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Unidirectionally coupled system y)—(f(x),g(x,y)) occur naturally, and are used as tractable
models of networks with complex interactions. We analyze the structure and bifurcations of
attractors in the case the driving system is not invertible, and the response system is dissipative. We
discuss both cases in which the driving system is a map, and a strongly dissipative flow. Although
this problem was originally motivated by examples of nonlinear synchrony, we show that the ideas
presented can be used more generally to study the structure of attractors, and examine interactions
between coupled systems. @004 American Institute of Physic§DOI: 10.1063/1.1667632

Synchronization in networks of systems with complex be- In many important cases the driving systerm f(x) is
havior has been a topic of extensive experimental and noninvertible. This can occur if the driving system is ob-
theoretical study in recent years'~ Roughly, a network is  tained by reconstruction and the sampling dimension is too
synchronized when there is a dynamical relationship small, if a stroboscopic equation for a differential equation is
among all of its constituent pieces, so that information sampled too infrequentf{? or as a result of inherent nonin-
about any one system can be gained by observing the vertibility, as in delay equations or numerical approxima-
behavior of another system in the network. More specifi-  tions!? It has recently been observed that in such situations
cally, coupled systems exhibigeneralized synchronif the  the synchronization set may lose the structure of a smooth
global attractor is contained within a synchronization set manifold, hampering traditional detection meth8ds %

with an organized structure*® In many cases, the syn- A synchronization set with a structure typical of such
chronization set is the graph of a smooth map. However, examples is shown in Fig. 1, and is discussed in Sec. Il. In
coupled systems may still be synchronized even when its this case the synchronization set has the structure of the im-
synchronization set is more complicated. In this paper, we age of a Cantor set of lines in the vicinity of most points. We
consider the case in which the synchronization set is the will show that such structures can be generally expected
graph of multiple curves as a result of noninvertibility of ~ when the drive is noninvertible, although the local geometry
one of the component system&/-*'*We provide a math- s typically even more complex. Similar structures can be
ematical justification of many claims made in our earlier  observed in higher dimensional maps, as well as flows which
paper.” In addition, we extend the work by studying the  project to noninvertible maps along strong stable foliations.
implications of results obtained for noninvertible mapsto  The synchronization set can be multivalued even for invert-
flows, analyzing the bifurcations leading to the compli- ible maps, although in this case the structure of the synchro-
cated structures we observe, and explaining how these njzation set is very differedf We note that the fine structure

observations carry over to higher dimensional maps. In  of the attractors that occurs in phase synchronization has a
this context we also give an explanation of a synchroni-  different origin®

zation detection techniqueowhich was recently introduced In this paper we discuss the structure and bifurcations of
by He, Zhang, and.Stonel, é’:md answer an open problem  synchronization sets in the presence of noninvertible drives,
posed by Afraimovich et al. including representative examples illustrating the types of

possible behavior. The paper proceeds as follows: In Sec. Il
we present a number of examples of multivalued synchroni-
zation sets in coupled systems with noninvertible drives and
A class of models frequently used in the study of Syn_bifurcations that lead to such attractors. In Sec. I, we inQi—
cate how to extend the standard proofs which work for in-
vertible systems to show the existence and continuity of syn-
(x,y)—(f(x),9(x,y)), ) chronization sets in the present case. In Sec. IV, we use a
constructive approach to show continuity. This has the ad-
also known as drive—response, or skew product systemsantage of giving more detailed structural information,
When the driving may is invertible andf andg are smooth, which is illustrated in several simple examples. The synchro-
it is known that for sufficiently strong coupling the synchro- nization set may be the union of graphs of uncountable or
nization set is contained in the graph of a smooth functiorcountable number of continuous functions. We give an ex-
¢:X—Y from the drive spac& to the response spade(see ample of a synchronization set comprised of a countable
Sec. lll and Ref. 11 for a precise statement number of graphs when the drive has positive topological

I. INTRODUCTION

chrony is unidirectionally coupled systems
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FIG. 1. (a) The synchronization set for a drive—response system in whistthe tent map(b) A blowup of the square in the a shows the rich Cantor-type
structure of the attractofc) The synchronization set for a drive—response system in whishthe tent sine map described in the text, and the orbit of the
critical point is finite.(d) A blowup of (c).

entropy, answering a question posed in Ref. 6, and show thatected in such systems. The general ideas illustrated in these
in pathological cases, the synchronization set can lose thexamples will be studied in subsequent sections.

structure of a union of curves. In Secs. IVE and IV F, we use

inverse limit techniques to establish the validity of #hes”
method for the detection of generalized synchrony for SYSA Unimodal maps of the interval
tems with noninvertible driving maps described in Ref. 10. -

Section V revisits the examples from Sec. IIC, giving a  The simplest example of noninvertible drive in a system
proof that typically the synchronization set is nearly smoothof the form of Eq.(1) is one for which the drive is a tent map
and nonintersecting near the bifurcation to a noninvertible )

drive. In Sec. VI, we give an alternative construction for fx) = cx if xe[0,172 @
synchronization sets which can be used to prove smoothness —cx+c if xe[1/2,1],

of individual curves within the family.

To avoid introducing cumbersome notation into the ex-wherece (0,2]. As long as the responggXx,y) is contract-
amples and arguments, we primarily discuss noninvertibléng in the second variable, the attractor withBy1] <Y will
systems in one dimension. Most of the arguments can bee contained in a collection of lines which are connected
extended to higher dimensional systems in a straightforwarélong the forward orbit of the critical point. =2 the for-

way. ward orbit of the critical point is{1/2,1,0,0,..}). Since this
orbit is finite the vertical linex=const. intersects this collec-
Il. EXAMPLES OF COUPLED SYSTEMS WITH tion in a Cantor set of points in most places. The different

NONINVERTIBLE DRIVES lines in this collection are joined along “hooks” that occur
In this section we consider examples of drive—respons@bove the forward orbit of the critical point, and may inter-
system that illustrate the typical phenomena that can be exsect at other points. This situation is illustrated in Fig®) 1
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and Ab) with g(x,y)=dy+x?, d=0.3, andc~2. (See Re- 6
mark 1V.5 for a comment on the numerical implementation.

The orbit of the critical point is in general not finite for
unimodal maps and may be densg@npl]. In such situation,
the hooks may appear densely throughout the synchroniza
tion set. Using visual inspection, the cases of finite and infi- 2}
nite critical orbits appear similar. Figurg€cl was obtained
by using (2) as a drive, with responsey(x,y)=ky C oo
+sin(2mx), andc=1.9 andk=0.5. In this case, the orbit of
the critical point does not have a low period. The synchroni-
zation set appears to be a set of curves; however, the magn
fication shown in Fig. (d) shows that hooks appear through-
out the synchronization set, over the forward orbit of the -+f
critical point. In the case where the forward orbit of the
critical point is dense, under repeated magnification one s . .
would see that hooks occur arbitrarily close to any point in x
the synchronization set. This structure is further explained in
Sec. IV.
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B. Drives with strong stable foliations

The synchronization set can have a similar structure for
strongly dissipative flows. The attractors for such flows fre-
guently possess strong stable foliations along which the dy-
namics project to lower dimensional noninvertible maps. The ~
Lorenz system in the standard chaotic regime=(10,
=28.03=8/3) has this property. The Poincarap taken at
z=27 has an attractor with a strong stable foliation along
which the system projects to a noninvertible map of the
interval”*8|f such a system is used as a drive, the synchro-
nization set can display the structure shown in the previous

example.
Consider the Lorenz system’' =o(y—Xx),y'=px—y
—Xz,z' = — Bz+xy driving the systent’ = —cr+x. The fi-

bers ,y,z)=const are contracted under the flow of this
system, and the intersection of its attractor with the hyper-
planez=27 has a local structure that resembles a Cantor se
of lines(see Fig. 2. Similar results can be obtained by using
any combination of the andy variable to drive a response
system that is uniformly contracting.

As will be shown in Sec. VI, we can think of Fig(l as
a nonlinear magnification of the intersection of the Lorenz
attractor with the Poincarsurfacez=27. Due to the high
rate of contraction, the fractal structure of the Lorenz attrac-
tor is hard to resolve on the surfaze 27, and the intersec-
tion of the attractor with this section appears as four lines. As
shown in Fig. 2, under “magnification” these lines are re- ==
solved to what appears to be a Cantor set of lines. Loren: .
already noted that, although the attractor appears to be : ° 05 1 15 2 25
surface due to high dissipation, it has to have a complicatec (©
transversal structur€.It is this structure that becomes appar- FIG. 2. (a) Lorenz system in the standard chaotic regime=(10p
ent after magnification. These observations are not affecteg ft?agﬁo? ?r/]?é) ;trtlr\gztgo ff'rigﬁgg;e;pg:;é;;xcgg} va;i ;g}/:sS(tbf;eTr::-
by small nOISe’, and C?“"_j th_erefore be useful in St”dY'”g théectionz=27 of the attractor(c) A blowup of the square irib) srlmws the
attractors of highly dissipative systems from experlmenta@amo,_type structure in this example.
data.

The Rwsler attractor also appears to have a similarcaremap looks like a “fattened” unimodal map, the structure
strong stable foliation, and if used as a drivexfi=—y  of the attractor in this section appears as a collection of lines
—z,y'=x+0.15/,z' =zx—10z+0.2r'=—cr+x with ¢  joined along the forward orbit of the critical point of this
=0.2, we obtain the attractor shown in Fig. 3. As the Poin-map. Note the similarity between this attractor and that in

25 : - i
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FIG. 3. (a) A projection of attractor of Rssler system used as a drive with resparise—cr+x, ¢=0.2 fromR3X R onto thex—r plane.(b) Projection of
the sectiony=0 of the attractor on the leftc) A blowup of the square iiib) shows the Cantor-type structure in this exampi A blowup of the attractor
of the same drive and response= —cr+x+y?, with c=0.2.

Fig. 1. A comparison of two different response systems is vnla va<a
shown in Figs. &) and 3d). Although the Poincarsection Unt1= (00— a)/(1—a) -

y=0 of the attractors looks different, the hooks still have the Un— @ @) Un=6
samex,z coordinates. Similar results can be expected to hold

for other strongly dissipative systems. Yn+17CYn+COL2Un 1), )

where (,v) €[0,1]X[0,1], 0<A<1 and G<a<1, 1>c=0,
' o while s andp are parameters which will be varied. The ¢)
C. The onset of noninvertibility subsystem, which serves as the drive, is a generalized bak-

In this section we illustrate the transition from a syn-€r's map. The lower portion of the square is mapped by
chronization set contained in the graph of an intefaalthe ~ @(U,S,p), a function ofu depending on the parametess
result of an invertible driveto one which is contained in the andp.
graph of a multivalued functiofas the result of a noninvert- In Ref. 7 a one-parameter family w(u,s,p)
ible drive). Two types of transitions are illustrated in Fig. 4. =(u,s):[0,1]—[0,1] of cubic functions determined by the
Also see the URL in Ref. 20 for an animated version of thisconditions  «(0,s) =0,w(1/125)=1/2, (1s)=1, and

figure. (dw/du) (1/28)=s was used to illustrate this bifurcation
Following Ref. 7, we introduce a two-parameter family [see Fig. 8)]. For parametes>0, the function is invertible,
of drive—response systems and the synchronization set is the graph of a smooth function

[see Fig. 4a)]. The attracting set of syste(B) is constant in
U= the v direction, and it is therefore sufficient to plot its pro-
n+l AN (1-Muy, ve=a, jection onto theu—y plane. Ats=0, the functionw has a

Nw(u,,S,p) ve<a
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FIG. 4. The attractor of syster(8). (a) When the driving map is invertible, the synchronization set is smodthln special cases, at the onset of
noninvertibility the synchronization set appears to develop cuspAs the driving system becomes noninvertible, loops are foriftdn a typical transition,
places with vertical tangents transition to “bends” in the graph, and no loops appear.

critical point (an inflection point at u=1/2. As a result, fixed points ofw(u,s,p) are located at Gy, and 1, and such
cusps seem to develop in the synchronization set, whickthat (dw/du) (p,s,p)=s. Changingp moves the critical
thereby loses smoothnefsee Fig. 4b)]. Whens<0, wg is  point of w away from the critical point of the invariant graph
noninvertible, the cusps immediately transform to self-(the original map corresponds with the modified function
intersecting loop$see Fig. 4c)]. Note that the synchroniza- with p=1/2). As shown in Fig. 5, this results in a transition
tion set is not a smooth manifold at the bifurcation pant to a smooth manifold. Cusps occur as a codimension two set
=0, and ceases to be a manifold after the bifurcation. In an a three-parameter version of this family; specifically, for
certain sense, this transition corresponds to a bifurcation ofveryc near zero, there is a&{p) pair for which the system

codimension 2, and is therefore atypical. has a cusp.
In Fig. 4(c), notice that atu~1/2, the synchronization
set has a critical point, the same point at whiehhas a Ill. AN INVERSE LIMIT APPROACH

critical point. The coincidence of the critical point of the
invariant graph and the function causes the cusps and the
loops.
This simultaneity of the principal critical points is not Xpr1=F(Xp) F: X=X,
typical for one-parameter families functions. In the typical )
case, the invariant graph will transition to a smooth, non- Yn+1=8(Xn Yn) G:XXY=Y, “)
self-intersecting curve, without the appearance of cusps anghere X and Y are smooth, finite-dimensional manifolds
loops. If there are no cusps, then after the onset of noninverpossibly with boundaryX is compact, and andg are con-
ibility the synchronization set continues to be non-self-tinuous but not necessarily invertible. A graph of a function
intersecting and close to a smooth manifold, although it is nap:X—Y is invariant if g(Xq,®(Xg)) = ¢(f(xg)), i.e., any
longer the graph of a map. See Figdy point starting on the graph remains on the graph under the
To illustrate this, we introduce a paramegerso that the  evolution of (4).

We consider the existence of invariant graphs in systems
of the form
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FIG. 5. Graph ofw(u,s,p). (8) Parametep determines the location of the
critical fixed point. Valuesp=0.4,0.5, and 0.6 are show(h) Parametes
determines the slope at the critical fixed point. Valses—0.5,0.2, and 0.5,
with p=0.5 are shown.
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of all sequence&={xq,X1,X,...} such thatf (x;) =x;_4 for

i >0 (cf. Refs. 24, 25 for more details on inverse linnif§he

map f induces a mapf:(X,f)—(X,f) defined by
?(xo,xl,xz,...)=(f(xo),x0,x1,...). Given an initial se-
guenceky, consider the system

Khr1=1(%y),

yn+1:g(770(§(n):yn)' (5)

whereg: XX XX---— X is the projection onto the first co-
ordinate in the inverse limit space. Note that only the driving
systems differ between systerf#dg and(5) since the dynam-
ics of the response remains unchanged.

In this context, the graph transform method can be stated
as the following theorem:

Theorem IIl.1 (Refs. 21,22) Let g andbfe smooth func-
tions satisfying system (5). For distance metrigsashd d, ,
assume that there existsCa<c,<<1 such that

dy(9(X,Ya),9(X,Yp))<C10dy(Ya,Yp), (6)

forall xe X and all y,,yp e, i.e., the system (4) contracts
the fibers™x=const Assume also that there exists a>¢0
which gives a limit of the contraction in the driving system,
i.e.,

dx(FH(%a), T (Rp)) = Colx(%a %), )

for all X,,%Xpe (X,f). Then, there exists a bounded continu-

ous function®:(X,f)—Y such that the graph ob is in-

variant under(?,g) and attracting for all (X,y) e (X,f)

X Y. If c;c,<1 then this graph is a differentiable manifold
Variants of this theorem can be proved in casew g

have less regularit}f

IV. THE STRUCTURE OF INVARIANT COLLECTIONS
OF GRAPHS

Theorem IIl.1 implies that, under appropriate conditions,
there exists an attracting invariant graph over the inverse
limit space of the driving map when the drive is noninvert-
ible. The synchronization set lies in the projection of this
graph ontoXXY. The inverse limit space usually has a
rather complicated structufé?® which will be inherited by
the invariant graph ot4). It is our goal to use a somewhat
more direct construction to describe certain features and bi-
furcations of the attractor of this system. To do this we will
define collections of graphs over sequences of intervals, the
union of which will equal the projection of the invariant
graph in Theorem IIl.1.

To avoid cumbersome technicalities which would be
necessary in the general case, we illustrate how the attractor
of system(4) lies in an “invariant collection of graphs” in
the case where the drive functidnis a tent map. Next, we
point out how to generalize the construction to Markov

The graph transform method, which is typically used inmaps. A related construction is considered in Ref. 6. In the
in proving the existence of invariant graphs, relies on thecase of non-Markov maps, an additional step is necessary in
assumption thaf is invertible?!~23but it can be extended the construction, but the essential ideas remain the same.

directly to system(4) by considering the inverse limit of
with bonding mapf. The inverse limit spaceX,f) consists

Most ideas presented in this section carry over to dynamics
in R"*L,
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0 which we can view the collection of maps defined on the tree
of intervals: the individual map®. , sequences of maps

J O ai H
};/ \\f V., and collections of sequencds
£;' f;\‘\
1

B. The synchronization set

J J 1 In this section, we illustrate the proof of the following:
0 1 Theorem IV.2 For a system of the form (4), where f is a
f f f/( f continuous piecewise monotone map of the interval with all
/,(/_ LD ,/_1 \_\\\\ critical points having finite forward orbits, and g satisfies
5 1o f, 5 5 f, D) condition (6), the synchronization set is contained in a col-
J J J J lection of continuous graphs
0 2 1 3 Sincef is a Markov map, there exists a tree structure
analogous to the one described in the previous section, and
¢ . ¢ ¢ ¢t the synchronization set is a collection of continuous graphs
FIG. 6. A tree of intervals for the maf2). over the intervals that occur as branches in the tree. This

sequence is obtained as an invariant elemei@.in

The proof is a straightforward generalization of the
graph transform method to graphs defined over sequences of
intervals. We first assume thhis a tent map, and then show
Assume thag:R2—R satisfies conditior(6), and letf that a similar argument works in the general case. The state-

A. Trees and branches

be the tent maj§2) with c=2. ment is proved by defining a mdp,:G,— G, which is a
Consider the collection of intervalslj=[k2 ",(k  contraction, and whose fixed point is the desired graph.
+1)2°"] with 0<k<2". Note that f(J§"1)="1(35 ") The graph transform is defined as

=Ji and that both maps are invertible when restricted to the (i )(x)=g(f
: n+1 n+1 . n ai( a ( g( a g
intervalsJ,, -, andJ, " ~. Therefore, the interval3, form a _ _
tree, so thaf maps any interval in the tree to one in the level Following  the  construction above, the mad’,
directly above it, and is invertible along the branches of the =(I'a,,I'a,....) isdefined to act on sequences of graphs. It is
tree. The inverses df mappingJf to Jp ** anng:,lk willbe  straightforward to check that a fixed point of the mEp
denoted byfr;ll andf;n{k (see Fig. 6. satisfieq8), and maps5, into itself. It remains to check that

Let a=(ag,a;,...) be asequence of integers such that the map is a contraction, to show the existence of a fixed
0<a;<2', sothatl,= (30 ,J1 32 ...} is afixed path in this  POINt W7 . This is done in the Appendix.

o2 The argument is independent of the sequeaaosen

(), W5 L (Fo 1 (%))

a1

tree, and let in the construction. Therefore, the union of all invariant
Ga= U {Wl Wl 3L R Wl eC(Jl), graphsU,.s¥% forms an invariant collection of graphs

' oo ' ' W*, Under the dynamics of the system, graphs over one

and 3B<R such thdl‘l’iai|<5 for all i}, level in the tree get mapped to graphs at the next level. Each

sequencel’; terminates in the top level graplfigz)r . To see

be the collection of all sequences of bounded, continuouwhere the top level graph is mapped to, note that it is a union
functions, each of which maps an intervaldginto R. Wwe  of two graphs‘lféi‘ and \Iféf , Where the sequencésandc
can define the distance betweén , ¥, e G, by are defined byb=(by,b;,b,,...)=(0,0a;,a,,...) andc
=(¢y,C1,Cs,...)=(0,1a,,a5,...), sothat the image oﬂfg;‘
must bew p* U2 .

By the same argument, the collection of all graphs
that share the same terminating sequeacbut have differ-
ent initial sequences, i.e., all graphs corresponding to se-
quences of the form

_ * di(q)iai :‘I'iai)
d,7<d>a,\va>=go —_—

e’

where >0, andd; is the metric induced by the supremum
norm in C(J; ).

Definition IV.1 The sequenc® , is invariant under (4)
if the graph of‘If'aitl1 is mapped onto the graph oif'ai

0, .see.  ,a1,d2,...),
for i=0,1,... .More precisely 0, e a1,a2,)
k fixed symbols
WL (FO)=g(x, ¥ 1 (X)), (8)  the graph corresponding to the sequeaee(0,a;,a,,...).
. i1 ] This argument can be used directly to explain the struc-
for all x on whichw,"" is defined ture of the synchronization set in Figgaland 1b) wheref

Finally, let S be the set of all integer sequencas is given by(2) map andg(x,y)=dy+x?. The attractor is
=(ap,a,...) with 0=a;<2', and letG=U,_sG,, the col-  contained in a collection of graphs froff,1] to R. Each of
lections of graphs over the intervals in the entire tree. Anthe graphs in this collection is mapped to two graphs con-
element¥ € G is a collection of graphs over each possiblenected atx=1. Figure 7 illustrates this by showing the first
path in the tree of intervals. Thus, we have three levels athree iterates of the unit square.
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1.4 f(c)
0/ B, 1, 1
0 I 1 I 1 h I, 1

FIG. 8. Constructing the first level of the tree {@), with c<1. The shaded
parts of the interval are trimmed at this level.

C. Extensions of the construction

If the orbit of the critical point is not finite, the construc-
tion becomes somewhat more involved. In this case only part
of an interval that occurs in the construction of the tree may
©o o1 02 03 04 05 06 07 08 09 1 be in the range of. When this occurs we need to “trim”

FIG. 7. The light gray, dark gray, and black regions represent, respectively(’fwvay the part of the interval that is not in the range. We

the first, second, and third iterates of the unit square under the evolution dPY€S€Nt two particular examples. Although the first example
the drive—response system described in the fieatpare with Figs. (B) is trivial, it is chosen to clearly illustrate the general proce-
and 1b)]. dure.

Let us again consider the tent m&p), and letc<1.
Note that in this casé is not an expanding map. We again
start the construction of the tree by considering the root in-
terval 13=[0,1]. However, the image of the intervalg
=[0,1/2] and 17=[1/2,1] is f(13)=f(13})=[0,f(c)] is not
the entire interval. We therefore replace the interVgl
=[0,1] with the interval[0,f(c)] at this level of the con-
struction and obtain two pathsig(;,1g) and (94,115),

0

The attractor of syster®) is contained in the collection
of graphs¥, although it is typically only a proper subset.

If fis a piecewise monotone map gd,1] and the for-
ward orbits of the critical points df are finite { is a Markov

map), then these orbits provide a finite partition of the inter- ! .
vall into intervalsl . The preimage of each, consists of a where the second subscript denotes the level of construction
(see Fig. 8

union of preimages, each of which lies in a distinct subinter- .
To construct the next level of intervals, note that the

val I,. We can therefore createtrees of intervals with . .
kK interval I%=[1/2,1] has no preimage unddr, so the path

j
=1} placed at the root of each tree. The remainder of the tre ; . .

kP 19,,11) terminates at this point. On the other hand, the
path (|8,1,|(1),j) can be extended to create the next level of

is constructed exactly as in the case of the tent map discussed:’
above. Repeating the argument outlined above, we can again 0>V 2 0 11 .2 0
obtain an invariant collection of graphs. The dynamics of thispaths lo2:10:107) and  (o2.lo011,) where g,

_ 1 _ 2 _ 2 _
collection is again determined completely by the path in the(_sgg’f[:(il;(cs)}’)]"0,2—[0,f(C)],|0,2—[0,1/2], andl{,=[1/2,1]

treg chosen to construct the graphich is exactly a sym- This construction can be continued indefinitely, and re-
bolic sequence for the Markov mpapand the attractor is sults in a single path
again contained in this invariant collecti¢see Ref. 6 for an
alternative construction ( 8,00 ,I(l),m N RN

Remark 1V.3 This argument only shows that there eXIStSWith =0 for all n. Although this is a very indirect way to

an invariant collection of continuous graphs. The CONtrac-po»ch the conclusion that we can only construct an invariant

tion mapping theorems used to prove the smoothness of ﬂb‘?aph over the fixed point=0, it illustrates the generally
invariant manifold in the case of invertible maps are moreapplicable procedure of trimming intervals along the
technical?’~?® but can be extended to the present case. Th ranches tree

smoothness of the invariant manifold can be guaranteed only
if the rate of contraction of g given by;dn (6) does not

exceed the reciprocal of the minimum rate of contraction of . f(f(c)).
f~1 given byl/c, in (7). In the case when f is an expanding 0 1, fe© 1 1
map, this condition is always satisfied. However, if f is /
smooth and noninvertible, then near the singular poihts )
is unbounded. Orbits that return often to a neighborhood of b _—
the these points will also be highly contractive, and the con- 0 s b h Ty :
ditions for smoothness may not be satisfied, regardless of the
contraction rate g in (6). Estimating the size of the set of 2 7 1’/2 1‘/2 T |

0.2

orbits on which such high contraction occurs is a delicate
question. For a more detailed discussion, see Refs. 7, 9, 23|G. 9. The second level of the tree f(®), with c<1 with shaded parts
and 29. being trimmed.
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The synchronization set in this case only contains onenapped to two intervals at the zeroth level of the tree which
point with x-coordinate 0, ang coordinate determined by are joined at the image of the critical poirfi{,1/2)= 1.
the response map. The same construction for the tent map In Sec. IV A it was shown that the invariant collection of
whenc>1 results in a number of sequences. Some of thesgraphsW* equals the union of top level graph{sgo. The

sequences may terminate, and some may result in SequenG@gument in the previous paragraph shows that all connec-
of p0|ntS rather than intervals. However, in the case of pieCetions among the top level graphs occur at the critical point

wise monotone maps, at least some of the sequences Wihd its images. Moreover, two graphs and ¥ will be

i i 0 0
consist of nondegenerz_ite _mtervé‘is‘]ﬁherefore, at least a connected if all pairs of intervaldX andJf share a com-
portion of the synchronization set will consist of graphs of dpoi di k b hk v land
continuous curves over intervals. Unlike the case of Markoy"0" €N p(l)mt corresponding to an orbit that eventually lands
maps, in general the topology of the invariant collection ofat & critical point.

intervals is difficult to determine using this construction. De- dTZe same ob_ser\(/jauon.tl)s ;rge rsnore gegerglly_. In thel ex-
spite this, we will show in Sec. IVE that we can still ap- €nded construction described in Sec. IVC, the intervals in

proximate the invariant graph with a collection of intervals. tW(IJ b;anch;}as n thef ?Xtendfd tree wil sharle a IDOIhnt, if and
This construction is closely related to the inverse limit®™Y T €ach pair of intervals at a certain level shares an

construction discussed in Sec. Ill. The collection of graphsrenmjpoint which eventually maps to a critical point of the

constructed using this procedure corresponds to ap. ) )
As a simple example, consider the map
) (X01CI)(X)): U (Xi,(I)(X)), 1
xe (X,f) xe(X,f),ieN 2% if xe O,E) ,
wherex={xq,X1,Xs, ...} is the inverse limit sequence de- f(x)= (9)
scribed in Sec. IVE, an®:(X,f )—Y is the invariant graph —X+— if xe 1 1} _
over the inverse limit discussed in the previous section. This 2 2'

explain; our earlier claim that this grf“ph may -be V“?Wed 3% he tree of intervals corresponding to this equation kas
the projection of the graptP onto the first coordinate in the | 5 j e ais at thekth level, and hence there are only a
'ﬂvers? I'm'tﬁ we may aLso uzedthli obseryang; to ﬁoacmdecountable number of branches. Using the argument outlined
t\ﬁ’ since tgfgrapﬁv IS ouhn_ N r’]t ere PTX'SIS ”suc_ that above, it is immediate that the different branches correspond
| 3 ~(X)|<C for any graph in the invariant FO ectpn. to intervals that are joint alternately & 1/2 andx=1. Not
Remark IV.4 There are several constructions of inverse syrprisingly, the inverse limit for this map is equivalent to
limits which are pseudoarcs and therefore do not contain anhe topologist's sine curve.
intervals?®%* If the bonding maps used to construct these A question posed in Ref. 6 is whether the invariant graph
inverse limits are used in our construction, all sequences Ot:an consist of a Countab|y infinite number of curves when
intervals will be degenerate, i.e., all will be sequences ofthe driving map has positive topological entropy. The follow-
points. Therefore, no points of the synchronization set argng example answers the question in the affirmative. It is a
contained in continuous curves. As noted, this does not haRjrive_response system of the fo(m, where the drive is the
pen for piecewise monotone maps logistic mapf (x)=u;x(1—x) for u;=4. It is well known
that this drive has positive topological entropy. The response
is given by the formula
D. Connections between graphs in the invariant g(x,y)=h(X) m> X(L—x)+(1—h(x)) f(x) (10)
collections ' '
and u, chosen to be near &or example, we use=3.7),

It is apparent in Fig. () that the different graphs in the fandh is a differentiable function defined by

invariant collection are connected along the forward orbit o
the critical point. In this section we show that this is true in N(x;—x)? if xe[0xXy),
the case of a tent map wit=2, and discuss how to extend h(x)={ 0 if xe[x1,X], (11)
these observations.

In the construction of the tree of intervals in Sec. IVA,

each pair of adjacent intervals shares an endpoint. CO”SidWherex1=(1—1/\/§)/2, X,=(1+1W2)/2, andN= 1/(2,@)_

the sequences {k,(1/2)"t,_o, where ko=1 and Note that f 1([1/2,1])=[X;,X,]. Thus, for Xe[X;,Xs],
f(kn+1(2/2)"" 1) =ky(1/2)". Each such sequence corre- g(x,y)=f(x). Thus, the synchronization set is the graph of a
sponds to one possible backward orbit of the critical pointsing|e curve for allxe[1/2,1]. This single curve corre-
1/2. There are two intervaliy) andJ; which sharek,(1/2)"  sponds to many different sequences in the inverse limit
as an endpoint. Therefore, there are two paths of intervals, igpace. As a result, the synchronization set consists of a
the tree, such that at each level the two corresponding intecountably rather than uncountably infinite number of curves
vals share an endpoint. Sinkg(1/2)"+ 1/2, it follows thatf ~ above the interval0,1/2]. To see this, consider two points

is invertible along this path, except at the top level. There{xq,Xq, ...} and{zy,z1, ...} in the inverse limit space for
fore, we can take the union of the two intervals at each leve(X,f). If xg=2z7>1/2, then the points correspond to the
to show that our construction gives a unique graph over theame point on the synchronization set independent of all
interval[0,1] at the first level of the tree. This interval is then other values in the sequence. Therefore, except for a se-

N(X—X,)2 if x>X,,
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guence vyith _aII points less than 1/2, all ot_hgr points on theixed in the previous step. Thereforﬁ’,’;‘N’N(X) gives ane

synchronization se$ are determined Py a finite sequence. approximation of any graph in the invariant collection corre-
The number of curves above the interf@l1/2) is count- — gnonding to a sequence that starts Wi, ... ay s yt. Tak-

ably infinite rather than finite(The curves a]l intersect at O ing the finite union of graphs corresponding to all possible

and 1_/2) To show this, we ca!culate the unique cuﬂ\“/g of starting segmentéay ... ay. v} gives ane approximation

S which is a grgph over the mtervél/;l] and the unique ¢ tha entire invariant collection.

curvel’s which is a graph ovef0,1/2 with a kth backward This argument can be extended to the case of nonuni-

orbit ip [O_,x{k] for all k We use the invariance of the syn- formly expanding maps, and maps that are expanding on
chronization set; the image dfr under the system has a yerage by modifying the choice gf Therefore, regardless
portion which is a graph ove(0,1/2. This is distinct from ¢ se topological complexity of the invariant collection, it

I'g. As a result of this and the fact thatis one-to-one on . a\ways be approximated by nearly invariant collection
this interval, every image of these two curves, restricted tc?:onsisting of finitely many graphs.

(0,1/2, is a distinct curve as well. This gives a countably Remark IV.5 In Figs. 1(a) and 1(b), we took ¢

infinite number of distinct curves. =1.9999,since binary arithmetic makes numerical analysis
The previous example is carefully constructed so thah the case e2 difficult. The results of this section show
many curves in the inverse limit space project onto the Sam, o the invariant collections of graphs in the two cases will
curve in the original space. We conjecture that this nongepg ¢jose. This follows from the facts that only a finite number
neric collapse is necessary in order to have a countable NUNgt images are necessary to construct an arbitrarily good ap-
ber of curves when the topological entropy is positive.  oximation of the collection, and the dynamics depends con-
tinuously (even differentiably) on the parameter ¢

E. Approximations of the invariant collection .
F. A note on detection methods

In this section we show that the full invariant collection . .
of graphs can be approximated to arbitrary accuracy by a . In Ref. 9 it was shown that methods that re[y on co_np—
specific finite collection of graphs whehis uniformly ex- nuity for the det_ect|orj of synchronous s_tates typlcally fa'.l n
panding. Therefore, even in very complex situations, the synt-he case of noninvertible systems. A typical example is given

chronization set looks like a union of curves. The argumenpy the e-6 method, where one chooses a liafk, 9) around

- - e a reference poink, and iterates the driving system {#4)
ted for th f a tent t@pwith c=2, . . i .
I:nzg::] E;eze;r;;a"g;d © case oraten Pt € until the orbit falls withinB(x, ) a large number of times.

For an arbitrarye>0, we will construct a finite set of 10 ®Ch POk, €B(x,9) on the orbit, there corresponds a
graphs, each of which will lie within a distaneeof an un-  POINtY, €Y such that K,,y,) lies on the attractor of4).

countable number of graphs in the invariant collection. The-et e be the radius of the smallest ballyrcontaining ally, .
union of these representative graphs provides the desired afi-the attractor lies in a smooth or Lipschitz manifold, then

proximation. decreases linearly with. If f is noninvertible, the attractor
Since f is uniformly expanding, the intervaIs}gn,n will be in a collection of graphs. In this cagewill typically

at the nth level of construction in the paths notdecay withs because nearby points B(x,5) may have

(22 3% .30 L ....) have length smaller than (1/2) different histories, and the corresponding poiptsmay not
0 1 n:

lie on the same graph.

In Ref. 10 it was argued that a modification of the
gpethod can be applied to detect synchronization in the case
wheref is noninvertible. Lex* andz* be two points on the
orbit of Xy andz, on the attractor, under the evolution of the
driving system. Consider the subsets of the orbitgpénd
zo defined by x; =(Xn,f(Xp),....TP71(xy)), where x, is
some point on the orbit af, satisfyingf?~*(x,)=x*, and
z5=(zm.f(zm),....fP (zm)=2*) (note thatm does not

and there exists alN such that (1/2)<e. Fix the finite
sequencgay,...,ant- In the case of the tent map with
=2, this first step is not necessary; however, it becomes e
sential when the orbit of the critical point is not finite.

As noted earlier, all graphs in the invariant collection are
bounded by som€&>0. LetM be such thaCc}'< e where
c, Is defined in (6). Select a fixed sequence
{ag,..-,an,---,@n+m} @nd continue the construction that was

terminated at the levell to the levelN+ M, to obtain the H Y Th s id to bes® cl *if
paths 020,N+M""‘]21N,N+M""!‘]N+M wem). Consider the ave to equah). The pointz* is said to bes® close tox* i

RS TTANEm _ K%)= ¥(zm) | < 8 for all 0<k<p-—1, so that entire por-
functionsWy " n..m=0 defined over each interval at this tions of the orbits ofx, and z, consisting ofp points are
level, and consider theMth forward image of graph required to bes close. This notion of distance and the asso-
(Flng*ij Nim)- This is the graph of a function ciatede-6P test can be used to detect synchrony even when
IN N : is noninvertible.

Waynilayneu— Y. By construction The effectiveness of this method can be explained
sup [W3 0= TR*(x)|<Cey'<e, using the ideas described in the previous section. We
N again consider the tent mag@) with c=2 as an illustra-
tive case. Two pointx* and z* are 6P close, if their
where W* is the Nth graph ofany sequenceP} in the partial orbits x;=(xn,f(xn),...,fp‘l(xn)=x*) and z;
invariant collection such that {bg,....bnim} =(Zm,f(Zm),....FP " Y(zn) =2*) constitute the head of two
={ag,....an+m}, Where {ag,...,an+m} is the sequence close-by elements of the inverse limit space. This means that

o0

N
xel
ay
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a b
o) T
o(x9 1 —_— -+
o)
o(x)+ T FIG. 10. (@ When ¢ is a monotone
L graph of a function near, then(b) the
L | | I I synchronization set neéfx) becomes
L I — T T multivalued without containing self-
X Xy X3 Xy i) fxy) fxy) fxp) intersections.(c) If the synchroniza-
tion set has a critical point correspond-
ing to a critical pointx of f, then(d)
¢ d the synchronization set contains point
of self-intersection, or loops, immedi-
ately upon becoming multivalued.
o) =0xy)
—_—
?y o) T
- ———
X X, X3 X, ) fixy) fix,) fx,)

most likely f*(z.,),f“(x,) € 27~ for some sequenaeand  heuristic argument why typically near the bifurcation, the
intervalsJ?,...,J° "1 in the tree defined in Sec. IVA. Since invariant graph is close to a smooth manifold without self-
only the head of the two symbolic sequences correspondinitersecting loops.
to x* andz* is required to match, their images do not nec-  Consider a systemx(y)—(f(x),g(f(x),y)) with vy
essarily lie on the same graph. However, we know that the= R. The idea of the argument is illustrated in Fig. 10. As-
points‘lfg(x*) and‘lfg(z*) in the invariant collection corre- sume that we have a piece of a graplix). Choose four
spond to two sequences and b such that{ag,...,a,_1} points x; <X,<X3<X, in the domain of the graph. We as-
={bg,...,b,_1}. Therefore sume that the response system contractsg/tbgection, and
|\P°(x*)—\I’°(z*)| that ¢ does not change the ordering of the points, so that
a b B(X1) < P(X2) < p(X3) < Pp(X4). Also assume that:R—R

<(|wox*)—woz*)|+|wz*) - W) has the s_hape of the cubic with two critical pointsxatand
IR . X3 [see Fig. B)], so thatf (x;)<f(x3)<f(x,)<f(x,). If ¢
<e(6,x*)+ch HVE H(zm) — V) (zw)| is monotone betweexy andx, [as in Fig. 10a)], it is easy to

% p-1 see that the image of the graph #fwill be nonintersecting
<e(dx*)+c; °C, (12) [as in Fig. 1@b)]. On the other hand, i has a critical point

wherec, is defined in(6), C is the size of the attractor in the betweenx, and x; [see Fig. 1(c)], a loop will be formed

vertical direction, and e(é,x*):ma&eB(x*@mng‘a’(z) under one iterateshown in Fig. 10d)].

—W9(x*)|. As in the invertible cases(3,x*) will decay to 0, More formally, the synchronization set is contained in

and it will decay linearly if¥°—a(x*) is differentiable or ~the invariant graph of a functios which satisfiesh(f(x))

Lipschitz atx*. =g(f(x),#(x)). Assume that thé is a monotone increasing
Therefore, if the attractor of the system is contained infunction SUCh,thaf'(X*):O [see the middle graph in Fig.

an invariant collection of continuous graphs, tkes®  S(@]. Then, f'(x) has the same sign for ali#Xx, . The

method can be used to analyze the regularity of the graphs fi@ngent ofS is such that

this collection. Increasing decreases? 'C, and therefore , , ,

the resolution of the me&od. ’ ¢"(FONT00=Dag(F00,600)F(x)

+D2g(f(x), (X)) d' (x),

V. BIFURCATION TO A NONINVERTIBLE DRIVE wheneverg’ (x,)D2g(f(X,), ¢(x)) #0, ¢"(f(x,)) limits
to a well-defined vertical tangept or — o, corresponding to

An example in Sec. IIC illustrated how the invariant the sign off’(x) for x#x, . Therefore, by the implicit func-
graph either developed hook&ig. 10b)], or loops[Fig. tion theorem, the synchronization set can be written as the
10(d)] as the map defining the driving system changes frongraph of a smooth functiox= 5(y) from Y to X. For
being invertible to noninvertible. In this section we provide anearby parameter values, this smoothness may not persist, as
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FIG. 11. A schematic of baker’s map which can be thought of as an exten-
sion of the tent map. The two dotted lines on the left are preimages of the f(b) +
dotted line on the right, and project to a point undger

the points at whichyp'(y)=0 may be dense, depending on a b c

the orbit of the critical point off. queve,r’ since we have FIG. 12. An extension of a multimodal map. The graph of the factor map is

assumed that6) holds, the contraction will make the large pejow the extension. Note that the vertical direction in the range ludis

images of this “wrinkle” very small, so that the set will still been shortened.

be approximated well by a smooth manifold. Thus, the only

possible self-intersections will only be visible under very

high magnification. The closer we are to the bifurcation theonto thex axis (see Fig. 11 Note that by choosing close

larger the magnification necessary to detect these potentigh 1, the amount of contraction in the direction can be

loops. However, if¢’(x)D,g(f(x),#(x)) changes sign at made arbitrarily small.

X4 , then the left-hand and right-hand limits ¢f (f(x)) are This map is not invertible on the entire unit square, since

both infinite but disagree in sign, implying a cusp. the inverse is not defined outside of the shaded areas of Fig.
In our specific example, u;¢(u)) maps to 11. Since we are only interested in the invariant graph over

(f(u),cép(u)+g(f(u)). The functionf is increasing and has the attractor, we can either extend the map arbitrarily to an

a critical point ats=0, whenu=p,v <a. Thus, the synchro- invertible map of the plane, or restrict the map to its attractor.

nization set has a cusp exactly when it has a minimiom  The map is discontinuous, but only along the line=1/2.

maximum) atu=p. For p near 1/2, this can be achieved by  Using a similar construction, we can extend any map

varying the coupling parameter f:[0,1]—[0,1] with finitely many critical points, to an in-
vertible map of a rectangl€0,1]X[0,N] where N is the
VI. AN ALTERNATIVE CONSTRUCTION number of critical points. An example is given in Fig. 12.

In Sec. IV A we illustrated the construction of an invari- Ve can therefore associate a system

ant collection of continuous graphs for systeé#), but did Xns1=F(Xn), VYn+1=G(d(Xn),Yn), (15)

not address the smoothness of the graphs in the collection. In.th tem(4) whereF is i tible. IfA is the attractor of
this section we show how to introduce an invariant map withV'!h SYS em(4) whereF is invertible. IS the atlractor o

an invariant foliation which can be used to address this qued1. then ¢(A) is the attractor of4), where ¢ is the pro-
tion directly, and use a similar idea to explain the structure ofection to the first and third coordinateg(x;,X,,Y)
attractors of the systems introduced in Sec. II B. =(X1,Y)-

As a simple example of the construction once again con- We can use this extension to discuss the smoothness of
sider the tent mag2). A mapg:Y—Y is a factor of a map the graph over the attractor of the driving map. Since the
f:X— X if there exists a mapp:X—Y such that¢(f(x))  extended map is invertible, the usual theory of invariant
=g(4(x)). It is easy to see that the tent map is a factor ofmanifolds can be applied away from the orbits of points of

the baker’s map discontinuity—corresponding to the orbits of the critical
points of the map—which are expected to form a small set.
X1=F1(X1)=[2Xl X, <1/2 (13) The graph over attractoh of (15) is the restriction of the
—2x,+ 112 x,=1/2, invariant manifold to this set. Since the projectigh is

axy, X <12 smooth, any existing curves i will be projected smoothly
X5=F2(Xq,X0) = (14)  to curves ing(A). The contraction in the map can be made
aX2+(2—a) X1>1/2, : . . .
arbitrarily small, so that the smoothness of this manifold de-
where a<1. In this casep:[0,1]X[0,2]—[0,1] is the pro- pends only on the contraction of the noninvertible map used
jection onto thex axis, so thatp(x,y)=x is the projection in the construction.

Downloaded 14 May 2004 to 129.174.44.56. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 14, No. 2, 2004 Synchronization of noninvertible systems 261

We use a similar argument to explain the structure of thantersections occur? It would also be interesting to estimate a
synchronization set observed in Sec. Il B, where the Lorenzlimension of the attractor as a function of the coupling
system was used as a drive. lfetlenote the Poincammap  strength. We end with a discussion of the addition of noise.
defined on the section=27|x|<8. There is a stable invari- In a drive—response system, synchronization sets are
ant foliation in the vicinity of the attractor in this Poincare global attractors. Therefore, results on random attractors
section®® If we denote the projection along this stable folia- show that additive noise will not change the inherent struc-

tion by ¢, the map~f(x)= f(¢(x)) is a noninvertible map of ture of the attractor but only cause it to spread Slrt.par-

the interval which is discontinuous at a single point, andticular, the attractor is upper semicontinuous, meaning that
monotone away from this point. If we consideas the driv- the Hausdorff semidistance from the no_isy_attrac_tor _to_the
ing map in a drive—response system of tygg the theory true attractor approaches zero as the noise intensity limits to

discussed in Sec. Il can be applied to construct a tree of€0:

intervals and an invariant collection of graphs with a trans-f Fc()jr the both IOf the systems shown i”hFig-ﬁlv Wef pg‘g
versal Cantor-type structure. Since the n?aij is not uni- ormed numerical experiments comparing the effect of add-

formly expanding, the arguments about the smoothness gpg noise to the drive to the effect of a noisy response. In the
uadratic response case, for a large rangd ohlues (0.1

the graphs'|.n the C,O”ecl'o,” reqwrg dehca‘lte est|'ma.tes. Smc%dsO.S), the noise added to the drive had less of an effect
the only critical point off is the point of discontinuity, the

. . _ X than the same noise added to the response. For the sine re-
different graphs in the collection will not be connected. A

. - o . . " “sponse, the effect was reversed for a large range (0.1
particular projection of this invariant collection of graphs is <Kk=0.6). This difference in relative strengths appears to be
what is observed in Fig. 2.

the result of the relative dissipation rate determined by the

We emphaS|3ze that in this situation there exists an invarigice of the response. The results of these simulations are
ant graph W:R°—R. The attractor of the full four- available at the URL in Ref. 33

dimensional system lies in this invariant graph. What is ob-
served in Fig. 2 is a section of the attractor in this invariant
graph. Since the dissipation of the Poincarap in this case

is very strong, this section is very thin in the direction of the

stable foliation. The section is therefore very close to its K.J. was partially supported by Grant No. NSF-0244529.

projection undekp, and hence we observe an object close tog g \yas partially supported by George Mason University
one which can be described using the arguments of Sec. llpq\0st's Office summer research funding.

A similar argument explains the structure of the attractor in
the case of the Resler system, although we are not aware of
a proof of the existence of an invariant foliation in this case.
We expect that strongly dissipative systems will result inAPPENDIX: I IS A CONTRACTION
attractors with similar structures when used as drives in this | et and®, be two sequences of graphs@y . Then
type of drive—response systems. In such cases the structure _ .
in the strongly contracted directions may, in a sense, be redi(I'a(¥3).I'a(P3))

solved in the response system. i i
=SUR g1 [T (Wh) ()~ T (P3|
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VII. CONCLUSION (X),\I,iJrl(f*l (X)))

10 &4

=suRy [9(fa
We have shown that the attractors of certain drive— '

response systems in general lie on an invariant collection of —g(fam(x),q>‘é‘i++11(f;il(x)))|

graphs of functions from the phase space of the driving sys- ' .

tem to the phase space of the response. Although this collec- <e*supji+1|WL" (x)—dL (%)

. . a g a|+1 a|+l

tion may have a very complex geometry, under certain con- v ’

ditions it can be approximated by a finite collection of nearly ~ =e*d,, (V.1 dit1), (A1)

. . . . . i+1 11 Ay

invariant graphs. This explains the occurrence of striated ) ]

structures frequently observed in in numerical and physicavhere the second to last inequality follows frds).

experiments: Inequality (A1) implies directly that
Itis likely that the attractors in many dissipative systems % di (Pitl @i+l
. . — I+l( a1 g l)
have strong stable foliations along which they can be pro- ¢ (1 (¥,) I (®,))<>, e " Al
. . . . . 4 7\t a a/»ta a ~ e
jected to lower dimensional, noninvertible systeffid =0

Moreover, noninvertibility is a natural occurrence in many

| h - ) i o0 di+l(q,i+1 q)i+l)
numerical and physical experiments. The arguments given in —eM 7 E
=0

ir1’ &4

this paper are applicable in many such cases, and can show e+l
that certain response systems could provide an effective way . i i
of studying the structure of their attractor. <> di(qjﬁi ®a)
We have not addressed several interesting questions: It is =€ AT e
clear from Fig. 1 that the different graphs in the invariant o
collection will intersect at various points. Where do these =e“”d,7(\lfa,d>a), (A2)
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