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ABSTRACT

A variety of nonlinear models of biological systems generate complex chaotic behaviors that contrast with biological homeostasis, the
observation that many biological systems prove remarkably robust in the face of changing external or internal conditions. Motivated by
the subtle dynamics of cell activity in a crustacean central pattern generator (CPG), this paper proposes a refinement of the notion of chaos
that reconciles homeostasis and chaos in systems with multiple timescales. We show that systems displaying relaxation cycles while going
through chaotic attractors generate chaotic dynamics that are regular at macroscopic timescales and are, thus, consistent with physiological
function. We further show that this relative regularity may break down through global bifurcations of chaotic attractors such as crises, beyond
which the system may also generate erratic activity at slow timescales. We analyze these phenomena in detail in the chaotic Rulkov map, a
classical neuron model known to exhibit a variety of chaotic spike patterns. This leads us to propose that the passage of slow relaxation cycles
through a chaotic attractor crisis is a robust, general mechanism for the transition between such dynamics. We validate this numerically in
three other models: a simple model of the crustacean CPG neural network, a discrete cubic map, and a continuous flow.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0166846

Some biological models are known to exhibit mathematical chaos,
yet are considered by biologists to have regular dynamics capa-
ble of maintaining biological function. These systems typically
display highly erratic behaviors at short timescales but maintain
regular features at slower, physiologically relevant timescales. We
explore this conundrum mathematically and identify mathemat-
ical structures, which allow chaotic deterministic systems with
multiple timescales to maintain macroscopic regularity. We also
exhibit a general global bifurcation mechanism that can cause
these systems to transition to highly erratic behaviors at slow
timescales.

I. INTRODUCTION

Deterministic dynamical systems that feature chaotic dynam-
ics are usually characterized by irregular aperiodic patterns of
activity and unpredictable behaviors, which are highly sensitive to

perturbations of parameters and initial conditions. These erratic
characteristics of chaotic dynamical systems seem to be unde-
sirable for physiological biological systems that are required to
maintain robust activity patterns to function. However, the pres-
ence of chaotic dynamics has been reported in several experiments
on physiological behavior, including key functions such as car-
diac contractions1 or brain activity,2 and many of these systems
demonstrate highly regular dynamics at physiological timescales,
with irregular activity limited to small timescales and rapid fluctua-
tions. A well-studied biological system exhibiting such behaviors is
the stomatogastric ganglion (STG) of crustaceans3 described below.
In this paper, we explore how deterministic dynamical systems can
exhibit this interplay between fast chaos and slow periodicity.

Beyond its conceptual interest, the interplay between irreg-
ular activity and biological function has implications in under-
standing possible consistency between chaos and homeostasis, the
process by which a variety of functions of living organisms are
regulated in response to changes in the environment.4–7 Various
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system-level feedback control mechanisms have been suggested to
maintain macroscopic activity (see, e.g., in neuroscience, homeo-
static plasticity,8–11 or inhibitory coupling in networks of Rulkov
neurons12–16). At the single-cell level and in the absence of an exoge-
nous mechanism, homeostasis has been suggested to be devoid
of chaos.17 It was associated with the existence of stable fixed
points that show little dependence to parameters18–20 or robust limit
cycles.21 However, an example of a chaotic system showing consid-
erable robustness is given by the crustacean STG, a motor neural
circuit producing a stable triphasic bursting pattern of activity that
controls the movements of muscles involved in chewing and filter-
ing food (see review22). This neural network is remarkably robust to
changes in internal and external conditions [Fig. 1(a)] and is able
to maintain constant key features for functional output such as the
order of firing of the neural populations, relative phases, and duty
cycles. These macroscopic regularities arise despite a clear cycle-
to-cycle variability typical of chaotic systems [covering a dense
region of the phase space, Fig. 1(a), bottom], which is also reflected
in various detailed models of the system.23,24 However, this chaos
can significantly impact function when the neurohormonal inputs

to the STG are blocked (a process called decentralization), yield-
ing an erratic spiking behavior with sporadic bursts and a complete
loss of rhythmicity, associated with a loss of function [Fig. 1(b)]. In
this work, we consider the question of whether purely determin-
istic systems can display these two types of chaotic behavior and
how such systems can switch between them. While we only briefly
address stochastic slow–fast systems, the results of this paper are also
relevant in this context as well, cf. Fig. 10.

From the mathematical viewpoint, all formal definitions of
chaos to date rely on fine properties of the dynamical system,25 and,
in particular, possible regularities arising at slower timescales are
immaterial in these characterizations. The main contribution of this
paper is to refine the notions of chaos in the context of determinis-
tic dynamical systems with multiple timescales so as to distinguish
whether or not chaos affects the macroscopic behavior of the system
at slow timescales.

This paper proceeds as follows. We start by proposing a
definition of slow and fast chaos in Sec. II, before proceeding to a
detailed analysis of the chaotic Rulkov map in Sec. III with a partic-
ular focus on exhibiting these types of dynamics and the transitions

FIG. 1. Intracellular voltage traces from three pyloric circuit neurons of the Cancer borealis STG. (a) Chaotic behaviors in an intact system showing rhythmic bursting with low
fluctuations in the period of oscillations (with a coefficient of variation cv = 0.02), and (b) erratic bursting/firing dynamics in a decentralized network, where the irregularity in
the slow dynamics is characterized by sizable fluctuations of the relaxation cycle duration (cv = 0.63).
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between them. Section IV proposes a topological account for the
dynamics observed in these two regimes that we validate using a
probabilistic model for characterizing the slow–fast behavior of the
chaotic Rulkov map. We then explore the generality of these find-
ings by studying a variety of models. We first return to the CPG
motivation in Sec. V and introduce a simple network model with
behavior similar to the CPG network in Fig. 1. Section VI goes fur-
ther into exploring the generality of the behaviors described and
introduces two other models which contain slow and fast chaos.
Source codes for all numerical simulations are available in Ref. 26,
and the numerical methods used in these simulations are discussed
in the Appendix.

II. SLOW AND FAST CHAOS

There are several definitions of chaos reflecting the variety of
facets of the phenomenon.25 The most classical characterizations of
chaos involve positive Lyapunov exponents, topological entropy, or
information entropy. In our context, a natural question is whether
any of these characterizations is able to distinguish between chaos
on the slow and the fast timescales, since from the point of view of
applications, these are qualitatively quite different.

Central to our definition of fast or slow chaos, we will focus
our attention on the timing of specific events arising at the slow
timescale. If, for a system displaying chaos, the fluctuations in the
timing of these events are negligible compared to the slow timescale,
we will qualify this chaotic behavior as fast chaos. Instead, if the fluc-
tuations are of the same order of magnitude as the slow timescale, we
will qualify the behavior as slow chaos.

To make this qualitative definition more quantitative, we pro-
pose the following empirical description. We consider a sequence of
events arising at the slow timescale. For example, in data this time
scale could be characterized by events such as directional threshold
crossings, switches between biologically relevant regimes such as the
up- and down-states in Fig. 1, or Poincaré sections. The duration of
the time interval separating such events defines a sequence of real
numbers (τn)n≥0, with a mean τ̄ and standard deviation 6. The so-
called coefficient of variation is defined as cv := 6/τ̄ . A coefficient
of variation cv of order 1 characterizes trajectories where the fluc-
tuations in the timings of the slow events are of the same order of
magnitude as their means, which is characteristic of orbits ON that
are slowly chaotic. If instead cv is small compared to 1, then the
fluctuations in these timings are small compared to the mean, cor-
responding to trajectories that are regular at slow timescales, thus
displaying fast chaos in this parlance. Another relevant dimension-
less quantity that we will consider is the level of fluctuations in the
timing of the slow events (measured using the standard deviation of

return times) relative to the slow timescale, 6̃ = 6 · µ, where µ is
the inverse characteristic time of the slow variables. If 6̃ is of order
one, the fluctuations in the timing of slow events are on the same
order of magnitude as the slow timescale, corresponding heuristi-

cally to slow chaos. Instead, if 6̃ is small compared to 1, the events
arise at regular intervals compared to the slow timescale and we have
fast chaos. It should be noted that both of these quantities, the coef-
ficient of variation and the normalized standard deviation of return
times, are highly dependent on the choice of what constitutes a phys-
ically meaningful event. In particular, it is important to note that a

given trajectory can satisfy the definition of slow chaos for specific
events and fast chaos for other events.

Slow and fast chaos have often been observed in specific
systems, but a consensus on how one distinguishes between the
two appears to be lacking. Maslennikov and Nekorkin27 reported,
for the first time to our knowledge, the possibility of the emer-
gence of chaotic trajectories with relatively regular slow trajectories
in idealized mathematical models and discrete FitzHugh–Nagumo
maps. Such trajectories are akin to what we classify as fast chaos
in this paper. In the same vein, chaotic trajectories with regular
slow dynamics were reported in periodically forced cubic maps.28

In these systems, the regularity of the slow dynamics is imposed
by a slow periodic variation of a parameter in the equation, while
chaos emerges at a much faster timescale due to the instabilities
of the fast dynamics. The coefficient of variation has been applied
to study coherence in noise driven excitable systems29,30 and burst
regularization induced by coupling in neural networks of Rulkov
maps.15,16 Another highly relevant work is the analysis of Terman31

of chaotic trajectories in slow–fast systems of differential equations
describing neural systems with relaxation cycles in the vicinity of
a bifurcation from periodic bursting behavior to spiking behavior.
This takes place in the vicinity of homoclinic orbits and may arise in
three-dimensional differential equations, which do not include the
possibility of fast chaos.

III. THE CHAOTIC RULKOV MAP

The core of this paper relies on the analysis of the chaotic
Rulkov map introduced in Ref. 32. This model was shown to encom-
pass, within a simple two-dimensional discrete dynamical system
preserving mathematical tractability, some of the most prominent
neuronal behaviors.33,34 This map is given by

xn+1 =
α

1 + x2
n

+ yn, (1)

yn+1 = yn − µ (xn − σ). (2)

The dimensionless variable xn models the membrane potential of
a neuron at discrete time step n, and yn is an adaptation variable
accounting for slower gating processes. The external bias current
is denoted by σ , giving the resting potential for σ < 0. It will be
fixed to σ = −1 for the rest of the study. The small parameter
µ denotes the timescale ratio of adaptation compared to voltage,
and the parameter α controls the excitability of the neuron. This
excitability parameter α will serve as our main bifurcation parameter
in this study. As the neuron becomes more excitable, it transitions
from a resting state to an invariant cycle,35 which rapidly grows into
a large amplitude relaxation cycle that eventually becomes chaotic
upon increasing excitability, as shown in Fig. 2 (see also Ref. 33,
Sec. 2.1.2). A fine analysis of these chaotic trajectories identifies
distinct classes of behaviors, as we depict in Fig. 2:

(a) For α just above the value associated with the emergence of
a positive Lyapunov exponent, we observe marginally chaotic
orbits with regular relaxation cycles exhibiting fluctuating pat-
terns on the crest of the relaxation cycle. Bursting starts to occur
as soon as there is bistability of the fast system.
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FIG. 2. Top: Chaotic trajectories of the Rulkov map, at parameters µ = 0.01, σ = −1 with subfigures (a1), (b1), (c1), (d1), (e1) corresponding to α = 2.698, 3.95, 4.00,
4.05, 5.00. Left: xn; middle: yn; right: phase planes for x vs y showing an orbit for µ = 0.01 (blue), the fast attractor for µ = 0 (red), the fast nullcline (purple), and the slow
nullcline (yellow), where a2,. . . ,e2 have the same corresponding parameters as in a1,. . . ,e1. Bottom left: Lyapunov exponents as a function of α, indicating that chaos
emerges when α ≈ 2.6.

(b) As α is further increased, we continue to observe relatively regu-
lar relaxation cycles, yet bursts become more complex and show
higher amplitude spikes with a repetitive triangular profile,
which is notwithstanding all distinct and non-periodic.

(c) Beyond a threshold level for α, the slow dynamics suddenly
becomes irregular, with long bursts with triangular spike pro-
files [as described in (b)] alternating non-periodically with
shorter bursts with approximately constant spike amplitude
(yielding rectangular-shaped envelopes).

(d) As α is further increased, slow chaos persists, with shorter bursts
becoming more frequent and longer bursts rarer.

(e) Eventually, the system reaches a threshold value of α beyond
which the system no more produces relaxation cycles and the
orbit is continuously bursting/spiking, with no discernable sep-
aration of bursts.

As expected, the study of Lyapunov exponents precisely identi-
fies the presence of chaos. However, these exponents do not appear
to identify a transition between fast chaos (with relatively regular
repetitions of chaotic bursts) and slow chaos with irregular alter-
nations of longer triangular bursts and briefer square bursts. See
Sec. IV B for further discussion of the topology of the system. A
close inspection of the second Lyapunov exponent shows, however,
an abrupt change in its dependence in α, with a possible C1 dis-
continuity, coincident with the switch between fast and slow chaos.
This can be viewed as a measure of the attraction of points to the
chaotic attractor. However, this abrupt change may primarily be due
to the fact that at the emergence of shorter bursts, the decrease in the
interburst period results in the system spending less time in quies-
cence, and thus there is less time for trajectories to be attracted. In
line with this explanation, there is no switch back to low values of
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the second Lyapunov exponent when we return to fact chaos with
short bursts only. All in all, these measures of chaos just seem to be
monotonically increasing with respect to α, and they do not reflect
our observation of a loss of macroscopic regularity between regimes
(b) and (c) and the emergence of an irregular alternation of long
triangular bursts and brief square bursts associated with slow chaos.

To study these dynamics further, we exploit the natural separa-
tion of timescales in the Rulkov map and separately consider the fast
dynamics by setting µ = 0. This corresponds to considering a collec-
tion of one-dimensional maps parameterized by the slow adaptation
variable y now being a constant value. The attractors, depicted in
red in the phase planes (a)–(e) on the right in Fig. 2, show a dras-
tic change in structure as α is varied. Typically, the fast dynamics
features one stable equilibrium or three equilibria depending on the
value of y. These equilibria lie on the manifold y = x − α/

(

1 + x2
)

,
forming the purple curve in Fig. 2 and referred to as the x-nullcline.
The y-nullcline x = σ separates regions of the phase plane where
the slow variable increases or decreases, governing the emergence of
slow relaxation cycles.

We observe that fast chaos is related to the presence of
relaxation cycles through a chaotic attractor in the fast variable
[cf. Fig. 2(b)], as described in Ref. 27. These regimes affect only the
precise behavior of the voltage during a burst, with little effect on
the evolution of the slow variable, allowing the system to maintain
almost periodic behavior at the slow timescale [Fig. 2(b), middle]. In
contrast, as α is increased toward 4 [Fig. 2(c)], the chaotic attrac-
tor intersects with the unstable fixed point of the fast dynamics,
meaning that the system can terminate a burst before complet-
ing a full relaxation cycle. Those shortcuts appear to be relatively
unpredictable and depend on the particular chaotic sequence aris-
ing at the fast timescale, and they become more frequent as α is
increased.

In the singular limit of timescale separation, one would expect
the emergence of slow chaos to correspond to an internal crisis of the
fast system; indeed, for each α > 4, there are two values of y where
such a crisis occurs in the fast system, where the fast chaotic attrac-
tor hits the unstable fixed point of the fast dynamics, see Sec. IV C
for more details. For α > 4, we observe that the attractor is split into
two pieces divided by a region of y-values where the fast dynamics
converges to the stable fixed point, cf. the fast attractor (in red) and
the stable fixed point (in purple) in Fig. 2(d). However, in this non-
chaotic region, transient chaos arises along the ghost of the chaotic
attractor, implying that relatively long transients emerge before the
fast system converges to the fixed point.36–38 These long transients,
thus, compete with the slow evolution of the adaptation variable. If
the duration of the chaotic transient is on the same order of magni-
tude as the time it takes the slow variable to return to the second part
of the chaotic attractor, a long burst will appear similar to the α < 4
case. Instead, if the duration of the chaotic transient is smaller than
this time and enters the region of direct convergence to the fast sta-
ble fixed point, then a short burst will emerge. The sequence of long
and short bursts will, thus, depend on the chaotic transient and on
whether or not the passage through the ghost of the chaotic attrac-
tor goes all the way to the second internal crisis or not. The system’s
progression of full cycles and shortcuts forms a chaotic sequence,
where the frequency with which the system takes the shortcut varies
as a function of α (cf. Fig. 3 and Sec. IV).

IV. STATISTICAL ANALYSIS OF THE RULKOV MODEL

The delicate interplay between chaotic transients and slow
dynamics can be further characterized by considering in detail the
topology of the attractors and estimating the “likelihood” of a short-
cut transition. We finely analyze this in the present section and
estimate the frequency with which solutions of the Rulkov system
take a shortcut as a function of the parameter α, as well as looking at
how this frequency varies with the choice of µ.

A. Statistics of the interburst interval

To further characterize the fluctuations of the deterministic
dynamics on the order of the slow time scale, let us consider the
sequence of interburst intervals along a given trajectory, as seen in
Fig. 3(a). A unimodal, non-Dirac distribution corresponds to fast
chaos trajectories, with distributions centered at larger durations for
fast chaos with no shortcut [cf. Fig. 3(a), small α], and centered at
smaller durations for fast chaos trajectories where the probability
of shortcut is unity [cf. Fig. 3(a), large α]. In contrast, slow chaos
corresponds to bimodal distributions of interburst intervals, corre-
sponding to trajectories composed of both long bursts and shortcuts
[inside the white box in Figs. 3(a) and 3(b)].

The emergence of slow chaos can be further characterized
by either the coefficient of variation cv for the interburst inter-
vals [cf. Fig. 4(a)] or its timescale normalized standard deviation
[cf. Fig. 4(b)]. For small α, this shows we have fast chaos. For α ≈ 4,
we have slow chaos, and while the crisis in the fast subsystem occurs
at α = 4, the emergence of slow chaos occurs at an µ-dependent α

value a bit less than 4. The figure shows that for each µ, the tran-
sition to slow chaos is quite rapid, and the 0.1 level set (black line)
serves as a good choice to define the transition point. As µ → 0, the
α-window with slow chaos shrinks to size zero. For α > 4, we have
fast chaos again since orbits reliably take the shortcut. Finally, for

FIG. 3. (a) Histogram of the inter-burst interval for µ = 0.01 and various val-
ues of α. A bimodal distribution, corresponding with slow chaos, arises in a
non-trivial range of α in the vicinity of the crisis at α = 4 (white box). (b) One
typical histogram for µ = 0.01 and α = 4.
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FIG. 4. (a) Standard deviation rescaled by the parameter µ. (b) Coefficient of variation cv of the interburst interval as a function of the parameters α and µ. In both (a)
and (b), we observe a sharp transition at the onset of slow chaos. The pink line depicts our theoretical derivation of the onset of slow chaos. The black line depicts the
0.1 level set for the corresponding measure. The location of the level sets is consistent with our theoretical prediction. The circles in (b)–(d) indicate the parameter values
from respective Figs. 2(b)–2(d). (c) Schematic bifurcation diagram of the system obtained from (a) and (b): FC: Fast Chaos (beige), SC: Slow Chaos (purple), and Loss of
Relaxation cycles (green). Bifurcation Lines (red) are the 0.1 levels of rescaled σ (dashed) and cv (solid). (d1,d2) Depictions of the rescaled mean (yellow), rescaled standard
deviation (red), and cv (blue) for µ = 0.001 (middle) and µ = 0.01 (right).

α � 4, the relaxation cycle breaks down, and we have continuous
spiking.

B. Topological description

To present a topological description of how slow chaos
emerges, we consider a coarse-grained representation of the
dynamics.39 Relaxation cycles in the µ � 1, α < 4 regime con-
sist of a concatenation of the following four dynamical sections
[see Fig. 5(d)]:

B1 Slow rise of the adaptation variable preceding a burst.
T1 Transition from quiescence to bursting.
B2 Bursting behavior with decay of the slow variable.
T2 Transition from bursting to quiescence.

However, for larger values of µ and α < 4 sufficiently close to 4,
we find that the slow dynamics may allow a return to the left stable
fixed point through the emergence of short bursts [marked as T3 in
Fig. 5(d)].

We also note the shape of the bursts: triangular and respective
square burst shapes occur as a result of the corresponding taper-
ing shape and shortcut without tapering in the attractor for the
fast dynamics. These shapes are similar to the geometry of the flow
distinct from ODE systems.40,41

For α > 4, because of the presence of two y-values with crises,
shortcuts exist for arbitrarily low values of µ between the two cri-
sis y-values. In fact, shortcuts become the most likely outcome
as µ → 0 and, therefore, coarse-grained transition graph must be
slightly modified [Fig. 5(e)]. In that case, the transition region from
bursting to quiescence is split into two disconnected pieces B2 and
B3, with returns to quiescence denoted by T2 and T3. For µ suffi-
ciently small, fast chaos occurs with relaxation cycle B1-T1-B2-T3,
but when µ > 0, the transient chaotic behavior may prevent the sys-
tem from undergoing transition T3; in this case, cycles transition to
B3 through a new path B4, yielding a long bursting relaxation cycle
B1-T1-B2-B4-B3-T2.

C. Probabilistic model

Based on these observations, we have designed a probabilis-
tic model to predict the emergence of slow chaos and estimate
the shortcut probability [see Fig. 5(a)]. This model simply follows
the Rulkov dynamics in the region of the phase plane where we
expect non-chaotic branches of relaxation cycles (i.e., to the left of
the unstable fixed point marked in yellow on the graph), and it
randomly samples the support of the chaotic attractor otherwise.

More formally, our stochastic model approximates the fast
chaotic dynamics with a random Bernoulli sequence (independent
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FIG. 5. Probabilistic model and topological dynamics. (a) The dynamical structures and our approximation of the support of the fast attractor. This figure highlights the main
notation used for the probabilistic model, in particular, the left and right envelopes lµ(y) and rµ(u), the unstable fast equilibrium u(y), and the possible intersections of the
lµ manifold and the unstable fast equilibrium manifold Y0 and Y1. The red horizontal line from lµ(y) to rµ(y) is Iµ(y). Panels (b) and (c) illustrate the slow chaos dynamics in
the case of α < 4 (b) or α > 4 (c, specifically, α = 3.98 and α = 4.02, represented for µ = 0.01). Blue: trajectory, showing an excellent fit with the envelope computed
analytically (black, outer curve; the inner black curve corresponds to µ = 0), Ref: fixed points of the fast system. (d) and (e) Cartoons of the dynamics and topological
behavior. (d) Slow chaos for α < 4 (here, α = 3.98 and µ = 0.02), where the support of the chaotic attractor does not intersect the unstable fast equilibrium but the slow
variable may allow the system to take shortcuts T3. (e) Slow chaos for α > 4 (here, α = 4.02 and µ = 0.02) where shortcuts arise for arbitrarily small values of µ, but for
µ > 0 chaotic transients may allow jumping between the two parts of the chaotic attractor (transition B4).
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random variables) uniformly sampling the interval of possible val-
ues for the fast variable along a relaxation cycle. In particular, let
[Y0, Y1] be the region of (slow variable) phase space where the tran-
sition T3 is accessible [cf. Fig. 5(a)], let Iµ(y) be the interval of fast
variable values during the high voltage portion of the burst, i.e., for
which the fast dynamics are chaotic [red horizontal line in Fig. 5(a)],
and define UI to be a uniform random variable on this interval. Our
model is given by















xn+1 =







UIµ(yn)
Y0 < yn < Y1 and xn > u(yn),

Fα(xn, yn) otherwise,

yn+1 = yn − µ(xn − σ).

Here, Fα(x, y) = α

1+x2 + y is the nonlinear fast dynamics and u(y) is

the unstable fixed point of the fast dynamics.
Note that while an exact representation Iµ(y) is only given

implicitly, noting that the fast variable takes its maximum at x = 0,
this envelope is approximated by the first and second iterates of
x = 0, yielding a closed-form expression that closely matches the
numerically observed support of the fast variable [see Figs. 5(b)
and 5(c), black curves]. The significance of this representation is
that it provides a quantification of the relative occurrence of a short-
cut between the two y values associated with crisis points, where the
deterministic chaotic system provides no information.

We now return in more detail to the slow–fast decomposi-
tion of the dynamics, using the dynamics of the fast variable x (fast
dynamics) when the slow variable y is frozen. For each fixed y, this
one-dimensional dynamical system is given by the function

x 7→ Fα(x, y) =
α

1 + x2
+ y.

The fixed points of this equation are, thus, the roots of the cubic
polynomial,

x3 − x2y + x − y − α = 0.

Therefore, depending on y and α, the system has between 1 and 3
solutions, corresponding to intersections of and fixed values of y and
the curve y = x − α

1+x2 , forming the x-nullcline for the original map.

In the case where there are three solutions, the middle fixed point is
necessarily unstable and we denote it by u(y), for a given y and fixed
α (cf. Fig. 5).

The fast dynamics x 7→ Fα(x, y) is a unimodal map, and
we observe numerically that increasing α leads to a period-
doubling route to chaos, a classical result of a class of unimodal
maps.42 To compute a region enclosing the chaotic attractor Iµ(y)
= {x : lµ(y) < x < rµ(y)}, for each y, we estimate an upper-bound
using the maximal value of Fα(·, y), which is attained at x = 0. Thus,
the graph of rµ(y) is given by {(x1, y1) = (Fα(0, y), y −µ) = (α + y,
y − µ) : y ∈ R}. The left side of the interval, meaning the graph of
lµ(y), is given by the image of the points (x1, y1) on the graph of

rµ(y). That is, the graph of lµ is given by
{

(

lµ(y2), y2

)

=
(

Fα

(

x1, y1

)

, y1 − µ (x1 + 1)
)

=
(

F2
α(0, y), y1 − µ(x1 + 1)

)

=
(

α

1 + (α + y)2
+ y, y − µ − µ(α + y + 1)

)

: y ∈ R

}

, (3)

cf. the solid blue and green lines in Fig. 5(a), and shows an excellent
agreement with the simulations in Figs. 5(d) and 5(e).

We know that the sequences of iterates will be contained in this
interval as long as Fα(Iµ(y), y)) ⊂ Iµ(y1), which is, in particular,
the case when lµ(y) is to the left of u(y). Moreover, if x = 0 belongs
to the support of a chaotic attractor, then this support contains the
boundaries of the interval Iµ(y). In this situation, an internal crisis
will arise for parameters and a slow variable y such that lµ(y) falls
exactly on u(y). The two points at which this occurs are Y0 and Y1

depicted in Fig. 5(a). In the case µ = 0, the condition yields

2y2 + 3αy + α2 + 2 = 0,

and the roots of the equation are given 1
4
(−3α ±

√
α2 − 16), with

two real roots when α > 4 (and a single real root at α = 4). Thus,
the chaotic attractor is contained in an interval tangent to u(y). Two
real solutions correspond to the two internal crises delineating the
region of occurrence of slow chaos within y ∈ [Y0, Y1]. Note that if
α > 4 and µ > 0, but sufficiently small, then there will still be two
(µ-dependent) points Y0 and Y1 of intersection between lµ(y) and
u(y). We will see below that in fact for small fixed µ > 0, the interval
[Y0, Y1] persists for a small region of α < 4.

D. A uniform random variable on the support

In the probabilistic model introduced in Sec. IV C, for y ∈
[Y0, Y1], we have modeled the system such that it uniformly sam-
ples the region Iµ(y) as it moves down along the slow flow, where
we consider the fraction of length of the interval Iµ(y) to the left
of u(y). This provides an approximate probability for each iterate to
lead to a shortcut trajectory. The probability of a long burst is, thus,
given by the probability of never falling to the left of u(y), which can
be readily quantified.

In our stochastic model, the number of steps performed within
the region y ∈ [Y0, Y1] varies inversely proportionally to µ. For
α > 4, since the interval [Y0, Y1] always contains the set of values
of slow variables for which I0(y) is to the left of u(y), the proba-
bility of a short burst increases as µ is decreased. In contrast, for
α < 4, decreasing µ enough will eventually prevent any intersection
between Iµ(y) and u(y) for all y, because of the continuous depen-
dence upon parameters and the fact that there is no intersection with
I0(y).

We thus expect that, if µ is sufficiently close to 0, the proba-
bility of a short burst will suddenly jump from 0 and 1 at α = 4.
This is visible in Fig. 6, where we show the joint dependence of the
probability of a short burst in α and µ (computed with numerical
integration).

Let us now use this probabilistic model to estimate the alter-
nation of shortcuts and long bursts for a fixed value of µ. If the
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FIG. 6. Slow chaos and probabilistic model. The shortcut probability simulated
shows an excellent agreement with our analytical expression for the probabilistic
model.

attractor never intersects the unstable fixed point (i.e., lµ(y) > u(y)
for all y where both functions are defined), long bursts arise system-
atically, and the system displays fast chaos. However, if there exists
an interval of values y ∈ [Y0, Y1] such that lµ(y) < u(y), an iterate of
the stochastic system leads to a shortcut with “instantaneous” proba-
bility ρµ(y) = (u(y) − lµ(y))/(rµ(y) − lµ(y)). The probability of not
taking the shortcut per burst will thus be given by the product of
∏n1

n=n0
(1 − ρµ(yn)), where n0 is the time yn enters [Y0, Y1] and n1 is

the exit time.
While this can be computed explicitly, we further simplify the

problem by considering an averaged shortcut probability computed
as the fraction of surface area p to the right of the unstable fixed point
[green region in Figs. 5(d) and 5(e)], and the number of iterates
is estimated as N = (Y1 − Y0)/µ, the probability of a long burst is
Pl = (1 − p)N. Numerical calculation of p under this assumption
shows very good agreement with the original simulations of the
Rulkov model as we show in Fig. 6. Going further, we observe that
the exponential dependence in 1/µ makes the probability switch
from 0 to 1 very rapidly upon variation of the time scale parame-
ter µ at a given value of α (i.e., for p fixed). This indicates that in the
singular limit of timescale separation, the system always displays fast
chaos, with long bursts for α < 4 and short bursts for α > 4. As µ

is decreased, slow chaos occurs on a smaller interval of α, as shown
in Fig. 4. This approach provides a very accurate value, for µ > 0, of
the emergence of slow chaotic trajectories for typical α < 4, as seen
by comparing the solid and dashed lines in Fig. 6. For any fixed value
of α, there exists µ sufficiently small for which the system displays
fast chaos only, characterized by relaxation oscillations.

The fine analysis above is made possible by the simplicity of
the Rulkov map, but it also reveals a robust phenomenon: relax-
ation cycles through fast chaotic attractors will yield mathematically
chaotic behaviors that appear regular at larger timescales, and these
phenomena will breakdown at internal crises of chaotic attractors
where chaotic alternations of longer and shorter cycles will emerge.
To provide further evidence that this occurs for fast slow systems

with attractor crises, subsequent sections demonstrate that the same
behavior occurs in three other models: a network model of the
Rulkov map with the topology of the crab STG (Sec. V), a cubic
discrete dynamical showing a double crisis (Sec. VI A), and a five-
dimensional FitzHugh–Nagumo neuron model coupled with the
Lorenz system at a fast timescale (Sec. VI B).

V. NETWORK OF RULKOV MAPS AND CENTRAL

PATTERN GENERATORS

We next explore the dynamics of a simple phenomenological
model of the crab STG made of three identical chaotic Rulkov neu-
rons with a biologically inspired connectivity map (see Fig. 7, right).
Specifically, the connectivity parameters are chosen randomly as





0 −5.5 −2.5
−3.5 0 −5
−3 0 0



 + U,

where U is a random matrix with off-diagonal elements chosen
from a uniform distribution between [−0.5, 0.5] and zeros on the
diagonal. Of course, the neural network of the central pattern gener-
ators of the crab discussed in the introduction involves neurons with
vastly richer dynamics than the Rulkov map and with heterogeneous
properties. The present model allows us to test the relevance of the
transition to slow chaos in a network without complications associ-
ated with intrinsic dynamics or heterogeneities, although this would
be a simple extension of our analysis.

We compared our model in the regime of fast chaos and slow
chaos to two typical sequences recorded experimentally in the crab
STG (data from Kedia and Marder3) that qualitatively corresponded
to fast chaos [intact network, Fig. 7(a)] or slow chaos [decentral-
ized network, Fig. 7(b)]. We simulated our network and tested for
the sequence of neurons spiking, deemed to be biologically relevant
information. For that purpose, we identified the onset of each burst
and extracted the sequence of burst initiations (colored circles below
the neural dynamics traces) identified using a threshold-crossing
condition (thresholds were adjusted according to the experimen-
tal traces for each neuronal type, and fixed to −1.5 for the model),
which led to the stop lights dynamics represented below the traces.
This sequence of spikes was used to construct a “transition probabil-
ity matrix” M that contains as element Mij the empirical frequency
that neuron j spikes after neuron i. This is a stochastic matrix, since
all elements are non-negative and the sum over all columns on a
given line is equal to 1. Given these matrices, we further computed
an entropy level, computed as the average entropy of each line, or
− 1

3

∑

i,j Mij log(Mij) with the convention that x log(x) = 0 for x = 0.

A deterministic sequence gives an entropy equal to 0, while a maxi-
mal entropy of log(3) ≈ 1.0986 corresponds to a completely random
sequence of spikes.

We compared our model in the regime of fast chaos and slow
chaos to two typical sequences that correspond to fast chaos vs
slow chaos recorded experimentally.3 We observed that both cases of
fast chaos are certainly regular enough to ensure a fully predictable
sequence of spikes with probability 1 for the next spike neural pop-
ulation to spike and, thus, entropy zero. However, the typical trace
of a slow chaos experimental data shows a very irregular sequence,
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FIG. 7. Left: Experimental data from Ref. 3. Right: Simulations of a three-neuron Rulkov model with inhibitory connectivity mimicking the pyloric network, with architecture
depicted in panel (f). (a) Intact network, (b) decentralized biological network with irregular activity, (c) Rulkov model in the fast chaos regime (µ = 0.01, α = 3.8), and
(d) Rulkov model in the fast chaos regime (µ = 0.01, α = 4). (a2), (b2), (c2), (d2) Voltage traces for each neuron with, on the bottom, a stop-light representation of the spike
sequence. The associated transition matrices are shown in (a1), (b1), (c1), (d1). The coefficients of variations for the depicted trajectories are (a2) 0.01, (b2) 0.60, (c2) 0.02,
and (d2) 0.62, and the evolution of the coefficient of variation for each population (same color code), depicted in panel (e), shows a clear transition slightly before α = 4 from
low levels associated with fast chaos to large levels associated with slow chaos.

with evidence of the presence of shortcuts (short bursts) very evoca-
tive of those observed in the Rulkov model (see left column, bottom).
This is further shown in the coefficient of variation of the network
as a function of α, showing a sudden jump from small fluctua-
tions to larger values arising again in the vicinity of α = 4 where
we showed the emergence of a crisis in the Rulkov map. The exper-
imental dynamics (left) are quite comparable to the network model
we designed and, in particular, the transition matrix in this regime
is non-trivial, with strictly positive probabilities to have any neu-
ron spiking after any other neuron, non-trivial entropy (0.67 for the

data and 0.75 for the model) and larger coefficients of variations of
interburst intervals [see Fig. 7(e)].

VI. CRISES YIELD TRANSITIONS BETWEEN SLOW AND

FAST CHAOS IN OTHER CHAOTIC SLOW–FAST

MODELS

To further explore the generality of our observation of dynam-
ical structures underlying fast chaos and their transitions to slow
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chaos, we explore two other examples of multiple timescales dynam-
ical systems, illustrating that our results are indeed not specific to a
single system, and rather occur in a variety of slow–fast systems with
crises, both in discrete-time maps and in differential equations.

A. Cubic map

In Ref. 28, a one-dimensional, three-parameter cubic map was
introduced and shown to feature complex dynamics. This system is
given by the equation

xn+1 =
(

−βx3
n + αxn + γ

)

.

It has been shown to display chaos for specific values of the param-
eter γ with or without internal crises depending on the value of α.
We exploit this dynamical richness to explore the existence of fast
and slow chaos and the transitions between the two regimes. To this
purpose, we extend the system to allow slow autonomous variation
of γ , with linear dynamics according to x, in such a way that the
system will tend to produce relaxation cycles through the chaotic
attractors,

{

xn+1 =
(

−βx3
n + αxn + γn

)

φ(xn),

γn+1 = γn + ε
(

−κγn − xn + δ − µx3
n

)

.

In the equations above, we added for stability of the system a cubic
term −µx3 to the linear dynamics of γ and a multiplicative term
φ(xn) to the x-dynamics preventing divergences when x is large.
Here, φ is a smooth function with a plateau equal to 1 and decay-
ing to zero as |x| → ∞.43 Parameters are fixed to β = 0.5, κ = 0.1,
δ = 0.2, and µ = 0.9. (These parameters were chosen arbitrarily to
ensure the creation of appropriate relaxation cycles given the cubic
dynamics.) The timescale of the evolution of γ is governed by the
parameter ε and has been set to 0.01 in our figure. For these param-
eters, the fast variable typically displays chaos for appropriate values
of γ . The fast variable features hysteresis between two stable fixed
points for 1 < α < 2, which is associated with standard relaxation
cycles for the full system.

Chaos emerges on both branches at α = 2, and initially, these
fast chaotic trajectories are confined above or below the unstable
fixed point. In that configuration, consistent with our analysis of the
Rulkov system, we observe fast chaos, with regular relaxation cycles
that include a passage through a chaotic attractor [Fig. 8(a1)] and
hysteresis between chaotic attractors starting from α = 2, associated
with fast chaos trajectories with a relatively regular slow dynam-
ics [red curve, Fig. 8(a2)] and fast trajectories that show chaos at a
fast timescale but almost periodic behavior at the slow timescale. To
identify the duration of each relaxation cycle, we used a threshold-
crossing condition. We computed, for each value of the parameters,
the location of the saddle-node bifurcations of the fast variable.
We chose the leftmost fold and identified one relaxation cycle by
considering times when the fast variable when from behind larger
to smaller than this value and with the slow variable being below
the value of γ associated. For α = 2.5 as in Fig. 8(a), we found a
coefficient of variation equal to 0.008, indicating that the period of
relaxation cycles fluctuates by less than 1%, corresponding to a clear
instance of fast chaos.

As α is increased, the chaotic attractors of the fast system
approach the unstable fixed point, until both of them hit the unstable

fixed point curve tangentially for α = 3 at a double-crisis (the coin-
cidence of the two crises is associated with the symmetry of the
system). This bifurcation determines the breakdown of fast chaos
and the emergence of slow–chaos trajectories. For the full slow–fast
system, similar to the case of the Rulkov map, we observe that slow
chaos emerges a little before the value of α = 3 due to the dynam-
ics of the slow variable [according to Fig. 8(d), at around α = 2.76,
and this value shall approach 3 as ε is decreased]. At α = 2.8, we
clearly observe slow chaos with irregular slow dynamics [red curve
in Fig. 8(b2), coefficient of variation 0.311] associated with whether
or not, during the chaotic transient associated with the region of val-
ues of γ between the two crises, the trajectory crosses the unstable
fixed point short-cutting the relaxation or performs a long relax-
ation cycle, which persists as α is further increased [for α = 3,
Figs. 8(c1)–8(c2) show the presence of slow chaos with a coefficient
of variation 1.184].

We note that our systematic computation of the coefficient of
variation as a function of α also included sudden drops to a standard
deviation of zero. We selected one of these points [here, α = 2.904,
Fig. 8(e)] and observed that for this particular parameter value, the
system converged toward a periodic orbit of period 37 instead of
performing relaxation cycles.

B. FitzHugh–Nagumo–Lorenz model

A natural question that could arise at this stage is whether the
alternation of short and long bursts in the Rulkov map or the cubic
map could be associated with the discrete nature of the dynamics
and would disappear in differential equations. To explore this ques-
tion numerically, we designed a differential equation that couples
relaxation cycles and chaos. The slow–fast systems discussed above
are both non-invertible two-dimensional maps. Thus, to see the
same behavior in a differential equation, one would expect to need at
least a four-dimensional model. (In fact, the model we constructed
is five-dimensional, but we expect four dimensions would suf-
fice.) We constructed our system by coupling two classical models:
the FitzHugh–Nagumo neuron model,44–46 well known to produce
relaxation cycles [variables (r, h) in our equations]; and the cele-
brated Lorenz system, well known to produce chaotic trajectories47

[variables (x, y, z)]. We coupled these systems by using the slow vari-
able of the FitzHugh–Nagumo system as a bifurcation parameter of
the Lorenz system. In that way, as the FitzHugh–Nagumo variables
perform a relaxation cycle, the Lorenz system will go in and out of
its chaotic regime. We used a single Lorenz variable (x) as an input
to the FitzHugh–Nagumo fast variable, rescaled by a coefficient δ.
For small δ, the chaotic fluctuations of the Lorenz equation will
have a smaller impact on the FitzHugh–Nagumo dynamics, while
for a large δ, the impact will be more substantial and may break
down the relaxation cycles. The resulting system of equations is
given by



























ẋ = σ (y − x),

ẏ = −x z + γ (ν + r) (ν + x) − y,

ż = x y − b z,

ḣ = h − h3/3 − r + δx,

ṙ = ε (h − r).

(4)
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FIG. 8. Cubic map simulations for α = 2.5 (a), α = 2.8 (b), and α = 3.1 (c), illustrating respectively fast chaos and a transition to slow chaos as the system approaches
and crosses the crisis in the fast system (arising at α = 3). Top: phase space, with the fast attractor for various values of γ (black) as well as the trajectory of the system for
ε = 0.01 (cyan). Middle: evolution of the fast variable x (blue) and slow variable γ (orange) as a function of the iterate number, illustrating clearly the emergence of fast chaos
whereby macroscopically regular but microscopically chaotic behaviors emerge, and their transition to slow chaos with irregular dynamics when shortcuts in the relaxation
cycles can arise during transient chaos near crises. (d) Coefficient of variation of the system as a function of α shows a sudden increase at the emergence of slow chaos.
(e) Sudden drops in the coefficient of variation of the system are associated with the emergence of periodic orbits (here, α = 2.904).

The parameters γ and δ are scaling parameters that control the
amplitude of the coupling of those equations, with γ fixed equal to
400 allowing us to generate our type of dynamics, an δ being varied.
The parameter ε = 0.01 is the slow timescale ratio, and the Lorenz
system parameters are fixed to σ = 10 and b = 2.66 throughout
our simulations. By design, the Lorenz system will generate fast
chaotic dynamics when the slow variable of the FitzHugh–Nagumo
model r is large enough, which induces chaotic dynamics of the
fast variable h. The parameter δ controls the amplitude of the
fast dynamics chaotic attractor, and it can be chosen to induce
an internal crisis. For δ = 1/30, the chaotic attractors are signifi-
cantly scaled-down and remain far from the unstable fixed point

[Fig. 9(d)], and the system generates relatively regular relaxation
oscillations through the chaotic attractors, corresponding to fast
chaos. To estimate the fluctuations in the period of the relaxation
cycles, we have used a Poincaré section placed on the hyperplane
h = 0 and recorded the crossings associated with h increasing and
r < −0.2. This condition was found to capture precisely the relax-
ation cycles away from the chaotic behaviors. For δ = 1/30, we con-
firmed that the fluctuations in the duration of the relaxation cycles
were very small compared to the mean, with a coefficient of variation
cv = 0.01.

As δ increases, we observe that the coefficient of variation
transitions from small values to significantly larger values, as the
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FIG. 9. Simulations of the FitzHugh–Nagumo–Lorenz model. (a) Coefficient of variation for varying δ−1. (b)–(d) are data for the corresponding values marked on top graph.
Top: Fast attractors where each color represents a distinct orbit, middle: trajectories projection of the five-dimensional trajectory of the system in the space (r , h, x). Bottom:
Time evolution of the FitzHugh–Nagumo variables r and h.

fast attractor dynamics grows, generating a crisis and opening
the way to shortcut trajectories. These are visible, in particu-
lar, for δ = 1/4 [Fig. 9(b)], where the fast attractor clearly shows
the presence of two crises that open a shortcut avenue. Associ-
ated relaxation cycles show an erratic alternation between trajec-
tories that perform a full relaxation cycle and those that transition
earlier.

VII. DISCUSSION

In this paper, we demonstrate that while chaos is usually asso-
ciated with disorder, the relationship between macroscopic patterns
and chaos can be more complex and, in particular, mathemat-
ically chaotic systems can display regular and robust dynamics
at slow timescales. We have shown that the presence of external
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crises of chaotic attractors combined with relaxation cycles pre-
dicted the existence of sharp transitions between such relatively
regular chaotic dynamics and erratic behaviors at slow timescales.
In these regimes, erratic alternations between long and short bursts
are governed by long irregular transients around the ghost of a
chaotic attractor, a scenario that we sharply validated with the intro-
duction of a purely probabilistic model from which we predicted
the frequency of occurrence of shorter bursts. Both slow and fast
chaos are phenomena that arise in a variety of maps and continu-
ous systems. We showed that the coefficient of variation associated
with a time series of interburst intervals (or some other appropri-
ately chosen observable associated with the slow dynamics) robustly
distinguishes between slow and fast chaos in a variety of scenar-
ios, even including intracellular voltage data. However, we stress
that the coefficient of variation and other indicators depend on

a careful choice of our measurement to assure that we are con-
sidering physically or biologically meaningful events. Our models
yield dynamics very similar to what is observed experimentally in
the crab nervous system. We further illustrate this with a three-
neuron model and various quantifications of data and numerical
simulations.

This phenomenon adds to a wide literature on chaotic
dynamics of neural systems that finely characterized micro- and
macro-chaotic structures in bifurcation diagrams48 and the fine
dynamics of chaotic alternations in bursts at spike-adding tran-
sitions in slow–fast systems of bursters,49–51 with a possible key
role of canards,52 and coupling induced burst regularization in
three-neuron Rulkov models.16 Remarkable works also carefully
investigated the complex chaotic dynamics of models of pancreatic
beta-cells systems53 and argued that another global bifurcation called

FIG. 10. Simulations of the Rulkov map with additive Gaussian noise on the voltage variable xn+1 = α

1+x2n
+ yn + γ ξn, yn+1 = yn − µ (xn − σ), with γ = 0.05 and

(ξn)n≥0 independent standard Gaussian random variables. (a) Coefficient of variation computed for N = 107 iterates after a transient of 105 iterates, with events computed
as in Fig. 4. (b)–(e) Trajectories in the phase plane (top) or as a function of time (bottom) for α = 2.7 (b), α = 3.8 (c), α = 4 (d), and α = 5 (e).
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interior crises of chaotic attractors could be related to some sudden
changes in bursting behaviors.54

This paper is focused on deterministic chaos as a source of
variability. The phenomena described fundamentally rely on the
presence of multiple timescales in the system. But while a sufficient
timescale separation is necessary for the scenario of slow passage
through chaotic attractors, an excessive timescale separation may
destroy the ability to observe slow chaos, as this may lead to an exces-
sively slow passage through transient chaos. In fact, the region of
parameters where slow chaos arises sharply depends on the ratio of
timescales between the slow and fast variables and vanishes in the
singular limit when considering arbitrarily slow variables. Another
interesting perspective of this work is the question of the robust-
ness of slow behaviors in stochastic systems and their breakdown.
A first observation is that the observations made in the Rulkov map
persisted in stochastic systems with small Gaussian additive noise:
even if theoretically shortcuts and changes of the period are allowed
with Gaussian noise, these occurred with rare probability, before
the crisis, and suddenly became much more frequent as the system
approached the deterministic crisis (see Fig. 10).

In stochastic systems however, chaos is not needed to generate
irregular behaviors and, therefore, such transitions between fast and
slow chaos may rely on a variety of other types of dynamical and
stochastic structures that would allow sudden switches in the prob-
ability distribution of first passage times. The study of these systems
and structures opens some new avenues of investigation.
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APPENDIX

This appendix gives a couple of details that are tangential to
the main text. Appendix A gives a detailed description of the crus-
tacean STG with data shown in Fig. 1. Appendix B qualitatively
classifies the different types of chaos observed in the Rulkov map.
Appendix C discusses computational methodologies used for the
FitzHugh–Nagumo–Lorenz model.

APPENDIX A: A DETAILED DESCRIPTION OF THE STG

MODEL

The stomatogastric ganglion (STG) of crustaceans is a well-
studied rhythmic motor circuit that controls movements of muscles
involved in chewing and filtering of food. It produces a remarkably
stable output in the face of changing internal and external conditions
and has provided deep insights into the circuit and cellular-level
mechanisms involved in achieving circuit robustness and homeosta-
sis. The pyloric circuit within the STG is a central pattern generator
that produces a characteristic triphasic pattern of activity. A pair of
pyloric dilator (PD) neurons burst initiate the rhythm, and they are
followed in phase by a lateral pyloric (LP) neuron and finally by the
pyloric neurons (PYs). All neurons have large amplitude slow-wave
membrane voltage oscillations and fire a burst of action potentials
at the peak of the depolarization during normal activity [Fig. 1(a)].
There is cycle-to-cycle variability of minor features of this pattern,
but the order of firing, relative phases, and duty cycles (fraction of
the cycle period during which a neuron is firing) are key to main-
taining a functional output and are invariant. Upon blocking of the
neurohormonal inputs to the STG (decentralization), this rhythmic
bursting activity can change to an erratic spiking behavior with spo-
radic bursts and a complete loss of rhythmicity. The circuit is no
longer functional in this state [Fig. 1(b)]. From the mathematical
viewpoint, STG circuit activity shows hallmarks of chaos in both the
rhythmic and non-rhythmic conditions, as shown in the transition
probability analysis plots in the bottom row of Fig. 1. Cycle-to-cycle
variability of the spikes within a given burst, especially, in LP and PY
spikes can be seen, which fills a region of space in the three-variable
plot even during normal triphasic activity.
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APPENDIX B: CLASSIFICATION OF CHAOTIC

BEHAVIORS

The main text concentrates on distinguishing between fast and
slow chaos, two qualitative behaviors that appear most meaningful
for qualitative descriptions. Our analyses led us to further identify
the following types of chaotic behaviors:

Weak chaos. For a region of α values starting around 2.7, we
observe a phenomenon we refer to as weak chaos cf. Fig. 2(a) in
which the system is detected as chaotic using several measures of
chaos, but does not noticeably alter the overall dynamics or func-
tionality. The underlying mechanism for this chaos appears to be
referred to as a weakly chaotic ring in Ref. 55, the same as the
phenomenon found in Ref. 56.

After α reaches the value 3, the fast subsystem exhibits bistabil-
ity, with a stable fixed point less than the resting membrane potential
σ , and a chaotic attractor mostly located above σ . Again, the time
trajectories are not significantly altered in terms of functionality.

Fast chaos. Starting at around α > 3.5, the system shows relax-
ation oscillations through the strange attractor of the fast variable, cf.
Fig. 2(b). However, the decay of the slow variable takes a relatively
fixed time. Thus, the interburst intervals appear periodic at the slow
timescale and the chaos is restricted to fast timescales.

Slow chaos. As α is increased toward 4, as in Fig. 2(c), the full
system escapes the chaotic region through a new route, or short-
cut, distinct from the classical relaxation cycle. The plot of the slow
variable shows that it is unpredictable whether the escape from
chaos will be through the classical or shortcut route. Slow chaos
persists for α > 4, as in Fig. 2(d). However, the frequency of the
shortcut becomes greater as α increases. Since slow chaos results in
unpredictable interburst intervals, slow chaos results in loss of func-
tionality. Terman31 described slow chaos and symbolic dynamics in
a neural model with relaxation cycles as a system transitions from
periodic bursting to spiking, but the mechanism is different and does
not include the possibility of fast chaos.

Hyperchaos. When α is sufficiently away from the crisis, the fre-
quency at which the system describes a full relaxation cycle vanishes,
and the system fires repetitively without returning to the resting
potential, cf. Fig. 2(e). The dynamics at α above around 4.5 displays
hyperchaos, since it has two positive Lyapunov exponents, cf. Fig. 2
bottom; see Refs. 57, 58.

APPENDIX C: COMPUTATIONAL METHODOLOGIES

All of our numerical simulations were performed using code
written in Matlab. The source code for all numerical simulations is
available in Ref. 26.

Simulations of the continuous time FitzHugh–Nagumo–
Lorenz model were performed in Matlab using the ode45 integra-
tor with relative tolerance 10−5 and absolute tolerance 10−7. The
trajectories for the three examples provided were confirmed using
the routines ode113, ode15s, and ode23s, or with lower tolerances,
and we observed no qualitative difference in the trajectories. Solu-
tions were computed over 250 000 time units. Fast attractors were
computed similarly over a range of values of r considered fixed, and
starting with a range of initial conditions in the vicinity of the fixed
points of the fast system (fixed points were computed using the Mat-
lab vpasolve function and initial conditions were drawn randomly

according to a Gaussian centered at the fixed point with a standard
deviation of 0.01).
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13I. Franović and V. Miljković, Eur. Phys. J. B 76, 613 (2010).
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