
Chapter 7
Quasiperiodicity: Rotation Numbers

Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, and James A. Yorke

Abstract A map on a torus is called “quasiperiodic” if there is a change of
variables which converts it into a pure rotation in each coordinate of the torus.
We develop a numerical method for finding this change of variables, a method
that can be used effectively to determine how smooth (i.e., differentiable) the
change of variables is, even in cases with large nonlinearities. Our method relies
on fast and accurate estimates of limits of ergodic averages. Instead of uniform
averages that assign equal weights to points along the trajectory of N points, we
consider averages with a non-uniform distribution of weights, weighing the early
and late points of the trajectory much less than those near the midpoint N=2. We
provide a one-dimensional quasiperiodic map as an example and show that our
weighted averages converge far faster than the usual rate of O.1=N/, provided f
is sufficiently differentiable. We use this method to efficiently numerically compute
rotation numbers, invariant densities, conjugacies of quasiperiodic systems, and to
provide evidence that the changes of variables are (real) analytic.

7.1 Introduction

Let X a topological space with a probability measure � and T W X ! X be a
measure preserving map. Let f W X ! E be an integrable function, where E is
a finite-dimensional real vector space. Given a point x in X, we will refer to the
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long-time average of the function f along the trajectory at x

1

N

N�1X
nD0

f .Tn.x//; (7.1)

as a Birkhoff average. The Birkhoff Ergodic Theorem (see Theorem 4.5.5. in [1])
states that if f 2 L1.X; �/, then (7.1) converges to the integral

R
X fd� for �-a.e.

point x 2 X. The Birkhoff average (7.1) can be interpreted as an approximation to
an integral, but convergence is very slow, as given below.

ˇ̌̌
ˇ 1N
XN

nD1f .T
n.x//�

Z
X

fd�

ˇ̌̌
ˇ � CN�1;

and even this slow rate will occur only under special circumstances such as when
.Tn.x// is a quasiperiodic trajectory. In general, the rate of convergence of these
sums can be arbitrarily slow, as shown in [2].

The speed of convergence is often important for numerical computations. Instead
of weighing the terms f .Tn.x// in the average equally, we weigh the early and late
terms of the set 1; � � � ;N much less than the terms with n 
 N=2 in the middle.
We insert a weighting function w into the Birkhoff average, which in our case is the
following C1 function that we will call the exponential weighting

w.t/ D
8<
:exp

�
1

t.t�1/
	

for t 2 .0; 1/
0 for t … .0; 1/:

(7.2)

Let Td denote a d-dimensional torus. For X D T
d and a continuous f and for � 2 T

d,
we define what we call a Weighted Birkhoff (WBN) average

WBN. f /.x/ WD 1

AN

N�1X
nD0

w
� n

N

	
f .Tnx/; where AN WD

N�1X
nD0

w
� n

N

	
: (7.3)

Note that the sum of the terms w.n=N/=AN is 1, that w and all of its derivatives are
0 at both 0 and 1, and that

R 1
0

w.x/dx > 0.

Quasiperiodicity Each E� 2 .0; 1/d defines a rotation, i.e. a map TE� on the d-
dimensional torus Td, defined as

TE� W 
 7! 
 C E� mod 1 in each coordinate. (7.4)

This map acts on each coordinate 
j by rotating it by some angle �j. We call the �j

values “rotation numbers.”
A vector E� D .�1; : : : ; �d/ 2 R

d is said to be irrational if there are no integers
kj for which k1�1 C � � � C kn�n 2 Z, except when all kj are zero. In particular, this
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7 Quasiperiodicity: Rotation Numbers 105

implies that each �j must be irrational. The rotation numbers depend on the choice
of the coordinate system. In any other coordinates in which the system is also a
rotation, the rotation vector E� is AE�, for some matrix A whose entries are integers
such that the determinant of A is ˙1. Conversely, any such matrix corresponds to a
coordinate change which also changes E� to AE�.

A map T W X ! X is said to be d-dimensionally Cm quasiperiodic on a set
X0 � X for some d 2 N iff there is a Cm-diffeomorphism h W Td ! X0, such that,

T.h.
// D h.TE�.
//: (7.5)

where TE� is an irrational rotation. In this case, h is a conjugacy of T to TE�. In
particular, a (pure) irrational rotation, (a rotation by an irrational vector E�) is a
quasiperiodic map.

Invariant Measure for Quasiperiodic Maps An irrational rotation TE� W T
d !

T
d on the torus has a unique invariant measure, which is the Lebesgue probability

measure. This measure also turns out to be the unique ergodic measure. It follows
that if a dynamical system T W X0 ! X0 is d-dimensionally C1 quasiperiodic, there
is a unique T-invariant measure on X0 which, under change of variables, becomes
the Lebesgue probability measure on T

d.

Diophantine Rotations An irrational vector E� 2 R
d is said to be Diophantine if

for some ˇ > 0 it is Diophantine of class ˇ (see [3], Definition 3.1), which means
there exists C� > 0 such that for every Ek 2 Z

d, Ek ¤ 0 and every p 2 Z,

jEk � E� � pj � C�
kkkdCˇ:

(7.6)

For every ˇ > 0 the set of Diophantine vectors of class ˇ have full Lebesgue
measure in R

d (see [3], 4.1). The Diophantine class is crucial in the study of
quasiperiodic behavior, for example in [4, 5].

Continued Fractions Every irrational number ˛0 2 .0; 1/ has a representation
known as its continued fraction expansion Œn1; n2; n3; : : :�, where n1; n2; n3; : : : are
positive integers. It can be defined inductively as follows

n1 D b 1
˛0

cI˛1 WD 1

˛0
� n1I

nkC1 WD b 1
˛k

cI˛kC1 WD 1

˛k
� nkC1:

Continued Fractions as Approximations The k-th convergent of an irrational
˛0 2 .0; 1/ is the number pk=qk defined as follows.

pk

qk
D Œn1; : : : ; nk� WD 1

n1 C 1

:::C 1
ak

: (7.7)
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Then for every integers q; k � 0, integer p, if q˛ � p is strictly between qk˛ � pk

and qkC1˛ � pkC1, then either q � qk C qkC1 or both p, q must be zero. In other
words, the best approximation of ˛ by a fraction p=q with q not exceeding qk, is
the k-th convergent pk=qk. We rely on the continued fraction expansion of a number
to decide whether it is rational or not. Every rational number has a finite number
of terms in its continued fraction expansion. If ˛ is irrational, then the sequence
continues forever, while if it is rational, it stops when some ˛k is zero.

The Diophantine class ˇ of an irrational number is a measure of how closely it
can be approximated by a rational number. The Diophantine class of an irrational
number can be deduced from its continued fractions. This is because the k-
th convergent pk=qk provides the best rational approximation among all rational
numbers whose denominator is � qk.

We will now state our main theorem about fast convergence of weighted
Birkhoff sums (7.3). We will first define a notion of fast convergence called super-
convergence.

Definition Let .zN/
1
ND0 be a sequence in a normed vector space such that zN ! z as

N ! 1. We say .zN/ has super-polynomial convergence to z or super converges
to z if for each integer m > 0 there is a constant Cm > 0 such that

jzN � zj � CmN�m for all m:

Theorem 7.1.1 Let X be a C1 manifold and T W X ! X be a d-dimensional
C1 quasiperiodic map on X0 � X, with invariant probability measure �. Assume
T has a Diophantine rotation vector. Let f W X ! E be C1, where E is a
finite-dimensional, real vector space. Assume w is the exponential weighting (see
Eq. (7.2)). Then for each x0 2 X0, the weighted Birkhoff average WBNf .x0/ has
super convergence to

R
X0

fd�.

Other Studies on Weighted Averages The convergence of weighted ergodic sums
has been discussed, for example, [6–8]), but without any conclusions on the rate of
convergence. In [9], a convergence rate of O.N�˛/, .0 < ˛ < 1/, was obtained for
functionals in L2C� for a certain choice of weights. A series of our applications of
the method discussed in this paper appear in [10], and the details of the proof of our
theorem appears in [11].

The use of a temporal weight in ergodic averages has been a subject of study for
several decades, usually using more generic weighting sequences in the form of

TN. f / WD
1X

nD0
�N.n/U

n. f /; where �N is a probability distribution on N: (7.8)

In our theorem, the probability measure �N are the values of the weight function
w sampled at the points fn=N W 0 � n < Ng and divided by the normalizing
constant AN , as defined in (7.3). In [6], sufficient conditions were derived for (7.8)
to converge in weighting sequences of a similar kind. Equations (7.3) and (7.8) arise
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7 Quasiperiodicity: Rotation Numbers 107

from the study of functionals on the Hilbert Space L2. On the other hand, Berkson
and Gillespie [12] considered the convergence of (7.8) for invertible operators on
Banach spaces. It was shown that for a particular choice for .�N/N2N, the operators
converge in the strong operator topology to an idempotent operator.

Remark Our results apply to Cm or smooth functions, which are L2, and carry
the assumption that the underlying dynamics is quasiperiodic. We are interested
in exploring the applicability of the theorem to other dynamical systems, while
keeping in mind that various counter-examples exist in which weighted ergodic
averages do not converge. For example, in [13], the authors derived a property
called strong sweeping property for the operators in (7.8), under the assumption
that each �N is a dissipative probability measure and certain other conditions on
the underlying dynamical system .X;T/. The strong sweeping out property implies
that the limits do not converge but attain values over an interval of numbers. In [14]
similar results are obtained to prove the lack of convergence of (7.8) for a dense set
of L1 characteristic functions, in the context of ergodic rotations of the unit circle.

7.2 Application I of Theorem 7.1.1: Rotation Numbers

To illustrate some applications of Theorem 7.1.1, we will work with the following
dynamical system for the rest of the paper.

A Cylinder-Map Consider the infinitely long cylinder R 
 S1, where S1 is the
standard topological circle. Consider the following map on this cylinder, first studied
in [15].

xnC1 D3xn C �.xn; yn/

ynC1 Dyn � ı sin.yn/C �.1 � cos.xn// mod 2�:
(7.9)

Here � is a small perturbation term, ı and � are parameters satisfying 0 < 2ı < �.
It turns out that for every such parameter value, if � is sufficiently small, then there
exists an invariant topological circle. Note that if � � 0, then this is the circle
whose points are f.�; y/ W y 2 S1g. Though the map is C1, the invariant circle may
not be smooth. We are however interested in demonstrating that the dynamics on it
is C1-conjugate to a rotation. See Fig. 7.1 for some of these curves.

7.2.1 Rotation Number as a Weighted Birkhoff Sum

Rotation Number Let NF W Rd ! R
d be the lift of a quasiperiodic map F W Td !

T
d. It is well known (see for example, [16]) that the following limit exists and is a
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Fig. 7.1 Invariant circles in the cylinder map (7.9), for values of .�; ı; �/ equal to (a) (0.1, 0.1, 0.1),
(b) (0.2, 0.8, 0.8) and (c) (1.0, 0.1, 0.1). Points in the region on the right of the curves diverge to
x D C1, while points on the left diverge to x D �1. Therefore, these circles are quasiperiodic
repellers and we are interested in the classification of the dynamics on these curves as periodic or
quasiperiodic

constant independent of Ez 2 R
d.

E�.F/ WD lim
n!1

NFn.z/� Ez
n

: (7.10)

This limit is called the rotation number of F. The limit in (7.10) is a means of
approximating �, but its convergence is bounded by the O.1=N/, where N is the
number of iterates taken into account. We propose a better method based on the
weighting factor w.

Note that in the example under discussion, X0 is a one-dimensional quasiperiodic
curve embedded in X D R

2. Let X0 be given the coordinates 
 of a circle S1 (in this
case, 
 could be the Y-coordinate of each point on the invariant curve divided by
2�). Given two angles 
1; 
2 2 Œ0; 1/, 
2 � 
1 denotes the positive angle difference
between these two angles, i.e., with value in Œ0; 1/. We are interested in the limit

� WD lim
N!1

1
N

N�1P
nD0
Œ
nC1 � 
n�, which can be obtained as the super-convergent limit of

WBN..
nC1 � 
n// WD 1

AN

N�1X
nD0

w
� n

N

	
Œ
nC1 � 
n�:

More generally, let X0 be a quasiperiodic curve embedded in X D R
2. Let C WD

CB [ CU be the complement of X0 in R
2, where CB and CU are the bounded and

unbounded components of C respectively. For p 2 R
2, define �.
/ D .
 � p/=k
 �

pk. Therefore �.
/ 2 S1. Let N� W R ! R be the lift of �. If p 2 CB, then N� is of the
form

N�. N
/ D ˙ N
 C Ng. N
/;
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Fig. 7.2 Rotation number on a quasiperiodic curve. The numbers �n D �.
n/ can be used to
calculate the rotation number, as stated in Application 1

where N
 2 R is a lift of 
 2 C. Notice that the real valued function Ng W R ! R is
period one and hence factors into a smooth function g W X0 ! R. Define a limit ��
as follows.

�� WD WBN.g.
// D 1

AN

N�1X
nD0

w
� n

N

	
Œ.
nC1 � 
n/C g.
n/�:

Then �� is � or 1 � �, depending on the orientation of 
 , both being legitimate
representations of �. We have illustrated this construction in Fig. 7.2. If p 2 CU ,
then �� D 0.

7.2.2 Error Bound for the Unweighted Method

Given a one-dimensional quasiperiodic trajectory .xn/ on the circle S1 D Œ0; 1/, one
can define a trajectory on the real line Nxn for n D 0; � � � ;N, where Nx0 D x0, Nxn is a
lift of xn and NxnC1 � Nxn 2 .0; 1/. It therefore follows that NxnC1 D NF.Nxn/. Let

kn WD Nxn � xn (7.11)

be the winding number of the n-th iterate. Let the .xn/ iterates be sorted in increasing
order as

xn0 D 0 < xn1 < : : : < xnN < 1:
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If � is the true rotation number, then the iterates 
n D n� mod 1, for n D
0; : : : ;N have the same cyclic order as the x-orbit. In other words, 0 D 
n0 < 
n1 <

: : : < 
nN . We can determine the interval of � values for which that is true. First note
that

0 < xn1 so � < kn1=n1

xnN < 1 so � > .knN C 1/=nN:

Suppose ni < niC1, then .niC1 � ni/� D kniC1
� kni C �ni , for some �ni 2 Œ0; 1/.

Similarly, if ni > niC1, then .ni � niC1/� D kni � kniC1
� �ni . These two identities

give the following two inequalities respectively.

� >
kniC1

� kni

niC1 � ni
; (7.12)

� <
kni � kniC1

ni � niC1
: (7.13)

For each of the N�1 consecutive pairs .xni ; xniC1
/, we get such an inequality and they

combine to give the possible range of values of �. Note that instead of consecutive
x-s from the sorted list, we could have taken distant x-s, but the following inequality
shows that would not have yielded a sharper bound.

If a1; a2; b1; b2 > 0; then
a1 C a2
b1 C b2

lies in-between
a1
b1

and
a2
b2
: (7.14)

7.2.3 Another Calculation of the Rotation Number Using
Unweighted Birkhoff Sums

Let F W Td ! T
d be a homeomorphism, where T

d is the n-torus, obtained from the
n-cube Œ0; 1/d by taking each coordinate modulo 1. Using the weighting methods,
an initial estimate E�0 of the rotation number E� of F, by analysing a dense trajectory
Ez0; : : : ; EzN�1. This section describes how to obtain a better estimate E�00 of E� from E�0.

Let Ezn1 ;Ezn2 ; : : : ;EzndC1
be d C 1 points on the trajectory which are close to the

origin O and whose convex hull contains O. Then there are constants ˛i 2 .0; 1/, for
i D 1; : : : ; n C 1 such that O is a convex combination of the points Ezni , i.e.,

E0 D †
iD1:::;dC1˛iEzni : (7.15)

Since the map is quasiperiodic, there is a homeomorphism G W Td ! T
d such that

for every k D 0; : : : ; d C 1, Ezk D G.k E� mod 1/. If the points Ezn1 ;Ezn2 ; : : : ;EzndC1

are very close to the origin, G can be considered to be linear in a neighborhood
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7 Quasiperiodicity: Rotation Numbers 111

containing these points. for every i D 1; : : : ; n C 1. Therefore, Ezni D G.ni E�
mod 1/ 	 dG.0/.ni E� mod 1/. If both sides are multiplied by dG.0/�1 then, (7.15)
becomes

E0 	 †
iD1:::;dC1˛idG.0/.ni E� mod 1/: (7.16)

Now let the integral part of ni E� be Eki, i.e., ni E� D Eki C �i, where Eki is a vector with
integer entries and the entries of �i lie in .�0:5; 0:5/d and are very small. Therefore
ni E� mod .2�/ D �i. Therefore (7.16) becomes

E0 D †
iD1:::;dC1Œ˛i.ni E� � Eki/�: (7.17)

Therefore, the equation can be solved to � as

E� D
†

iD1;:::;dC1˛i Eki

†
iD1;:::;dC1˛ini

: (7.18)

Note that for every i D 1; : : : ; d C 1, Eki=ni is a close approximation to �, so the
sum (7.18) is an optimal combination of these optimizations.

7.2.4 Fine Tuning the Rotation Number

Let .xn/ be a quasiperiodic trajectory on a circle S1 D Œ0; 1/. If we attempt to graph
the conjugacy map h.
/ from (7.5), we have only N points and they are not equally
spaced. We can compute the slopes between successive points and choose O� so as
to minimize the fluctuations in the derivatives of successive slopes. Define points

n D n O� mod 1. As before, let the .xn/ iterates be sorted in increasing order as

xn0 D 0 < xn1 < : : : < xnN < 1:

This ordering will be the same (cyclically) as that of 
0; : : : ; 
N�1. Therefore, if
consider the graph of h, the successive points of the graph are pj WD .
j; xnj/. The
slope from pj to pjC1 is:

Si D �x

�

WD xniC1

� xni

niC1 O� mod 1 � ni O� mod 1
:

From each estimate O� of �, a circle map h W S1 ! S1 be constructed which maps
n O� 7! yn. From h, one can construct the map h W S1 ! S1 defined as g.
/ D
h.
/� 
 . When the function h is lifted to R it becomes a function with period one.
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The closer O� is to the true rotation number �, the smoother h is going to be. The
following is used as a measure of smoothness of the h.

�. O�/ WD †
iD0;:::;N


�
�x

�


�
i

�
�
�x

�


�
i�1

�2
; (7.19)

where the indices �1 refers to the index N. The sequence of quantities .�x=�
/i is
defined as, �

�x

�


�
i

WD Œxni C kni � ni O�� � Œxni�1 C kni�1 � ni�1 O��
Œni O� mod 1�� Œni�1 O� mod 1�

; (7.20)

where the sequence .kn/ is as in (7.11). Equation (7.19) is a measure of the
smoothness of h in terms of the sum of the squares of the difference between
successive slopes of the map h. If h is smooth, the slope changes slowly and the
sum is expected to be small. We can change � to minimize the quantity �.�/=�.

7.3 Other Applications of Theorem 7.1.1

We will now describe a computationally efficient method of determining whether
invariant tori show quasiperiodic behavior, and we will numerically estimate the
analyticity of the conjugacy to a pure rotation. There is a large volume of literature
about determining invariant periodic or quasiperiodic sets, these being two of the
three types of typical recurrent behavior. An algorithm was introduced in [17],
which uses the Newton’s method to determine all periodic orbits up to a fixed
period along with their basins of attraction. Variants of the Newton’s method have
been employed to determine quasiperiodic trajectories in various other settings. For
example, Becerra et al. [18] used the monodromy variant of Newton’s method to
locate periodic or quasi-periodic relative satellite motion. In [17], a quantity called
local Lyapunov exponent distribution was defined and used to locate basins of small
period/quasiperiodic trajectories which lie in the vicinity of larger quasiperiodic
trajectories. This step is followed by an application of the Newton method. They
used this method to locate co-existing quasiperiodic and periodic trajectories in the
standard map. In [19], the authors defined an invariance equation involving partial
derivatives. The invariant tori are then computed using finite element methods of
PDE-s. See [19, Chap. 2] for more references on the numerical computation of
invariant tori.

The analysis is based on the use of Theorem 7.1.1 for performing fast integration
of smooth, periodic functions on the torus.

Application II, Computing the Integral of a Periodic C1 Function A C1
periodic map f W Rd ! E can be integrated with respect to the Lebesgue measure
quickly and accurately in the following manner. We first rescale coordinates so that
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its domain is a d-dimensional torus T
d D Œ0; 1�d mod 1. We next choose any

E� D .�1; � � � ; �d/ 2 .0; 1/d of Diophantine class ˇ � 0. For example, a good choice

for the case d D 1 is � D
p
5�1
2

, the golden ratio, for which ˇ D 0. Let T D TE� be
the rotation by the Diophantine vector � on T

d. Let w be the exponential weighting
function Eq. (7.2). Then by Theorem 7.1.1, for every 
 2 T

d, WBN. f /.
/ has super
convergence to

R
Td fd� and convergence is uniform in 
 .

7.3.1 Application III, Fourier Series of the Embedding

After computing the rotation number � by the method explained in Application 1,
we can construct the parameterization � D h.
/, where h W S1 ! R, for which
xnC1 D T.xn/ is conjugate to the pure rotation 
nC1 D 
n C �. The map h is not
known explicitly, but its values .xn WD h.nE� mod 1//nD0;1;2;::: are known. Let Nh W
R ! R be a lift of the map h. Consider the following function g W R ! R defined
as

g.
/ WD Nh.
/ � 
: (7.21)

The continuity and the degree of differentiability of h is the same as that of g, and the
latter can be non-rigorously estimated by observing the rate of decay of the Fourier
series coefficients of the function g. For every k 2 Z, the k-th Fourier coefficient of
g is described below.

ak.h/ WD
Z

S1
h.
/e�i2�k
d
:

For every 
 2 S1, h has the Fourier series representation

h.
/ D †
k2Zakei2�k
 :

To study the decay rate of the coefficients ak with jkj, we need to accurately calculate
each term ak. By Theorem 7.1.1 , ak.h/ can be approximated by a weighted Birkhoff
sum that has super convergence to ak.h/,

ak.h/ D lim
N!1WBN Œh.
/e

�i2�k
 � D lim
N!1

N�1X
nD0

w
� n

N

	
xne�i2�nk�:
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Instead of computing the complex-valued Fourier coefficients, we will compute
the Fourier sine and cosine series. Given a periodic map f W S1 ! R, the Fourier
sine and cosine representation of f is the following. For every t 2 S1,

f .t/ D a0
2

C †
nD1;2;:::an cos.2n�t/C †

nD0;1;2;:::bn sin.2n�t/; (7.22)

where the coefficients an and bn are given by the following formulas.

an D 2

Z

2S1

f .
/ cos.2n�
/d
; (7.23)

bn D 2

Z

2S1

f .
/ sin.2n�
/d
: (7.24)

See Fig. 7.4 for the decay of the Fourier sine and cosine coefficients with k.

Role of Length of Trajectory Using a higher number of iterates enables a more
accurate computation of the higher order Fourier terms (up to 400 terms), up to
the accuracy limit which is possible with the precision being used. Figure 7.3
shows that the sine and cosine series decay exponentially, as expected in an analytic
conjugation.

Fig. 7.3 Accuracy of Fourier series, orbit length and computer arithmetic. In all these figures, the
Fourier sine and cosine terms of the map h.
/� 
 were calculated up to 400 terms, with � D 0:8,
ı D 0:8, � D 0:2. In (a) and (b), 104 and 2
105 iterates respectively were used along with double
precision. The earlier Fig. 7.4 shows the highest accuracy, as it used 2
 105 iterates and quadruple
precision. From these results, it becomes apparent that increasing the number of iterates leads to
an accurate calculation of higher order Fourier terms. Use of double precision limits the accuracy
of the results to 10�16 while the accuracy limit for quadruple precision is around 10�32, as seen is
Fig. 7.4
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7.3.2 Smoothness of Conjugacies

In [20], Denjoy proved that if a C2, orientation-preserving circle diffeomorphism
has an irrational rotation number ˛, then it is topologically conjugate to the pure
rotation T˛ W z 7! z C ˛, via some continuous map h. We are interested in inferring
more about the smoothness class of h. The question of smoothness of conjugacy
to a pure rotation is an old problem. While we have described here a non-rigorous
method, the papers [3, 21–23] arrive at rigorous conclusions on the differentiability
of f by making various assumptions on the smoothness of the quasiperiodic map T
and the Diophantine class of its rotation number �. We will give a brief summary of
some of the classical results before describing our approach.

The Arnold family is a commonly studied in the context of existence of
quasiperiodic trajectories. In this seminal work [16], Arnold studied the following
2-parameter family of circle diffeomorphisms where � is a T-periodic real analytic
function with period one, meaning �.y C 1/ � �.y/:

A!;� W y 7! y C ! C ��.y/ mod 1 for y 2 Œ0; 1� and � in Œ0; 1/: (7.25)

One of the main theorems about this generic family of maps is that was that for !
belonging to a certain, full-measure set of irrational numbers, for all small values of
the parameter �, the map (7.25) will be analytically conjugate to the pure rotation
T� (7.4). By “small” �, we mean all � which are less in magnitude than a positive
constant �0 which depends on !. Subsequently, several other conjugacy results have
been established. They differ in their claims on the degree of smoothness of the
conjugacy (C0;C1;C2; : : :, or C1 or C!); as well as in their assumptions on f .

Consider the following four assumptions on the circle map F which will serve as
the hypothesis of some of the known results we are going to cite. The subscripted
variables, namely r and � denote parameters which are a part of their respective
assumptions.

(A1) r F is Cr.
(A2) � �.F/ is irrational and there is some � > 0 such that the continued fraction

expansion k1; k2; : : : of the rotation number satisfies : fknn�� W n 2 Ng is
bounded.

(A3) ˇ There is ˇ � 0 and a c > 0 such that for every n 2 Z � f0g, je2��n� � 1j >
cjnj�ˇ�1. Equivalently, � is Diophantine with Diophantine class ˇ.

(A4) lim
B!1lim sup

N!1

2
66664 †
1 � i � N

ai � B

ln.1C ai/= †
1	i	N

ln.1C ai/

3
77775 D 0. A4 is a full-

measure condition.

In [3], Herman proves that F is C1-conjugate to a pure rotation if it satisfies (A1)r

for some r > 2. By Katznelson and Ornstein [21], if F satisfies (A1)r for some r > 2
and (A3)0, then h is absolutely continuous. According to [22] if F satisfies more
generally (A1)r for some r > 2 and (A3)� , then h is Cr�1���� for every � > 0.
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In [24], the following smoothness result is derived for rotation numbers belong-
ing to a full measure subset of R. There exists � > 0 and C > 0 such that for
8ˇ > 0, if F satisfies (A1)5, (A3)ˇ and if k f � R˛kC5 � �� , then h is C3 and
satisfies

kD3hkL2 � C

�
k f � R˛kC5 :

In [23], it is shown that if F satisfies (A3)ˇ for some ˇ � 0 and (A1)r, for r � 3

and r > 2ˇ C 1. Then h is Cr�1�ˇ�� for every � > 0. As a corollary, it follows that
under the same hypothesis, if F is C1, then so is h.

In [25], the following conclusions are made about h:

• If F satisfies (A1)r for some r � 3 and ˛ satisfies (A4), then h is Cr�1�� , for
every � > 0.

• F is conjugate to a rotation if and only if the sequence .Fn/n2N is bounded in the
C1-topology.

In our case, we conclude that h is real analytic if kakk decreases exponentially
fast, i.e.,

log kakk � A C Bjkj (7.26)

for some A and B, to the extent checkable by compute precision (see Fig. 7.4).
In this section, F W S1 ! S1 is a circle diffeomorphism and ˛ WD �.F/ is its rotation
number.

Fig. 7.4 Exponential decay of Fourier coefficients for the cylinder-map (7.9). The figure shows the
magnitude of the Fourier coefficients of the periodic function g in (7.21). The first 400 Fourier sine
and cosine terms were calculated and the magnitude of the n-th sine and cosine terms was plotted
as a function of n, in a log( base 10)-linear scale. All calculations were carried out in quadruple
precision computer arithmetic. The graph shows that the Fourier coefficients decay according to the
law in (7.26), with c D �0:25. The tail of the graph appears flat because the higher order Fourier
coefficients could not be calculated to values with magnitude less than the limits of quadruple
precision
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