) + σnoise · ξ in Ω,

∂u

∂ν
=
∂Δu

∂ν
= 0 on ∂Ω,

where the additive noise term ξ is usually chosen as space-time white noise or colored noise.
These terms will be explained in more detail later. The parameter σnoise is a measure for the
intensity of the noise.

Intuitively, Cahn–Hilliard–Cook models describe the mechanism responsible for the ap-
pearance of droplets in nucleation. The random force σnoise · ξ in the right-hand side of (3)
will perturb the composition of the alloy away from the homogeneous state ū, which is thus
no longer an equilibrium solution. While in the short term this will not significantly affect the
material, the cumulative effect of these perturbations can cause the function u to reach the
boundary of the domain of attraction of the homogeneous solution, and to eventually leave the
deterministic domain of attraction, moving with probability one towards a state with lower
energy. Depending on the strength of the noise—determined by σnoise—this domain exit will
take place sooner or later. Different realizations in the noise result in the solution exiting the
domain of attraction at a variety of points—leading in turn to different nucleation patterns.
However, we show that only a certain small number of resulting droplet classes occur.

In the small-noise limit, domain exit problems such as the one described in the last para-
graph can be studied using large deviation-type results; see, for example, [24]. In the context
of the one-dimensional Cahn–Hilliard–Cook model, this has recently been accomplished in [3],
in which it is shown that for sufficiently small noise intensity, solution paths of the Cahn–
Hilliard–Cook model (3) which originate near the homogeneous state ū ≡ μ will exit the
domain of attraction with probability one, and at the time of exit these paths will be close
to the boundary spikes identified in [2]. Understanding part of the attractor structure of (1)
lies at the heart of this result. In particular, the results in [3] use the fact that under a basic
energy assumption, which has been verified numerically, one branch of the one-dimensional
unstable manifold of the spike solution converges to the homogeneous state, while the other
branch converges to a phase-separated equilibrium with lower energy than that of ū ≡ μ. For
more details we refer the reader to [26].

In the current paper, we concentrate on a both quantitative and qualitative classification
of droplet formation during nucleation on two-dimensional square domains Ω. Rather than
considering binary alloys as in [3], we address the more relevant case of multicomponent alloys
in the context of a variant of the Cahn–Hilliard–Cook model known as the Cahn–Morral sys-
tem. This model is described in the next section. We give statistics of large scale simulations
showing the types of droplets observed for given overall alloy compositions. We then relate
these findings to numerical computations regarding the global attractor structure. Note that
we do not attempt to compute this global attractor structure directly for the moderately large
domains Ω that are used for the evolution simulations. It is numerically infeasible to compute
the set all possible (stable and unstable) equilibria in the case of an initial domain that sus-
tains a large number of simultaneous droplets (see, for example, the Cahn–Hilliard study [33],
which still considers only fairly small domains). In addition, computing all equilibria would
not give insight into the features observed during nucleation: the types of individual droplets
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and their geometry. Instead we take an approach which is inspired by recent work of Vanden-
Eijnden and Westdickenberg [41], which considers nucleation for the stochastic Allen–Cahn
equation, i.e., “Model A” in the classification of Hohenberg and Halperin [29]. In this case,
they give analytical results for statistics of droplet formation on a large domain, by decompos-
ing the domain into a large number of smaller fundamental subdomains and then considering
nucleation independently on these subsystems. Unfortunately, their results do not carry over
to the Cahn–Hilliard or Cahn–Morral situation, due to the global mass conservation in these
two systems which results in dependencies between the fundamental domains. Nevertheless,
the basic subsystem philosophy of [41] can still be employed, as long as one acknowledges
the fact that the effective average masses in the subsystems might deviate from the average
mass of the overall large domain. As it turns out, this effective average mass deviation makes
it necessary to study the attractor structure of Cahn–Morral systems as a function of the
total mass, and we use continuation techniques on small fundamental domains to uncover
the structures of interest. We are able to relate the classes of numerically calculated isolated
individual equilibrium droplets to the types and frequencies of droplets seen in our statistical
simulations.

The remainder of this paper is organized as follows. In section 2 we describe the Cahn–
Morral model which forms the basis for our study. This includes both a discussion of the
underlying deterministic model and the stability of its homogeneous initial states, as well as a
detailed description of the stochastic model extension and the presentation of typical solution
paths for the case of ternary alloys. Section 3 contains statistical results for the number and
type of droplet solutions as they vary both with time and with the initial composition of
the alloy. These are computed by employing computational homological methods that will
also be described briefly. Next, in section 4 we present numerical continuation results that
shed light on the attractor structure of the deterministic Cahn–Morral system. We begin
by establishing numerical continuation results on the droplet equilibria for the deterministic
equations on small base domains. For these smaller domains, we use numerical linearization
at each of the equilibria and simulation in each of the unstable eigendirections to give a Morse
decomposition for the attractor. Subsequently, this information will be used to relate our
statistical simulations to the deterministic attractor structure. Finally, section 5 contains
conclusions and open questions.

2. Cahn–Morral systems. In this section we present basic definitions and results on the
Cahn–Morral model for phase separation in multicomponent alloys. We begin in section 2.1
with a review of the deterministic version of this model. This will be central for our bifurcation
analysis in section 4. In section 2.2 we address the question of stability of the homogeneous
equilibrium solutions in the deterministic model. Section 2.3 addresses the stochastic exten-
sion, which forms the basis for our statistical analysis. In section 2.4 we present some sample
solution paths of the stochastic model in order to set the stage for the remainder of this paper.

2.1. The deterministic model. In this section, we describe how the Cahn–Hilliard–Cook
system can be extended to a model for the multicomponent case, known as the Cahn–Morral
system. We also recall some well-known facts and results about this system. For more
details we refer the reader to Morral and Cahn [37], Hoyt [30, 31, 32], Eyre [21, 22], and
Maier-Paape, Stoth, and Wanner [34]. We would like to point out that the current paper is
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concerned only with the case of ternary, i.e., three-component, alloys. Nevertheless, we will
present the stochastic Cahn–Morral model for the general N -component case, since only the
deterministic model had been introduced in the multicomponent situation before [21]. We
therefore hope to lay the foundation for the study of more than three components later on
using the stochastic extension.

Consider an alloy consisting of N ≥ 3 components in a bounded domain Ω ⊂ R
n, where

n ∈ {1, 2, 3}. Letting ui(t, x) ∈ [0, 1], i = 1, . . . , N , denote the concentration of the ith
component at time t and location x ∈ Ω, we have the constraint

(4)

N∑
i=1

ui(t, x) = 1 for all t ≥ 0, x ∈ Ω;

i.e., the values of the vector u = (u1, . . . , uN ) describing the composition of the alloy are
contained in the Gibbs simplex G defined by

G :=

{
v ∈ R

N :

N∑
i=1

vi = 1, vi ≥ 0, i = 1, . . . , N

}
.

With every state u ∈ H1(Ω,RN ) of the alloy one can associate an energy given by

(5) Eε[u] =

∫
Ω

(
ε2

2
·
N∑
i=1

|∇ui|2 + F (u)

)
dx,

which is analogous to the van der Waals free energy functional (2) for the case of binary alloys.
The parameter ε > 0 models interaction length and is therefore considered to be small. The
nonlinear function F : D ⊂ R

N → R represents the bulk free energy density, where the
domain D satisfies G ⊂ D, and is defined in more detail below; see, for example, (9) or (10).

As in the binary case, we can use (5) to derive gradient dynamics for the concentration
vector u(t, x) which conserves the total mass of each component, i.e., for which

(6)
1

|Ω| ·
∫
Ω
ui(t, x)dx = ūi for all t ≥ 0, i = 1, . . . , N.

Define e = (1, . . . , 1)t ∈ R
N , and let P : RN → e⊥ denote the orthogonal projection onto e⊥,

i.e., define Pu = u− (u, e)/N · e. Setting
(7) f(u) := −PDuF (u),

we obtain a function from D into the subspace e⊥ ⊂ R
N . The dynamical law associated

with (5) is given by the Cahn–Morral system

(8)

ut = −Δ(ε2Δu+ f(u)) in Ω,

∂u

∂ν
=
∂Δu

∂ν
= 0 on ∂Ω,

u ∈ D ⊂ R
N .
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An existence and uniqueness result for solutions of (8) in the special case of D being the
simplicial interior of the Gibbs simplex G can be found in Elliott and Luckhaus [20] for the
logarithmic potential

(9) F (u1, . . . , uN ) = σ ·
∑

1≤i<j≤N
uiuj +

N∑
i=1

ui lnui.

However, as described in more detail in the next section, this nonlinearity is not appropriate
in our case since we are adding noise to the Cahn–Morral model. For the purposes of this
paper, instead of considering the potential F defined in (9), we consider a potential which
is defined on all of D = R

N but has qualitative features similar to those of the logarithmic
potential. More precisely, we use the polynomial nonlinearity

(10) F (u1, . . . , uN ) =

N∏
i=1

(
u21 + · · ·+ u2i−1 + σ · (ui − 1)2 + u2i+1 + · · ·+ u2N

)
,

where σ > 0 is some parameter. This potential is symmetric in its variables and has global
minima exactly at the vertices of the Gibbs simplex G, corresponding to the pure materials.
For the nonlinearity in (10), the states u(t, x) are no longer restricted to the Gibbs simplex G—
even though they will stay close to it. This situation is completely analogous to the classical
binary Cahn–Hilliard model, where the order parameter is not restricted to the interval [−1, 1].

2.2. Deterministic stability of the homogeneous state. As in the case of the Cahn–
Hilliard model discussed in the introduction, spatially constant functions are equilibrium so-
lutions for the Cahn–Morral system (8). In the context of nucleation, one has to consider
solutions of the Cahn–Morral system which originate near such a homogeneous state in the
Gibbs simplex G. Nucleation is possible only if this state is asymptotically stable for the
deterministic system. In the current section, we identify those homogeneous states.

To this end, fix a homogeneous state ū = (ū1, . . . , ūN ) satisfying (4). Define B as the
Jacobian of f at ū; i.e., let B = −PD2

uF (ū). Then the linearization of (8) at the homogeneous
state ū is given by

(11)

vt = −Δ(ε2Δv +Bv) in Ω,

∂v

∂ν
=
∂Δv

∂ν
= 0 on ∂Ω,

v1 + · · ·+ vN = 0.

Notice that the matrix B is not symmetric in general. However, since B corresponds to a
linear map from R

N into the (N − 1)-dimensional subspace e⊥, it always has an eigenvalue
of zero. Furthermore, one can easily show that the restriction of this linear map to the
invariant subspace e⊥ is in fact symmetric. In the following we denote the R

N -orthonormal
eigenvectors of B restricted to the subspace e⊥ by w1, . . . , wN−1, with corresponding real
eigenvalues β1 ≥ β2 ≥ · · · ≥ βN−1. For our discussion of the stability of the homogeneous
states, we also need the following definition.
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Figure 2. Stability diagram for the homogeneous equilibrium ū of a three-component alloy for the nonlin-
earity (10) with value σ = 3.5, which will be kept fixed throughout the numerical parts of the paper. The stability
of ū depends on the location of ū in the Gibbs simplex, whose projection is shown in the left image. The red
region corresponds to the metastable region, light blue to the portion of the spinodal region with one positive
eigenvalue of B, and dark blue to the portion with two positive eigenvalues. The right image shows a blow-up
of one of the corner regions. In some of our simulations, we restrict our analysis to the set of homogeneous
equilibrium states on the portion of the yellow line segment ū = (α + β, α − β, 1 − 2α) inside the metastable
region, which is shown for α = 0.10 and |β| ≤ 0.05.

Definition 2.1. Let Ω ⊂ R
n, with n ∈ {1, 2, 3}, denote a bounded domain with suffi-

ciently smooth boundary, and consider the negative Laplacian −Δ : L2(Ω) → L2(Ω) sub-
ject to homogeneous Neumann boundary conditions. Then its eigenvalues are denoted by
0 = κ0 < κ1 ≤ κ2 ≤ · · · → +∞, and the corresponding L2(Ω)-orthonormalized eigenfunctions
are given by ϕ0, ϕ1, ϕ2, . . . .

In order to determine the stability of the equilibrium ū we look for solutions of (11) of
the form v(t, x) = eλt ·w · ψ(x), where w ∈ e⊥ ⊂ R

N is an eigenvector of the matrix B and ψ
is an eigenfunction of the negative Laplacian. Using the notation introduced above, one can
easily show that the spectrum of the linearized equation (11) is given by the eigenvalues

λi,k,ε = κi ·
(
βk − ε2 · κi

)
for i ∈ N, 1 ≤ k ≤ N − 1,

with corresponding eigenfunctions wk · ϕi(x). The homogeneous state ū is asymptotically
stable for (8), provided that all of these eigenvalues are negative. Thus we have proved the
following result.

Lemma 2.2. The homogeneous equilibrium ū is asymptotically stable for every ε > 0 for the
deterministic Cahn–Morral system (8) if the largest eigenvalue of the matrix B = −PD2

uF (ū)
restricted to the subspace e⊥ is strictly negative, i.e., provided that one has β1 < 0.

Homogeneous states with β1 < 0 are therefore the ones which could trigger nucleation in
the stochastic Cahn–Morral system defined below in (12). We call the collection of all these
states the metastable region of the hyperplane u1 + · · · + uN = 1, and its complement the
spinodal region. In Figure 2 these regions are shown for the ternary special case N = 3, and
for the parameter value σ = 3.5 in (10). The metastable region is shown in red and is located
around the pure materials, which correspond to the three corners of the Gibbs triangle. The
spinodal region is further divided into a light blue part and a dark blue part, corresponding
to β1 > 0 > β2 and β1 ≥ β2 > 0, respectively.
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2.3. The stochastic model. Ideally, one would like to pass to a stochastic version of the
above model by adding additive noise as in the Cahn–Hilliard–Cook equation (3), and this
in turn restricts the choice of nonlinearity. Namely, any form of additive noise will drive
solution paths of the resulting stochastic evolution equation outside the Gibbs simplex with
probability one, and the logarithmic potential (9) is undefined there. While this could be
avoided by introducing suitable multiplicative noise, we employ a different strategy. In con-
trast to the Cahn–Morral system with the logarithmic nonlinearity, the values of u in the
standard Cahn–Hilliard equation are not restricted to a finite interval. Following Grant [27],
we therefore drop the nonnegativity condition on the components ui and retain only con-
straint (4). This explains our use of the nonlinearity defined by (10) instead of (9), since the
potential F in (10) is well defined outside the nonnegative region of the Gibbs simplex. Like
the model of Grant—or even the deterministic Cahn–Hilliard equation—our choice of nonlin-
earity guarantees only that with high probability solutions stay close to the Gibbs simplex for
which there is nonnegative mass. Our choice of nonlinearity always preserves total mass, i.e.,
u1+· · ·+uN = 1. Specifically, the system used in this paper is formed using the nonlinearity f
from (7), using (10) with an added noise term, giving the stochastic Cahn–Morral system in
the form

(12)

ut = −Δ(ε2Δu+ f(u)) + σnoise · ξ in Ω,

∂u

∂ν
=
∂Δu

∂ν
= 0 on ∂Ω,

u1 + u2 + · · ·+ uN = 1.

Adding the noise term ξ has to be done carefully—as will be described in more detail in the
remainder of this section. We begin by recalling the precise form of the stochastic perturbation
in the Cahn–Hilliard–Cook model (3). For this, recall Definition 2.1 from the previous section.
Then the noise process ξ in (3) is defined on an abstract probability space (F,F ,P), and it is
given as the generalized derivative of some Q-Wiener processW(t), for t ≥ 0, defined explicitly
as a generalized Fourier expansion of the form

(13) W(t) =

∞∑
k=1

αk · βk(t) · ϕk with Qϕk = α2
kϕk.

In this series, the sequence (βk)k∈N consists of independent real-valued standard Brownian
motions over (F,F ,P), and the operator Q denotes the covariance operator of W. Notice in
particular that the series does not include the constant eigenfunction ϕ0 from Definition 2.1,
which ensures that all solution paths of the stochastic partial differential equation (3) preserve
the total mass. In other words, the identity (6) is satisfied along any solution path of (3).
For more details we refer the reader to Blömker, Maier-Paape, and Wanner [4], Da Prato and
Debussche [14], as well as to the monograph by Da Prato and Zabczyk [15].

While it would be tempting to define the noise process in (12) as ξ = (ξ1, . . . , ξN ), with
independent component processes ξi as in (13), such a definition would cause the constraint
u1 + · · · + uN = 1 to be violated for almost all solution paths. Thus, we use the following
definition.
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Definition 2.3. Let ξ∗1 , . . . , ξ∗N denote independent noise processes defined over a common
probability space (F,F ,P) such that each ξ∗� is the generalized derivative of a Q-Wiener process
W�(t), t ≥ 0, defined by

(14) W�(t) =
∞∑
k=1

αk · β�,k(t) · ϕk with Qϕk = α2
kϕk.

As before, the sequences (β�,k)k∈N denote independent real-valued Brownian motions over
(F,F ,P), and the ϕk are introduced in Definition 2.1. Then we define the noise process ξ =
(ξ1, . . . , ξN ) in (12) as

(15) ξ = Pξ∗ with ξ∗ = (ξ∗1 , . . . , ξ
∗
N ) ,

where P : RN → e⊥ denotes the orthogonal projection onto the orthogonal complement of the
vector e = (1, . . . , 1)t ∈ R

N .
With this definition, the constraint u1 + · · · + uN = 1 is satisfied along every solution

path. Furthermore, the noise process ξ is isotropic in the sense that the projection of ξ(t)
onto any unit vector in e⊥ has the same distribution, and that projections onto orthogonal
vectors furnish independent random variables.

The real sequence (αk)k∈N in Definition 2.3 affects the spatial smoothness of the noise
process ξ, and therefore also the regularity of the solutions of (12). In particular, we are
interested in solutions which are contained in the Sobolev space

H2(Ω)N = H2(Ω)× · · · ×H2(Ω)︸ ︷︷ ︸
N factors

and satisfy homogeneous Neumann boundary conditions. Notice that this is exactly the
functional-analytic setup that is usually used for describing the dynamics of Cahn–Hilliard-
type evolution equations, and this ensures via Sobolev’s embedding theorem [1] that the
solutions are continuous with respect to the spatial variables. The following result can be
obtained using standard arguments.

Theorem 2.4. Consider the stochastic Cahn–Morral system (12) for the potential F defined
in (10), and let the noise process ξ be defined as in Definition 2.3. Furthermore, assume that
the real sequence (αk)k∈N satisfies the condition

(16) lim sup
k→∞

(
α2
k · κsRk

)
< ∞, where sR >

dimΩ

2
.

Then for every initial condition u0 ∈ H2(Ω)N the stochastic Cahn–Morral system (12) has a
unique local mild solution u such that u(t) ∈ H2(Ω)N ⊂ C(Ω̄)N for almost all solution paths.

Proof. According to [4, 5, 15] the existence of a unique local mild solution in the Sobolev
space H2(Ω)N can be established as long as sR > dimΩ/2. More precisely, one can directly
apply [5, Theorem 3.1]; see also [6, Proposition 2.10].

The above result will suffice for the purposes of this paper. We would like to point out,
however, that it is possible to relax the conditions on the regularity of the noise process
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significantly if one drops the requirement of finding mild solutions in H2(Ω)N . For example,
in [3] it is shown for the one-dimensional case that existence in the space of continuous
functions can be established even with sR = −1; i.e., even if the noise process ξ is the spatial
derivative of space-time white noise. Related results can be found in [11].

For the simulations of the stochastic system (12) in the present paper we generally consider
the case of cut-off noise, which is widely used in the physics literature. In other words, we con-
sider αk = 1 for k = 1, . . . ,M , and αk = 0 otherwise. The constant M is chosen large enough
to make sure that all eigenfunctions of the linearized Cahn–Morral system (11) with wave
numbers larger than M are strongly stable; i.e., their eigenvalues are significantly negative.

2.4. Sample evolution paths. In order to illustrate some aspects of the nucleation dy-
namics of Cahn–Morral systems, we present sample solution paths for (12). We exclusively
address the case of ternary alloys, i.e., N = 3, while focusing on the metastable region—the red
region in Figure 2—where nucleation occurs. From now on, we denote the function (u1, u2, u3)
by (u, v, w) and use the value σ = 3.5 in (10).

For the classical Cahn–Hilliard equation (1) for binary alloys, there are two central pa-
rameters: the interaction length ε and the average mass μ of the order parameter u. The
Cahn–Morral system for ternary alloys involves three parameters: one to specify the interac-
tion length ε as before and two parameters to specify the unique homogeneous state associated
with the average masses of the three components. For convenience, we will change notation to
the parameters λ, α, and β, as defined below. To begin with, rather than considering small ε
values approaching zero, we use the parameter λ defined as

(17) λ =
1

ε2
.

The introduction of λ follows the convention generally seen in bifurcation analyses. Rather
than studying the limit ε → 0, our bifurcation analysis of section 4 will consider the case of
large λ. Furthermore, rather than specifying the average masses of two of the components,
we choose to take advantage of the symmetry of the equation in our choice of parameters.
Thus our two parameters α and β are chosen such that α measures the average mass of the
arithmetic mean (u + v)/2 of the components u and v, and β measures the average mass
of (u− v)/2. That is,

(18) (u, v, w) = (α+ β, α− β, 1− 2α) .

This choice has the advantage that we recover the complete information about solution be-
havior by considering only the parameter range

R = {(α, β) : 0 ≤ α ≤ 1/3, |β| ≤ α} ,

which corresponds to the top part of the Gibbs triangle shown in Figure 2. One has only to
note that if (u, v, w) is a solution of (12) with average mass (u, v, w), then (v, u,w) is a solution
with average mass (v, u,w), and similarly for any other permutation of the three components.
If we keep α fixed, then the points (u, v, w) in (18) with |β| ≤ α form a line which is parallel to
the base of the Gibbs triangle. For most of our simulations of (12) we consider the case α = 0.1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

718 DESI, EDREES, PRICE, SANDER, AND WANNER

Figure 3. The left graph shows the dependence of the eigenvalue β1 from Lemma 2.2 on the parameter β
for fixed α = 0.1. The corresponding homogeneous states (u, v, w) for |β| ≤ 0.05 lie on the yellow line in the
right-hand image.

and |β| ≤ 0.05, which corresponds to the yellow line in the right-hand image of Figure 2. This
yellow line is shown again in the right-hand image of Figure 3, which contains a blow-up of
the top part of the Gibbs triangle. The graph on the left shows the values of the eigenvalue β1
introduced before Lemma 2.2. This graph shows that for α = 0.1 and |β| ≤ 0.05 the initial
conditions (u, v, w) are contained in the metastable region. Notice, however, that for α = 0.1
and β values close to −0.1 or 0.1 one enters the spinodal region.

Figure 4 shows six solution snapshots of a sample solution path of (12) for the two-
dimensional domain Ω = (0, 1)2, where λ = 400 (i.e., we have ε = 0.05) and the noise
strength is given by σnoise = 0.2. The simulation has as its initial state the homogeneous state
(ū, v̄, w̄) = (0.1, 0.1, 0.8), which lies in the metastable region, more precisely, at the center of
the yellow line in Figure 3. For this initial state, the nonzero eigenvalues of B are given by
β1 ≈ −3.4 and β2 ≈ −22.5 in Lemma 2.2. In order to illustrate the alloy composition as a
function of space, we make use of the fact that the potential (10) used in our simulations has
global minima at the corners of the Gibbs simplex. This implies that for a phase separated
alloy at fixed time t, the range of the vector-valued function x �→ (u(t, x), v(t, x), w(t, x)) will
be concentrated in a small neighborhood of the Gibbs simplex, and we can use this three-
dimensional vector as an RGB value (after projecting points outside the Gibbs simplex to the
closest point on the Gibbs simplex). In this way, one obtains an image which represents the
alloy composition as a function of space, with the colors red, green, and blue corresponding
to the pure u, v, and w components, respectively. Mixtures of these main components are
indicated through mixtures of the pure colors.

The six RGB plots in Figure 4 correspond to six values of the time t of a solution path
originating at the homogeneous state (ū, v̄, w̄) = (0.1, 0.1, 0.8); i.e., we consider the case
α = 0.1 and β = 0. While no nucleation has taken place in the first snapshot, in the second
snapshot one can see the appearance of small droplets. We would like to point out that while
some of these initial droplets are pure, i.e., red or green, some of the initial droplets appear to
consist of an equal homogeneous mixture of both of these components. By the third snapshot,
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Figure 4. Sample evolution in two space dimensions, starting at the homogeneous equilibrium (ū, v̄, w̄) =
(0.1, 0.1, 0.8), for λ = 400 (i.e., ε = 0.05) and σnoise = 0.2. Starting from the top left, the figures correspond to
times t = k · 2.1 · 10−4 for k = 1, . . . , 6.

the initial droplets have grown, and more droplets have nucleated. The compositions of these
later stage single droplets are either close to (1, 0, 0) (red), which we call a u-droplet, or close
to (0, 1, 0) (green), which we call a v-droplet. Notice also that some droplets form with both
u- and v-components separated by an internal interface. We refer to this as a double droplet.
In the last three snapshots, there is little change in the number and type of droplets that have
formed. Notice also that while the u-droplets and v-droplets appear with similar frequency,
double droplets are significantly less likely to occur.

In order to get an impression of the final droplet geometries and compositions that can
be observed for different β-values, Figure 5 shows RGB plots of snapshots at one fixed time
for α = 0.1 and a variety of values of β. While individual droplet types are similar to those
observed for β = 0, the frequency with which these types occur does seem to depend on β.
The snapshots indicate that as β grows more positive, the first component starts to dominate.
Thus, we see progressively fewer v-droplets and fewer double droplets for increasing β. Notice
in particular that the last two snapshots do not contain any double droplets. All of these
observations will be quantified statistically in section 3.

The above simulations show only a few specific solution paths of the stochastic Cahn–
Morral system (12). Nevertheless, they showcase certain features of the nucleation process
which will be explained in more detail in the remainder of the paper. In fact, these features are
not restricted to the case of two-dimensional domains. We have observed analogous behavior
also in one and three space dimensions. For the remainder of the present paper, however, we
concentrate on only the two-dimensional situation.

3. A statistical analysis of nucleation simulations. In this section, we present statistical
information obtained from Monte Carlo simulations of solutions to the stochastic Cahn–Morral
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Figure 5. Solution snapshots in two space dimensions for α = 0.1 and six β-values. Starting from the
top left, the figures correspond to β-values k · 0.005 for k = 0, . . . , 5. Each of the simulations start at the
homogeneous state (ū, v̄, w̄) = (0.1 + β, 0.1 − β, 0.8) for λ = 400 and σnoise = 0.2. All of the snapshots are at
the fixed time t = 15 · 10−4.

equation (12) in two space dimensions for a variety of parameter values. As indicated in the
sample runs of the previous section, there are three predominant types of nucleating solutions
observed in simulations in the nucleation region: u-droplets, v-droplets, and double droplets.
For a variety of different initial mass vectors (ū, v̄, w̄) we compute quantitative information on
the total number and the proportion of each type of droplet as a function of time. In addition,
we distinguish droplet formation in the domain interior, along the edges of the domain, and
at the four corners. In section 3.1 we describe the various numerical methods that were
employed for our study, and section 3.2 contains droplet statistics both as a function of time
and as a function of the initial mass vector. Finally, section 3.3 addresses the question of
the suitability of the interaction parameters used for our simulations with the help of domain
scaling techniques.

3.1. Numerical methodology. We begin by briefly describing the numerical methods that
were used to obtain our results on the nucleation statistics. All simulations of the stochas-
tic Cahn–Morral model (12) were performed using a semi-implicit spectral Galerkin method
which—due to the assumed Neumann boundary conditions—approximates the solution u(t)
via a truncated cosine series. The specific implementation used for this study is similar to the
one that has been discussed in [28] in the context of stochastic phase-field models. We refer
the interested reader to that paper for a more detailed study, including error estimates.

In order to obtain the droplet statistics presented in section 3.2 below, we performed
Monte Carlo–type simulations originating at random perturbations of certain homogeneous
initial states (ū, v̄, w̄). For all simulations, we consider the domain Ω = (0, 1)2 with ε = 0.05;
i.e., we assume λ = 400. The noise intensity is chosen as σnoise = 0.2. At every time
step, the solution u(t, ·) is approximated by 1282 spectral modes, and we use a step size of
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Δt = 10−8 along the solution paths. All of the simulations have initial time t = 0 and end at
tend = 0.0015. The simulations originate at small random perturbations of the homogeneous
initial states (ū, v̄, w̄) = (α+ β, α−β, 1− 2α), where we fix α = 1/10 and consider β = k/400
for k = 0, . . . , 20. For each of the 20 initial states with k > 0 we performed a set of 512
simulations, and in the symmetric case k = 0 we computed 1024 solution paths.

The parameter settings described in the previous paragraph were used for all the simulation
results which will be presented in section 3.2. In addition, we validated our findings with
a second set of simulations for smaller interaction length, but on the same domain Ω =
(0, 1)2. For this, we consider ε = 0.02; i.e., we choose λ = 2500. The noise intensity is left
unchanged at σnoise = 0.2, but at every time step the solution u(t, ·) is now approximated
by 2562 spectral modes. Finally, we use a step size of Δt = 2 · 10−9 between t = 0 and
t = 0.0002. The simulations originate at small random perturbations of the homogeneous
initial states (ū, v̄, w̄) = (α+β, α−β, 1− 2α), where we again fix α = 1/10, but now consider
β = k/200 for k = 0, . . . , 10. For each of the 10 initial states with k > 0 we performed a set
of 128 simulations; for k = 0 we again computed 1024 solution paths. While the results of
these validation simulations will not be presented in detail, they were used in part to validate
our main set of simulations. Finally, in order to further understand the dependence of our
results on the interaction length ε, we also performed simulations for ε = 0.04, 0.03, 0.01,
and 0.005. In each of these cases, we considered only α = 1/10 and β = 0 and determined the
solution paths into the beginning of the coarsening regime. The results from these simulations
will be discussed in section 3.3.

In addition to the actual numerical solution of the stochastic evolution equation (12), we
use methods from computational topology to automatically determine the number of droplets
of each type. For this, we employ standard thresholding techniques to obtain subsets X of Ω
which show the location of u-droplets, v-droplets, and double droplets. In order to minimize
numerical artifacts, these sets are smoothed using a convolution filter, before the Betti num-
bers β0(X) and β1(X) of the sets X so obtained are determined using the program package
CHomP [12]. Recall that the zero-dimensional Betti number β0(X) counts the number of
connected components of the set X, while the first Betti number β1(X) equals the number of
holes in X. Similar to the approach in [25], we use basic results from planar topology to distin-
guish between droplets in the interior of the domain and droplets which touch the boundary.
As is described in more detail in [25], it is possible to achieve this distinction by determining
the Betti numbers not only of a given thresholded set X, but also of its complement Ω \X.
Since an interior component of X gives rise to a hole in Ω\X, the set X has β1(Ω\X) interior
components as well as β0(X)− β1(Ω \X) components which touch the boundary.

Finally, due to the stochastic nature of our simulations, we include confidence intervals
with the computed mean values for the considered quantities. For this we use studentized
bootstrap confidence intervals for the given stochastic data. The cutoff levels for the percentiles
are p and 1 − p; i.e., we compute 1 − 2p confidence intervals. Throughout this paper we
use p = 0.025, which results in 95% confidence intervals. The bootstrap computations use 1000
bootstrapped sample data sets, as described in [16, section 5.2.1, p. 194].

3.2. Droplet statistics from Monte Carlo simulations. In this section we present sta-
tistical information on droplet formation during nucleation in the stochastic Cahn–Morral
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Figure 6. Averaged number of droplets as a function of time, organized by nucleation location. The graphs
show the averaged total number of droplets (black), as well as the average number of interior droplets (blue),
droplets which touch one of the edges of Ω (red), and droplets which touch the corners of the domain (green).
The left image is for α = 1/10 and β = 0 in (18), the right image for α = 1/10 and β = 1/20. The images show
that the change in mass does not significantly change the qualitative form of the evolution curves. Furthermore,
droplets tend to nucleate first at the boundary, and only at later times in the interior of the domain.

system (12). As mentioned in section 3.1, these results are obtained from Monte Carlo sim-
ulations for λ = 1/ε2 = 400, for initial mass vectors (ū, v̄, w̄) as in (18) with α = 1/10 and
varying β. This particular parameter combination was chosen to obtain reasonable simulation
times based on a relatively small number of unstable modes, and we will briefly discuss the
validation of our observations on several occasions below.

We begin by considering the temporal evolution of the various droplet counts. The two
graphs in Figure 6 are concerned with the likelihood of droplet locations as a function of
time. We distinguish between droplets which are located at one of the corners of the base
domain Ω = (0, 1)2, along the boundary edges of this domain, or in the interior of the domain.
The curves in Figure 6 depict averaged droplet counts over all the Monte Carlo simulations.
Before discussing the behavior of the droplet counts as a function of time, we would like to
point out that the qualitative form of the evolution curves seems to be almost unchanged for
the two mass concentrations shown in Figure 6—which are given by ū = 0.1 and ū = 0.15
for the left and right images, respectively. In fact, this lack of variability can be observed
throughout the β-values that were considered for our simulations. Turning our attention to
the actual time dependence, the graphs in Figure 6 indicate that droplets tend to nucleate
first along the boundary of the domain and only later in the interior. Furthermore, the various
droplet counts reach their maximum levels at about the same time, before then settling into
a slow coarsening process. When the maximum droplet counts are achieved, there are more
droplets in the interior of the domain than along the boundary, even though for the chosen ε
the average droplet counts are very close to each other and fairly small. While at first glance
this closeness of the droplet counts might indicate that the domain size for our simulations is
too small, in fact the opposite is true. This will be discussed extensively in section 3.3 below.

To close this section, we turn our attention to the variation of the various droplet measures
as a function of the concentration (ū, v̄, w̄) of the initial homogeneous state. As before, we
consider concentration vectors as defined in (18) with fixed α = 1/10 and varying β. More-
over, we consider our Monte Carlo simulations for ε = 0.05, but this time at the fixed time
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Figure 7. Averaged number of droplets as a function of ū, organized by nucleation location (left panel) and
by droplet composition (right panel). Both graphs consider solution information at time t = 0.0015 and show
the fractions observed for each droplet location or type, including bootstrap confidence intervals. The left image
shows the droplet fractions for droplets in the interior (blue), along the edges (red), and in the corners (green)
of the domain Ω. The right image depicts the fractions of u-droplets (blue), v-droplets (red), double droplets
(green), and double droplets which touch the boundary (purple).

t = 0.0015. The resulting graphs are depicted in Figure 7, which also includes bootstrap con-
fidence intervals for the data points as described in the previous section. In order to visualize
the dependence of the droplet fractions over the interval 0.05 ≤ ū ≤ 0.15 we use symme-
try properties of our Cahn–Morral system (12). One can easily show that for any solution
path (u(t), v(t), w(t)) with concentration vector (ū, v̄, w̄), the permutation (v(t), u(t), w(t)) is
a solution path of (12) with concentration vector (v̄, ū, w̄). In other words, the droplet frac-
tions for any concentration ū = μ < 0.1 can be determined from the droplet fractions for the
concentration ū = 0.2 − μ > 0.1, by simply changing the role of u and v.

The left-hand panel of Figure 7 contains the information pertaining to the droplet lo-
cation. As we already mentioned earlier, the temporal evolution for various values of the
concentration vectors seemed to indicate that the preferred droplet locations hardly change
with the concentration. The graphs in the left panel of Figure 7 seem to confirm this. For
all considered ū-values, the fraction of interior or boundary droplets remains fairly constant.
While for the specific ε-value considered in these simulations both fractions are close to 50%,
the ratios diverge as ε decreases towards zero. This is confirmed by our simulations for smaller
ε-values. Nevertheless, the almost constant dependence on ū persists.

Significantly more interesting is the right-hand panel of Figure 7, which contains the
variation of droplet type as a function of ū. The fraction of u-, v-, and double droplets clearly
depends on ū, with more u-droplets for larger ū, more v-droplets for smaller ū, and about even
numbers of u- and v-droplets when ū = v̄. The curve for the fraction of u-droplets has a rather
sharp increase, and for ū > 0.13 almost all droplets are u-droplets. Similarly, for ū < 0.07
almost all droplets are v-droplets. Both in the interior of the region and on the boundary, the
number of double droplets is largest for the symmetric case ū = 0.1. Furthermore, outside
the region 0.06 < ū < 0.14, there appear to be no double droplets occurring. We are able to
explain this in the next section. Specifically, we demonstrate that the energy of the double
droplet solutions is smaller than the energy of single droplet solutions on an interval of ū-
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Figure 8. Averaged number of droplets as a function of time, organized by droplet composition. The graphs
show the averaged total number of droplets (black), as well as the average number of u-droplets (blue), v-droplets
(red), double droplets (solid green), and double droplets which touch the boundary (dashed green). From top left
to lower right the images correspond to β = k/200 for k = 0, 1, 2, 3 with fixed α = 1/10 in (18). The images
show that while in the first case the average numbers of u- and v-droplets coincide, even a small increase in ū
causes significant asymmetry between the u- and v-droplets. Double droplets are observed throughout all four
images, but their frequency seems to decrease for increasing ū.

values close to 0.1. In fact, both the single and double droplet solutions are essentially stable
in the region in which ū is close to 0.1, and the heteroclinic orbits for solutions emerging from
the homogeneous initial state include connections to the double droplets.

3.3. Interaction length and domain scaling. At first glance, the evolution curves in
Figure 8 seem to indicate a fundamental flaw in our simulations. As the time t ranges over
the considered interval, the average total number of droplets reaches only about 15—with
certain individual droplet counts in the single digits. How is it possible to draw any meaningful
conclusions from this data, since the size and number of the droplets implies that the boundary
of the domain is “nearby”? In other words, all of our observations could be due to boundary
effects, and therefore they potentially have no bearing whatsoever on the bulk effects which
can be observed far from the boundary. It is the aim of the current section to demonstrate
that, surprisingly, the opposite is true. More precisely, we show that, in fact, it is possible to
predict the average number of interior or boundary droplets for small values of the interaction
length ε very accurately from information for relatively large values, such as the interaction
length ε = 0.05 which was used in the previous section.
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Figure 9. Domain scalings used for boundary and interior droplets. The left image shows the original
domain Ω = (0, 1)2 at the interaction length εo. Performing a simulation on the same domain Ω, but with

interaction length εn, amounts to considering ε = εo on the new domain ˜Ω = (0, εo/εn)
2, as shown in the

image on the right. The light and dark blue regions are used to predict the scaling behavior of the interior and
boundary droplets, respectively.

To this end, consider again the Cahn–Morral system (12) on the domain Ω = (0, 1)2,
say for an interaction length εo and noise strength σnoise. One can easily see that decreasing
the value of εo by a factor of 1/γ, with γ > 1, is equivalent to keeping both the interaction
length εo and the noise intensity σnoise unchanged, but rescaling the domain by a factor of γ
and the time by a factor of γ2. For this one just has to consider the new variables x̃ = γx
and t̃ = γ2t and keep the noise coefficients αk in (13) fixed—but consider standard Brownian
motions with respect to the new time t̃ as well as rescaled basis functions ϕk, which form
an orthonormal set on the larger domain (0, γ)2. In other words, we keep the eigenvalues of
the covariance operator Q associated with the noise process ξ fixed, and therefore also its
trace. This rescaling is illustrated in Figure 9 for γ = εn/εo, where the left image shows the
original domain Ω = (0, 1)2, and the right image the new domain Ω̃ = (0, εn/εo)

2. Since we
are keeping the noise fixed, we can now assume that on average the droplet size is affected
only by the interaction length ε. Thus simulations of (12) with ε = εo on either Ω or Ω̃ should
produce droplets of comparable size. But how many droplets should we expect?

To begin with, consider droplets which nucleate along the boundary of the domain. If
such droplets appear randomly, their number should scale with the length of the boundary.
In other words, if for ε = εo and the domain Ω the average number of droplets is given by bo,
then on the domain Ω̃ one should expect boεo/εn droplets. According to our above discussion,
this would imply that if we consider (12) on the original domain Ω, but with interaction
length ε = εn, then on average one should expect to see boεo/εn droplets. In order to test
this heuristic, we considered the symmetric mass case α = 1/10 and β = 0 and performed
1024 Monte Carlo simulations each for a variety of ε-values. For each ε-value, we recorded
the time at which the average total droplet count reached its maximal value, and compared
the average number of boundary droplets at this time. The results of these computations are
shown in the column labeled “Actual average” in Table 1, with the corresponding ε-values
in column one. Now consider εo = 0.05, which represents the largest considered interaction
length, i.e., the smallest number of boundary droplets. Using the scaling formula

bn = bo · εo
εn
,
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Table 1
Predicted and actual boundary droplet averages.

Boundary droplet averages

ε Actual average Predicted average Relative error

0.050 7.37 7.37 0.00%
0.040 9.14 9.21 0.78%
0.030 12.17 12.28 0.87%
0.020 18.35 18.42 0.39%
0.010 36.75 36.84 0.24%
0.005 73.07 73.68 0.84%

Table 2
Predicted and actual interior droplet averages.

Interior droplet averages

ε Actual average Predicted average Relative error

0.050 7.54 7.54 0.00%
0.040 12.66 12.66 0.00%
0.030 24.01 24.11 0.41%
0.020 58.04 58.01 0.05%
0.010 246.53 247.59 0.43%
0.005 1016.16 1022.18 0.59%

one can then predict the average number bn of boundary droplets for any interaction length εn
from the known average bo. These predictions are listed in the third column of Table 1, with
the corresponding relative prediction errors in column four—and they indicate that despite
the small number bo, accurate predictions for bn can be made.

We now turn our attention to the case of interior droplets. From the same simulations
as above, we also computed the average number of interior droplets for various ε-values, and
the resulting counts are shown in the column labeled “Actual average” in Table 2. Again we
are interested in whether it is possible to predict the average number in of interior droplets
for some interaction length εn, from knowledge of the average interior droplet count io for a
given εo > εn. For the interior droplets, one would expect a scaling proportional to the area
of the domain, which would furnish in = ioε

2
o/ε

2
n. However, further consideration makes it

clear that this heuristic is incomplete, since it does not account for the part of the domain
already occupied by boundary droplets.

As it turns out, the correct interpretation of the scaling behavior for interior droplets has to
include a discussion of the boundary. Assuming again that the characteristic droplet thickness
depends on the interaction length ε rather than the domain size of the two domains Ω = (0, 1)2

and Ω̃ = (0, εo/εn)
2, one would expect that there exists a boundary layer of fixed width d

which does not play any role with respect to interior droplets. For this, see Figure 9, where
light blue indicates the region responsible for the interior droplets, and dark blue the region
responsible for the boundary droplets. (Note that this “extended area,” to account for “full”
droplets via reflection, scales linearly with the perimeter.) Based on this, one would expect
that in is given by the formula

in = io · (εo/εn − 2d)2

(1− 2d)2
,
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Figure 10. Sample alloy decompositions for ε = 0.05 (left) and ε = 0.02 (right). In both images, the border
between the interior and the boundary regions is indicated by the dashed black line, based on the numerically
determined value d ≈ 0.0772.

where d denotes the characteristic width of the boundary layer, which can be determined
by taking the average interior droplet counts from two distinct interaction lengths. The
results of such a computation are shown in Table 2. In this case, we computed d from the
two largest ε-values, which resulted in d ≈ 0.0772. We then set εo = 0.05, and used the
corresponding interior droplet count to predict in for the remaining smaller ε-values. The
resulting predictions, including relative errors, are shown in the third and fourth columns of
Table 2. These computations show that even interior droplet counts which are two orders of
magnitude larger than io can be predicted accurately—even though for εo = 0.05 there are
only a handful of interior droplets. Furthermore, in Figure 10 we indicate the border between
the interior and the boundary region of the domain Ω = (0, 1)2 by a dashed black line for
ε = 0.05 (left panel) and ε = 0.02 (right panel), based on the above value for d. These images
indicate that the constant d is in fact a good measure for the typical size of a boundary
droplet. We conclude this section by noting that in the context of a homological study of
spinodal decomposition in the Cahn–Hilliard model [25], related scaling arguments have been
used—yet without the identification of a boundary layer.

We would like to close this section with a brief discussion of the suitability of the Neu-
mann boundary conditions which were used in our study. At first glance, the results of
this section seem to indicate that their use, which is based on physically reasonable no-flux
conditions, causes severe problems due to the resulting boundary effects. It is natural to
wonder whether these issues could be avoided by imposing periodic boundary conditions, but
this is not possible. The effects of a small domain do not disappear if one uses periodic
boundary conditions. Assume, for example, that one uses boundary conditions of the form
u(x + L, y) = u(x, y + L) = u(x, y) for some periodicity L > 0. For fixed L, and if ε is too
large, one can show that the size of the fundamental domain is too small to support droplet
equilibria. In other words, once one fixes a periodicity L, one still has to choose ε sufficiently
small in order to obtain a realistic model. Thus even in the periodic case, if ε is too large, one
can see “boundary effects,” which in this case are due to the imposed length scale L.

4. Equilibrium solutions and nucleation pathways. In this section, we compute the set
of low-energy equilibrium droplets within the nucleation region and numerically describe the
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heteroclinic connections between these equilibria. As discussed in the introduction, the equi-
libria and their connecting orbits form the backbone of the global deterministic attractor of
solutions expected when performing simulations in the stochastic setting. Our statistical data
from the previous section raises a number of questions in terms of pattern selection, and we
are able to answer several of these questions by considering the structure computed in this
section.

4.1. Numerical methodology. We consider equilibria on a square domain which is small
enough to support a single nucleating droplet. Due to the scaling relationship between do-
main size and interaction length, a small domain size is equivalent to considering a λ-value
significantly smaller than those used in our previous simulations. For this section, we use
λ = 20, which corresponds to ε ≈ 0.2236. According to the discussion of the previous section,
this choice results in an expected value of 0.05 interior droplets and 1.65 boundary droplets;
i.e., with large probability one can expect roughly two boundary droplets (which are in fact
half droplets) and no interior droplet. Assuming that the two half boundary droplets occur on
opposite edges of the square, one can use symmetry arguments to combine the two boundary
droplets into exactly one interior droplet. It turns out that this heuristic does indeed provide
a reasonable choice of λ.

Finally, although the total mass distribution is conserved in both the deterministic and
the stochastic evolution equation, the local mass on our small fundamental domains varies
somewhat. This implies that understanding simulations for large domains with fixed values
of α and β in fact involves considering equilibria on small domains for a range of local mass
distributions. For the purposes of this section we again consider total mass vectors of the
form

(ū, v̄, w̄) = (α+ β, α− β, 1− 2α) with α = 0.1, |β| ≤ 0.05.

This set is shown as a yellow line in Figure 3 and corresponds exactly to the initial conditions
which were chosen for the Monte Carlo simulations of the previous section.

In order to compute the equilibrium solutions of the deterministic Cahn–Morral system,
we have to solve the elliptic system

(19)

−Δ(Δu+ λf (u)(u, v, w)) = 0 in Ω,

−Δ(Δv + λf (v)(u, v, w)) = 0 in Ω,

−Δ(Δw + λf (w)(u, v, w)) = 0 in Ω,

subject to homogeneous Neumann boundary conditions and the mass constraints

(20)

1

|Ω| ·
∫
Ω
u(x) dx = ū = α+ β,

1

|Ω| ·
∫
Ω
v(x) dx = v̄ = α− β,

1

|Ω| ·
∫
Ω
w(x) dx = w̄ = 1− 2α.

In (19) we set f(u, v, w) = (f (u)(u, v, w), f (v)(u, v, w), f (w)(u, v, w))t and use λ = 1/ε2 as
defined in (17). Our numerical computations are performed using the numerical continuation
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package AUTO [19]. For this, we approximate the nonlinear left-hand side of (19) using a
Galerkin spectral method which is based on the eigenfunctions of the Laplacian subject to
homogeneous Neumann boundary conditions. This implementation is analogous to the one
used in [17, 28], and we refer the reader to those papers for more details. For all of our
simulations, we use approximations to the unknown functions with 302 = 900 modes, which,
due to the imposed mass constraints, amounts to 899 unknowns for the functions u and v,
while the remaining function w is determined from u+ v+w = 1. In addition to this general
form of our numerical method, it turns out to be essential to address several issues that arise
from the path-following method implemented in AUTO. These issues and their resolutions
can be described as follows:

• Since AUTO uses the determinant of the Jacobian matrix to detect bifurcation points,
it can in principle detect only bifurcation points with an odd-dimensional kernel.
Unfortunately, in the situation of the Cahn–Morral system on the square domain
Ω = (0, 1)2, the symmetry of the domain frequently causes bifurcation points with
two-dimensional kernels. In order to address this fact, we consider the elliptic sys-
tem (19), (20) on the slightly perturbed domain

Ω = (0, a1)× (0, a2) with a1 = 1, a2 = 0.95.

This asymmetry in the domain causes the splitting of the bifurcation points with
two-dimensional kernels which are of interest to us into simple bifurcation points.

• The usage of the determinant of the Jacobian matrix in AUTO is also responsible
for the second numerical issue that has to be addressed. Since we are working with
high-dimensional algebraic systems which approximate an elliptic system, the fact
that the eigenvalues of an elliptic operator quickly become unbounded as a function
of the wave number leads to extremely large values of this determinant. In fact, as
the continuation parameter increases, it quickly grows beyond the size of real numbers
that can be represented in computer arithmetic. Thus, we employ an equation-by-
equation scaling approach to control the size of the determinant, while at the same
time not changing the solution set of the nonlinear system.

In addition to these two AUTO-specific issues, we also make use of the following dimension
reduction in the case of equal minor masses:

• For some of our computations we will consider mass vectors (ū, v̄, w̄) with ū = v̄; i.e.,
we consider the case β = 0. In this situation the solutions of interest will exhibit a
reflection symmetry of the form

(21) v(x, y) = u(1− x, y) for all 0 < x < a1 = 1, 0 < y < a2 = 0.95.

This symmetry allows us to reduce the elliptic system (19), (20) to a system for the
unknown function u alone, and then recover v from (21) and w from the constraint
u+ v + w = 1.

More details about when this symmetry constraint is used will be described in the following
section.

We would like to close this section with a second brief discussion comparing Neumann and
periodic boundary conditions in the context of the numerical continuation methods discussed
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u= v

Starting point in 
the spinodal region

Follow
to nucleation
region

u= v

Asymmetry
in masses

Starting point in 
the spinodal region
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to nucleation
region

Figure 11. In order to find the equilibrium droplets in the metastable region we need to consider (19), (20)
as a three-parameter continuation problem in λ, α, and β. We find the initial droplets in the spinodal region
via continuation in λ, while the initial mass vector is kept fixed at the pink dot in the left panel. Then we
continue these droplets into the metastable region through continuation in α (vertical arrow in the left panel),
before finally using continuation with respect to β to find the droplets along the yellow line within the metastable
region (right panel).

in this section. As with Neumann boundary conditions, periodic boundary conditions with the
same period in horizontal and vertical directions result in symmetries which cause bifurcation
points with kernels of dimension greater than one. In fact, while in the case of Neumann
boundary conditions the problematic kernels have dimension two, under periodic boundary
conditions they would have dimension four. Just as in the Neumann case, one could choose
periodic boundary conditions with slightly unequal periods in the horizontal and the vertical
directions, which would lead to the splitting of the bifurcation point into two with lower-
dimensional kernels—but the kernel of each of these two bifurcation points would still be two-
dimensional and therefore pose a computational problem. In the periodic case, the additional
high dimensionality of the kernel is due to the fact that periodic boundary conditions also
introduce translational invariances, which are not present with Neumann boundary conditions.
In order to overcome the resulting computational issues it would be necessary to introduce a
phase condition, resulting in extra computational cost.

4.2. Interior droplets in the spinodal region. As mentioned earlier, our goal is to find
droplet equilibrium solutions of the system (19) subject to the mass constraint (20) for mass
vectors (ū, v̄, w̄) in the metastable region. As such, it seems natural to initialize the continu-
ation method with the known homogeneous equilibrium (ū, v̄, w̄) and use parameter continu-
ation with respect to increasing λ to find nontrivial solution branches. Yet, as we have seen
in section 2.2, within the metastable region this homogeneous state is stable for all λ > 0. In
other words, there will be no solution branches which bifurcate from the homogeneous state
in the metastable region.

In order to avoid the above problem we proceed as follows. Consider the initial mass
vector corresponding to α = 0.125 and β = 0; i.e., consider the vector

(ū, v̄, w̄) = (0.125, 0.125, 0.75),

which lies in the spinodal region. This starting point is indicated by a dot in the two images of
Figure 11. Keeping this mass vector fixed, we can now try to find nontrivial solution branches
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Figure 12. Partial bifurcation diagram for (19), (20) for α = 0.125 and β = 0. In the left diagram, the
small horizontal black line segment is part of the trivial homogeneous solution branch. From this branch, a
primary nontrivial branch bifurcates in the direction of the eigenfunction in (22), which is shown vertically in
black. This latter branch undergoes a symmetry breaking bifurcation leading to the blue secondary branch which,
together with the red and green ternary branches, contains isolated droplet solutions. The right diagram shows
the solution energies of the same branches as functions of λ.

which bifurcate from the homogeneous equilibrium as λ increases. As in our discussion in
section 2.2, one can easily find the potential bifurcation points, which according to our use of
the perturbed domain are all simple bifurcation points.

For our applications we are interested in only solutions whose geometry is of droplet
structure. Since the geometry of the solutions on a bifurcating branch is initially determined
by the kernel functions at the bifurcation points, one can easily see that the single droplet
solutions have to be created within the first few bifurcating branches. Our numerics shown
in Figure 12 demonstrate that the droplet equilibria lie on certain secondary bifurcation
branches which bifurcate from one specific primary branch, as well as on certain ensuing
ternary branches. The primary branch in turn bifurcates from the homogeneous trivial solution
branch in the direction of the kernel function

(22) c ·
⎛⎝ 1

1
−2

⎞⎠ · cos 2πy
a2

.

Thus, close to the bifurcation branch the level curves u = ū of the solution component u are
close to parallel horizontal lines. A short distance from the bifurcation point on the trivial
solution branch the primary branch undergoes a secondary bifurcation. This bifurcation
breaks the symmetry of the level curve u = ū and leads ultimately to the merging of the two
horizontal level curves to form a single closed curve—resulting in an isolated droplet. Two
ternary branches which emanate from the secondary branch contain the remaining interior
droplet solutions.

The basic bifurcation structure described above is shown in the left diagram of Figure 12.
The small horizontal black line segment is part of the trivial homogeneous solution branch, and
part of the bifurcating primary branch is shown vertically in black. The symmetry breaking
bifurcation leads to the secondary branch, which is shown in blue. This secondary branch
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Figure 13. Isolated droplet solutions for system (19) subject to the mass constraint (20) for α = 0.125,
β = 0, and λ = 20. The three solutions correspond to the three endpoints of the blue, green, and red branches
in Figure 12; i.e., they are ordered with respect to decreasing energy.

contains a number of bifurcation points, only two of which are of interest to us and are
indicated in Figure 12. The emanating red and green branches lead to isolated droplets, while
the remaining bifurcations from the blue branch furnish solutions which are not of this form.
While the right diagram in Figure 12 shows the same branches, but now in a diagram of λ
versus energy, the geometry of the solutions on these branches is shown in Figure 13. Note
that even though the branches of Figure 12 are shown as curve segments, they actually are
doubly covered smooth curves. In the case of the blue branch, the droplet shown in Figure 13,
which consists of a homogeneous mixture of the two minor components and will be called a
mixed droplet from now on, occurs on only one of the two halves of the branch, while the
other half contains two half droplets which are located at the left and right vertical edges of
the domain. This latter solution is, of course, uninteresting for our purposes. On the other
hand, the two halves of the green branch do contain two interior droplets, which will be called
quad droplets from now on—the one shown in the middle of Figure 13, as well as the one
which is obtained by exchanging green and red. Analogously, the two halves of the red branch
contain two different double droplets. Finally, one obtains similar droplets if one considers the
primary branch which bifurcates from the homogeneous trivial solution in the direction of the
eigenfunction (1, 1,−2)t · cos(2πx). Since these can essentially be obtained from the droplets
above via rescaling in the coordinate axes and rotating by ninety degrees, it suffices to only
consider the droplets above.

4.3. From the spinodal to the metastable region. Having identified the three main
types of interior droplets, one can now proceed to continue these nontrivial solutions into
the metastable region. This is accomplished as outlined in Figure 11(left). By now keeping
β = 0 and λ = 20 fixed, each of these solutions can be continued with respect to α. This is
indicated by the vertical blue arrow in Figure 11. The results of this continuation are shown
in Figure 14. In all three cases, the solutions form a simple closed curve in function space,
which extends well into the metastable region. Since we are interested specifically in the case
α = 0.1, we determine all solutions on these branches at this parameter value. The following
criteria allow us to limit our consideration to a small number of droplet solutions:

• The mixed droplet branch has exactly four solutions at α = 0.1, which are shown in
Figure 15. Only two of these solutions, namely the first and the third, are interior
droplets. We will not consider the remaining ones further. Notice that both the first
and the third solutions consist of a droplet which contains an equal and homogeneous
mixture of the two minor components. Yet, the first solution has an extremely small
amplitude. We refer to these first and third solutions, respectively, as the small and
mixed solutions.
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Figure 14. Solution branches as functions of α, for fixed λ = 20 and β = 0, which originate at the three
solutions shown in Figure 13. In each case, the branch consists of a simply closed curve, so the curves shown
in the figure are all doubly covered.

Figure 15. Solutions of the mixed droplet branch in Figure 14 with α = 0.1. There are four equilibria,
which are ordered by decreasing energy. A careful examination shows that the first two solutions shown are both
nonhomogeneous, with a droplet respectively in the middle and on the sides. Due to symmetry, the first two
solutions have the same energy, as do the last two.

Figure 16. Solutions of the quad droplet branch in Figure 14 with α = 0.1. There are four equilibria, which
are ordered by decreasing energy. Due to symmetry, the first two solutions have the same energy, as do the last
two.

• Similarly, the quad solution branch has exactly four solutions at α = 0.1, which are
shown in Figure 16. Note that the first two would be equivalent if we were consider-
ing periodic boundary conditions. However, only the last two of these solutions are
single interior droplets. We will therefore not consider the remaining ones further.
By symmetry, we need to perform numerics on only one of these two remaining dou-
ble solutions, as the details of the other one follow directly from the symmetry of
exchanging u and v.

• Finally, the double solution branch gives rise to exactly eight solutions at α = 0.1,
which are shown in Figure 17. Again only the last two of these are single interior
droplets, and only these will be considered further. As in the quad case, we need to
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Figure 17. Solutions of the mixed droplet branch in Figure 14 with α = 0.1. There are eight equilibria,
which are ordered by decreasing energy from top left to bottom right. Due to symmetry, equilibria which can be
transformed into each other by exchanging green and red have the same energy.

consider numerically only one of the two solutions, as they are related by an exchange
of u and v.

We have thus reduced consideration to four nonhomogeneous droplet solutions. Note that all
the computations of this section and of section 4.2 used the symmetry reduction mentioned
at the end of section 4.1. Thus, we used AUTO on the reduced 899-dimensional system which
uses (21).

4.4. Droplet branches during metastability. As a final step we now use the four initial
interior droplets for λ = 20 and α = 0.1 which were identified in the last section, and perform
continuation with respect to the parameter β. In doing so, we cover the yellow line segment
which is shown in Figure 11(right). For this continuation, one has to consider the full sys-
tem (19) subject to the mass constraint (20), i.e., without the symmetry condition (21). This
is due to the fact that only in the equal minor mass case β = 0 can one expect the symme-
try condition to be satisfied. Thus, the numerical computations in this section use AUTO
on a 1798-dimensional algebraic system, which determines the 899 modes for the unknown
functions u and v.

The bifurcation diagram resulting from the above computations is shown in Figure 18, with
two close-ups contained in Figure 19. The β-values in these diagrams basically parametrize the
yellow line in Figure 11. It turns out that for each of the four interior droplets identified in the
last section—the low- and high-amplitude mixed droplets, the quad droplet, and the double
droplet—continuation with respect to β furnishes a simply closed curve. These curves are
shown in Figure 18 in yellow, blue, green, and red, respectively. In addition, these bifurcation
diagrams show the trivial homogeneous equilibrium, which is always stable, as a dashed black
curve. Since all of the nontrivial bifurcation branches are in fact simply closed curves, all of
these curves in the bifurcation diagrams are in fact doubly covered, so each point on these
curves gives two solutions. In some cases, for example in the case of the mixed droplets, the
additional droplets are in fact two half droplets located at opposite edges of the base domain—
and are therefore uninteresting for our application. Yet in other cases, the additional droplets
correspond to exchanging the location of the minor phases. This will be described in more
detail below.
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Figure 18. Bifurcation diagram for interior droplets in the metastable region. The β-values in the diagram
basically parametrize the yellow line in Figure 11. The green and red curves are obtained via continuation from
the quad and double droplets in Figures 16 and 17. The blue and yellow curves are obtained via continuation from
the high- and low-amplitude mixed droplets in Figure 15. The dashed black curve shows the trivial homogeneous
equilibrium.

Figure 19. Close-ups of the bifurcation diagram in Figure 18. The left diagram shows the three lower
energy branches, while the right diagram shows the two high-energy ones.

Before taking a closer look at the geometry of the interior droplets for the equal minor
mass case, a few interesting observations can be made already from the bifurcation diagram
in Figure 18.

• Close to—in the sense of energy difference—the trivial homogeneous steady state
(ū, v̄, w̄) there is a nontrivial droplet solution with slightly higher energy. Specifi-
cally, we have seen in the last section that this solution is the low-amplitude “small”
mixed solution found in section 4.3. Thus, one can expect that this solution takes on
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Figure 20. Droplet geometries for the case λ = 20, α = 0.1, and β = 0, i.e., for the equal minor mass case
ū = v̄ = 0.1, w̄ = 0.8. The droplets are ordered from left to right according to decreasing energy. Droplets in
the same column have the same energy.

the role of the canonical nucleus in [2]. Note that this canonical nucleus does not yet
select any of the two minor phases, but rather considers a homogeneous mixture of
them.

• The lower part of the double droplet branch in the left diagram of Figure 19 exists only
for β-values between −0.02 and 0.02, which corresponds to 0.08 ≤ ū ≤ 0.12. Notice
that this is exactly the range in the droplet likelihoods shown in Figure 7 during which
double droplets can be observed.

To shed further light on the information provided by the bifurcation diagram in Figure 18,
we mainly concentrate on the equal minor mass case β = 0 for the remainder of this paper.
In this situation, the geometry of the resulting interior droplets is shown in Figure 20. These
droplets are ordered from left to right with respect to decreasing energy; droplets in the same
column have the same energy. Comparing these droplets to actual numerically computed
solution paths, such as the one shown in Figure 4, one can recognize almost all of these
during the evolution—except for the quad droplets. Furthermore, assuming that the above-
mentioned role of the small-amplitude mixed droplet is that of a canonical nucleus saddle
solution which directs the dynamics to the large-amplitude mixed droplet, it seems plausible
that the material selection within a droplet happens only after the initial phase separation,
and that this selection is coordinated in fact by the large-amplitude mixed droplet, which
therefore serves as an organizing center for the droplet dynamics. This will be investigated
further in the next section.

We close this section with a comment on the completeness of the bifurcation diagram shown
in Figure 18. Apart from obvious extensions due to symmetry arguments, we do expect this bi-
furcation diagram to contain most of the interior droplet solutions of the Cahn–Morral system
in the considered mass range. In fact, for the remainder of this paper we concentrate on the in-
teresting case of β being close to zero, and for these β-values we expect the diagram to contain
all possible interior droplets. While this statement cannot be justified rigorously in our numer-
ical setting, we will see in the next section that further droplet solutions are unlikely to exist.

4.5. Morse decompositions and nucleation pathways. This final section is devoted to
the actual droplet dynamics in the most interesting equal minor mass case β = 0. For this,
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Table 3
Interior droplet equilibria for β = 0 together with their indices. The droplets are ordered from top to

bottom with respect to their energy. The total index is shown in the last column. The second and third columns
further divide the unstable eigenvalues into strongly and weakly positive eigenvalues. See the text for further
information.

Type Strongly positive Weakly positive Index

Mixed 1 2 3

Mixed 2, 1, 2, 1 2 8

Mixed 2, 2, 1 2 7

Quad 1, 2 3 6

Double 1 3 4

Mixed 0 2 2

Double 0 3 3

we restrict our attention to the deterministic Cahn–Morral system and try to numerically de-
termine a Morse decomposition of interior droplets, as well as a description of the heteroclinic
orbits connecting them. As we have mentioned earlier, our main philosophy is that nucleation
on a large domain happens through several nucleation events on smaller fundamental domains,
on which it is driven by general large deviations types results. This intuition was based on the
recent work [41], which considers nucleation for the stochastic Allen–Cahn equation and for
which the fundamental domains could be treated as independent. In our situation, the global
mass conservation of the Cahn–Morral system will cause our fundamental domains to not be
independent. In fact, we do expect that the effective total mass in each fundamental domain
will be different from—albeit close to—the overall mass constraint. As a result, even for the
study of the equal minor mass case β = 0 one has to consider the bifurcation diagram for all
values of β ≈ 0. Thus, we will in the following concentrate on the interval −0.015 ≤ β ≤ 0.015.

As a first step towards the above goal one has to determine the stability of the droplet
equilibria. For this we again employ a spectral method approach; i.e., we apply a Galerkin
spectral method to approximate the right-hand side of the linearized Cahn–Morral system (11)
at a given droplet. The eigenvalues of the resulting matrix, which acts on the 1798 modes
describing the approximations of the u and v components, are then determined using standard
eigenvalue computation methods. The results of this eigenvalue computation for the interior
droplets at the parameter values λ = 20, α = 0.1, and β = 0, i.e., for the equal minor mass case,
are shown in Table 3. Analogous results for the right endpoint β = 0.15 of our considered β-
interval are contained in Table 4. In each of these two tables, the first column shows the interior
droplets, ordered from top to bottom with respect to their energy, and the second column
denotes the branch on which the droplet can be found in Figure 18. The total index of each
droplet is listed in the last column. Of more interest to us is a further partition of the positive
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Table 4
Interior droplet equilibria for β = 0.15 together with their indices. The droplets are ordered from top to

bottom with respect to their energy. The total index is shown in the last column. The second and third columns
further divide the unstable eigenvalues into strongly and weakly positive eigenvalues, as before.

Type Strongly positive Weakly positive Index

Mixed 1 2 3

Mixed 2, 2, 1 2 7

Quad 2, 1 3 6

Double 1 3 4

Mixed 0 2 2

Double 1 3 4

Double 0 3 3

Mixed 0 2 2

eigenvalues of a droplet, which is listed in the third and fourth columns of the table. The third
column shows the number of eigenvalues which are significantly positive, grouped according
to multiplicity, while the fourth column lists the number of weakly positive eigenvalues, i.e.,
eigenvalues which are positive but close to zero. For example, the large-amplitude mixed
droplet has six strongly unstable directions, which is indicated by the sequence 2, 1, 2, 1. This
sequence also encodes the fact that the largest and the third-largest eigenvalues each have
multiplicity two, while the second- and fourth-largest eigenvalues are simple. In addition, the
large-amplitude mixed droplet has two weakly positive eigenvalues.

While the strongly positive eigenvalues of the interior droplets depend on the specific
droplet under consideration, the weakly positive eigenvalues can easily be explained as follows.
Since we are looking for equilibrium solutions of (19), (20) which are of droplet structure, these
solutions will be almost constant along the boundary of the domain Ω. This implies that if the
even extension of such a solution is translated or rotated slightly, it will still “almost” satisfy
the nonlinear elliptic system on the domain Ω. While in general this perturbed function is
not an exact solution, this fact will introduce, however, two (in the case of almost radially
symmetric solutions) or three (in the case of radially asymmetric solutions) eigenvalues of the
linearization of (19) at this equilibrium which are close to zero. This heuristic can easily be
verified in Tables 3 and 4. All droplets have either two or three small positive eigenvalues, and
the ones with three eigenvalues are exactly the ones which are not almost radially symmetric.
Note that these small eigenvalues have to be positive, since for the Cahn–Morral system
one would expect the global energy minimizers to form droplets along the boundary of the
domain—ore precisely, in the corners. In other words, the interior droplets all have to be
unstable, and the small positive eigenvalues allow the dynamics to translate and rotate the
solution into the right position.
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In order to numerically determine the possible connections between the interior droplets,
we proceed as follows. For each of the droplets, we compute not only the eigenvalues of the
linearization (11), but also the corresponding eigenfunctions. We then use a spectral time-
stepping code similar to the one in [28] to compute solution paths of the full deterministic
Cahn–Morral system (12) originating at the functions

(u0, v0, w0)± δ · ψ,
where (u0, v0, w0) denotes the droplet solution of (19), (20), the function ψ : Ω → R

3 denotes
an eigenfunction of the linearization, and δ > 0 is small. In other words, the function ψ
satisfies the system

−Δ
(
ε2Δψ − PD2

uF (u0, v0, w0)ψ
)
= κψψ in Ω,

∂ψ

∂ν
=
∂Δψ

∂ν
= 0 on ∂Ω,

ψ1 + ψ2 + ψ3 = 0,

where κψ denotes the associated eigenvalue; see also (11). The resulting solution paths were
followed until the solution seemed to converge to one of the droplets.

The resulting numerical Morse decomposition for the equal minor mass case, i.e., for the
parameter values λ = 20, α = 0.1, and β = 0, is shown in the left diagram of Figure 21; the one
for β = 0.015 is shown on the right. In these diagrams, we omit interior droplets which can be
obtained from another one by exchanging red and green, except if this omission would confuse
the overall picture. The arrows indicate numerically verified connections, and the colors of the
arrows correspond to the instability of the respective eigendirections. In other words, black
arrows correspond to runs with ψ being an eigenfunction for the largest positive eigenvalue,
blue arrows correspond to the second-strongest eigenvalue, etc. We would like to note that in
general it is extremely difficult to numerically verify heteroclinic connections between saddle
equilibria using the above simplistic approach. However, we are interested mostly in the
possible transitions from high-index droplets to those with no strongly unstable directions—
and these can be verified. This is due to the fact that the motion of the droplets caused by the
small positive eigenvalues is extremely slow, and therefore from a numerical point of view our
solution paths do seem to converge. Thus we do not claim that the connections indicated in
Figure 21 are “minimal,” i.e., that they consist of exactly one true heteroclinic. It is certainly
possible that an arrow in the diagram in reality corresponds to a sequence of heteroclinics. In
some cases, however, our numerics did indicate connections between high-index droplets, and
in these cases we include this information in the diagram.

In terms of describing the dynamics of interior droplets in the equal minor mass case, the
left diagram of Figure 21 provides some interesting insight.

• As we mentioned before, the small-amplitude mixed droplet has a strongly unstable
manifold of dimension one, one branch of which converges to the stable homogeneous
state. The second branch, however, converges directly to the large-amplitude mixed
solution.

• The large-amplitude mixed droplet acts as the main distribution point for the droplet
dynamics. Its two largest eigenvalues direct solutions to the effectively stable double
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Figure 21. Numerically computed Morse decompositions for the interior droplets of Table 3 (left panel)
and of Table 4 (right panel), i.e., for the case λ = 20, α = 0.1, and β = 0 (left) or β = 0.015 (right). These
heteroclinic connections have been computed numerically in the directions of the eigenfunctions of the linearized
system (11) at the droplets, and the colors correspond to the level of instability of the eigenfunctions. In other
words, black arrows correspond to the strongest unstable direction, blue arrows to the second-strongest, etc.

droplet, as well as to the at first glance unphysical ring droplet. These ring droplets,
however, are frequently observed in numerical simulations. On the other hand, the
quad solutions can be reached only in the directions of the third largest eigenvalues
and are therefore very unlikely to be observed in actual simulations.

• The pure droplets appear to be reachable only from the large-amplitude mixed droplet
via the fourth-largest eigenvalues, which seems very unlikely in general. However, both
the second- and the third-largest eigenvalues of the ring droplet direct droplets towards
these pure states.

• The asymmetric double droplets are saddle solutions at the boundary of the domain
of attraction of the pure and the symmetric double droplets. As such, they can only
be observed as transitional states.

At first glance, these observations seem to indicate that the most likely droplets in the equal
minor mass case should be the double droplets—a guess which is quickly disproved by a glance
at the solution path of Figure 4. In order to address this discrepancy, we recall that in some
(maybe even many) fundamental domains the effective total mass will satisfy β �= 0. We
therefore also have to understand the Morse decompositions for these cases, and in order to
keep the scope of this paper reasonable we consider only the case β = 0.015, which is shown
in Figure 21(right). From this diagram we can make the following observations:
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• In the case β = 0.015 the large-amplitude mixed solution no longer exists, and our
numerics show that the canonical nucleus directs droplets to the pure droplet of the
larger minor phase.

• While the Morse decomposition still indicates the existence of paths towards the pure
droplet of the smaller minor phase or the double droplet, these can no longer be
reached from the one-dimensional unstable manifold of the small-amplitude mixed
droplet which sits at the boundary of the domain of attraction of the homogeneous
state.

In other words, in the asymmetric case β �= 0, we expect droplets to be directed to the pure
droplet of higher mass with higher probability. Since one of our main points was that on a large
domain one can discuss nucleation by means of smaller fundamental domains, the effective
total mass on these smaller domains does in fact select which specific Morse decomposition
is responsible for the droplet dynamics. It is not surprising that, due to the global mass
conservation in the Cahn–Morral system, these fundamental domains are in fact correlated—
which leads to mass fluctuations between these fundamental domains. Thus, even if on the
large domain Ω one considers the case β = 0, there will be smaller fundamental domains
which effectively have β �= 0. This fact explains both the high probability of occurrence of the
pure droplets, as well as the observation of effectively stable double droplets for values of β
somewhat outside of the interval [−0.02, 0.02]; see again Figures 7 and 18.

5. Conclusions and future directions. In this paper, we have studied nucleation in three-
component alloys as modeled by the stochastic Cahn–Morral system (12). We approached
this problem from two distinct perspectives:

• On the one hand, we have performed Monte Carlo–type simulations of the stochastic
evolution equation, for varying mass of the initial homogeneous state in the metastable
region. These simulations furnished detailed information on the likelihood of occur-
rence of certain droplets. It also enabled us with the help of scaling methods to
quantitatively determine the characteristic size of the droplet or, in other words, the
width of the region experiencing boundary effects.

• In addition, we have used numerical continuation techniques to determine equilibrium
states of the deterministic Cahn–Morral system, which are in the form of interior
droplets. We have found that these droplets, as well as the parameter ranges over
which they can be found, are in good agreement with the results from the Monte
Carlo simulations.

While the above results provide a first insight into the nucleation dynamics of ternary alloys,
there are several further avenues of research to be addressed in the future. On the one
hand, it would be valuable to validate the equilibrium droplets and the associated Morse
decompositions via rigorous computational techniques. Furthermore, we have concentrated
our discussion on the bifurcation diagram and the associated Morse decompositions close to
the symmetric case β = 0, but it would be very useful to further determine and validate the
bifurcation diagram for larger values of |β| > 0. Finally, it would be interesting to investigate
the effect of the noise intensity and of the spatial correlation of the noise on the characteristic
size of the droplets and the size of the boundary layer. These topics, however, are beyond the
scope of the current paper and will be addressed elsewhere.
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