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Abstract
The Birkhoff ergodic theorem concludes that time averages, i.e. Birkhoff 
averages, BN( f ) := ΣN−1

n=0 f (xn)/N of a function f along a length N ergodic 
trajectory (xn) of a function T converge to the space average 

∫
f dµ, where μ 

is the unique invariant probability measure. Convergence of the time average 
to the space average is slow. We use a modified average of f (xn) by giving 
very small weights to the ‘end’ terms when n is near 0 or N − 1. When (xn) 
is a trajectory on a quasiperiodic torus and f and T are C∞, our weighted 
Birkhoff average (denoted WBN( f )) converges ‘super’ fast to 

∫
f dµ with 

respect to the number of iterates N, i.e. with error decaying faster than N−m 
for every integer m. Our goal is to show that our weighted Birkhoff average 
is a powerful computational tool, and this paper illustrates its use for several 
examples where the quasiperiodic set is one or two dimensional. In particular, 
we compute rotation numbers and conjugacies (i.e. changes of variables) and 
their Fourier series, often with 30-digit accuracy.
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1.  Introduction

Quasiperiodicity is a key type of observed dynamical behavior in a diverse set of applications. 
We say a map T is (d-dimensionally) quasiperiodic (for d � 1) if (i) T : Td → Td  and (ii) each 
trajectory is dense in Td  and (iii) there is a continuous choice of coordinates θ = (θ1, · · · , θd) 
and some ρ = (ρ1, · · · , ρd) ∈ Td  for which the T has the form

T(θ) = θ + ρ mod 1.� (1)

Condition (ii) can be replaced by saying in dimension d = 1 that ρ is irrational and in dimen-
sion d > 1 that all of the coordinates ρj  of ρ are irrational and they are ‘independent’ over the 

reals; that is if a = (a1, · · · , ad) is a vector of integers and 
∑d

j=1 ajρj = 0, then every aj = 0. 
We then say such a ρ is irrational.

Let T be a C∞ quasiperiodic map. The quasiperiodicity persists for most small perturbations 
by the Kolmogorov–Arnold–Moser theory. We believe that quasiperiodicity is one of only three 
types of invariant sets with a dense trajectory that can occur in typical smooth maps. The other 
two types are periodic sets and chaotic sets. See [1] for the statement of our formal conjecture 
of this triumvirate. For example, quasiperiodicity occurs in a system of weakly coupled oscilla-
tors, in which there is an invariant smooth attracting torus in phase space with behavior that can 
be described exclusively by the phase angles of rotation of the system. Indeed, it is the property 
of the motion being described using only a set of phase angles that always characterizes quasi-
periodic behavior. In a now classical set of papers, Newhouse, Ruelle, and Takens demonstrated 
a route to chaos through a region with quasiperiodic behavior, causing a surge in the study of 
the motion [2]. There is active current interest in development of a systematic numerical and 
theoretical approach to bifurcation theory for quasiperiodic systems. Our goal in this paper is 
to present a numerical method for the fast calculation of the limit of Birkhoff averages in quasi
periodic systems, allowing us to compute various key quantities.

If f is integrable and the dynamical system is ergodic on the set in which the trajectory lives, 
then the Birkhoff ergodic theorem asserts that the Birkhoff average BN defined as

BN( f ) :=
N−1∑
n=0

f (xn)/N� (2)

of a function f along an ergodic trajectory (xn) converges to the space average 
∫

f dµ as N → ∞ 
for μ-almost every x0, where μ is the unique invariant probability measure. In particular for 
quasiperiodic systems all trajectories with initial point in the ergodic set have the same limit 
of their Birkhoff averages. We develop a numerical technique for calculating the limit of such 
averages, where instead of weighting the terms f (xn) in the average equally, we weight the 
early and late terms of the set {0, . . . , N − 1} much less than the terms with n ∼ N/2 in the 
middle. That is, rather than using the equal weighting (1/N) in the Birkhoff average, we use 
a weighting function w(n/N).

1.1.  Weighted Birkhoff averaging method

A function w : R → [0,∞) will be called a C∞ weighting function if w is infinitely differen-
tiable and w > 0 on (0, 1) and = 0 elsewhere. The example of such a function that we will use 
in this paper is in equation (3) (figure 1) defined as

w(t) :=

{
exp

(
−1

t(1−t)

)
, for t ∈ (0, 1)

0, for t /∈ (0, 1).
� (3)

S Das et alNonlinearity 30 (2017) 4111
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See equation  (16) for a family of weighting functions w[ p](t) that converge even faster 
when many digits of precision are required. This is an example of what is often referred to 
as ‘window’ functions in spectral analysis or a ‘bump’ function in the theory of partitions of 
unity.

For d = 1, Td  is a simple closed curve. For a continuous function f and a C∞ quasiperi-
odic map T on Td , let xn ∈ Td be such that xn = T(xn−1) for all n � 1. We define a weighted 
Birkhoff (WBN ) average of f as

WBN( f )(x) :=
N−1∑
n=0

ŵn,Nf (xn), where ŵn,N =
w(n/N)∑N−1

j=0 w( j/N)
.� (4)

Note that WBN( f ) is indeed an average of the values f (xn) since 
∑N−1

n=0 ŵn,N = 1.

1.2.  Main convergence result

The main convergence result we are using is theorem 3.1. It is proved in [3] and an outline 
of the proof is given here in section 4. We now state a special case of the theorem that avoids 
unnecessary terminology and states only the C∞ case.

Assume f and T are C∞ and w is a C∞ weighting function, then for almost every rotation 
number ρ and for every positive integer m there is a constant Cm > 0 such that

∣∣∣∣WBN( f )(θ)−
∫

f (θ)dθ
∣∣∣∣ � CmN−m.

We refer to the above as super-fast (super polynomial) convergence or exponential conv
ergence. The above constant Cm depends on (i) w(t) and its first m derivatives; (ii) the func-
tion f (t) ; and (iii) the rotation number(s) of the quasiperiodic trajectory or more precisely, 
the small divisors arising out of the rotation vector. Our method of averaging does not give 
improved convergence results for chaotic systems.

Figure 1.  A C∞ weighting function. The figure shows the graph of a the function w(t) 
defined in equation (3). This function plays the role of a temporal weighting for the 
weighted Birkhoff average. That is, rather than using the equal weighting (1/N) in 
the usual Birkhoff average, we use the non-uniform weight proportional to w(n/N), 
where n is the iterate number and N is the orbit length. See equations (3) and (4) for a 
description of this weighted Birkhoff average.

S Das et alNonlinearity 30 (2017) 4111
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In [4–7], Laskar employs a Hanning data weighting function and the analogue of our sin2 
weighting function for his computations, which lead to the convergence of order 1/N2 or 
1/N4, and 1/N3 respectively, (p 136 in [4]) where N is the length of a orbit. Specifically, the 
weighting function cos2(πx) for x ∈ (−1, 1) and averages over iterates from −N  to N. He 
mentions the C∞ filter we use in Remark 2 of the appendix of [4], p. 146, though he does 
not use it. There seems to be no advantage to using his lower order methods than C∞ filter. 
In particular the programming of both is quite simple. We will compare the two methods in 
figures 7(b), 9, 12(b) and 14.

Other authors have considered related numerical methods (see section 3.9), in particular 
[8–10], which we will compare to our approach when we introduce our averaging method in 
section 3. See also [11–20]. We announced some of the results presented here in [21].

1.3. The Babylonian problem of quasiperiodic rotation numbers

What constitutes a ‘big-data’ problem depends on the speed of computation available. With 
this understanding, the first big-data problem was 2500+  years ago when the Babylonians 
computed the three periods of the Moon from data on the position of the Moon collected 
almost daily for many years. The Moon’s position through the fixed stars can be viewed as a 
quasiperiodic trajectory with d = 3 and their problem was to compute the rotation numbers 
from such a trajectory, which they did with high accuracy. See [22].

1.4.  Applications

We demonstrate our weighted Birkhoff averaging method and its convergence rate by com-
puting rotation numbers, conjugacies (i.e. changes of variables), and their Fourier series in 
dimensions one and two. We will refer to a one-dimensional quasiperiodic curve as a curve.

We start by describing our results for a key example of quasiperiodicity: the (circular, 
planar) restricted three-body problem (R3BP). This is an idealized model of the motion of a 
planet, a large moon, and an asteroid governed by Newtonian mechanics, in a model studied 
by Poincaré [23, 24]. In particular, we consider a planar three-body problem consisting of two 
massive bodies (‘planet’ and ‘moon’) moving in circles about their center of mass and a third 
body (‘asteroid’) whose mass is infinitesimal, having no effect on the dynamics of the other 
two.

We assume that the moon has mass μ and the planet mass is 1 − µ where µ = 0.1, and 
writing equations in rotating coordinates around the center of mass. Thus the planet remains 
fixed at (q1, p1) = (−0.1, 0), and the moon is fixed at (q2, p2) = (0.9, 0). In these coordinates, 
the satellite’s location and velocity are given by the generalized position vector (q1, q2) and 
generalized velocity vector ( p1, p2). The equations of motion are as follows.

dq1
dt = p1 + q2,

dq2
dt = p2 − q1,

dp1
dt = p2 − µ q1−1+µ

d3
moon

− (1 − µ) q1+µ
d3

planet
,

dp2
dt = −p1 − µ q2

d3
moon

− (1 − µ) q2

d3
planet

,

�

(5)

where

d2
moon = (q1 − 1 + µ)2 + q2

2

S Das et alNonlinearity 30 (2017) 4111



4115

d2
planet = (q1 + µ)2 + q2

2.

The following function H is a Hamiltonian for this system

H =
p2

1 + p2
2

2
+ ( p1q2 − p2q1) +

(
−1 − µ

dplanet
− µ

dmoon

)
,� (6)

where p1 = q̇1 − q2 and p2 = q̇2 + q1 (see [25] p 59 equations (63)–(66)).
The three terms in equation (6) are respectively the kinetic energy, angular moment, and 

the potential. For fixed H, Poincaré reduced this problem to the study of the Poincaré return 
map for a fixed value of H, only considering a discrete trajectory of the values of (q1, p1) on 
the section q2 = 0 and dq2/dt > 0. Thus we consider a map in two dimensions rather than a 
flow in four dimensions. Figure 2 shows one possible motion of the asteroid for the full flow. 
The orbit is spiraling on a torus. The black curve shows the corresponding trajectory on the 
Poincaré return map. Figure 3 shows the Poincaré return map for the asteroid for a variety of 
starting points. A variety of orbits are shown, most of which are quasiperiodic invariant curves.  

Figure 2.  Torus flow for the R3BP. This trajectory is a solution of equation (5), shown 
as curve B1 in figure 3. All four views are of the same two-dimensional quasiperiodic 
torus lying in R4. Each picture consists of the same trajectory spiraling densely on 
this torus. We require four different views of this torus because the embedding into 
three dimensions gives a highly non-intuitive images. In all four panels, the color of 
the trajectory is the value of the variable p2. The black curve is the set of values of the 
Poincaré return map with q2 = 0 for this flow torus.

S Das et alNonlinearity 30 (2017) 4111
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An exception is trajectory A in figure 3(a), which is an invariant recurrent set consisting of 
42 curves. Each curve is an invariant quasiperiodic curve under the 42nd iterate of the map.

Our paper proceeds as follows: in section 2, we give the formal definition of quasiperiodic-
ity, rotation number, and the conjugacy map to the rigid rotation. In section 3, we describe 

Figure 3.  Poincaré-return map for R3BP. Panels (a) and (b) show a projection to the 
q1 − p1 plane of solutions to the R3BP in equation (5). The value of the Hamiltonian H 
for all the curves shown is the same and H ≈ −2.63. They show various quasiperiodic 
trajectories on the Poincaré section corresponding to q2 = 0. Each time the flow hits 
q2 = 0 and dq2/dt > 0, we plot (q1, p1). Note that the planet is fixed at the point 
(−0.1, 0) and the moon at (0.9, 0). Thus some trajectories orbit both the planet–moon 
system and some orbit only the planet or only the moon. Each trajectory shown is a 
quasiperiodic curve. In Panel (c), white indicates the region of the (q1, p1) plane where 
the Poincaré return map is defined for H ≈ −2.63, and gray indicates the region of the 
plane where the Poincaré return map is not defined. Panel (c) also shows the trajectory 
which corresponds to the curve B1.

S Das et alNonlinearity 30 (2017) 4111
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our numerical technique in detail. We illustrate our weighted Birkhoff averaging method for 
a series of four examples, including an example of a two-dimensionally quasiperiodic map. 
In all cases, we get fast convergence and are in most cases able to give results with about 
30-digit accuracy. Section 4 describes what happens when a rotation number is unusually well 
approximated by a fraction with small denominator. In such cases we elliptically say the rota-
tion number is ‘nearly rational’. Finally, section 5 contains our concluding remarks.

2.  Quasiperiodicity

In the introduction, we described quasiperiodic motion as motion that could be fully under-
stood through a set of angles of rotation. We now formalize that idea in the following definition.

2.1.  Quasiperiodicity

For a dimension d � 1, let ρ = (ρ1, ρ2, . . . , ρd) be a vector whose coordinates are irrational 
and are independent over the integers (see equation (1)). The following map Tρ : Td → Td  is 
called a rigid rotation:

Tρ(θ) = θ + ρ mod 1, where ‘mod’ is applied to each coordinate.� (7)

A rigid rotation is the simplest, albeit least interesting example of a map with quasiperiodicity. 
Since Tρ gives the same values on opposite sides of the unit cube, we identify the sides and 
refer to the domain of the rigid rotation as a curve in one dimension and a d-torus in dimen-
sion d > 1. In this paper, we will sometimes refer to the curve as a 1-torus. We define a map 
T on an ambient space RD to be quasiperiodic if either T or some iterate Tk is topologically 
conjugate to a rigid rotation. We will assume k = 1 in the rest of this description. That is, a 
map T is quasiperiodic if there is a rigid rotation map Tρ and an invertible conjugacy map (i.e. 
change of coordinates) h : Td → RD such that

T(h(θ)) = h(Tρ(θ)).� (8)

A flow has quasiperiodic behavior if its associated Poincaré return map has quasiperiodic 
behavior.

For an invertible map T to be quasiperiodic on a curve C, it is necessary and sufficient that 
T has a dense trajectory, as shown in [26]. In general, a one-time differentiable invertible map 
on a curve without periodic points may not be quasiperiodic. However, if we assume that the 
map T and the curve C are twice continuously differentiable, then Denjoy [27] showed that 
these conditions are both necessary and sufficient. Furthermore, clearly any rigid irrational 
rotation map is a real analytic map, but even if we assume that a quasiperiodic function is 
analytic, Arnold showed that the conjugacy map h may only be continuous for some atypical 
rotation number. However, Herman (see [28]) proved that for homeomorphisms on a circle, 
most conjugacy maps h are analytic. Yamaguchi and Tanikawa [29] and Hunt, Khanin, Sinai 
and Yorke [30] show that the critical KAM curve may not be C2.

2.2.  Diophantine rotations

An irrational vector ρ ∈ Rd  is said to be Diophantine if for some β > 0 it is Diophantine of 
class β (see [28], definition 3.1), which means there exists Cβ > 0 such that for every k ∈ Zd , 
k �= 0 and every n ∈ Z,

S Das et alNonlinearity 30 (2017) 4111
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|k · ρ− n| � Cβ

‖k‖d+β .� (9)

We conjecture that if the map is analytic, then almost every quasiperiodic torus having a rota-
tion number that is Diophantine (i.e. far from rational) is real analytic.

2.2.1.  Assigning angular coordinates.  Let (xn) be the forward orbit under T, and (θn) the 
forward orbit under Tρ. That is, xn+1 = T(xn) and θn+1 = θn + ρ (mod 1).

In all of the d = 1 examples discussed here, the quasiperiodic curves are simple, closed, con-
vex curves, and hence, angular coordinates can be obtained using polar coordinates (φ, r) with 
respect to a fixed and pre-defined center, where r is uniquely determined by φ. More generally 
we may have an image of a quasiperiodic curve or torus that is not an embedding as a closed, 
convex curve. Such is not needed, since we have a method based on the Takens delay coordi-
nate maps that solves the problem. This general method of obtaining rotation numbers from the 
image of a quasiperiodic curve is announced in [21] with a complete description in [22].

Because of our nice embeddings the orbits (θn = nρ), (xn) and (φn) are all conjugate and 
there is a continuous map V : S1 → S1 such that

xn = h(θn), φn = V(θn), θn = nρ mod 1 for all n = 0, 1, 2, 3, . . .� (10)

Since V is invertible, the following map is periodic.

g(θ) := V(θ)− θ� (11)

For example, in figure 4(a), the angular coordinate φ for the quasiperiodic curve B1 of the 
restricted three-body problem is measured from a point (q1, p1) = (−0.2, 0).

3.  Weighted Birkhoff averaging WBN  and its applications

As mentioned in section 1, our approach is to modify the regular Birkhoff average in equa-
tion (2) using the weighting function w in equation (3) (see figure 1) so that for quasiperiodic 
dynamical systems, the weighted Birkhoff average in equation (4) convergences much faster 
to the same limit 

∫
f (θ)dθ. We will formalize this claim using the main result from the com-

panion paper [3].

Definition.  A function w : R → [0,∞) is said to be a C∞ bump function if w is C∞ and 
the support of w is [0, 1] and 

∫
R w(x)dx �= 0 and w and all of its derivatives vanish at 0 and 1.

Theorem 3.1 (Theorems 1.1, 3.1 in [3]).  For r ∈ [1,∞], let X be a Cr manifold and 
T : X → X  be a Cr map which is d-dimensionally quasiperiodic on an invariant set X0 ⊆ X, 
with invariant probability measure μ and a rotation vector of Diophantine class β(> 0). Let 
f : X → Rk be a Cr map. Let m > 1 be an integer such that r � d + m(d + β), and let 
w : R → R be a Cm bump function. Then there is a constant Cm depending upon w, f , m, M, 
and β but independent of x0 ∈ X0  such that

∣∣∣∣(WBNf )(x0)−
∫

X0

f dµ
∣∣∣∣ � CmN−m.� (12)

In particular, if r = ∞ and w is a C∞ bump function, then equation  (12) holds for every 
m ∈ N.

Theorem 3.1 is proved in section 4 in a way that lets us determine what happens when an 
irrational rotation number is near a rational number.

S Das et alNonlinearity 30 (2017) 4111
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3.1.  Diophantine rotation numbers

The assumption on the rotation numbers being Diophantine means that the rotation numbers 
cannot be closely approximated by rational numbers with small denominators. For numbers 
which are not Diophantine, the trajectories have ergodic properties ‘close’ to periodic orbits 
and therefore, do not converge slower than the rate N−k for some k.

Figure 4.  Quasiperiodicity for the R3BP. For the quasiperiodic curve B1 from figure 3, 
panel (a) shows the curve B1, along with the projection mapping from xn, the nth iterate 
in the (q1, p1) coordinates, to angular coordinate φn. It is parameterized by coordinates 
φ ∈ S1 ≡ [0, 1). Panel (b) depicts the periodic part g(θ) of the one-dimensional 
conjugacy map (equation (11)) between the quasiperiodic behavior and rigid rotation by 
ρ. The curve represents the true Fourier series up to 30 decimal digits. Panel (c) shows 
the convergence rate of the error in the rotation number ρN  as a function of the number 
of iterates N. The ‘error’ is the difference |ρN − ρN∗ |, where N∗ = 400 000 is large 
enough so that ρN  appears to have converged. The straight line is an upper bound for the 
curve and its exponent indicates the rate of convergence. Panel (d) shows the norm of 
the Fourier coefficients of the conjugacy as a function of index. This exponential decay 
indicates that the conjugacy function is analytic, up to numerical precision. The step 
size used for the eighth order Runge–Kutta scheme is 2 × 10−5.

S Das et alNonlinearity 30 (2017) 4111
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3.2.  Robustness of assumptions

It is well known that for every β > 0 the set of Diophantine vectors of class β have full 
Lebesgue measure in Rd (see for example, [28], 4.1). Thus, the assumption of the rotation 
number being Diophantine is robust in a measure theoretic sense, i.e. in physical experiments, 
the rotation number will be Diophantine with probability 1.

3.3.  Computing a rotation number or rotation vector

We now show how to apply this averaging method in computation. We observe that N must 
generally be larger for T2 than for T1 to get a 30-digit accuracy.

According to the definition of ‘quasiperiodicity’, a quasiperiodic map is conjugate to a 
rigid rotation of the form equation (7) with rotation vector ρ. However, this vector ρ is not 
unique. When the dimension d = 1, there are two choices of ρ depending on whether you 
move clockwise or counterclockwise around the circle, and for d > 1, it is shown in [22] that 
there is a set of choices for ρ which are related to each other by unimodular transformations of 
Rd and are dense in Td . Our goal will be to find any one of these equivalent rotation vectors. 
The rotation vector of a quasiperiodic trajectory (yn)

N−1
n=0  can be viewed as the average rotation 

traversed by the sequence of d-vectors (T(θn)− θn), which by equation (10) is equivalent to 
the average of the angular increments (φn+1 − φn). To make the notion of the angular distance 
between φn and φn+1 consistent, we must make this choice continuously. By conjugating with 
(hV−1) from equation (10) if necessary, we may assume that the map T is in angular coordi-
nates on Td .

We then associate with T a continuous map T̃  on the full Euclidean space Rd such that

T̃(z) (mod 1) = T(z (mod 1)).

The map T̃  is called a lift of T, and z ∈ Rd is a lift of φ ∈ Td.
Since T is invertible, the map T̃(z)− z has period one in every coordinate direction. For 

example, the rigid rotation T(φ) = φ+ ρ (mod 1), for θ in Td  has a corresponding lift map 
T̃(z) = z + ρ. Of course if ρ was 

√
2, we would have the same map T as for ρ =

√
2 − 1 so 

we define T̃  using rotation numbers are in (0, 1). Using the lift, we now give a formula for the 
rotation vector for the trajectory (yn) starting at y0:

ρ(T) := lim
N→∞

1
N

N−1∑
n=0

(
T̃(zn)− zn

)
.� (13)

This average converges slowly as N → ∞, with order of at most 1/N . However, since 
equation  (13) can be written as a Birkhoff average by writing f (zn) = T̃(zn)− zn, we can 
apply our method to this function. That is, let (zn)

N−1
n=0  be an orbit for T̃ . Our approximation of 

ρ is given by the weighted Birkhoff average of f,

WBN(zn+1 − zn) :=
N−1∑
n=0

ŵn,N(zn+1 − zn) → ρ as N → ∞.� (14)

3.4.  Convergence rate of the weighted Birkhoff average WBN

In order to illustrate the speed of convergence of our weighted Birkhoff average WBN  as 
N → ∞, we introduce four different possible choices for the weighting function w, depicted 

S Das et alNonlinearity 30 (2017) 4111
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in figure 5, and compare the convergence results for computing the rotation number for each 
of these choices of w.

wequal(t) := 1 (Birkhoff’s choice)
wquad(t) := t(1 − t)

wsin2(t) := sin2(πt)

w[1](t) := wexp(t) := exp

(
−1

t(1 − t)

)
.

�

(15)

The weighting functions described above are defined to be 0 outside (0, 1) and equal to the 
specified function inside (0, 1). Recall that the last function in the list, wexp, is the function 
used in our calculations. It is the only one in the list that is C∞. The others fail to be C∞ at 
t = 0 and t = 1. A family of C∞ weighting functions can be defined for p � 1 as

w[ p](t) := exp

(
−1

t p(1 − t) p

)
for t ∈ (0, 1)� (16)

and = 0 elsewhere. This paper mainly uses w = w[1]. The function w[2] results in an averaging 
method which converges noticeably faster than w[1] when using 30-digit precision, but not in 

15-digit precision. We will write the weighted Birkhoff averages as WB[1]
N  (or just WBN ) and 

WB[2]
N  when using w[1] and w[2] respectively. See figure 7 where the two are compared.

When we compute with the first choice of w, we recover the truncated sum in the definition 
of the Birkhoff average. To estimate the error, we expect the difference f (xN+1)− f (xN) to 
be of order one, implying that for wequal, the error in the average is generally proportional to 
N−1 in our figures. The choice of a particular starting point also creates a similar uncertainty 
of order 1/N . Every function w is always positive between 0 and 1. For all but the first choice, 
the function vanishes as t approaches 0 and 1. In addition, going down the list, increasing 

Figure 5.  Variations of different weighting functions. This is a plot of three non-
constant weighting functions from equation (15) and below wquad (top), wsin2 (second), 
wexp (lowest). Since only the shape matters, they have been rescaled so that each has a 
peak of approximately 1.0.
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number of derivatives of w vanish for t → 0 and t → 1, with all derivatives of wexp vanishing 
at 0 and 1. We thus expect the effect of the starting and endpoints to decay at the same rate as 
this number of vanishing derivatives. Indeed, we find that wquad corresponds approximately 
to order 1/N2 convergence, wsin2 to 1/N3 convergence, and wexp to convergence faster than 
any polynomial in 1/N , i.e. for every integer m, there is a constant C > 0 such that for N suf-
ficiently large, |WBNf −

∫
f dµ| � CN−m. Figures 12(b) and 9 show this effect. We have not 

tried other C∞ weighting functions.

3.5.  Estimating error when the true rotation number is known

In order to test the error in the calculation of rotation number, we present two examples below 
where we know the exact rotation number. This allows us to determine the actual error in the 
calculation for the WBN  method as N increases. In both cases the error decreases to less than 
10−31 and then it grows as N increases, apparently due to accumulated round-off error.

Example 1.  Let (θn) be an orbit under the rigid rotation described in equation  (7) for a 
rotation by ρ =

√
2 − 1. Assume that what we observe is φ, a perturbed version of θ, namely,

φn = θn + α cos(2πθn) + β sin(2πθn), where θn = nρ (mod 1).� (17)

We use the weighted Birkhoff average as in equation ((14)) (changing y to φ) to obtain an 
estimate of the rotation number ρ from this orbit. Figure 6 shows the results for α = 0.1 and 
β = 0.2 in (a) and for the case α = 0.0 and β = 0.0 in (b).

Example 2.  Figure 7 shows a geometric version of the problem from the previous example, 
and again the error in the rotation number is small.

Figure 6.  Testing how well the WBN  method can determine the rotation number. Panel 
(a) shows the convergence in the calculation of a known rotation number ρ =

√
2 − 1, 

for the trajectory (φn) from equation ((17)), with α = 0.1, β = 0.2, and ρ =
√

2 − 1. 
The error quickly drops to the limit of numerical precision and then increases slowly as 
N increases. This increase in the error is apparently due to accumulated round-off error. 
Panel (b) shows the increasing round-off error in the rotation number for the trivial case 
(α = β = 0). Here, φn = nρ (mod 1) and the error grows after attaining a minimum as 
N increases.
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3.6.  Fourier coefficients and change of coordinates reconstruction

For a quasiperiodic curve as shown in figure 4(a), there are two approaches to representing 
the curve. Firstly, we can write the coordinates (X, Y) as a function of θ ∈ S1, or secondly, we 
can reduce the dimension and represent the points on the curve by an angle φ ∈ S1, that is, 
φ(X(θ), Y(θ)), which is also V(θ) = θ + g(θ). We have shown g in figure 4(b) and the expo-
nential decay of the norm of the Fourier coefficients in figure 4(d). We report the Fourier series 
for the periodic part g(θ).

Given a continuous periodic map f : S1 → R, the Fourier series representation of f is the 
following:

For every θ ∈ S1, f (θ) =
∞∑

k=−∞

akei2πkθ,� (18)

where the complex coefficient ak is given by the formula

ak =

∫

θ∈S1
f (θ)e−i2πkθdθ.� (19)

If we only have access to an ergodic orbit (xn) on a curve, then we cannot use the fast 
Fourier transform as we only have the function values f (xn) along a quasiperiodic trajectory, 
and a rotation number ρ. Using interpolation to get the grid needed to apply a fast Fourier 

Figure 7.  The error in the computed value of rotation number when the rotation number 
is known. Panel (a) shows the geometric configuration of the problem, with a constant 
rotation vector ρ =

√
2 − 1 about the origin. The trajectory is (nρ (mod 1)), but the 

observer measures the angle φ as seen from its perspective at P, which is midway 
between the center of the circle, O, and the circle itself. Panel (b) shows the convergence 
in the rotation number calculation averaging (φn+1 − φn) five ways, using the Birkhoff 
average (top curve denoted ‘equal’) and next ‘quad’ and then ‘sine’ and then the 

weighted Birkhoff averages WBN = WB[1]
N  and WB[2]

N  (lowest curve), for the trajectory 

(φn) described in (a). The error from the known value 
√

2 − 1 is calculated for several 

values of number N. The weighted Birkhoff average WB[1]
N  reaches 32-digit accuracy 

by N = 30 000 while WB[2]
N does so by N = 8000, at which point the sin2(πt) curve has 

an accuracy to 10−9, and its curve is proportional to N−2.5.
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transform introduces significant interpolation errors. So instead, we obtain these coefficients 
using a weighted Birkhoff average on a trajectory (xn) by applying the functional WBN . For 
k = 0, we find a0 by applying WBN  to the function 1. Note that for all k, a−k = āk. For k > 0, 
we find ak as follows:

ak = WBN( f (θ)e−i2πkθ) =

N−1∑
n=0

f (xn)e−i2πknρŵn,N .� (20)

This is depicted for the R3BP in figure 4, for the standard map in figure 10, for the forced van 
der Pol equation in figure 11. In all three one-dimensional cases, we depict |ak| as a function of 
k for k � 0 only, as for all k, |a−k| = |ak|. Our main observation is that the Fourier coefficients 
decay exponentially; that is, for some positive numbers α and β, in dimension one, the Fourier 
coefficients satisfy

|ak| � αe−β|k| for all k ∈ Z.� (21)

This is characteristic of analytic functions. Therefore, the conjugacy functions of all our 
examples are effectively, analytic, ‘effectively’ meaning within the precision of our quadruple 
precision numerics. In two dimensions, the computation of Fourier coefficients is similar, but 
instead of only having one exponential functions, for each ( j, k), we have two linearly inde-
pendent sets of exponentials.

ei( jx+ky) and ei( jx−ky).
We define aj,k and aj,−k  to be the complex-valued coefficients corresponding to these two 
functions.

Figure 8.  The standard map. Panel (a) shows a variety of orbits from different initial 
conditions in the standard map S1 defined in equation  (22). We can see both chaos 
(shaded area) and quasiperiodic orbits under this map. A single curve with quasiperiodic 
behavior is plotted in panel (b). The orbit has initial conditions (x, y) ≈ (−0.607, 2.01). 
That is, if we restrict the map to this invariant curve, then it appears to be topologically 
conjugate to a rigid irrational rotation.
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3.7.  Examples

3.7.1. The standard map.  The standard map is an area preserving map on the two-dimensional 
torus, often studied as a typical example of analytic twist maps (see [29]). It is defined as 
follows

S1

(
x
y

)
=

(
x + y

y + α sin(x + y)

)
(mod 2π).

�
(22)

In this paper, we only consider the case α = 1.0. Figure 8(a) shows the trajectories starting 
at a variety of different initial conditions plotted in different colors. The shaded set is a large 
invariant chaotic set with chaotic behavior, but many other invariant sets consist of one or more 
topological circles, on which the system has quasiperiodic behavior. For example, initial con-
dition (π, 1.65) yields chaos while (π, 1.5) yields a quasiperiodic trajectory. As is clearly the 
case here, one-dimensional quasiperiodic sets often occur in families for non-linear processes, 
structured like the rings of an onion. There are typically narrow bands of chaos between quasi
periodic onion rings. Usually these rings are differentiable images of the d-torus. We have 
computed the rotation number to be 0.120 552 721 973 755 133 002 981 643 698 39 for one 
such standard map orbit shown in the figure 8(b) using quadruple precision. Figure 9 shows 
a convergence rate of O(N−8.75) in computing the rotation number using WBN . Figure 10(a) 
shows the periodic parts g of conjugacies of the quasiperiodic orbit, and figure 10(b) shows the 
absolute values of Fourier coefficients representing an exponential decay.

3.7.2. The forced Van der Pol oscillator.  Figure 11(a) shows attracting orbits for the time-
2π/0.83 map of the following periodically forced Van der Pol oscillator with nonlinear damp-
ing [31]

d2x
dt2 − 0.2

(
1 − x2) dx

dt
+ 20x3 = F sin (0.83t) ,� (23)

for several values of F. While the innermost orbit shown is chaotic, the outer orbits are 
topological circles with quasiperiodic behavior7. Each curve was assigned the angular coor-
dinates of equation (13) by assigning the points on the curve the angle with respect to the 
origin (0, 0). Figure 11(b) shows the periodic parts g of conjugacies of quasiperiodic orbits, 
and figure 11(c) shows the absolute values of Fourier coefficients representing exponential 
decays.

3.7.3.  A two-dimensional torus map.  So far, the quasiperiodic sets studied here are closed 
curves. We now describe an example [32–34] of a two-dimensional quasiperiodic torus map 
on T2. This is a two-dimensional version of Arnold’s family of one-dimensional maps (see 
[35]). The map is given by (T1, T2) where

T1(x, y) =
[
x + ω1 +

ε

2π
P1(x, y)

]
(mod 1),

T2(x, y) =
[
y + ω2 +

ε

2π
P2(x, y)

]
(mod 1),

�
(24)

and Pi(x, y), i = 1, 2 are periodic functions with period one in both variables, defined by:

7 As with the standard map, we have specified all non-essential parameters rather than stating the most general form 
of the Van der Pol equation. Our computed rotation numbers for the three orbits F = 5.0, 15.0, and 25.0 are 
0.292 061 263 291 995 892 855 775 787 189 59, 0.375 534 411 131 440 108 849 089 280 833 18  
and 0.562 353 700 926 850 566 344 192 213 361 54 respectively.
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Pi(x, y) =
4∑

j=1

ai,j sin(2παi,j), with αi,j = rjx + sjy + bi,j.

The values of all coefficients are given in table 1. This choice of this function is based on 
[32, 33]. The papers use the same form of equation, though the constants are close to but not 
precisely the same as the ones used previously. This fits with the point of view advocated by 
these papers: that the constants should be randomly chosen. Since we are using higher preci-
sion, we have chosen constants that are irrational to the level of our precision. The forward 
orbit is dense on the torus, and the map is a nonlinear map which exhibits two-dimensional 
quasiperiodic behavior.

Figure 12(a) depicts iterates of the orbit, indicating that it is dense in the torus. We use our 
weighted Birkhoff average to compute the two Lyapunov exponents, which have super conv
ergence to zero. Figure 12(b) shows one of them. In terms of method, this is just a matter of 

Figure 9.  Rate of convergence in the rotation number for different weighting functions. 
This shows results for the standard map using the same trajectory for each plot. For 
a given w and a given number of iterates N, the rotation number ρ̂  approximation is 
calculated for the curve all using the same trajectory. The plotted error of the calculation 
is the difference |ρ− ρ̂| as a function of N. The exponential weighting function wexp 
allows WBN  to reach a limit by approximately N = 150 000 at which point it is about 
1016 times more accurate than the next best curve, the sin2(πt) weighting. After that the 
error fluctuates by approximately 10−30 . The black line indicates the average slope of 
the bottom-most curve for large N and hence the approximate rate of convergence for 
the C∞ weighted Birkhoff average. The sin2(πt) weighting curve convergence rate is 
proportional to N−3.0.

S Das et alNonlinearity 30 (2017) 4111



4127

Figure 10.  The standard map conjugacy. This figure  shows the analysis of the 
quasiperiodic trajectory in figure  8. Panel (a) depicts the periodic part g(θ) of the 
conjugacy between the quasiperiodic behavior and rigid rotation by ρ, measured with 
respect to the center point (x, y) = (π, 0). See equation (11) for a description of g(θ). 
Panel (b) shows the decay of the Fourier coefficients. Since the conjugacy is an odd 
function, the odd-numbered Fourier coefficients are zero and therefore have been 
omitted from the picture. The decay of the Fourier terms can be bounded from above be 
an exponential decay, which suggests that the conjugacy is analytic. An orbit of length 
N = 107 is used for these computations. A smaller orbit of length N = 106 does not 
lead to any significant changes.

Figure 11.  Forced Van der Pol oscillator. Panel (a) shows attracting orbits for 
a number of different forcing values F for the stroboscopic map of the van der Pol 
flow given in equation  (23). The plot depicts points (X, Y) = (x(tk), x′(tk)), where 
tk = 2kπ/0.83, k = 0, 1, 2, . . . . The chaotic orbit lying inside the cycles corresponds to 
F = 45.0. There are stable quasiperiodic orbits shown as curves, which from outermost 
to innermost correspond to F = 5.0, 15.0, 25.0 and 35.0 respectively. Panel (b) is the 
periodic part g(θ) of the conjugacy (equation (10)) to a rigid rotation, measured with 
respect to the center point (0, 0) for F = 5.0, 15.0,and 25.0. Panel (c) shows the absolute 
values of the Fourier coefficients of g. Their linear decay as |k| increases in this log-
linear plot means the coefficients decay exponentially fast, which is a signature of the 
analyticity g and hence of the conjugacy to a rigid rotation. The decay is exponentially 
fast down to the resolution of the numerics.
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changing the function f used in WBN  in equation (4). Likewise, finding rotation numbers in 
two dimensions uses the same technique as in the one-dimensional case (see figure 12(c)). In 
all of our calculations, the computation is significantly longer than in dimension one in order 
to get the same accuracy, perhaps because in dimension two sufficient coverage by a trajectory 
may vary like the square of the side length of the domain. Figure 12(b) shows a convergence 
rate of O(N−10.0).

The reconstructed conjugacy function for the two-dimensional torus is depicted in fig-
ure 13(a). The decay of Fourier coefficients shown in figure 13(b) displays 

√
j2 + k2  on the 

horizontal axis, and |aj,k| on the vertical axis, where both of these coefficients are complex, 

Figure 12.  Two-dimensional torus map. Panel (a) shows an orbit of length 104 for 
the two-dimensional quasiperiodic torus map. The orbit appears to be dense, which 
is consistent with quasiperiodicity. Panel (b) shows the convergence rate for the first 
rotation number for the four different weighting functions given in equation  (15), 
respectively from highest curve to lowest, plotted in red, magenta, green, and blue 
(online). The black line is an upper bound for the blue curve and its exponent indicates 
the rate of convergence when using the C∞ weight. It has a slope of −10 in the log-
linear graph while the corresponding slope for the sin2(πt) weighting function would 
be −3. That is, its rotation rate’s error is proportional to N−3.

Table 1.  Coefficients for the torus map. All values are used in quadruple precision, but 
in this table the repeated zeros on the end of the number are suppressed.

Coefficient Value

ε 0.423 4823
ω1 0.711 511 344 577 763 622 646 812 066 970 062 38
ω2 0.877 350 098 112 614 561 009 170 866 728 499 71
a1,j (−0.268,−0.9106, 0.3,−0.04)
a2,j (0.08,−0.56, 0.947,−0.4003)
b1,j (0.985, 0.504, 0.947, 0.2334)
b2,j (0.99, 0.33, 0.29, 0.155)
rj (1, 0, 1, 0)
sj (0, 1, 1,−1)
Computed ρ1 0.718 053 759 982 066 107 095 244 936 117
Computed ρ2 0.885 304 666 596 099 792 113 366 824 157
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meaning that | · | represents the modulus. Again here, the coefficients decay exponentially, 
though the decay of coefficients is considerably slower in two dimensions. The data set looks 
quite a lot more crowded in this case, since there are 104 coefficients and many different val-
ues of ( j, k) have almost same values of 

√
j2 + k2 . In addition, the coefficients aj,k generally 

converge at different exponential rates. This is why there is a strange looking set consisting of 
an upper and a lower cloud of data in figure 13(b). While more information on the difference 
between these coefficients is gained by interactively viewing the data in three dimensions, we 
have not been able to find a satisfactory static flat projection of this data. We feel that in a still 
image, the data cloud shown conveys the maximum information.

3.7.4. The three-body problem revisited.  We have computed trajectories for the Poincaré 
return map using an eighth order Runge–Kutta method with time step 2 × 10−5, in quadruple 
precision and figure 4(c) is consistent with 30-digit accuracy of the rotation number (see item 
1 below) for the quasiperiodic orbit of the three-body problem labeled B1 in figure 3(b). The 
initial condition for this orbit is (q1, q2, p1, p2) = (−0.15, 0, 0, p2) where p2 ≈ 5.41 is chosen 
so that the Hamiltonian is about −2.63. While it is more straightforward to obtain a numerical 
trajectory when the quasiperiodic trajectory is stable, it is also possible when it is a saddle or 
a repeller. Our weighted Birkhoff average WBN  approach works equally well for both cases. 
The extent of convergence of WBN  is limited by the accuracy of the trajectory data.We now 
list results of our numerical methods for the restricted three-body problem.

	 1.	The rotation number is 0.063 961 728 757 453 097 164 077 724 400 302, computed  
to 30-digit accuracy, and Figure  4(c) shows the accuracy plateauing at about 30-digit 
accuracy.

	 2.	We compute 200 terms of the Fourier series, the last 125 of which have magnitude near 0 
(i.e. less than 10−30). There is a conjugacy map h between the first return map and a rigid 
rotation on the circle. Evaluating the Fourier series allows us to reconstruct the conjugacy 
map (see figure 4(b)).

Figure 13.  Conjugacy for the two-dimensional torus map. Panel (a) depicts the 
reconstruction of the periodic part g (see equation (11)) of the first component of the 
conjugacy function for the torus map. The surface is colored by height. The surface is 
created using the Fourier coefficients shown in (b). The second conjugacy function is 
similar but not depicted here. Panel (b) shows the norm of the Fourier coefficients |aj,k| 
and |aj,−k|, for 0 � j, k � 100 for the first component of the conjugacy function from 
panel (a).
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	 3.	We find that the coefficients for the conjugacy map decrease exponentially fast (see 
figure 4(d)). That is a signature of a real analytic function as in figure 4(b).

	 4.	The high rate of convergence of O(N−15.0) for the rotation number in figure 4(c) suggests 
that we have an effective computational method that yields an accuracy that is close to the 
limit of numeric precision, provided N is sufficiently large.

3.7.5.  Speed of convergence of Fourier series for a conjugacy.  In a separate report [36], we 
examine conjugacies of the quasiperiodic curves in the Siegel disk. The map is a simple one-
dimensional complex dynamical system zn+1 = f (zn), where

f (z) = z2 + e2πiρz� (25)

and ρ = (
√

5 − 1)/2 [9, 37].
It is found (see figure 3 in [36]) that the invariant curves get more irregular near the bound-

ary of the disk. While typical smooth quasiperioidc curves require about 70 Fourier coef-
ficients for 30-digit precision, near the boundary of the Siegel disk the curves are much more 
irregular and can require 24 000 coefficients (or more) for the same precision. The curves thus 
become increasingly fractal looking near the boundary and the Fourier series converges much 
more slowly. We remark that we would expect a similar slower convergence when exploring a 
case like the well known last KAM circle of the Standard Map.

3.7.6.  Sources of error.  We end this section by noting a few sources of error in the computa-
tion of Fourier coefficients. If the number of iterates N is too small, then we will not have 
sufficient coverage to get a good approximation of the coefficients, and the problem becomes 
more acute as the coefficient number |k| grows. If the approximation of the rotation number is 
not accurate, then we cannot expect the approximations of our Fourier coefficients to be good 
either, and given an error in the rotation number, there will be a kmax such that the Fourier 
coefficients ak with |k| > kmax cannot be approximated with any reasonable accuracy. A more 
subtle form of a error comes from the fact that if the rotation number we are trying to estimate 
is close to being commensurate with the rotation number, then we will get unexpectedly insuf-
ficient coverage of the space when performing iteration. See section 4.2.

3.8.  Lyapunov exponents computed as a weighted average

Lyapunov exponents are an important characterization of the dynamics resulting from the map 
T. They measure the rate at which nearby trajectories diverge or converge and can be used 
to distinguish between chaos and quasiperiodicity, for example, the existence of a positive 
Lyapunov exponent implies chaos, while for quasiperiodic systems, all d Lyapunov exponents 
for equation (1) are zero. In this section, we will show a way to obtain ‘super-convergence’ to 
the Lyapunov exponents of a quasiperiodic dynamics on a 2D torus. Since we are consider-
ing the dynamics restricted to the torus, we do not calculate the Lyapunov exponents for the 
normal sub-bundle.

Lyapunov exponents are usually calculated numerically as an average of logarithms with 
all terms weighted equally, and the computations are therefore limited by extremely slow 
convergence rates. For quasiperiodic systems we would expect the error in the exponents to be 
O(1/N). For 2-dimensional quasiperiodic systems, the Lyapunov exponent can be expressed 
as a weighted Birkhoff average (using WBN ) and we observe that we obtain the Lyapunov 

exponents much faster. Figures  14(a) and (b) show convergence rates of O(N−20.0) and 
O(N−16.7) for the computation of the Lyapunov exponents using WBN . (We make no claim 

S Das et alNonlinearity 30 (2017) 4111



4131

that we can prove convergence in (a) is super fast.) Using the weighted Birkhoff average does 
not change the limit.

Recall that given a d-manifold M and a map T : M → M  with an invariant probability 
measure μ, Oseledets’ multiplicative ergodic theorem (see [38]) states that there exists num-
bers λ1 � . . . � λd such that for μ-almost every point x and every vector v in the tangent space 
at x, the limit

lim
N→∞

ln ‖DTN(x)v‖
N

� (26)

exists and equals one among λ1, . . . ,λd. These numbers are the Lyapunov exponents of the 
map. For the rest of the section, we will assume that we have a quasiperiodic orbit (xn) filling 
out a two-dimensional torus T2 and therefore d = 2 and M = T2.

One of the properties of the largest Lyapunov exponent λ2 is that for almost every vector v 
in the tangent space at x0, the quantity N−1 ln ‖DTN(x0)v‖ converges to λ2. Note that this limit 
can be expressed as an average along the trajectory (xn) in the following manner:

ln ‖DTn(x0)v‖
N

=
N−1∑
n=0

ln ‖vn‖
N

, where vn = DT(xn−1)
vn−1

‖vn−1‖
, v0 = v.

We obtain the same limit by taking our weighted Birkhoff average instead of a uniformly 
weighted average as above. We observe (without proof) that for quasiperiodic orbits, we get 
super-convergence to the same limit by taking a weighted Birkhoff average in the following 
manner:

λ2 = lim
N→∞

N−1∑
n=0

ŵn,N ln ‖vn‖, where vn = DT(xn−1)
vn−1

‖vn−1‖
, v0 = v.

See chapter 3 from [39] for an explanation of this method.

Figure 14.  Lyapunov exponents computed with WBN . The two Lyapunov exponents of 
the torus map from figure 12 are computed using WBN  and we find them to be 0 up to 
our numerical accuracy. (a) The computation for the first Lyapunov exponent is shown 
in blue for up to 107 iterates. The other three curves depict the values attained using the 
three other weighting functions, using the same order (and color scheme online) as in 
figure 12. Panel (b) shows the sum of the two Lyapunov exponents computed via direct 
computation of the determinant as described in equation (27). In the two panels, the 
sin2(πt) graphs are approximately proportional to N−3.
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Once we have calculated λ2, λ1 can be obtained from the the sum λ1 + λ2 of the 
Lyapunov exponents. λ1 + λ2 can be expressed as the Birkhoff average of the function 
f1(x) := ln | detDT(x)|. Note that detDT(xn) > 0 for an orientation preserving map T. 
Therefore, we have

λ1 + λ2 = lim
N→∞

ln | detDTN(x)|
N

= lim
N→∞

BN( f1).

As mentioned before, the quantity BN( f1) converges to the limit 
∫

X ln | detDT(x)|dµ(x) and 
we can obtain super-convergence to the same limit using the quantity WBN( f1) as written 
below:

λ1 + λ2 = lim
N→∞

WBN( f1) = lim
N→∞

N−1∑
n=0

ŵn,N ln | detDT(xn)|.� (27)

3.9.  Related methods

See [4–8, 10] for references to earlier methods for computing Birkhoff averages along a quasi
periodic orbit.

For higher dimensional quasiperiodicity (d > 1) Laskar [4] has an interesting technique of 
finding the frequency σ that maximizes a function φ(σ). That corresponds to our rotation rate 
ρ. Each evaluation of φ(σ) requires application of the window filter (whereas our method uses 
only one application of WB). But his has the advantage of subtracting off this frequency and 
repeating this method to find the next frequency. Hence he has an automatic method for find-
ing multiple rotation rates. Presumably our method could be combined with his to improve on 
both methods—when dealing with higher dimensional quasiperiodicity.

Luque and Villanueva [8, 10] develop fast methods for obtaining rotation numbers for 
smooth or analytic functions on a quasiperiodic torus, sometimes with quasiperiodic forc-
ing with several rotation numbers. The paper [10] develops a technique to compute rota-
tion numbers (but not other function integrals) with error satisfying |error| � CpN−p  for 
N � 2 p where Cp is a constant. Their method of computation is defined recursively, with the 
p + 1st method being defined in terms of the pth. As p increases the computational complex-
ity increases for fixed N. If τ( p, Np) is their computation time when using N = Np, it appears 
that τ( p, Np)/Np → ∞ as p → ∞ (and Np → ∞). In comparison, computation time for our 
Weighted Birkhoff average is simply proportional to N since it requires a sum of N numbers. 
Figure 11 from [10] shows the rate of convergence to the rotation number for a quasiperi-
odic orbit arising from the R3BP. There, they get 30-digit accuracy for the rotation number 
using approximately 2000 000 trajectory points while we get the same accuracy with 20 000. 
The rate of convergence of their method is  ≈N−7.8. Their methods were extended in [40] to 
compute the derivatives of the rotation numbers for one-parameter families of circle diffeo-
morphisms, and in [41] to compute the Fourier coefficients of the conjugacy function (i.e. the 
change of variables between the map and rigid rotation).

3.9.1.  Newton methods in the literature.  An alternative approach to our approach for finding 
a conjugacy is considered in [42–45]. In the current paper, we are assuming that we are start-
ing with only a set of iterates for a single finite length forward trajectory, rather than having 
access to the functional form of the defining equation. In contrast, the approach in the papers 
above assumes access to the full form of the original defining equations. The Fourier series 
for the conjugacy is obtained and validated by using automatic differentiation. In addition,  
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in this current paper, we assume that we start with a point in an invariant torus with quasipe-
riodic dynamics, whereas the methods referenced above include a fast Newton’s method for 
finding invariant tori, Lyapunov multipliers, and invariant stable and unstable manifolds. See 
also Jorba [46].

Several variants of the Newton’s method have been employed to determine quasiperiodic 
trajectories in different settings. In [47] a variant of Newton’s method was applied to locate 
periodic or quasi-periodic relative satellite motion in a non-linear, non-conservative setting.

A partial differential equation-based approach was taken in [48], where the authors defined 
an invariance equation which involves partial derivatives. The invariant tori are then computed 
using finite element methods. See also section 2 in [48] for more references on the numerical 
computation of invariant tori. In [49], the authors used an application of the Newton’s method 
to compute elliptical, low dimensional invariant tori in Hamiltonian systems.

Computing the conjugacy to the rigid rotation is key to the methods of de la Llave et al 
[42–45]. They use this to obtain a numerical ‘proof’ of the existence of tori, and, what they 
call ‘ a posteriori KAM theory’.

4.  Why our method works and when N must be large

We will assume that we have a C∞ quasiperiodic map F : Td → Td  and a CM map f : Td → C. 
To better understand convergence on an averaging method applied to an f, write

f (θ) =
∑

k

akfk(θ), where fk(θ) := e2πik·θ.� (28)

In particular a0 =
∫
Td f . WBN  is of course a weighted average of ( f (nρ))N−1

n=0  and by the-
orem 3.1 WBN( f ) → a0  as N → ∞. Since an averaging process is linear, we can define 
ψN,k,ρ = WBN( fk), a collection of numbers that is independent of the choice of f. (More gen-
erally one could define ψw

N,k,ρ for any weighting function w and the advantages of different 
choices of w are reflected in the magnitudes |ψw

N,k,ρ|). They depend only on the averaging 
method (e.g. WBN ), k, N, and the rotation number ρ. This set encapsulates all errors that arise 
in the use of WBN . In particular, f (θ) =

∑
k akfk(θ), we have

WBN( f ) = a0 +
∑
k �=0

akψN,k,ρ.
� (29)

In particular ψN,0,ρ = 1 and for each k �= 0, limN→∞ ψN,k,ρ = 0. The rate of convergence to 
0 depends on ρ and k and convergence can be slow when e2πik·ρ − 1 ≈ 0, as we show in the 
next section.

To investigate the effects of the rotation number ρ on the numerical errors in calculating 
a Fourier coefficient, we show ψN,k,ρ = WBN( fk) for each k (0 � k � 250) for two cases of 
ρ =

√
2 − 1 and π − 3 in figure 15. The figure suggests that N = 105 is sufficient to calculate 

Fourier coefficients for ρ =
√

2 − 1, whereas for ρ = π − 3 even N = 105 is not sufficient.

4.1.  Sketch of proof of theorem 3.1

Here we sketch a proof that enables us to determine what happens when a rotation number is 
near a rational number.

Note that for any constant a0, WBN(a0 + f ) = a0 + WBN( f ) so for simplicity we will 
assume f has mean a0 = 0. Let I denote the identity operator and U denote the Koopman 
operator on L2(X,µ), defined as

S Das et alNonlinearity 30 (2017) 4111



4134

(Uf ) : x �→ f (F(x)), for all f ∈ L2(X,µ).

The idea of the proof is to provide two different estimates of the quantity

WBN(U − I)mf =
1
N

∑
n

w
( n

N

)
(U − I)mf (nρ).� (30)

First let m = 1 in equation (30). Then

1
N

∑
n

w
( n

N

)
(U − I) f (nρ) =

1
N

∑
n

w
( n

N

)
f ((n + 1)ρ)− 1

N

∑
n

w
( n

N

)
f (nρ)

=
1
N

∑
n

[
w
(

n + 1
N

)
− w

( n
N

)]
f (nρ).

Now taking absolute values on both sides give,
∣∣∣∣∣

1
N

∑
n

w
( n

N

)
(U − I) f (nρ)

∣∣∣∣∣ �
1
N
‖ f‖C0

∑
n

∣∣∣∣
1
N

w(1)
( n

N

)∣∣∣∣ �
1
N
‖ f‖C0‖w(1)‖C0 .

Figure 15.  Estimations of the numerical error in the calculations of Fourier coefficients. 
Panels (a) and (b) show the value of ψk,N,ρ = WBN( fk) for ρ =

√
2 − 1, when the 

number of iterations is N = 104 and 105, respectively. Panels (c) and (d) show for 
ρ = π − 3, when N = 104 and 105, respectively.
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Applying this procedure m times gives a constant cm > 0 such that,

|WBN(U − I)mf | � cmN−m‖ f‖C0 ,� (31)

where cm depends only on the first m derivatives of w.
The second way to evaluate equation (30) is by using the Fourier series for f. Note that f 

being CM implies that there is a constant Cf ,m > 0 such that |ak| � Cf ,m‖k‖−M . If k �= 0, then

WBN(U − I)mfk = (e2πik·ρ − 1)mWBNfk.

Hence, by equation (31),

|ψN,k| = |WBNfk| � cm

(
1

N |e2πik·ρ − 1|

)m

.� (32)

This implies

|WBN( f )| =

∣∣∣∣∣∣
∑
k �=0

akWBN( fk)

∣∣∣∣∣∣
�

∑
k �=0

|ak| |WBN( fk)|

� cm

(
1
N

)m ∑
k �=0

|ak|
∣∣∣∣

1
e2πik·ρ − 1

∣∣∣∣
m

.

� (33)

The claim of the theorem now follows from equation (9) and the decay rate of |ak|.

4.2.  Difficulties when ρ is approximately rational.

While theorem 3.1 requires ρ to be Diophantine to get fast convergence of WBN( f ) to 
∫

f dµ 
(the integral in the Birkhoff ergodic theorem), our computations have finite precision so we 
have to ask what this condition means in a finite precision world. With this in mind, we can 
restate the Diophantine condition, in equation (9), saying ρ is Diophantine (of class β) if there 
is some β > 0 for which

lim inf
|k|→∞

|k|d+β
∣∣e2πik·ρ − 1

∣∣ > 0.

In other words, the values of which k for which |k|d
∣∣e2πik·ρ − 1

∣∣ should not go to 0 too fast. 
This idea suggests defining

∆(k, ρ) := |k|d
∣∣e2πik·ρ − 1

∣∣ .

For fast convergence in computing Fourier series coefficients ak, the quantity ∆(k, ρ) 
should not be too small for the relevant k, those for which |ak| is likely to be larger than our 
error threshold, which in this paper is about 10−30 .

4.2.1.  What values of ∆(k , ρ) are we likely to encounter?  For ρ1 := (
√

5 + 1)/2, the golden 
mean, we find

min
k=2,··· ,106

∆(k, ρ1) ≈ 2.655.

It appears that lim inf |k|→∞ ∆(k, ρ1) = 2.809 925 · · · . Note the last term in equation (33) is 
similar to Δ except for the leading |k|. Of course the power −m can greatly multiply the prob-
lem of 

∣∣e2πik·ρ − 1
∣∣ being small. To offset 

∣∣e2πik·ρ − 1
∣∣ being smaller by a factor of 100, we 

might expect that convergence would require N in equation (33) to be larger by a factor of 100. 
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Of course both are raised to the same power m in these equations. Indeed in figure 16 we must 
increase N by a factor of 100 to get 30-digit convergence.

An illustration of the problem can be seen for ρ2 = π − 3 since π ≈ 355
113 , and |k| = 113 

yields the rather small value ∆(±113, ρ2) ≈ 0.021. Also ∆(±226, ρ2) ≈ 0.085. 
∆(±339, ρ2) ≈ 0.193. These suggest slow convergence for those k values. When computing 
a Fourier series for f using WBN  with this ρ, when N < 107, we obtain poor values for many 
Fourier coefficients as we illustrate in figure 16(a).

4.2.2.  Comparing a function to its Fourier series.  To estimate how accurate a computed  
Fourier series of a function f : Td → R1 is, define ak = WBN( ff−k) and fk(θ) := e2πik·θ 
(where k · θ denotes an inner product in Rd), and

f K,N(θ) :=
∑
|k|�K

akfk(θ).

To test how similar f and f K,N  are in the L2 and L1 sense, we compute the errors

δK,N
2 ( f ) :=

√
WBN(( f − f K,N)2) and δK,N

1 ( f ) := WBN(| f − f K,N |).� (34)

They are calculated in figure 16(b).

4.2.3.  A saw-tooth pattern of errors.  In the above example with N = 105, figure 16 shows 
a saw-tooth pattern with peaks at multiples of 113 where the slopes are all the same. Many 
coefficients have a big error, and all errors here are the result of ψN,k when k is a non-zero 
multiple of 113. To explain this saw-tooth effect, we note that we have found for this example 

Figure 16.  When ρ is near a rational. This figure is for the same case as figure 7(a), 
but with the rotation number ρ = π − 3. This rotation number is chosen because we 
require number of iterates N to be large to get accurate results. These plots show a 
slower convergence compared to the case in ρ =

√
2 − 1. The number of iterates N 

used to calculate Fourier coefficients is changed from the top to the bottom (N = 105 
(top), 106 (middle), 107 (bottom)). Panel (a) shows the norm of the Fourier coefficients 
ak of the periodic part of the conjugacy map—as a function of index k. There are peaks 
at the multiples of 113 for N = 105 and 106. Panel (b) shows the agreement and the 
disagreement of the Fourier series and the original function in L1 (+) and L2 (×) norms 
in equation (34) for the corresponding N. Note that the L1 and L2 errors are so similar that 
the + and  ×  overlap, yielding eight-legged spiders. The graph suggests that N = 107 is 
large enough to calculate Fourier coefficients, whereas for N = 105 and 106, it is best 
to include only 60 or 70 coefficients respectively, stopping when the error is minimum.
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that ψN,k ≈ 0 for N = 105, when k is not a multiple of 113 and in particular k �= 0, and here 
we assume all those values are indeed 0 to simplify computation except for k = 0 and |k| = k∗ 
for some k∗ � 1 such as k∗ = 113.

Suppose we wish to compute the Fourier coefficients of f and determine how accurate the 
result is. The computed kth coefficient, denoted âk  is

â|k| = â±k = WBN( f (θ)e±2πik·θ) =
∑

m

amψN,m±k� (35)

which has significant contributions from m ± k = 0 and |m ± k| = k∗. Since k∗ � 1, we can 
ignore a±k, and we conclude that for small integers n,

â|k∗±n| ≈ a|n|ψN,k∗ .

On the log-linear plot of the graph, the coefficients ak are almost linear, so it follows from this 
equation that the erroneous â|k∗±n| has the same slope (the absolute value of the derivative), 
and that each non-zero multiple of k∗ = 113 has the same error pattern. The heights of the 
peaks are a0ψN,mk∗ at k = mk∗ where m = 1, 2, · · ·.

4.2.4.  Remark on figure 10.  The panel (b) of this figure shows a jump in the Fourier series 
terms at coefficient |a506| (i.e. k = 253 in that figure). This does not seem to be a numerical 
artifact. In fact Δ does have a local minimum at 506 but ∆(506, ρ) = 1.03 is not particularly 
small for such minimum. Furthermore, changing the number of iterates (as mentioned in the 
caption) does not change the graph.

5.  Concluding remarks

We have developed a straightforward but effective computational tool for quickly computing 
a large variety of quantities for quasiperiodic orbits. These quantities include rotation vec-
tors, Fourier reconstruction of conjugacy maps, and in some cases Lyapunov exponents. The 
methods work well in one and higher dimensions. They are effective using both double and 
quadruple precision, though we have chosen to do most of our calculations in higher precision 
to show the full possibilities and quick convergence properties of our method.

The literature on quasiperiodicity is vast and windowing techniques analogous to ours are 
often used. But our goals in this paper are limited: to introduce the C∞ weighted Birkhoff 

averages WBN (=WB[1]
N ) and WB[2]

N  as numerically useful tools and to present some of its 
applications.

We note that the computational time for computing our weighting functions w(t) is almost 
the same as for the weighting function wsin2 that uses sin2(πt). Both are equally easy to 
program. But convergence is far faster with the weighted Birkhoff averages, as seen in fig-
ures 7(b), 9, 12(b) and 14.

Quasiperiodic orbits can occur in many different situations, for example, subject to peri-
odic forcing (see Luque and Villanueva [10]); as high-dimensional tori that are not simply 
embedded (see Medvedev et al [50]); in the presence of noise; etc. The question of whether 
our methods extend to these situations is worthy of further consideration.

5.1.  When must N be large to get convergence?

We have developed some diagnostics in section 4.2 to detect when N must be chosen espe-
cially large to get high accuracy—at least for the d = 1 dimensional cases. Computation of 
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Δ can be used to detect cases when N must be large to get accurate values for Fourier coef-
ficients. For example we found that because ∆(±113, ρ2) is so small, N must be increased 
by a factor of 100 to get an accurate Fourier series for the conjugacy map. One might ask if 
there are other k for which ∆(±113, ρ2) is quite small. We find ∆(±113, ρ2) < ∆(k, ρ2) for 
all k �= 113 and k < 107.
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