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Abstract. This paper studies spinodal decomposition in the Cahn-Hilliard
model on the unit disk. It has previously been shown that starting at initial

conditions near a homogeneous equilibrium on a rectangular domain, solutions

to the linearized and the nonlinear Cahn-Hilliard equation behave indistin-
guishably up to large distances from the homogeneous state. In this paper

we demonstrate how these results can be extended to nonrectangular domains.
Particular emphasis is put on the case of the unit disk, for which interesting

new phenomena can be observed. Our proof is based on vector-valued exten-

sions of probabilistic methods used in Wanner [37]. These are the first results
of this kind for domains more general than rectangular.

1. Introduction. Many natural dynamical processes generate complex and in-
triguing patterns. In some cases, these patterns are robust in that if the underlying
experiment is repeated, the same pattern occurs. The most elementary examples are
stationary, i.e., they do not change with time. However, many dynamical processes
produce patterns which exhibit neither robustness nor stationarity. The inherent
noise present in an experiment gives rise to different patterns each time the ex-
periment is repeated, but all patterns have the same qualitative features. One
such dynamical process is spinodal decomposition: This pattern formation process
occurs during the phase separation of alloys. Specifically, if a high-temperature ho-
mogeneous mixture of several metallic components is rapidly cooled below a certain
temperature, a process of phase separation can set in, during which the mixture
becomes inhomogeneous. It forms a fine-grained characteristic snake-like structure,
with steep transition layers between the components and a characteristic length
scale. If the experiment is repeated even with the greatest care to ensure almost
identical initial conditions, the observed pattern is clearly distinct but with the
same characteristic features.

A well-known model for spinodal decomposition in binary alloys is due to Cahn
and Hilliard [6, 9]. They propose the nonlinear parabolic equation

ut = −∆(ε2∆u + f(u)) in Ω ,
∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂Ω (1.1)

2000 Mathematics Subject Classification. 35K55, 35B05, 35B25, 35P10.
Key words and phrases. Phase separation, spinodal decomposition, Cahn-Hilliard equation.

1049



1050 J.P. DESI, E. SANDER AND T. WANNER

Figure 1. Patterns observed during spinodal decomposition on
the disk for ε = 0.015. The left diagram shows the solution at time
t = 0.0062, the right diagram is for t = 0.0123. Black represents
one component (u = −1), and white the other (u = 1). Shades of
gray represent a mixture of the two components.

for the concentration u = u(t, x) of one of the two metals as a function of time and
space, where u is affine scaled to be between −1 and 1. The domain Ω ⊂ Rn is
bounded with appropriately smooth boundary, n ∈ {1, 2, 3}, and the function −f
is the derivative of a double-well potential F , the standard example being the cubic
function f(u) = u− u3. The small parameter ε > 0 models interaction length.

The Cahn-Hilliard equation is mass-conserving; that is, the total concentration∫
Ω

u(t, x) dx remains constant along any solution u. It is also a gradient system
with respect to the standard van der Waals free energy functional (cf. Fife [18]).
Details of the relationship between the model and the physical process can be found
in Cahn [7, 8], Elder, Desai [14], Elder, Rogers, Desai [15], Hilliard [23], Hyde et
al. [24], and Langer [27]. Numerical simulations have been done by Bai et al. [3, 4],
Copetti [10], Copetti, Elliott [11], Elliott [16], Elliott, French [17], Hyde et al. [24],
Nash [31], and Sander, Wanner [33].

Notice that any constant function ūo ≡ µ is a homogeneous equilibrium for Equa-
tion (1.1). The equilibrium is unstable if µ is contained in the spinodal interval,
which consists of the usually connected set of all µ ∈ R for which f ′(µ) > 0. Thus,
if µ lies in the spinodal interval, any orbit of (1.1) originating at an initial condi-
tion uo ≈ ūo is likely to be driven away from ūo. Figure 1 shows the time evolution
of a solution of the Cahn-Hilliard equation on the disk starting near the unstable
homogeneous equilibrium with µ = 0. We want to explain the occurrence of such
patterns, and in particular their dependence on small ε values. Therefore, we need
to understand exactly how such solutions depart from the homogeneous equilibrium.
To gain such an understanding for solutions starting near the unstable equilibrium,
Sander and Wanner [33] performed Monte-Carlo simulations in one space dimen-
sion for comparing the solution u of the nonlinear Cahn-Hilliard equation to the
solution v of the corresponding linearization at the homogeneous equilibrium µ = 0
with the same initial condition. They consider the relative distance ‖u − v‖/‖v‖,
where the norm is the H2(Ω)-norm. These simulations indicate that for initial con-
ditions near ūo, the solutions u and v remain very close with respect to their relative
distance (bounded by an ε-independent fixed small constant C) until the maximum
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norm of the solution u reaches an ε-independent threshold. The latter corresponds
to the H2(Ω)-norm of u being of the order ε−2 asymptotically as ε limits to zero.
We use the notation Rε for the H2(Ω)-norm to which the solutions u and v remain
close. Simulations by Nash [31] confirm that this order of Rε ∼ ε−2 is also true for
two-dimensional rectangular domains. More recently, Desi [13] performed similar
simulations for the unit disk. For these simulations he extended spectral methods
for circular domains as described in [36] to the Cahn-Hilliard situation, with linearly
implicit time-stepping. His results show that again the same order is recovered.

Motivated by these numerical results, consider the linearization of (1.1) at the
homogeneous equilibrium ūo ≡ µ. It is given by

vt = −∆(ε2∆v + f ′(µ)v) =: Aεv in Ω ,

∂v

∂ν
=

∂∆v

∂ν
= 0 on ∂Ω .

(1.2)

If we introduce the Hilbert space

X =
{

v ∈ L2(Ω) :
∫

Ω

v dx = 0
}

, (1.3)

then the operator Aε : X → X defined in (1.2), associated with the domain

D(Aε) =
{

v ∈ X ∩H4(Ω) :
∂v

∂ν
(x) =

∂∆v

∂ν
(x) = 0 , x ∈ ∂Ω

}
, (1.4)

is self-adjoint, and −Aε is a sectorial operator; see for example [22, p. 19] or [32].
Let 0 < κ1 ≤ κ2 ≤ . . . → ∞ denote the ordered eigenvalues of the negative
Laplacian −∆ : X → X subject to homogeneous Neumann boundary conditions,
and denote the corresponding complete set of L2(Ω)-orthonormalized eigenfunctions
by ψ1, ψ2, . . .. Then the spectrum of Aε consists of the eigenvalues

λk,ε = κk · (f ′(µ)− ε2κk) , k ∈ N , (1.5)

with corresponding eigenfunctions ψk. These eigenvalues are bounded above by

λmax
ε =

f ′(µ)2

4ε2
, (1.6)

and asymptotically as ε → 0, the largest eigenvalue grows like λmax
ε .

In the current paper, as in other previous results on the subject, we use a dynam-
ical systems approach in the sense that we consider (1.1) as an abstract evolution
equation on a suitable function space. More precisely, equation (1.1) generates a
nonlinear semiflow Tε(t), t ≥ 0, on the affine space µ + X1/2, where X1/2 denotes
the Hilbert space

X1/2 =
{

v ∈ H2(Ω) ∩X :
∂v

∂ν
= 0 on ∂Ω

}
. (1.7)

The constant function ūo ≡ µ is an equilibrium point for Tε, and the linearization
of Tε at ūo is given by the analytic semigroup Sε generated by Aε.

Early results about spinodal decomposition were obtained by Grant [19] and
Maier-Paape and Wanner [28, 29] by relating details of the linearization (1.2) to the
evolution of solutions starting near a homogeneous equilibrium ūo ≡ µ, where µ is in
the spinodal interval. The first of these early results is for one-dimensional domains.
It does not explain the types of patterns seen in two and three dimensions. See the
introduction of [28] for more details. The results of Maier-Paape and Wanner do
apply to higher-dimensional domains. They are able to explain the ε-dependence of
the characteristic thickness of patterns. As in the numerics described above, they
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relate solutions for the linear (1.2) and nonlinear (1.1) Cahn-Hilliard equations.
Their result is that in a neighborhood Vε of the equilibrium ūo, most solutions
of (1.1) starting in a smaller neighborhood Uε ⊂ Vε of ūo exit Vε close to the linear
subspace

X+
ε = span {ψk : λk,ε ≥ γo · λmax

ε } ⊂ X1/2 , (1.8)

where 0 ¿ γo < 1. This dominating subspace is spanned by the eigenfunctions
corresponding to a small percentage of the largest eigenvalues of Aε, its dimension
is proportional to ε− dim Ω. Functions in X+

ε generally exhibit patterns similar to
the one depicted in Figure 1.

The results of Maier-Paape and Wanner are not optimal in that they only describe
solutions while they remain in a neighborhood of the equilibrium of size proportional
to εdim Ω with respect to the H2(Ω)-norm. In contrast, the simulations of [13, 31, 33]
indicate that the characteristic patterns are observed up to a distance of order ε−2 in
the H2(Ω)-norm. More recently, for rectangular domains, Sander and Wanner [33,
34] employed sharp nonlinearity estimates to get a better estimate on the distance
to which spinodal decomposition is observed. Their result is basically as follows.
For a more technical statement of the theorem, the reader is referred to the original
paper.

Theorem 1.1 (Theorem 3.4 in [34]). Consider equation (1.1) on a certain class of
domains including rectangular domains, with the cubic nonlinearity f(u) = u − u3

and µ = 0. Let % > 0 be arbitrarily small, but fixed, and let uo denote an initial
condition close to ūo ≡ µ, which is sufficiently close to the dominating subspace X+

ε

defined in (1.8). Let u and v be the solutions to (1.1) and (1.2), respectively, with
the same initial condition uo. Then as long as

‖u(t)‖H2(Ω) ≤ C · ε−1+%+dim Ω/4 · ‖uo‖%
H2(Ω) (1.9)

we have
‖u(t)− v(t)‖H2(Ω)

‖v(t)‖H2(Ω)
≤ C · ε2−dim Ω/2 . (1.10)

That is, u remains extremely close to v until ‖u(t)‖H2(Ω) exceeds the threshold given
in (1.9).

While this result does not reproduce the exponent observed in the numerics
of [13, 31, 33], it does provide a much tighter bound on the relative distance —
leaving considerable room for improvement.

Theorem 1.1 significantly improves Maier-Paape and Wanner’s results, but it
is still not optimal in two ways: (i) It only applies to a certain class of domains.
(ii) The above theorem is sharp in the sense that one can construct worst-case initial
conditions for which the stated asymptotic estimates are exact. See [37] for more
details. Yet, if we start the evolution at randomly chosen initial conditions close
to ūo, then the radius up to which the relative distance is of the order O(ε2−dim Ω/2)
is considerably larger than the one given in (1.9). Again, see [37] for more details.

Problem (i) arises from the fact that one of the main assumptions needed in the
proof is the uniform boundedness of the L∞(Ω)-norms of the L2(Ω)-orthonormalized
eigenfunctions of the Laplacian subject to homogeneous Neumann boundary condi-
tions. For a general domain, this is not true. The simplest domain which violates
this crucial assumption is the unit disk in R2. These eigenfunctions and their corre-
sponding eigenvalues are known exactly, which makes it possible to study spinodal
decomposition in this setting. This is what has motivated our study of the disk.
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Problem (ii) comes from the fact that the proof describes the behavior of all
solutions within a large cone around the dominating subspace which start near the
equilibrium. But typical/randomly chosen solutions do not display the worst-case
behavior. This problem was solved by Wanner in [37]. He extends techniques for
understanding the maximum norms of random sums from [2, 25] to understanding
the growth of time varying sums of eigenfunctions of the Laplacian with Neumann
boundary conditions. The following is the main result of Wanner (again, in a non-
technical version):

Theorem 1.2 (Theorem 1.2 in [37]). Consider (1.1) with f(u) = u−u3 and µ = 0,
and let Ω be a bounded rectangular domain in Rn, where n ∈ {1, 2, 3}. Let % > 0 be
arbitrarily small, but fixed, and let uo denote an initial condition close to ūo ≡ µ,
which is sufficiently close to the dominating subspace X+

ε defined in (1.8). Finally,
let u and v be the solutions to (1.1) and (1.2), respectively, starting at uo. Then
for most such initial conditions uo, as long as

‖u(t)‖H2(Ω) ≤ C · ε−1+% · ‖uo‖%
H2(Ω) , (1.11)

we have
‖u(t)− v(t)‖H2(Ω)

‖v(t)‖H2(Ω)
≤ C · ε2 ·

√
| ln ε| . (1.12)

This is a marked improvement on the results of Sander and Wanner, especially
in dimensions two and three. Notice that in Theorem 1.2 both the bound on the
relative distance and the radius to which it applies are now dimension-independent.
In fact, the numerical results in [37] show that these bounds are precisely the ones
realized by generic solutions, originating at randomly chosen initial conditions. At
the same time, estimate (1.12) leaves considerable room for improvement. We
conjecture that if the right-hand side of (1.12) is given by an ε-independent constant,
then the ε-term in (1.11) is given by ε−2+%.

However, Problem (i) still remains. Namely, the result only applies to rectangular
domains. This is due to the fact that Wanner’s proof assumes the quite restrictive
hypothesis that eigenfunctions are orthonormal, and in addition that all their partial
derivatives are orthogonal. This is not true for most domains, in particular the disk.

In the current paper, we are able to extend the probabilistic results of Wan-
ner [37] to the disk by developing general results for vector-valued functions, and
applying these to the gradients of eigenfunctions rather than to the individual par-
tial derivatives. In the course of doing so, we have arrived at a result which applies
to general domains Ω under certain hypotheses on the growth of the L∞(Ω)-norms
of the eigenfunctions and their gradients as a function of κk. The following is a
non-technical statement of our main result in the case of the disk.

Theorem 1.3 (Main Result). Consider (1.1) with f(u) = u − u3 and µ = 0, and
let Ω be the disk. Let % > 0 be arbitrarily small, but fixed, and let uo denote an initial
condition close to ūo ≡ µ, which is sufficiently close to the dominating subspace X+

ε

defined in (1.8). Finally, let u and v be the solutions to (1.1) and (1.2), respectively,
starting at uo. Then for most such initial conditions uo, as long as

‖u(t)‖H2(Ω) ≤ C · ε−3/4+% · ‖uo‖%
H2(Ω) , (1.13)

we have
‖u(t)− v(t)‖H2(Ω)

‖v(t)‖H2(Ω)
≤ C · ε3/2 ·

√
| ln ε| . (1.14)
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Ω Rectangle Disk Generic Domain (conjectured)

‖ψk‖L∞(Ω) 1 κ
1/4
k lnκk

‖|∇ψk|‖L∞(Ω) κ
1/2
k κ

3/4
k κ

1/2
k lnκk

Table 1. Comparison of the asymptotic behavior of the maximum
norms of the L2(Ω)-orthonormalized eigenfunctions ψk of −∆ and
their gradients.

The paper proceeds as follows. In Section 2.1, we give results on the maximum
norms of time-dependent superpositions of vector-valued functions with normally
distributed coefficients. Particularly, we derive bounds on the probability that a
superposition has a large L∞(Ω)-norm, assuming that it is not likely to have large
localized peaks; see Assumption 2.2. The verification of the latter assumption is the
subject of Section 2.2, where we restrict our attention to vector-valued functions
which are orthonormal with respect to the vector-valued L2(Ω)-norm. Finally, Sec-
tion 2.3 sets the stage for our application to spinodal decomposition. For this, we
isolate the two essential assumptions in a more specific situation. Now we consider
superpositions of a finite set of eigenfunctions of the negative Laplacian subject to
homogeneous Neumann boundary conditions, for arbitrary domains in dimensions 1,
2, and 3. While the eigenfunctions are automatically orthogonal, the corresponding
statement for their gradients follows from Stokes’ Theorem. By considering the
entire vector-valued gradient at once, we are able to extend Wanner’s results on
random sums to establish an upper bound on the L∞(Ω)-norm of time-varying su-
perpositions of eigenfunctions and their gradients. These results only depend on the
specific asymptotics of the L∞(Ω)-norm of the L2(Ω)-orthonormalized eigenfunc-
tions of the negative Laplacian and their gradients — and these do depend heavily
on the underlying domain Ω, as summarized in Table 1. Note that for rectangular
domains, there is a uniform bound that works for all eigenfunctions. In contrast,
for the disk, the L∞(Ω)-norm of the eigenfunctions depends on the eigenvalue κk.
For a generic domain Ω in dimensions 1, 2, and 3 Aurich et al. [2] conjecture, based
on formal computations, that the L∞(Ω)-norm of the eigenfunctions will vary log-
arithmically in κk. A similar formal computation would yield an extra κ

1/2
k factor

in the L∞(Ω)-norm for the gradient.

Remark 1.4. If one assumes that for generic domains the conjectured asymptotic
behavior presented in Table 1 is correct, then our main theorem still applies. It is
only modified in that (1.13) becomes

‖u(t)‖H2(Ω) ≤ C · ε−1+% · ‖uo‖%
H2(Ω) ,

and (1.14) becomes

‖u(t)− v(t)‖H2(Ω)

‖v(t)‖H2(Ω)
≤ C · ε2 · | ln ε|3/2 ,

which basically corresponds to the case of rectangular domains.

After these general results, Section 3 concentrates on the disk to derive the
precise asymptotic estimates necessary for employing the results of Section 2. We
state the well-known exact formulas for these eigenfunctions in polar coordinates
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using products of trigonometric functions and Bessel functions, and establish the
L∞(Ω)-norm bounds on the eigenfunctions and their gradients stated above.

Section 4 applies all these results to the Cahn-Hilliard equation on a disk, and
we are able to establish our main theorem. In this application, the finite set of
eigenfunctions consists of the basis of the dominating subspace (1.8) for suitable γo.
Thus, the κk-dependence of the L∞(Ω)-norms translates to an ε-dependence of the
radius to which linear behavior can be observed. Our main theorem gives nearly
linear behavior up to distances proportional to ε−3/4, whereas numerics indicates
an order of ε−1.3. Based on numerical simulations that will be presented at the end
of Section 4, we believe that the level of symmetry of the disk leads to non-generic
cancellations, the analysis of which would involve detailed calculations using the
specific form of the eigenfunctions via trigonometric functions and Bessel functions.

2. Maximum Norms of Random Sums. One of the main disadvantages of the
results in [37] is the fact that they could only be applied to rectangular domains.
This restriction is a consequence of the L∞-gradient estimates which are necessary
for studying transient patterns in the Cahn-Hilliard model. In this section, we
will remove the above domain restriction. For this, we have to extend the abstract
results on maximum norms of random sums in [37, Section 3] from the scalar-valued
to the vector-valued case. This will be accomplished in Sections 2.1 and 2.2 below,
and will allow us to directly treat the gradient estimates. The latter goal will be
accomplished in Section 2.3. The results of this section apply to arbitrary bounded
domains Ω ⊂ Rn with sufficiently smooth boundary. In fact, it is enough to assume
that Ω is a Lipschitz domain.

2.1. Random Time-Dependent Sums. All of the random sums which are con-
sidered in the following are linear combinations of certain vector-valued basis func-
tions, as described in more detail in the following definition.

Definition 2.1. Let Ω ⊂ Rn be an open and bounded domain, and fix {w1, . . . , wN},
a finite set of C(Ω,RK)-functions. Define the constant M1 by

M1 := max
k=1,...,N

‖wk‖L∞(Ω). (2.15)

Notice that instead of writing ‖|wk|‖L∞(Ω), where |wk| denotes the standard Euclid-
ean norm on RK , we write ‖wk‖L∞(Ω) in (2.15). This abbreviation will be used
throughout the remainder of this paper.

In addition, let c1, . . . , cN be arbitrary real numbers, and fix nonnegative real
numbers µ1, . . . , µN . For some T > 0 we consider functions of the form

w(t, x) =
N∑

k=1

e−µk·t · ck · wk(x) for all t ∈ [0, T ] and x ∈ Ω . (2.16)

Finally, let ΩT = [0, T ]× Ω and define

M(w) =
{

(t, x) ∈ [0, T ]× Ω : |w(t, x)| ≥ 1
2
· ‖w‖L∞(ΩT )

}
, (2.17)

where again we use the abbreviation introduced after (2.15).

The main result of this section provides a sharp upper bound on the L∞(ΩT )-
norm of time-dependent functions |w|, where w is defined in (2.16). For this, we
need to make sure that the set M(w) defined in (2.17), which corresponds to large
function values of |w|, cannot be too small. This is addressed in the following
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assumption of a uniform lower bound for |M(w)|. Its validity will be established in
Section 2.2 below.

Assumption 2.2. In the situation of Definition 2.1, we assume that there exists a
constant Υ > 0 which depends only on the constants µk and the functions wk, such
that for every choice of c1, . . . , cN ∈ R the function w defined in (2.16) satisfies

|M(w)| ≥ Υ · |ΩT | , (2.18)

where | · | denotes (n + 1)-dimensional Lebesgue measure.

The following lemma is an extension of [37, Lemma 3.3], which in turn was based
on previous work by Aurich et al. [2] and Kahane [25]. Unlike in these situations, we
obtain uniform L∞(ΩT )-bounds for vector-valued random one-parameter families
as in (2.16). This extension is crucial for extending the results of [37] to non-
rectangular domains.

Lemma 2.3. Assume the situation of Definition 2.1 and let Υ be as in Assump-
tion 2.2. Let a1, . . . , aN denote independent random variables over a probability
space (F,F ,P) which are all normally distributed with mean 0 and variance 1. We
consider random functions of the form

w(t, x, ω) =
N∑

k=1

e−µk·t · ak(ω) · wk(x) , (2.19)

where (t, x) ∈ ΩT = [0, T ]× Ω, and ω ∈ F . Then for any Υ∗ > Υ/(2K) we have

P
(
‖w‖L∞(ΩT ) ≥ M1 ·

√
8KN · ln(2KΥ∗/Υ)

)
≤ 1

Υ∗
. (2.20)

Proof. Consider the real-valued component functions of w and wk given by

w =
(
w(1), . . . , w(K)

)
and wk =

(
w

(1)
k , . . . , w

(K)
k

)
.

Since each ak is normally distributed with mean 0 and variance 1 we obtain for
every τ ∈ R and k = 1, . . . , N that the expected value E of the random variable eτak

satisfies [5]

E (eτ ·ak) =
∫

F

eτ ·ak(ω)dP(ω) = eτ2/2 .

Now let α ∈ R be arbitrary, let k ∈ {1, . . . , N}, and let ` ∈ {1, . . . , K}. Then for
all t ∈ [0, T ] and x ∈ Ω the inequality µk ≥ 0 implies

E
(
eα·e−µk·t·ak·w(`)

k (x)
)

= eα2·e−2µk·t·w(`)
k (x)2/2 ≤ eα2·‖w(`)

k ‖2L∞(Ω)/2 ≤ eα2·M2
1 /2 ,

and the independence of the ak’s furnishes for every ` = 1, . . . , K the estimate

E
(
eα·w(`)(t,x,·)

)
=

N∏

k=1

E
(
eα·e−µk·t·ak·w(`)

k (x)
)
≤ eα2·M2

1 ·N/2 ,
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where M1 was defined in Definition 2.1. Now assume α ≥ 0. Then for any t ∈ [0, T ],
the definition in (2.17) and estimate (2.18) imply

Υ · |ΩT | · E
(
eα·‖w‖L∞(ΩT )/2

)
≤ E

∫

M(w)

eα·|w(t,x,·)| d(t, x)

≤ E
∫

M(w)

eα·√K·|w(t,x,·)|∞ d(t, x) ≤
K∑

`=1

E
∫

M(w)

eα·√K·|w(`)(t,x,·)| d(t, x)

≤
K∑

`=1

E
∫

M(w)

(
eα·√K·w(`)(t,x,·) + e−α·√K·w(`)(t,x,·)

)
d(t, x)

≤
K∑

`=1

∫

[0,T ]×Ω

E
(
eα·√K·w(`)(t,x,·) + e−α·√K·w(`)(t,x,·)

)
d(t, x)

≤ 2KT · |Ω| · eα2·K·M2
1 ·N/2 ,

where |w(t, x, ω)|∞ = max{|w(1)(t, x, ω)|, . . . , |w(K)(t, x, ω)|}. This furnishes the
inequality

E
(
eα·‖w‖L∞(ΩT )/2

)
≤ 2K

Υ
· eα2·M2

1 ·KN/2 .

Notice that in the above estimates, both the set M(w) and the norm ‖w‖L∞(ΩT )

depend on ω. For any Υ∗ > Υ/(2K) the last inequality can be rewritten as

E
(

exp
(

α

2
·
(
‖w‖L∞(ΩT ) − α ·M2

1 ·KN − 2
α
· ln(2KΥ∗/Υ)

)))
≤ 1

Υ∗
.

Since for any random variable ξ and any α ≥ 0 one has

P (ξ ≥ 0) ≤
∫

{ξ≥0}
eα·ξ/2dP ≤ E

(
eα·ξ/2

)
,

we obtain

P
(
‖w‖L∞(ΩT ) ≥ α ·M2

1 ·KN +
2
α
· ln(2KΥ∗/Υ)

)
≤ 1

Υ∗
.

Choosing α = (2·ln(2KΥ∗/Υ)/(M2
1 KN))1/2 this finally yields (2.20), and the proof

of the lemma is complete.

As in [37], one can combine Lemma 2.3 with the weak law of large numbers to
relate the maximum norm of the function |w| to the standard Euclidean norm of
the coefficient vector (a1, . . . , aN ). This yields the following result.

Proposition 2.4. Assume the situation of Definition 2.1, let Υ be as in Assump-
tion 2.2, let Υ∗ > Υ/(2K), and let a1, . . . , aN be independent random variables
over a common probability space (F,F ,P) which are all normally distributed with
mean 0 and variance 1. We consider again random functions of the form (2.19).
Then there exists a set F0 ∈ F with

P(F0) ≥ 1− 1
Υ∗

− 8
N

such that for every ω ∈ F0 and all t ∈ [0, T ] we have

‖w(t, ·, ω)‖L∞(Ω) ≤ 4M1 ·
√

K · ln(2KΥ∗/Υ) · |a(ω)| , (2.21)

where a(ω) = (a1(ω), . . . , aN (ω)) ∈ RN .
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Proof. Since the random variables an are independent and normally distributed
with mean 0 and variance 1, one easily obtains E(|a|2) = E(a2

1 + . . . + a2
N ) = N .

Furthermore, the variance of |a|2 is given by V(|a|2) = 2N ; see for example Bauer [5,
§4]. The weak law of large numbers, in the form of Chebyshev’s inequality, then
implies

P
(∣∣|a|2 −N

∣∣ ≥ N

2

)
≤ 4

N2
· V(|a|2) =

8
N

,

and therefore

P

(
|a| ≤

√
N

2

)
≤ 8

N
, (2.22)

Now let F0 ∈ F consist of all those ω ∈ F for which both |a(ω)| >
√

N/2 and
supt∈[0,T ] ‖w(t, ·, ω)‖L∞(Ω) < M1 ·

√
8KN · ln(2KΥ∗/Υ) are satisfied. Then (2.22)

and Lemma 2.3 imply P(F0) ≥ 1 − 1/Υ∗ − 8/N , which completes the proof of the
proposition.

The following theorem constitutes our central result on the maximum norm of
random sums. Instead of considering randomly distributed coefficients, we now
choose coefficient vectors from a sphere in RN . The result implies that for most of
these vectors, with respect to the uniform measure on the sphere, sharp estimates
on the maximum norm can be obtained. In this form the result will be applied later
to the Cahn-Hilliard equation on the disk.

Theorem 2.5. Assume the situation of Definition 2.1, let Υ be as in Assump-
tion 2.2, and for R > 0 let SR =

{
a ∈ RN : |a| = R

}
denote the sphere of ra-

dius R. Finally, let mR denote the (unique) uniform Haar probability measure
on SR and let Υ∗ > Υ/(2K). Then there exists a measurable set S∗ ⊂ SR with
mR(S∗) ≥ 1− 1/Υ∗− 8/N such that the following is true. If a = (a1, . . . , aN ) ∈ S∗

and if w is defined as

w(t, x) =
N∑

k=1

e−µk·t · ak · wk(x) ,

then we have

‖w(t, ·)‖L∞(Ω) ≤ 4M1 ·
√

K · ln(2KΥ∗/Υ) · |a| for all t ∈ [0, T ] . (2.23)

Proof. The result is an immediate consequence of Proposition 2.4 and the following
fact: If a1, . . . , aN are independent random variables over a common probability
space (F,F ,P) which are normally distributed with mean 0 and variance 1, then
the mapping

F 3 ω 7→ R

|a(ω)| · a(ω) ∈ SR

maps the measure P to the Haar measure mR on SR; see for example Muirhead [30,
Section 1.5]. The result now follows if we choose the set S∗ as the image of the
set F0 from Proposition 2.4 under the above mapping, since (2.21) is invariant under
scalings of a.
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2.2. The Set of Large Function Values. One of the crucial ingredients for the
results of the previous section is Assumption 2.2 — and this assumption was exactly
the reason for only considering rectangular domains in [37]. The assumption can
easily be verified if the functions wk are scalar-valued and form an orthonormal set,
see Lemma 3.7 in [37]. Yet, in the application to the Cahn-Hilliard equation it is
essential to have the results of the last section available also for first-order derivatives
of the random sums. In the case of rectangular domains, these partial derivatives
can still be written as linear combinations of an orthonormal set, albeit a different
one. Consequently, [37, Lemma 3.7] is still applicable. However, this is no longer
true for more complicated domains, most notably not even for the disk. These
complications can be avoided by applying the vector-valued results of the previous
section to the gradients directly. For this, we have to extend [37, Lemma 3.7] to the
vector-valued case as well. First, however, we present the necessary assumptions.

Assumption 2.6. Let Ω denote a bounded domain in Rn, where n ∈ {1, 2, 3}. More-
over, let {w1, . . . , wN} be a finite set of C1(Ω,RK)-functions, and let M1 and M2

be constants satisfying

‖wk‖L∞(Ω) ≤ M1 and
∥∥∥∥

∂wk

∂x`

∥∥∥∥
L∞(Ω)

≤ M2

for all k = 1, . . . , N and ` = 1, . . . , n. (Again, we employ the abbreviation introduced
in Definition 2.1.) Assume that the functions wk are orthonormal, i.e., we have

(wk, wj) =
∫

Ω

(wk(x), wj(x))RK dx = δk,j for k, j = 1, . . . , N .

Finally, suppose that the domain Ω satisfies the cone condition [1, 4.3]: There exists
a finite cone C such that each point x ∈ Ω is the vertex of a cone Cx contained in Ω
and congruent to C. We denote the height of C by rC. (This height corresponds to
the radius of the ball B1 in Adams [1, 4.1].)

Lemma 2.7. Suppose that Assumption 2.6 is satisfied, and let µ1, . . . , µN be nonneg-
ative numbers satisfying 0 ≤ µk ≤ M3 for all k = 1, . . . , N , for some constant M3.
Furthermore, let T > 0 be fixed, and assume that the constant r defined as

r =
1

N ·
√
|Ω| · 8K (M2

1 M2
3 + KM2

2 )
(2.24)

satisfies r ≤ min{rC , T}. Let w be any function of the form (2.16). Then we have

|M(w)| ≥ rn+1 · |C|
rn
C

, (2.25)

where the set M(w) was defined in (2.17), and | · | denotes Lebesgue measure.

Proof. Due to the orthonormality of the functions wk we have ck = (w(0, ·), wk),
and therefore

|ck| = |(w(0, ·), wk)| ≤ ‖w(0, ·)‖L∞(Ω) ·
∫

Ω

|wk|dx

≤ ‖w‖L∞(ΩT ) ·
√
|Ω| · ‖wk‖L2(Ω) =

√
|Ω| · ‖w‖L∞(ΩT ) .

For (t, x) ∈ [0, T ]× Ω this estimate implies
∣∣∣∣
∂w

∂t
(t, x)

∣∣∣∣ ≤
N∑

k=1

µk · e−µk·t · |ck| · |wk(x)| ≤ N ·M1M3 ·
√
|Ω| · ‖w‖L∞(ΩT ) ,
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as well as
∣∣∣∣
∂w

∂x`
(t, x)

∣∣∣∣ ≤
N∑

k=1

e−µk·t · |ck| ·
∣∣∣∣
∂wk

∂x`
(x)

∣∣∣∣ ≤ N ·M2 ·
√
|Ω| · ‖w‖L∞(ΩT ) ,

for all ` = 1, . . . , n. Thus, if we denote the component functions of the superposi-
tion w as w = (w(1), . . . , w(K)), we obtain the gradient estimates

∣∣∣∇(t,x)w
(m)(t, x)

∣∣∣ ≤ N ·
√
|Ω| · (M2

1 M2
3 + KM2

2 ) · ‖w‖L∞(ΩT ) .

Now let (t∗, x∗) ∈ [0, T ]× Ω be such that |w(t∗, x∗)| = ‖w‖L∞(ΩT ). Fix an interval
I∗ ⊂ [0, T ] of length r which contains t∗, and let C∗ ⊂ Ω denote a cone with vertex x∗
which is congruent to (r/rC) · C. Then for all (t, x) ∈ I∗ × C∗ we have

|w(t, x)− w(t∗, x∗)| ≤
√

K · max
1≤`≤K

∥∥∥∇(t,x)w
(m)

∥∥∥
L∞(ΩT )

·
√
|t− t∗|2 + |x− x∗|2

≤
√

K ·N ·
√
|Ω| · (M2

1 M2
3 + KM2

2 ) · ‖w‖L∞(ΩT ) ·
√

2 · r

=
1
2
· ‖w‖L∞(ΩT ) ,

according to the definition of r in (2.24). This implies I∗×C∗ ⊂M(w), and noting
that |I∗ × C∗| = r · (r/rC)n · |C| completes the proof of the lemma.

2.3. Superpositions of Eigenfunctions. The results of Sections 2.1 and 2.2 ap-
ply to a variety of situations, under fairly weak assumptions. In our application we
have more structure to work with, as is summarized in the following definition.

Assumption 2.8. Let Ω denote a bounded domain in Rn, where n ∈ {1, 2, 3}, and
assume that the boundary ∂Ω is Lipschitz. Let {ψ̄1, . . . , ψ̄N} denote an L2(Ω)-
orthonormal set of eigenfunctions of the negative Laplacian −∆ on Ω subject to
homogeneous Neumann boundary conditions, and denote the corresponding eigen-
values by κ1, . . . , κN . Let E1 and E2 denote positive constants such that∥∥ψ̄k

∥∥
L∞(Ω)

≤ E1 and
∥∥∇ψ̄k

∥∥
L∞(Ω)

≤ E2

for all k = 1, . . . , N . Let µ1, . . . , µN and b1, . . . , bN denote arbitrary real numbers
satisfying

0 ≤ µk ≤ E3 and |bk| ≤ E4

for all k = 1, . . . , N and suitable constants E3, E4 > 0. Finally, assume that E5

and E6 are positive constants such that for k = 1, . . . , N we have

E5 ≤ κk ≤ E6 .

Then we consider superpositions of the form

u(t, x) =
N∑

k=1

e−µk·t · ak · bk · ψ̄k(x) for all t ∈ [0, T ] and x ∈ Ω , (2.26)

where a1, . . . , aN denote arbitrary real numbers. Finally, due to our above assump-
tion the domain Ω satisfies the cone condition [1]. We denote the corresponding
cone as in Assumption 2.6 by C, and its height by rC.

At first sight the introduction of two sets of coefficients ak and bk might seem
unnecessary. However, in the Cahn-Hilliard setting the natural phase space is given
by the Sobolev space H2(Ω), rather than L2(Ω). In this situation, we will choose
the coefficients bk in such a way that {b1ψ̄1, . . . , bN ψ̄N} denotes an orthonormal set
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in the phase space — and therefore the Sobolev norm of u(0, ·) will be given by the
Euclidean norm of the vector a = (a1, . . . , aN ).

In order to apply the results on Section 2.1 to functions of the form (2.26) as well
as their gradients, we first have to determine the size of the set of large function
values for both u and ∇u. For this, we define the sets

M(u) =
{
(t, x) ∈ ΩT : |u(t, x)| ≥ ‖u‖L∞(ΩT )/2

}
, (2.27)

M(∇u) =
{
(t, x) ∈ ΩT : |∇u(t, x)| ≥ ‖∇u‖L∞(ΩT )/2

}
(2.28)

as before, with ΩT = [0, T ] × Ω. The following lemma shows how Lemma 2.7 can
be applied in this situation.

Lemma 2.9. Suppose that Assumption 2.8 is satisfied. Furthermore, let T > 0 be
fixed, assume that the constants r0 and r1 are defined as

r0 =
1

2
√

2N · |Ω|1/2 · (E2
1E2

3 + E2
2)1/2

(2.29)

r1 =
E

1/2
5

2
√

2N · |Ω|1/2 · n1/2 · (E2
2E2

3 + 4nc2 (1 + E4
6))1/2

, (2.30)

and that max{r0, r1} ≤ min{rC , T}. (The constant c appearing in the definition
of r1 is introduced in the proof below and depends only on the domain Ω.) If u
denotes any function of the form (2.26), then we have

|M(u)| ≥ rn+1
0 · |C|

rn
C

and |M(∇u)| ≥ rn+1
1 · |C|

rn
C

,

where the sets M(u) and M(∇u) were defined in (2.27) and (2.28).

Proof. The lower bound on the Lebesgue measure of M(u) is an immediate conse-
quence of Lemma 2.7. We just have to set ck = ak · bk in (2.16), as well as wk = ψ̄k,
Mη = Eη for η = 1, 2, 3, and K = 1 in the situation of Lemma 2.7.

We now turn our attention to the gradient estimate. Let ψ̄k and ψ̄j denote two of
the basis functions in Assumption 2.8. Since both are eigenfunctions of −∆ subject
to homogeneous Neumann boundary conditions, integration by parts furnishes

(∇ψ̄k,∇ψ̄j) =
∫

Ω

(∇ψ̄k(x),∇ψ̄j(x))Rn dx = −
∫

Ω

ψ̄k(x)∆ψ̄j(x) dx = κj · δk,j .

Thus, if we define wk = κ
−1/2
k · ∇ψ̄k, then the vector-valued functions wk are

orthonormal in the sense of Assumption 2.6, and Assumption 2.8 furnishes

‖wk‖L∞(Ω) ≤ E2 · E−1/2
5 . (2.31)

We now have to establish an upper bound on the maximum norm of the first-order
derivatives of the functions wk, i.e., on the second-order derivatives of the ψ̄k. Due
to the Sobolev embedding H2(Ω) ↪→ L∞(Ω), there exists a constant c > 0 which
depends only on the domain Ω such that for all `,m = 1, . . . , n we have

∥∥∥∥
∂2ψ̄k

∂x`∂xm

∥∥∥∥
L∞(Ω)

≤ c ·
∥∥∥∥

∂2ψ̄k

∂x`∂xm

∥∥∥∥
H2(Ω)

≤ c · ∥∥ψ̄k

∥∥
H4(Ω)

≤ c ·
(∥∥∆2ψ̄k

∥∥2

L2(Ω)
+

∥∥ψ̄k

∥∥2

L2(Ω)

)1/2

,
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after possibly redefining c, where for the last inequality we used [35, Lemma III.4.2].
Notice that the constant c still only depends on the domain Ω. Since ψ̄k is a
normalized eigenfunction of −∆ we now obtain∥∥∥∥

∂∇ψ̄k

∂x`

∥∥∥∥
L∞(Ω)

≤ n1/2 · max
m=1,...,n

∥∥∥∥
∂2ψ̄k

∂x`∂xm

∥∥∥∥
L∞(Ω)

≤ c · n1/2 · (κ4
k + 1

)1/2
,

as well as
∥∥∥∥

∂wk

∂x`

∥∥∥∥
L∞(Ω)

≤ 2c ·
(

κ4
k + 1
κk

)1/2

≤ 2c · (E4
6 + 1

)1/2 · E−1/2
5 . (2.32)

If we finally denote the right-hand sides of (2.31) and (2.32) by M1 and M2, respec-
tively, then we can apply Lemma 2.7 with ck = ak · bk · κ1/2

k in (2.16), as well as
K = n. This completes the proof of the lemma.

The above lemma clears the way for applying the results of Section 2.1 to super-
positions of Laplacian eigenfunctions of the form (2.26), as well as their gradients.

Theorem 2.10. Suppose that Assumption 2.8 holds, let r0 and r1 be defined as
in (2.29) and (2.30), respectively, and let

Υ0 =
rn+1
0 · |C|

rn
C · T · |Ω|

and Υ1 =
rn+1
1 · |C|

rn
C · T · |Ω|

(2.33)

For R > 0 let SR =
{
a ∈ RN : |a| = R

}
denote the sphere of radius R, and let mR

denote the uniform Haar measure on SR. Finally, let Υ∗ > max{Υ0/2,Υ1/(2n)}.
Then there exists a measurable set S∗ ⊂ SR with mR(S∗) ≥ 1 − 2/Υ∗ − 16/N

such that the following is true. If a = (a1, . . . , aN ) ∈ S∗ and if u is defined as

u(t, x) =
N∑

k=1

e−µk·t · ak · bk · ψ̄k(x) ,

then we have both

‖u(t, ·)‖L∞(Ω) ≤ 4E1E4 ·
√

ln(2Υ∗/Υ0) · |a| and (2.34)

‖∇u(t, ·)‖L∞(Ω) ≤ 4E2E4 ·
√

n ln(2nΥ∗/Υ1) · |a| (2.35)

for all t ∈ [0, T ].

Proof. For the proof, we only have to apply our abstract Theorem 2.5 twice. To
begin with, set wk = bk · ψ̄k and K = 1. Then due to Assumption 2.8 the con-
stant M1 in Definition 2.1 can be chosen as M1 = E1 · E4, and the constant Υ
in Assumption 2.2 is given by Υ0 defined in the formulation of the theorem. Now
Theorem 2.5 furnishes a measurable set S∗0 ⊂ SR with mR(S∗0 ) ≥ 1 − 1/Υ∗ − 8/N
such that (2.34) holds for all a ∈ S∗0 .

In order to establish (2.35) we apply Theorem 2.5 one more time by considering
the vector-valued case K = n with wk = bk · ∇ψ̄k. This time, the constant M1 in
Definition 2.1 can be chosen as M1 = E2 ·E4, and the constant Υ in Assumption 2.2
is given by the constant Υ1 defined above. An application of Theorem 2.5 yields a
measurable set S∗1 ⊂ SR with mR(S∗1 ) ≥ 1− 1/Υ∗ − 8/N such that (2.35) holds for
all a ∈ S∗1 . If we finally set S∗ = S∗0 ∩ S∗1 then the theorem follows.

The results of this section provide an upper bound on the L∞-norm of both u
and ∇u completely in terms of the constants introduced in Assumption 2.8. We will
see later that in the application to the Cahn-Hilliard equation all of these constants



COMPLEX TRANSIENT PATTERNS ON THE DISK 1063

 0  4  8 12

−0.5

 0.0

 0.5

 1.0

τ

J ν(τ
)

 ν = 0
 ν = 1
 ν = 2

Figure 2. The Bessel function J0 satisfies J0(0) = 1 and is shown
as solid curve. For ν ≥ 1 we have Jν(0) = 0, and J1 and J2 are
shown as solid and dashed lines, respectively.

can be described in terms of the small parameter ε in (1.1), once the constants E1

and E2 are known. For the case of the unit disk, these latter constants will be
determined in the next section.

3. The Laplacian on the Disk. The abstract results of the last section gener-
alized the corresponding results of [37] to general domains. They also isolated the
last crucial piece of information that has to be derived separately for each domain,
namely the constants in Assumption 2.8. In order to apply Theorem 2.10 we need
to establish upper bounds on the maximum norms of L2(Ω)-orthonormalized eigen-
functions of the Laplacian, as well as on the gradients of the eigenfunctions. For
the case of rectangular domains, these estimates are trivial. The corresponding
estimates for the case of the unit disk are substantially different, and their deriva-
tion is the subject of the current section. Throughout this section we will describe
functions defined on the unit disk D ⊂ R2 in terms of polar coordinates (r, θ) with
r ∈ [0, 1) and θ ∈ [0, 2π).

We consider the eigenfunctions and eigenvalues of the negative Laplacian on the
unit disk D, i.e., solutions of the problem

−∆ψ = κψ in D ,
∂ψ

∂ν
= 0 on ∂D . (3.36)

To this end, consider the Bessel functions Jν for integers ν ≥ 0 defined by

Jν(τ) =
τν

2νν!
·
(

1− τ2

2 · (2ν + 2)
+

τ4

2 · 4 · (2ν + 2) · (2ν + 4)
−+ . . .

)
,

which satisfy Bessel’s differential equation

d2z

dτ2
+

1
τ
· dz

dτ
+

(
1− ν2

τ2

)
· z = 0 . (3.37)

The graphs of the Bessel functions J0, J1, and J2 can be found in Figure 2.
Concerning the eigenvalues and eigenfunctions of the negative Laplacian on the

unit disk, the following result is well-known, see for example [12, Section V.5.5], as
well as [38].
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Lemma 3.1. For arbitrary integers ν ≥ 0 and k ≥ 1 let σν,k > 0 denote the location
of the k-th extreme value of the Bessel function Jν in (0,∞), and let

κν,k := σ2
ν,k for ν ∈ N0 , k ∈ N .

Furthermore, for r ∈ [0, 1) and θ ∈ [0, 2π] define functions

ψ0,k(r, θ) := a0,k · J0 (σ0,k · r) ,

ψν,k,c(r, θ) := aν,k · Jν (σν,k · r) · cos(νθ) , (3.38)
ψν,k,s(r, θ) := aν,k · Jν (σν,k · r) · sin(νθ) ,

for ν, k ∈ N, with suitable scaling factors aν,k > 0 which will be specified below.
Then the eigenvalues of (3.36) are given by 0 and the numbers κν,k for ν ∈ N0

and k ∈ N. The eigenvalue 0 is simple, and the corresponding eigenfunction is con-
stant. For k ∈ N the eigenvalues κ0,k are also simple, with corresponding eigenfunc-
tions ψ0,k. For ν > 0 and k ∈ N the eigenspace corresponding to the eigenvalue κν,k

is two-dimensional and spanned by the eigenfunctions ψν,k,c and ψν,k,s.

In order to simplify the notation, we will sometimes write ψ0,k,c instead of ψ0,k

in the following.
The above lemma shows that the functions defined in (3.38) form a complete

orthogonal set in the Hilbert space X ⊂ L2(D) defined in (1.3). For our purposes,
it is important to also normalize them. This is the subject of the following lemma.

Lemma 3.2. In the situation of Lemma 3.1, define the scaling factors aν,k as

a0,k :=
π−1/2

|J0(σ0,k)| ,

aν,k :=
21/2 · π−1/2

(1− ν2/κν,k)1/2 · |Jν(σν,k)|
for ν > 0 .

Then the functions defined in (3.38) form a complete orthonormal set in X ⊂
L2(D).

Proof. We only consider the eigenfunctions ψν,k,s for ν, k ∈ N, since the remaining
assertions can be shown similarly. Due to

‖ψν,k,s‖2L2(D) = a2
ν,k ·

∫ 2π

0

sin2(νθ) dθ ·
∫ 1

0

J2
ν (σν,kr)r dr =

πa2
ν,k

σ2
ν,k

·
∫ σν,k

0

J2
ν (τ)τ dτ,

we only have to calculate the last integral. For this, recall that Jν solves the ordinary
differential equation (3.37). Multiplying this equation by τ2 · dz/dτ one obtains

(
τ · dz

dτ

)
· d

dτ

(
τ · dz

dτ

)
+

(
τ2 − ν2

) · z · dz

dτ
= 0 ,

and integration from τ = 0 to τ = σν,k furnishes after integration by parts the
identity

∫ σν,k

0

J2
ν (τ)τ dτ =

σ2
ν,k

2
· J ′ν(σν,k)2 +

σ2
ν,k − ν2

2
· Jν(σν,k)2 +

ν2

2
· Jν(0)2 .

Together with J ′ν(σν,k) = Jν(0) = 0 this completes the proof of the lemma.

It is clear from our abstract results in Section 2 that we are particularly interested
in estimates on the L∞(D)-norm of the orthonormal eigensystem introduced in
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Lemma 3.2. This basically amounts to understanding the asymptotic behavior
of Jν(σν,k) as σν,k →∞. For fixed ν ∈ N0 we have the asymptotic representation

Jν(τ) =

√
2
πτ

· cos
(
τ − νπ

2
− π

4

)
+ O

(
τ−3/2

)
for τ →∞ , (3.39)

see for example [12, Section VII.6.2]. From this representation one can easily deduce
that

aν,k ∼ √
σν,k for fixed ν and k →∞ ,

and in combination with standard properties of the Bessel functions this immedi-
ately implies that the L∞(D)-norm of the eigenfunctions ψν,k,c/s is at least of the
order κ

1/4
ν,k . In fact, we have the following result.

Lemma 3.3. Consider the eigenfunctions of the problem (3.36) as in Lemma 3.1,
with scaling factors as in Lemma 3.2. Then there exists a constant C > 0 such that
for all ν ∈ N0 and k ∈ N we have

∥∥ψν,k,c/s

∥∥
L∞(D)

≤ C · κ1/4
ν,k . (3.40)

This estimate is sharp and cannot be improved.

Proof. The estimate in (3.40) is a special case of [21, Theorem 1], which contains an
L∞-estimate for eigenfunctions of arbitrary Riemannian manifolds with boundary.
A direct proof using asymptotic expansions of the Bessel functions similar to (3.39),
but uniform in ν and τ , can be found in [20]. The optimality of (3.40) has already
been established above using (3.39).

In addition to the bound on the eigenfunctions, we also need to determine the
asymptotics of the L∞(D)-norm of the gradients of the eigenfunctions. This is the
subject of the following lemma.

Lemma 3.4. Consider the eigenfunctions of the problem (3.36) as in Lemma 3.1,
with scaling factors as in Lemma 3.2. Then there exists a constant C > 0 such that
for all ν ∈ N0 and k ∈ N we have

∥∥∇ψν,k,c/s

∥∥
L∞(D)

≤ C · κ3/4
ν,k . (3.41)

Also this estimate is sharp and cannot be improved. As in Section 2, we use the
abbreviation introduced in Definition 2.1 after (2.15).

Proof. We begin by establishing an auxiliary estimate relating the maximum norm
of the derivative of a Bessel function to the maximum norm of the Bessel function.
Due to [38, Equation 2.12(4)] the derivatives of the Bessel functions satisfy the
identity

J ′ν(τ) =
ν

τ
· Jν(τ)− Jν+1(τ) (3.42)

for all τ > 0, ν ∈ N. A direct check shows that this formula also holds for ν = 0.
Following the notation in [38], we denote the smallest positive zero of J ′′ν by j′′ν .
Then according to [38, Estimates 15.3(6)] we have

√
ν(ν − 1) < j′′ν <

√
ν2 − 1

for all ν ≥ 2. If τν > 0 is chosen such that |J ′ν(τν)| = ‖J ′ν‖L∞(R+), then the above
statements, combined with the fact that ‖Jν‖L∞(R+) is a decreasing function of the
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order ν [26, p. 202], readily furnish

‖J ′ν‖L∞(R+) ≤ ν

τν
· |Jν(τν)|+ |Jν+1(τν)| ≤ ν

j′′ν
· ‖Jν‖L∞(R+) + ‖Jν+1‖L∞(R+)

≤
(

ν√
ν(ν − 1)

+ 1

)
· ‖Jν‖L∞(R+) ≤

(√
2 + 1

)
· ‖Jν‖L∞(R+)

for all ν ≥ 2. For ν = 0 the identity J ′0 = −J1, together with the above-mentioned
monotonicity of ‖Jν‖L∞(R+), yields

‖J ′0‖L∞(R+) = ‖J1‖L∞(R+) ≤ ‖J0‖L∞(R+) .

For ν = 1 standard properties of the Bessel functions [38] imply

‖J ′1‖L∞(R+) = J ′1(0) =
1
2

< ‖J1‖L∞(R+) ≈ 0.58 .

Thus, we have shown that for arbitrary ν ∈ N0 the estimate

‖J ′ν‖L∞(R+) ≤
(√

2 + 1
)
· ‖Jν‖L∞(R+) (3.43)

holds.
After these preliminary considerations we now establish (3.41). As in Lemma 3.3

we only prove the result for the eigenfunctions ψν,k,s for ν, k ∈ N. Using the
transformation rule between cartesian and polar coordinates together with (3.38)
and (3.42), one easily obtains

∂ψν,k,s

∂x
= −aν,k · ν · sin θ · cos(νθ) · 1

r
· Jν(σν,kr)

+ aν,k · σν,k · cos θ · sin(νθ) · J ′ν(σν,kr)

= −aν,k · ν · sin θ · cos(νθ) · σν,k

ν
· (J ′ν(σν,kr) + Jν+1(σν,kr))

+ aν,k · σν,k · cos θ · sin(νθ) · J ′ν(σν,kr) .

The monotonicity of ‖Jν‖L∞(R+) and (3.43) now furnish
∥∥∥∥

∂ψν,k,s

∂x

∥∥∥∥
L∞(D)

≤ aν,k · σν,k ·
(
2‖J ′ν‖L∞(R+) + ‖Jν+1‖L∞(R+)

)

≤ aν,k · σν,k ·
(
2
√

2 + 3
)
· ‖Jν‖L∞(R+) .

If j′ν denotes the smallest positive zero of J ′ν , then it was shown in [38, Section 15.31]
that ‖Jν‖L∞(R+) = Jν(j′ν), since ν ≥ 1. Together with j′ν ≤ σν,k we now obtain

‖Jν‖L∞(R+) = sup
0≤τ≤σν,k

|Jν(τ)| = 1
aν,k

· ‖ψν,k,s‖L∞(D) ,

and therefore ∥∥∥∥
∂ψν,k,s

∂x

∥∥∥∥
L∞(D)

≤
(
2
√

2 + 3
)
· σν,k · ‖ψν,k,s‖L∞(D) .

Analogously we can bound the maximum norm of ∂ψν,k,s/∂y, and an application
of Lemmas 3.1 and 3.3 completes the proof of (3.41). In order to show that the
estimate is sharp, one can again employ (3.39).
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The above results establish the precise asymptotics of the maximum of both the
eigenfunctions and their gradients on the unit disk. Unlike in the case of rectangular
domains, where uniform bounds are observed, these norms grow with increasing
wave number. In fact, the behavior of the eigenfunctions on the disk constitutes
the maximum possible growth rate for two-dimensional domains, as was shown
in [20].

4. Transient Pattern Formation. In the last two sections we have presented all
the results which are necessary for studying the formation of transient patterns on
the unit disk. These results will be combined in the following. After describing the
basic functional-analytic setting in Section 4.1, the crucial nonlinearity estimate is
derived in Section 4.2. The main result of the paper is then presented in Section 4.3.
Throughout this section, the constant C describes a positive constant which is
independent of the small parameter ε in (1.1), and whose value can change from
line to line.

4.1. Functional-Analytic Setting. We consider the Cahn-Hilliard equation as
defined in (1.1), and assume the following:
(A1) Suppose that D denotes the unit disk in R2, and that f : R → R is a C4-

function. Furthermore, assume that the total mass µ ∈ R is chosen in such a
way that f ′(µ) > 0.

For the sake of simplicity, we follow [29, 34, 37] and perform a change of variables
so that the mass constraint

∫
D

u dx = µ can be replaced by
∫

D
u dx = 0. This leads

to the transformed equation

ut = −∆(ε2∆u + f(µ + u)) in D ,

∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂D ,

∫

D

u dx = 0 .

(4.44)

If u is any solution of (4.44), then µ + u solves the original Cahn-Hilliard equa-
tion (1.1), and vice versa. As demonstrated in [29], the equation (4.44) can be
viewed as an abstract evolution equation of the form

ut = Aεu + F (u) . (4.45)

The linear operator Aε is defined as in (1.2), and the nonlinearity F is given by

F (u) = −∆g(u) where g(u) = f(µ + u)− f ′(µ)u− f(µ) . (4.46)

In order to derive our nonlinearity estimates for F in Section 4.2, we need to specify
the local behavior of g.
(A2) Assume that (A1) holds and let g be defined as in (4.46). We assume that g

satisfies g(u) = u1+σ · g̃(u), where σ ≥ 1 and g̃ is C2 on an open interval
containing 0.

For the standard Cahn-Hilliard equation with µ = 0 and f(u) = u−u3 this condition
is satisfied with σ = 2, for the case µ 6= 0 we have σ = 1. In the latter case we have
to consider the transformed equation (4.44).

The functional-analytic setting for the abstract evolution equation (4.45) is as
follows. Let X be defined as in (1.3). Then the operator Aε : X → X with
domain (1.4) is self-adjoint, and −Aε is sectorial. Thus, we can define the fractional
power spaces X1/2,ε ⊂ X equipped with the operator norm ‖·‖1/2,ε; see for example
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Henry [22]. These spaces are Hilbert spaces, and at least in principle could depend
on the parameter ε. However, it was shown in [29] that these spaces are independent
of ε and coincide with the space X1/2 defined in (1.7). While the norms ‖ · ‖1/2,ε

do depend on ε, they are all equivalent to the standard H2(D)-norm on X1/2. For
our applications, it is more convenient to work with the non-standard norm

‖u‖∗ =
√
‖u‖2L2(D) + ‖∆u‖2L2(D) for u ∈ X1/2 .

On the unit disk D this norm is equivalent to the standard H2(D)-norm, and
therefore also to the operator norms ‖ · ‖1/2,ε. Furthermore, (A2) implies that the
nonlinearity F defined in (4.46) is a continuously differentiable nonlinear operator
from X1/2 to X, see [19, 29]. The theory of Henry [22] now shows that the abstract
evolution equation (4.45) generates a nonlinear semiflow Tε(t), t ≥ 0, on the Hilbert
space X1/2.

The basic properties of the linearized Cahn-Hilliard operator Aε defined in (1.2)
were already mentioned in the introduction. Let 0 < κ1 ≤ κ2 ≤ . . . → ∞ denote
the eigenvalues of −∆ subject to homogeneous Neumann boundary conditions, and
denote the corresponding L2(D)-orthonormalized eigenfunctions by ψk. In other
words, the sequence κk can be obtained by ordering the κν,k from Lemma 3.1, and
the eigenfunctions are obtained from the ψν,k,c/s through this ordering procedure.
Notice that for the case of two-dimensional domains, including the disk D, we have

κk ∼ k as k →∞ . (4.47)

The spectrum of Aε can easily be described using the κk, and it consists exactly
of the eigenvalues λk,ε defined in (1.5). As we mentioned in the introduction, the
operator Aε is the generator of an analytic semigroup Sε(t), t ≥ 0, on the Hilbert
space X. This semigroup has the explicit representation

Sε(t)v =
∞∑

k=1

eλk,ε·t · (v, ψk)L2(D) · ψk for v ∈ X . (4.48)

The asymptotic behavior of Sε(t) is described in the following result, which we
quote from Sander, Wanner [34], see also Wanner [37, Lemma 2.1].

Lemma 4.1. Let Aε be as in (1.2), consider the spaces X and X1/2 defined in (1.3)
and (1.7), respectively, and let Sε(t) denote the analytic semigroup generated by Aε.
Let X+

ε be defined as in (1.8) for some γo ∈ (0, 1), and let X−
ε denote its orthogonal

complement in X1/2. Finally, choose an arbitrary βo > 0, and define

Kε =
1
ε
·
√

1 + βo + 4ε4/f ′(µ)2

2e · βo
, βε = (1 + βo) · λmax

ε , and γε = γo · λmax
ε ,

where λmax
ε was defined in (1.6). Then the following estimates hold:

‖Sε(t)v‖∗ ≤ Kε · t−1/2 · eβε·t · ‖v‖L2(D) for t > 0 , v ∈ X ,

‖Sε(t)v‖∗ ≤ eλmax
ε ·t · ‖v‖∗ for t ≥ 0 , v ∈ X1/2 ,

‖Sε(t)v+‖∗ ≥ eγε·t · ‖v+‖∗ for t ≥ 0 , v+ ∈ X+
ε ,

‖Sε(t)v−‖∗ ≤ eγε·t · ‖v−‖∗ for t ≥ 0 , v− ∈ X−
ε .

While the eigenfunctions ψk are orthonormalized with respect to the L2(D)-
norm, our main phase space is given by the Hilbert space X1/2 with norm ‖ · ‖∗.
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One can easily verify that if we define

ϕk =
1√

1 + κ2
k

· ψk for k ∈ N , (4.49)

then the set ϕk, k ∈ N, is a complete orthonormal set in this latter Hilbert space.
We close this section with a few more detailed comments on the dominating

subspace X+
ε defined in (1.8). This definition, together with (1.5) and (1.6), implies

that an eigenfunction ψk is contained in the dominating subspace if and only if

κε =
f ′(µ)
2ε2

·
(
1−

√
1− γo

)
≤ κk ≤ κε =

f ′(µ)
2ε2

·
(
1 +

√
1− γo

)
. (4.50)

In other words, there are constants N1,ε, N2,ε ∈ N with N1,ε ≤ N2,ε such that

X+
ε = span {ψk : N1,ε ≤ k ≤ N2,ε} = span {ϕk : N1,ε ≤ k ≤ N2,ε} . (4.51)

Furthermore, due to (4.47) and (4.50) we have that N1,ε, N2,ε ∼ ε−2, and thus

dimX+
ε ∼ ε−2 for ε → 0 . (4.52)

The fact that the dimension of the dominating subspace X+
ε increases as ε → 0

is one of the crucial factors in obtaining an accurate description of the patterns
observed during spinodal decomposition. See Maier-Paape, Wanner [28].

4.2. Nonlinearity Estimate. It was shown in [34, 37] that the crucial step for
explaining transient patterns in the Cahn-Hilliard model is the derivation of precise
bounds on the nonlinearity F defined in (4.46). Such nonlinearity estimates rely
on a detailed description of the temporal evolution of the L∞-norm of certain solu-
tions of the linearized Cahn-Hilliard equation (1.2), as well as their gradients. As
we mentioned above, Aε generates an analytic semigroup Sε(t), t ≥ 0, on X. The
unique solution of (1.2) originating at vo is given by v(t) = Sε(t)vo, with explicit
representation (4.48). We are interested in solutions of (1.2) for which vo is con-
tained in the dominating subspace X+

ε . The next lemma is the key for obtaining
our nonlinearity estimates.

Lemma 4.2. Let D denote the unit disk in R2, and let T > 0 be arbitrary. Then
there exist ε-independent constants C1 and C2, and for every sufficiently small ε > 0
there exists a subset G+

ε ⊂ X+
ε such that the following hold.

(a) For any v+ ∈ G+
ε and arbitrary r > 0 we have r · v+ ∈ G+

ε , i.e., the set G+
ε is

the union of half-rays originating at the origin.
(b) Let r > 0 be arbitrary, and let mr denote the uniform probability measure on

the sphere S+
ε,r = {v+ ∈ X+

ε : ‖v+‖∗ = r}. Then

mr(G+
ε ∩ S+

ε,r) ≥ 1− C1 · ε2 .

(c) Let v+
o ∈ G+

ε be arbitrary, and let v+(t) = Sε(t)v+
o denote the solution of the

linear equation (1.2) starting at v+
o . Then for all 0 ≤ t ≤ T we have

‖Sε(t)v+
o ‖L∞(D) ≤ C2 · ε3/2 ·

√
| ln ε| · eλmax

ε ·t · ‖v+
o ‖∗ , (4.53)

‖∇Sε(t)v+
o ‖L∞(D) ≤ C2 · ε1/2 ·

√
| ln ε| · eλmax

ε ·t · ‖v+
o ‖∗ , (4.54)

‖∇Sε(t)v+
o ‖L4(D) ≤ C2 · ε3/4 · 4

√
| ln ε| · eλmax

ε ·t · ‖v+
o ‖∗ , (4.55)

where again we use the notation introduced in Definition 2.1.
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Proof. We only have to construct a subset G+
ε,1 of the unit sphere S+

ε,1 in X+
ε such

that (b) is satisfied with r = 1 and such that (c) holds for all v+
o ∈ G+

ε,1. If we then
define

G+
ε =

⋃
r>0

(
r · G+

ε,1

) ⊂ X+
ε ,

then (a) is automatically satisfied, and the validity of (b) for arbitrary r > 0 follows
easily. Furthermore, since we are considering the evolution of a linear semigroup,
the estimates in (c) remain valid for arbitrary v+

o ∈ G+
ε .

In order to construct the set G+
ε,1 we apply the results of Section 2.3, i.e., we

have to determine the ε-dependence of the constants E1, . . . , E6 in Assumption 2.8.
According to the definition of the dominating subspace X+

ε and (1.5) there exist
integers N1,ε ≤ N2,ε such that (4.51) holds. Now choose {ψ̄1, . . . , ψ̄N} in Assump-
tion 2.8 as {ψN1,ε , . . . , ψN2,ε}, where ψk denotes the eigenfunction of the negative
Laplacian on the unit disk corresponding to the k-th eigenvalue (arranged in increas-
ing order counting multiplicities). Due to (4.52) we obtain that N = N2,ε−N1,ε +1
satisfies

N ∼ ε−2 . (4.56)

Applying Lemma 3.3 and Lemma 3.4, together with (4.50), furnishes

E1 ∼ ε−1/2 , E2 ∼ ε−3/2 , E5 ∼ ε−2 , and E6 ∼ ε−2 . (4.57)

For aN1,ε
, . . . , aN2,ε

∈ R we consider functions of the form

u(t, ·) = e−λmax
ε ·t · Sε(t)v+

o =
N2,ε∑

k=N1,ε

e−(λmax
ε −λk,ε)·t · ak · bk · ψk ,

where v+
o =

∑N2,ε

k=N1,ε
ak · bk · ψk ∈ X+

ε and bk = (1 + κ2
k)−1/2. Then the scaled

functions bkψk are orthonormal in X1/2 with respect to the scalar product induced
by ‖ · ‖∗, and we have ‖v+

o ‖∗ = |(aN1,ε
, . . . , aN2,ε

)|. Since the factors λmax
ε − λk,ε in

the exponents of the exponential terms are bounded by C · ε−2, we finally obtain
together with (4.50) that

E3 ∼ ε−2 and E4 ∼ ε2 . (4.58)

Using the asymptotics in (4.56), (4.57), and (4.58), the constants r0 and r1 in (2.31)
and (2.32) satisfy r0 ∼ ε9/2 and r1 ∼ ε5, respectively, and therefore we have

Υ0 ∼ ε27/2 and Υ1 ∼ ε15

in (2.33) — and an application of Theorem 2.10 then furnishes (4.53) and (4.54).
Thus, in order to complete the proof we only have to establish (4.55). This can be
accomplished completely analogous to the proof of [37, Lemma 4.2].

Remark 4.3. Notice that the set G+
ε is obtained from the dominating subspace X+

ε

by removing certain cone-shaped regions. It follows easily from the above lemma
that these removed parts are small in the following sense. If |·| denotes the canonical
Lebesgue measure on the finite-dimensional space X+

ε and if BR(0) ⊂ X1/2 denotes
the ball of radius R centered at 0, then there exists an ε-independent constant C > 0
such that for all sufficiently small ε > 0 we have

|G+
ε ∩BR(0)|∣∣X+
ε ∩BR(0)

∣∣ ≥ 1− C · ε2 for all R > 0 .
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Therefore, as ε → 0 the sets G+
ε cover as large a percentage of the dominating

subspace X+
ε as we wish.

Lemma 4.2 is the crucial result for obtaining sharp bounds on the nonlinearity F
of the Cahn-Hilliard equation. In fact, once the lemma has been established, the
remaining results of [37] can be proved almost verbatim — one just has to keep
track of the different exponents of ε in (4.53), (4.54), and (4.55). Thus, we arrive
at the following nonlinearity estimate.

Proposition 4.4. Assume that (A1) and (A2) are satisfied, let F be as in (4.46),
and let δ∗ > 0. Consider the dominating subspace X+

ε from (1.8), and let G+
ε denote

its subset constructed in Lemma 4.2 for T = 1. Then there exist constants C3 and C4

such that for all sufficiently small values of ε > 0 the following is true.
Let v+

o ∈ G+
ε be arbitrary, and let v+(t) = Sε(t)v+

o denote the solution of (1.2)
starting at v+

o . Furthermore, for 0 < T ∗ ≤ 1 assume that u : [0, T ∗] → X1/2 is any
continuous function satisfying both

‖u(t)‖L∞(D) ≤ C3 (4.59)

and
‖u(t)− v+(t)‖∗

‖v+(t)‖∗ ≤ δ∗ · ε3/2 ·
√
| ln ε| (4.60)

for all t ∈ [0, T ∗]. Then for all t ∈ [0, T ∗] we have

‖F (u(t))‖L2(D) ≤ C4 ·
(
ε3/2 ·

√
| ln ε|

)σ

· e(σ+1)·λmax
ε ·t · ‖v+

o ‖σ+1
∗ . (4.61)

Proof. For the sake of completeness, we sketch the proof by giving the essential
steps. For more details we refer the reader to the proof of [37, Proposition 4.4].

To begin with, the Sobolev embedding H2(D) ↪→ L∞(D), together with (4.53),
(4.60), and Lemma 4.1 furnish for all t ∈ [0, T ∗] the estimate

‖u(t)‖L∞(D) ≤ C · ‖u(t)− v+(t)‖∗ + ‖v+(t)‖L∞(D)

≤ C · ε3/2 ·
√
| ln ε| · eλmax

ε ·t · ‖v+
o ‖∗ . (4.62)

The Sobolev embedding H2(D) ↪→ W 1,4(D), in combination with (4.55), (4.60),
and Lemma 4.1 yields

‖∇u(t)‖L4(D) ≤ C · ‖u(t)− v+(t)‖∗ + ‖∇v+(t)‖L4(D)

≤ C ·
(
ε3/2 ·

√
| ln ε|

)1/2

· eλmax
ε ·t · ‖v+

o ‖∗ .

Furthermore, (4.60) furnishes for all t ∈ [0, T ∗] and all sufficiently small ε > 0 the
estimate

‖u(t)‖∗ ≤ ‖u(t)− v+(t)‖∗ + ‖v+(t)‖∗ ≤ C · eλmax
ε ·t · ‖v+

o ‖∗ .

The assumptions on g̃ furnish constants C > 0 and C3 > 0 such that

|g′(s)| ≤ C · |s|σ and |g′′(s)| ≤ C · |s|σ−1 for all |s| ≤ C3 ,

and (4.59) implies the validity of both

‖g′(u(t))‖L∞(D) ≤ C · ‖u(t)‖σ
L∞(D) and ‖g′′(u(t))‖L∞(D) ≤ C · ‖u(t)‖σ−1

L∞(D)



1072 J.P. DESI, E. SANDER AND T. WANNER

on [0, T ∗]. Together with F (u) = −g′(u)∆u − g′′(u)|∇u|2, the above estimates
finally imply

‖F (u(t))‖L2(D) ≤ ‖g′(u(t))‖L∞(D) · ‖∆u(t)‖L2(D)

+ ‖g′′(u(t))‖L∞(D) · ‖∇u(t)‖2L4(D)

≤ C ·
(
ε3/2 ·

√
| ln ε|

)σ

· eσ·λmax
ε ·t · ‖v+

o ‖σ
∗ · ‖u(t)‖∗

+C ·
(
ε3/2 ·

√
| ln ε|

)σ

· e(σ+1)·λmax
ε ·t · ‖v+

o ‖σ+1
∗

for all t ∈ [0, T ∗]. This completes the proof.

While (4.59) is a convenient assumption for the derivation of the nonlinearity
estimate, the functional-analytic setting for (4.44) involves the Sobolev norm ‖ · ‖∗.
The connection between the two is established by the following lemma.

Lemma 4.5. Assume that (A1) and (A2) are satisfied, and let δ∗ ∈ (0, 1) be arbi-
trary. Consider the dominating subspace X+

ε from (1.8) for some γo ∈ (0, 1), and
let G+

ε denote its subset constructed in Lemma 4.2 for T = 1. Then there exists a
constant M such that for all sufficiently small values of ε > 0 the following is true.

Let v+
o ∈ G+

ε be arbitrary, and let v+(t) = Sε(t)v+
o denote the solution of (1.2)

starting at v+
o . Furthermore, for 0 < T ∗ ≤ 1 assume that u : [0, T ∗] → X1/2 is any

continuous function such that for all t ∈ [0, T ∗] both

‖u(t)‖∗ ≤ M ·
(
ε3/2 ·

√
| ln ε|

)−γo · ‖v+
o ‖1−γo∗ (4.63)

and
‖u(t)− v+(t)‖∗

‖v+(t)‖∗ ≤ δ∗ · ε3/2 ·
√
| ln ε| (4.64)

hold. Then the estimate (4.61) is satisfied on [0, T ∗].

Proof. Using the fact that ε3/2 ·
√
| ln ε| < 1/2 for sufficiently small ε, the assumed

inequality (4.64) and δ∗ ∈ (0, 1) imply

‖v+(T ∗)‖∗ ≤ δ∗ε3/2
√
| ln ε| · ‖v+(T ∗)‖∗ + ‖u(T ∗)‖∗ ≤ ‖v+(T ∗)‖∗

2
+ ‖u(T ∗)‖∗ ,

and therefore ‖v+(T ∗)‖∗ ≤ 2 · ‖u(T ∗)‖∗. Combining this estimate with (4.63) and
the lower bound on the growth of ‖v+(t)‖∗ provided by Lemma 4.1 yields

‖v+
o ‖∗ · eγo·λmax

ε ·T∗ ≤ ‖v+(T ∗)‖∗ ≤ 2M ·
(
ε3/2 ·

√
| ln ε|

)−γo · ‖v+
o ‖1−γo∗ ,

as well as

eλmax
ε ·T∗ ≤ (2M)1/γo ·

(
ε3/2 ·

√
| ln ε| · ‖v+

o ‖∗
)−1

.

This estimate, together with (4.62) from Proposition 4.4 (which is still valid under
the assumptions of this lemma), implies

‖u(t)‖L∞(D) ≤ C · ε3/2 ·
√
| ln ε| · ‖v+

o ‖∗ · eλmax
ε ·T∗ ≤ C · (2M)1/γo

for all t ∈ [0, T ∗]. If we now define M = (C3/C)γo/2, where C3 > 0 is as in
Proposition 4.4, then the lemma follows.
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4.3. Spinodal Decomposition on the Disk. In this section we study spinodal
decomposition on the unit disk, i.e., we present the precise version of Theorem 1.3.
For this, the following definition is essential.

Definition 4.6. Let X+
ε denote the dominating subspace defined in (1.8), let X−

ε

denote its orthogonal complement in the Hilbert space X1/2, and let G+
ε denote the

set from Lemma 4.2 for T = 1. Then for every sufficiently small ε > 0 and for
every δ > 0 we define the two sets

Kε,δ =
{

u ∈ X1/2 : ‖u−‖∗ ≤ δ · ‖u+‖∗
}

,

Gε,δ =
{

u ∈ X1/2 : u ∈ Kε,δ and u+ ∈ G+
ε

}
.

where for u ∈ X1/2 the elements u± are defined by u = u+ + u− ∈ X+
ε ⊕X−

ε .

The cone Kε,δ was already recognized in [34] as a region in phase space where the
nonlinearity of the Cahn-Hilliard equation remains small, even far from the equi-
librium 0. The set Gε,δ consists of all functions in Kε,δ whose orthogonal projection
onto the dominating subspace is contained in the set G+

ε . These functions constitute
the collection of all initial conditions uo for which the nonlinearity estimate can be
drastically improved. We would like to point out that according to Remark 4.3, in a
measure-theoretic sense the set G+

ε is a large subset of the dominating subspace X+
ε .

By combining Definition 4.6 with Lemma 4.1 and Proposition 4.4 we now obtain
the main result of our paper, which is obtained similarly to [37, Theorem 4.7].

Theorem 4.7. Consider the Cahn-Hilliard equation (4.44). Furthermore, assume
that both (A1) and (A2) are satisfied, and adopt the notation introduced in Defini-
tion 4.6. Finally, choose and fix constants c > 0, δo ∈ (0, 1/3) and % ∈ (0, 1).

Then there exist ε-independent constants d > 0 and γo ∈ (0, 1) (the latter deter-
mines the dominating subspace X+

ε ) such that for all sufficiently small ε > 0 the
following holds. If uo ∈ Gε,δε with δε = δo · ε3/2 ·

√
| ln ε| is any initial condition

satisfying

e−c/ε ≤ ‖uo‖∗ ≤ min
{

1 ,
(
d · ε−3/2·(1−1/σ)+%

)1/(1−%)
}

, (4.65)

and if u and v denote the solutions of equations (4.44) and (1.2), respectively,
starting at uo, then there exists a first time To > 0 such that

‖u(To)‖∗ = d · ε−3/2·(1−1/σ)+% · ‖uo‖%
∗ , (4.66)

and for all t ∈ [0, To] we have

‖u(t)− v(t)‖∗
‖v(t)‖∗ ≤ δε = δo · ε3/2 ·

√
| ln ε| . (4.67)

Proof. Choose 0 < γo < 1 such that both

(σ + 1)(1− γo)
σ + 1− γo

< % and
−3γo · (σ − 1)
2(σ + 1− γo)

< −3
2
·
(

1− 1
σ

)
+ % (4.68)

hold. Furthermore, choose d1 > 0 such that for all sufficiently small ε > 0 we have

d1 · ε−3/2·(1−1/σ)+% ≤
(
ε−3/2 · | ln ε|−1/2

)γo·(σ−1)/(σ+1−γo)

. (4.69)

The constant d appearing in the formulation of the theorem is defined as d = d1 ·d2,
where the precise choice of d2 > 0 will be made later in the proof.
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Let γε = γo · λmax
ε , and adopt the notation of Lemma 4.1. Choose an initial

condition uo as in the formulation of the theorem and define v+
o = u+

o . Then the
orthogonal projection of the solution v(t) onto X+

ε is given by v+(t) = Sε(t)v+
o .

Furthermore, the choice of uo implies v+
o ∈ G+

ε , and with δ∗ = 3δo < 1 we obtain

‖u(0)− v+(0)‖∗
‖v+(0)‖∗ =

‖uo − v+
o ‖∗

‖v+
o ‖∗

=
‖u−o ‖∗
‖u+

o ‖∗
≤ δ∗

3
· ε3/2 ·

√
| ln ε| .

Invoking the continuity of u and v+, we can now let T ∗ ∈ (0, 1] be the maximal
time such that for all t ∈ [0, T ∗] we have both

‖u(t)− v+(t)‖∗
‖v+(t)‖∗ ≤ δ∗ · ε3/2 ·

√
| ln ε| (4.70)

and
‖u(t)‖∗ ≤ d · ε−3/2·(1−1/σ)+% · ‖uo‖%

∗ , (4.71)
where d = d1 ·d2. Notice also that according to (4.65), the right-hand side of (4.71)
is strictly larger than ‖uo‖∗. For d2 ≤ M/2, where M denotes the constant from
Lemma 4.5, the definition of d and (4.69) furnish for sufficiently small ε

d · ε−3/2·(1−1/σ)+% ≤ M

2
·
(
ε−3/2 · | ln ε|−1/2

)γo

,

and due to the choice of uo and δo < 1/3 we further obtain

‖uo‖∗ =
√
‖u+

o ‖2∗ + ‖u−o ‖2∗ ≤
√

1 + δ2
o · ε3 · | ln ε| · ‖u+

o ‖∗ ≤ 2 · ‖u+
o ‖∗ . (4.72)

Together with u+
o = v+

o , (4.65), and (4.68) this implies

‖uo‖%
∗ ≤ 2 · ‖v+

o ‖%
∗ ≤ 2 · ‖v+

o ‖(σ+1)·(1−γo)/(σ+1−γo)
∗ ≤ 2 · ‖v+

o ‖1−γo∗ .

Consequently, the validity of (4.71) on [0, T ∗] implies (4.63). Due to Lemma 4.5
all the assumptions of Proposition 4.4 are therefore satisfied on [0, T ∗]. Due to the
definition of u and v, the variation of constants formula gives

u(t)− v(t) =
∫ t

0

Sε(t− s)F (u(s)) ds ,

and Lemma 4.1 and Proposition 4.4 furnish

‖u(t)− v(t)‖∗ ≤
∫ t

0

Kε · (t− s)−1/2 · eβε·(t−s) · ‖F (u(s))‖L2(D) ds

≤ Kε · C4 · ε3σ/2 · | ln ε|σ/2 · ‖v+
o ‖σ+1

∗ · e(σ+1)·λmax
ε ·t

·
∫ t

0

(t− s)−1/2 · e(βε−(σ+1)·λmax
ε )·(t−s) ds

≤ Kε · C4 · ε3σ/2 · | ln ε|σ/2 · ‖v+
o ‖σ+1

∗ · e(σ+1)·λmax
ε ·t

· ((σ − βo) · λmax
ε )−1/2 ·

∫ ∞

0

s−1/2 · e−s ds

for all t ∈ [0, T ∗], as long as βo < 1. Thus, due to Lemma 4.1 and (1.6) there exists
an ε-independent constant Co > 0 such that

‖u(t)− v(t)‖∗ ≤ Co · ε3σ/2 · | ln ε|σ/2 · ‖v+
o ‖σ+1

∗ · e(σ+1)·λmax
ε ·t

for all t ∈ [0, T ∗]. According to Lemma 4.1 we have ‖v+(t)‖∗ ≥ eγε·t · ‖v+
o ‖∗, and

with γε = γo · λmax
ε one obtains

‖u(t)− v(t)‖∗
‖v+(t)‖∗ ≤ Co · ε3σ/2 · | ln ε|σ/2 · ‖v+

o ‖σ
∗ · e(σ+1−γo)·λmax

ε ·t . (4.73)
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Since uo − v+
o = u−o ∈ X−

ε we have ‖Sε(t)(uo − v+
o )‖∗ ≤ eγε·t · ‖uo − v+

o ‖∗, and
Lemma 4.1 yields

‖v(t)− v+(t)‖∗
‖v+(t)‖∗ =

‖Sε(t)(uo − v+
o )‖∗

‖Sε(t)v+
o ‖∗

≤ ‖uo − v+
o ‖∗

‖v+
o ‖∗

≤ δ∗

3
· ε3/2 ·

√
| ln ε| (4.74)

for all t ∈ [0, T ∗].
Next we need to establish an upper bound on T ∗, which in turn allows us to

bound the relative distance in (4.73). For small ε, (4.70) and δ∗ ∈ (0, 1) imply

‖v+(T ∗)‖∗ ≤ δ∗ · ε3/2
√
| ln ε| · ‖v+(T ∗)‖∗ + ‖u(T ∗)‖∗ ≤ ‖v+(T ∗)‖∗

2
+ ‖u(T ∗)‖∗ ,

i.e., we have ‖v+(T ∗)‖∗ ≤ 2 · ‖u(T ∗)‖∗. Together with (4.68), (4.69), (4.71), (4.72),
and Lemma 4.1, this yields

eλmax
ε ·T∗ ≤

(‖v+(T ∗)‖∗
‖v+

o ‖∗

)1/γo

≤
(
4d2d1ε

−3/2·(1−1/σ)+% · ‖v+
o ‖%−1

∗
)1/γo

≤ (4d2)
1/γo ·

(
ε3/2| ln ε|1/2

)(1−σ)/(σ+1−γo)

· ‖v+
o ‖−σ/(σ+1−γo)

∗ , (4.75)

which is the desired upper bound for T ∗. With (4.73) this implies

‖u(t)− v(t)‖∗
‖v+(t)‖∗ ≤ Co · (4d2)

(σ+1−γo)/γo · ε3/2 ·
√
| ln ε| for all t ∈ [0, T ∗] .

Now we choose the constant d2. According to the discussion following (4.71) we
certainly need d2 ≤ M/2. Assume additionally that Co · (4d2)(σ+1−γo)/γo ≤ δ∗/3 is
satisfied. Then the above estimate and (4.74) furnish

‖u(t)− v(t)‖∗
‖v(t)‖∗ ≤ ‖u(t)− v(t)‖∗

‖v+(t)‖∗ ≤ δ∗

3
· ε3/2 ·

√
| ln ε| = δo · ε3/2 ·

√
| ln ε| ,

as well as
‖u(t)− v+(t)‖∗

‖v+(t)‖∗ ≤ 2
3
· δ∗ · ε3/2 ·

√
| ln ε|

for all t ∈ [0, T ∗]. This shows that (4.67) holds everywhere on [0, T ∗]. Moreover,
since T ∗ ∈ (0, 1] is the maximal time for which (4.70) and (4.71) hold on [0, T ∗], we
have to have ‖u(T ∗)‖∗ = d · ε−3/2·(1−1/σ)+% · ‖uo‖%

∗, unless T ∗ = 1. Yet, (4.75) and
the assumed lower bound on ‖uo‖∗ imply T ∗ = O(ε) for ε → 0, i.e., T ∗ < 1 as long
as ε > 0 is sufficiently small — and the theorem follows with To = T ∗.

Remark 4.8. It was pointed out in [37, Remark 4.8] that the assumed lower bound
on ‖uo‖∗ could easily be relaxed. However, initial conditions which are exponentially
close to the homogeneous equilibrium are not physically reasonable; see also the
discussion in [28].

For the case of total mass µ = 0 and the standard cubic nonlinearity f(u) = u−u3

the above theorem guarantees linear behavior in the Cahn-Hilliard equation (1.1)
on the disk up to distances of the order Rε ∼ ε−3/4+%. In fact, up to this point the
relative distance between the solution to the nonlinear and the linearized equation
is of the order O(ε3/2 · | ln ε|1/2). But does the result really describe the behavior
exhibited by generic random initial conditions? In the case of rectangular domains,
the analogue of Theorem 4.7 really does reproduce the typical solution behavior,
as was shown numerically in [37]. Yet, for the unit disk the situation is more
complicated.
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Figure 3. Dependence of the radius Rε on ε for random initial
conditions starting near ūo = 0 on the disk. The left diagram is
for relative distance 0.2 · ε1.5 ·

√
| ln ε|; a least-squares fit gives the

dependence Rε ≈ 0.16 · ε−1.3. The right diagram is for relative
distance 0.78 · ε1.8; a least-squares fit now gives Rε ≈ 0.28 · ε−1.1.
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Figure 4. Dependence of the quotient δε = ‖u‖∞/‖u‖∗ on ε for
the random initial conditions used in Figure 3, as well as for the
function u at the end of the simulation. The left diagram is for
relative distance 0.2 · ε1.5 ·

√
| ln ε|; a least-squares fit gives the

dependence δε ≈ 6.2 · ε1.80 for the initial conditions (top curve),
and δε ≈ 2.6 · ε1.84 at the simulation end (bottom curve). The
right diagram is for relative distance 0.78 · ε1.8; a least-squares fit
gives the dependence δε ≈ 5.8 · ε1.78 for the initial conditions (top
curve), and δε ≈ 2.8 · ε1.86 at the simulation end (bottom curve).

The left diagram in Figure 3 shows the result of simulations for various ε-values,
starting at fifty randomly chosen initial conditions in each case. For each initial con-
dition, we followed the corresponding evolution of the nonlinear and the linearized
Cahn-Hilliard equation until the relative distance between these solutions reached
δε = 0.2·ε1.5 ·

√
| ln ε|, and recorded the resulting ‖·‖∗-norm of the nonlinear solution

as Rε. A least-squares fit of these data points reveals that Rε ≈ 0.16 · ε−1.3, which
is considerably larger than the order predicted by Theorem 4.7. In fact, repeating
these simulations with δε = 0.78 · ε1.8 leads to Rε ≈ 0.28 · ε−1.1, which is still larger
than the predicted order — albeit closer.
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These simulations clearly indicate that, unlike in the situation of rectangular
domains, the nonlinearity estimate derived in Proposition 4.4 is suboptimal. Since
one of the main ingredients of this nonlinearity estimate is a tight bound on the
ratio ‖u‖L∞(D)/‖u‖∗, we determined these ratios numerically for both the initial
conditions and the solutions at the end of the simulations in Figure 3. The results
are shown in the log-log-plots in Figure 4 — and they give rise to two interesting
conclusions:

• The bound on ‖u‖L∞(D)/‖u‖∗ derived in (4.53) is suboptimal. In fact, it
seems that ‖u‖L∞(D)/‖u‖∗ ∼ ε1.8 describes the observed behavior better.

• The norm ratios actually decrease as the solution evolves, which most likely
results in even better nonlinearity estimates.

If we assume that the ratio mentioned in the first conclusion is more accurate,
then an adaptation of Theorem 4.7 would predict Rε ∼ ε−0.9 — in contrast to
the order Rε ∼ ε−1.1 that was derived numerically in the right diagram of Fig-
ure 3. However, the difference between the exponents is much smaller now, and can
probably be explained by the second conclusion from above.

This discussion shows that in the case of the unit disk, random superpositions
alone cannot completely describe the linear solution behavior observed during spin-
odal decomposition, even though the remaining gap is small. We conjecture that this
difference is a consequence of the eigenfunction representations given in Lemma 3.1.
The maxima of the eigenfunctions are attained at different points in the domain,
which generically leads to smaller L∞(D)-norms of eigenfunction superpositions
than predicted by the results of Section 2. In contrast, for rectangular domains all
eigenfunctions achieve their maximum at the origin, i.e., additional cancellations
are less likely.
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