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Unidirectionally coupled systems (x,y)°( f (x),g(x,y)) occur naturally, and are used as tractable
models of networks with complex interactions. We analyze the structure and bifurcations of
attractors in the case the driving system is not invertible, and the response system is dissipative. We
discuss both cases in which the driving system is a map, and a strongly dissipative flow. Although
this problem was originally motivated by examples of nonlinear synchrony, we show that the ideas
presented can be used more generally to study the structure of attractors, and examine interactions
between coupled systems. ©2004 American Institute of Physics.@DOI: 10.1063/1.1667632#

Synchronization in networks of systems with complex be-
havior has been a topic of extensive experimental and
theoretical study in recent years.1–3 Roughly, a network is
synchronized when there is a dynamical relationship
among all of its constituent pieces, so that information
about any one system can be gained by observing the
behavior of another system in the network. More specifi-
cally, coupled systems exhibitgeneralized synchronyif the
global attractor is contained within a synchronization set
with an organized structure.4,5 In many cases, the syn-
chronization set is the graph of a smooth map. However,
coupled systems may still be synchronized even when its
synchronization set is more complicated. In this paper, we
consider the case in which the synchronization set is the
graph of multiple curves as a result of noninvertibility of
one of the component systems.6,7,9,14We provide a math-
ematical justification of many claims made in our earlier
paper.7 In addition, we extend the work by studying the
implications of results obtained for noninvertible maps to
flows, analyzing the bifurcations leading to the compli-
cated structures we observe, and explaining how these
observations carry over to higher dimensional maps. In
this context we also give an explanation of a synchroni-
zation detection technique which was recently introduced
by He, Zhang, and Stone,10 and answer an open problem
posed by Afraimovich et al.6

I. INTRODUCTION

A class of models frequently used in the study of syn-
chrony is unidirectionally coupled systems

~x,y!°~ f ~x!,g~x,y!!, ~1!

also known as drive–response, or skew product systems.
When the driving mapf is invertible andf andg are smooth,
it is known that for sufficiently strong coupling the synchro-
nization set is contained in the graph of a smooth function
f:X→Y from the drive spaceX to the response spaceY ~see
Sec. III and Ref. 11 for a precise statement!.

In many important cases the driving systemx° f (x) is
noninvertible. This can occur if the driving system is ob-
tained by reconstruction and the sampling dimension is too
small, if a stroboscopic equation for a differential equation is
sampled too infrequently,12 or as a result of inherent nonin-
vertibility, as in delay equations or numerical approxima-
tions.13 It has recently been observed that in such situations
the synchronization set may lose the structure of a smooth
manifold, hampering traditional detection methods.6,7,10,14

A synchronization set with a structure typical of such
examples is shown in Fig. 1, and is discussed in Sec. II. In
this case the synchronization set has the structure of the im-
age of a Cantor set of lines in the vicinity of most points. We
will show that such structures can be generally expected
when the drive is noninvertible, although the local geometry
is typically even more complex. Similar structures can be
observed in higher dimensional maps, as well as flows which
project to noninvertible maps along strong stable foliations.
The synchronization set can be multivalued even for invert-
ible maps, although in this case the structure of the synchro-
nization set is very different.15 We note that the fine structure
of the attractors that occurs in phase synchronization has a
different origin.16

In this paper we discuss the structure and bifurcations of
synchronization sets in the presence of noninvertible drives,
including representative examples illustrating the types of
possible behavior. The paper proceeds as follows: In Sec. II
we present a number of examples of multivalued synchroni-
zation sets in coupled systems with noninvertible drives and
bifurcations that lead to such attractors. In Sec. III, we indi-
cate how to extend the standard proofs which work for in-
vertible systems to show the existence and continuity of syn-
chronization sets in the present case. In Sec. IV, we use a
constructive approach to show continuity. This has the ad-
vantage of giving more detailed structural information,
which is illustrated in several simple examples. The synchro-
nization set may be the union of graphs of uncountable or
countable number of continuous functions. We give an ex-
ample of a synchronization set comprised of a countable
number of graphs when the drive has positive topological
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entropy, answering a question posed in Ref. 6, and show that
in pathological cases, the synchronization set can lose the
structure of a union of curves. In Secs. IV E and IV F, we use
inverse limit techniques to establish the validity of thee-dp

method for the detection of generalized synchrony for sys-
tems with noninvertible driving maps described in Ref. 10.
Section V revisits the examples from Sec. II C, giving a
proof that typically the synchronization set is nearly smooth
and nonintersecting near the bifurcation to a noninvertible
drive. In Sec. VI, we give an alternative construction for
synchronization sets which can be used to prove smoothness
of individual curves within the family.

To avoid introducing cumbersome notation into the ex-
amples and arguments, we primarily discuss noninvertible
systems in one dimension. Most of the arguments can be
extended to higher dimensional systems in a straightforward
way.

II. EXAMPLES OF COUPLED SYSTEMS WITH
NONINVERTIBLE DRIVES

In this section we consider examples of drive–response
system that illustrate the typical phenomena that can be ex-

pected in such systems. The general ideas illustrated in these
examples will be studied in subsequent sections.

A. Unimodal maps of the interval

The simplest example of noninvertible drive in a system
of the form of Eq.~1! is one for which the drive is a tent map

f ~x!5H cx if xP@0,1/2!

2cx1c if xP@1/2,1#,
~2!

wherecP(0,2#. As long as the responseg(x,y) is contract-
ing in the second variable, the attractor within@0,1#3Y will
be contained in a collection of lines which are connected
along the forward orbit of the critical point. Ifc52 the for-
ward orbit of the critical point is ($1/2,1,0,0,...%). Since this
orbit is finite the vertical linex5const. intersects this collec-
tion in a Cantor set of points in most places. The different
lines in this collection are joined along ‘‘hooks’’ that occur
above the forward orbit of the critical point, and may inter-
sect at other points. This situation is illustrated in Figs. 1~a!

FIG. 1. ~a! The synchronization set for a drive–response system in whichf is the tent map.~b! A blowup of the square in the a shows the rich Cantor-type
structure of the attractor.~c! The synchronization set for a drive–response system in whichf is the tent sine map described in the text, and the orbit of the
critical point is finite.~d! A blowup of ~c!.
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and 1~b! with g(x,y)5dy1x2, d50.3, andc'2. ~See Re-
mark IV.5 for a comment on the numerical implementation.!

The orbit of the critical point is in general not finite for
unimodal maps and may be dense in@0,1#. In such situation,
the hooks may appear densely throughout the synchroniza-
tion set. Using visual inspection, the cases of finite and infi-
nite critical orbits appear similar. Figure 1~c! was obtained
by using ~2! as a drive, with responseg(x,y)5ky
1sin(2px), andc51.9 andk50.5. In this case, the orbit of
the critical point does not have a low period. The synchroni-
zation set appears to be a set of curves; however, the magni-
fication shown in Fig. 1~d! shows that hooks appear through-
out the synchronization set, over the forward orbit of the
critical point. In the case where the forward orbit of the
critical point is dense, under repeated magnification one
would see that hooks occur arbitrarily close to any point in
the synchronization set. This structure is further explained in
Sec. IV.

B. Drives with strong stable foliations

The synchronization set can have a similar structure for
strongly dissipative flows. The attractors for such flows fre-
quently possess strong stable foliations along which the dy-
namics project to lower dimensional noninvertible maps. The
Lorenz system in the standard chaotic regime (s510,r
528.0,b58/3) has this property. The Poincare´ map taken at
z527 has an attractor with a strong stable foliation along
which the system projects to a noninvertible map of the
interval.17,18 If such a system is used as a drive, the synchro-
nization set can display the structure shown in the previous
example.

Consider the Lorenz systemx85s(y2x),y85rx2y
2xz,z852bz1xy driving the systemr 852cr1x. The fi-
bers (x,y,z)5const are contracted under the flow of this
system, and the intersection of its attractor with the hyper-
planez527 has a local structure that resembles a Cantor set
of lines ~see Fig. 2!. Similar results can be obtained by using
any combination of thex andy variable to drive a response
system that is uniformly contracting.

As will be shown in Sec. VI, we can think of Fig. 2~b! as
a nonlinear magnification of the intersection of the Lorenz
attractor with the Poincare´ surfacez527. Due to the high
rate of contraction, the fractal structure of the Lorenz attrac-
tor is hard to resolve on the surfacez527, and the intersec-
tion of the attractor with this section appears as four lines. As
shown in Fig. 2, under ‘‘magnification’’ these lines are re-
solved to what appears to be a Cantor set of lines. Lorenz
already noted that, although the attractor appears to be a
surface due to high dissipation, it has to have a complicated
transversal structure.19 It is this structure that becomes appar-
ent after magnification. These observations are not affected
by small noise, and could therefore be useful in studying the
attractors of highly dissipative systems from experimental
data.

The Rössler attractor also appears to have a similar
strong stable foliation, and if used as a drive inx852y
2z,y85x10.15y,z85zx210z10.2,r 852cr1x with c
50.2, we obtain the attractor shown in Fig. 3. As the Poin-

carémap looks like a ‘‘fattened’’ unimodal map, the structure
of the attractor in this section appears as a collection of lines
joined along the forward orbit of the critical point of this
map. Note the similarity between this attractor and that in

FIG. 2. ~a! Lorenz system in the standard chaotic regime (s510,r
528.0,b58/3) driving a linear responser 852cr1x. This gives the pro-
jection of the attractor fromR33R onto thex and r variables.~b! The
sectionz527 of the attractor.~c! A blowup of the square in~b! shows the
Cantor-type structure in this example.
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Fig. 1. A comparison of two different response systems is
shown in Figs. 3~c! and 3~d!. Although the Poincare´ section
y50 of the attractors looks different, the hooks still have the
samex,z coordinates. Similar results can be expected to hold
for other strongly dissipative systems.

C. The onset of noninvertibility

In this section we illustrate the transition from a syn-
chronization set contained in the graph of an interval~as the
result of an invertible drive! to one which is contained in the
graph of a multivalued function~as the result of a noninvert-
ible drive!. Two types of transitions are illustrated in Fig. 4.
Also see the URL in Ref. 20 for an animated version of this
figure.

Following Ref. 7, we introduce a two-parameter family
of drive–response systems

un115H lv~un ,s,r! vn,a

l1~12l!un vn>a,

vn115H vn /a vn,a

~vn2a!/~12a! vn>a,

yn115cyn1cos~2pun11!, ~3!

where (u,v)P@0,1#3@0,1#, 0,l,1 and 0,a,1, 1.c>0,
while s andr are parameters which will be varied. The (u,v)
subsystem, which serves as the drive, is a generalized bak-
er’s map. The lower portion of the square is mapped by
v(u,s,r), a function ofu depending on the parameterss
andr.

In Ref. 7 a one-parameter familyv(u,s,r)
5v(u,s):@0,1#→@0,1# of cubic functions determined by the
conditions v(0,s)50,v(1/2,s)51/2, v(1,s)51, and
(dv/du) (1/2,s)5s was used to illustrate this bifurcation
@see Fig. 5~b!#. For parameters.0, the function is invertible,
and the synchronization set is the graph of a smooth function
@see Fig. 4~a!#. The attracting set of system~3! is constant in
the v direction, and it is therefore sufficient to plot its pro-
jection onto theu–y plane. At s50, the functionv has a

FIG. 3. ~a! A projection of attractor of Ro¨ssler system used as a drive with responser 852cr1x, c50.2 fromR33R onto thex2r plane.~b! Projection of
the sectiony50 of the attractor on the left.~c! A blowup of the square in~b! shows the Cantor-type structure in this example.~d! A blowup of the attractor
of the same drive and responser 852cr1x1y2, with c50.2.
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critical point ~an inflection point! at u51/2. As a result,
cusps seem to develop in the synchronization set, which
thereby loses smoothness@see Fig. 4~b!#. Whens,0, vs is
noninvertible, the cusps immediately transform to self-
intersecting loops@see Fig. 4~c!#. Note that the synchroniza-
tion set is not a smooth manifold at the bifurcation points
50, and ceases to be a manifold after the bifurcation. In a
certain sense, this transition corresponds to a bifurcation of
codimension 2, and is therefore atypical.

In Fig. 4~c!, notice that atu'1/2, the synchronization
set has a critical point, the same point at whichv has a
critical point. The coincidence of the critical point of the
invariant graph and the functionv causes the cusps and the
loops.

This simultaneity of the principal critical points is not
typical for one-parameter families functions. In the typical
case, the invariant graph will transition to a smooth, non-
self-intersecting curve, without the appearance of cusps and
loops. If there are no cusps, then after the onset of noninvert-
ibility the synchronization set continues to be non-self-
intersecting and close to a smooth manifold, although it is no
longer the graph of a map. See Fig. 4~d!.

To illustrate this, we introduce a parameterr, so that the

fixed points ofv(u,s,r) are located at 0,r, and 1, and such
that (dv/du) (r,s,r)5s. Changing r moves the critical
point of v away from the critical point of the invariant graph
~the original map corresponds with the modified function
with r51/2). As shown in Fig. 5, this results in a transition
to a smooth manifold. Cusps occur as a codimension two set
in a three-parameter version of this family; specifically, for
everyc near zero, there is a (s,r) pair for which the system
has a cusp.

III. AN INVERSE LIMIT APPROACH

We consider the existence of invariant graphs in systems
of the form

xn115 f ~xn! f :X→X,

yn115g~xn ,yn! g:X3Y→Y, ~4!

where X and Y are smooth, finite-dimensional manifolds
possibly with boundary,X is compact, andf andg are con-
tinuous but not necessarily invertible. A graph of a function
f:X→Y is invariant if g(x0 ,f(x0))5f( f (x0)), i.e., any
point starting on the graph remains on the graph under the
evolution of ~4!.

FIG. 4. The attractor of system~3!. ~a! When the driving map is invertible, the synchronization set is smooth.~b! In special cases, at the onset of
noninvertibility the synchronization set appears to develop cusps.~c! As the driving system becomes noninvertible, loops are formed.~d! In a typical transition,
places with vertical tangents transition to ‘‘bends’’ in the graph, and no loops appear.
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The graph transform method, which is typically used in
in proving the existence of invariant graphs, relies on the
assumption thatf is invertible,21–23 but it can be extended
directly to system~4! by considering the inverse limit ofX
with bonding mapf . The inverse limit space (X, f ) consists

of all sequencesx̂5$x0 ,x1 ,x2 ,...% such thatf (xi)5xi 21 for
i .0 ~cf. Refs. 24, 25 for more details on inverse limits!. The
map f induces a map f̂ :(X, f )→(X, f ) defined by
f̂ (x0 ,x1 ,x2 ,...)5( f (x0),x0 ,x1 ,...). Given an initial se-
quencex̂0 , consider the system

x̂n115 f̂ ~ x̂n!,

yn115g~p0~ x̂n!,yn!, ~5!

wherep0 :X3X3¯→X is the projection onto the first co-
ordinate in the inverse limit space. Note that only the driving
systems differ between systems~4! and~5! since the dynam-
ics of the response remains unchanged.

In this context, the graph transform method can be stated
as the following theorem:

Theorem III.1 (Refs. 21,22) Let g and fˆ be smooth func-
tions satisfying system (5). For distance metrics dX and dY ,
assume that there exists a0,c1,1 such that

dY~g~ x̂,ya!,g~ x̂,yb!!<c1dY~ya ,yb!, ~6!

for all x̂PX and all ya ,ybPY, i.e., the system (4) contracts
the fibers xˆ 5const. Assume also that there exists a c2.0
which gives a limit of the contraction in the driving system,
i.e.,

dX~ f̂ 21~ x̂a!, f̂ 21~ x̂b!!<c2dX~ x̂a ,x̂b!, ~7!

for all x̂a ,x̂bP(X, f ). Then, there exists a bounded continu-
ous functionF:(X, f )→Y such that the graph ofF is in-

variant under ( f̂ ,g) and attracting for all ( x̂,y)P(X, f )
3Y. If c1c2,1 then this graph is a differentiable manifold.

Variants of this theorem can be proved in casesf or g
have less regularity.26

IV. THE STRUCTURE OF INVARIANT COLLECTIONS
OF GRAPHS

Theorem III.1 implies that, under appropriate conditions,
there exists an attracting invariant graph over the inverse
limit space of the driving map when the drive is noninvert-
ible. The synchronization set lies in the projection of this
graph ontoX3Y. The inverse limit space usually has a
rather complicated structure,27,28 which will be inherited by
the invariant graph of~4!. It is our goal to use a somewhat
more direct construction to describe certain features and bi-
furcations of the attractor of this system. To do this we will
define collections of graphs over sequences of intervals, the
union of which will equal the projection of the invariant
graph in Theorem III.1.

To avoid cumbersome technicalities which would be
necessary in the general case, we illustrate how the attractor
of system~4! lies in an ‘‘invariant collection of graphs’’ in
the case where the drive functionf is a tent map. Next, we
point out how to generalize the construction to Markov
maps. A related construction is considered in Ref. 6. In the
case of non-Markov maps, an additional step is necessary in
the construction, but the essential ideas remain the same.
Most ideas presented in this section carry over to dynamics
in Rn11.

FIG. 5. Graph ofv(u,s,r). ~a! Parameterr determines the location of the
critical fixed point. Valuesr50.4,0.5, and 0.6 are shown.~b! Parameters
determines the slope at the critical fixed point. Valuess520.5,0.2, and 0.5,
with r50.5 are shown.
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A. Trees and branches

Assume thatg:R2→R satisfies condition~6!, and let f
be the tent map~2! with c52.

Consider the collection of intervalsJk
n5@k22n,(k

11)22n# with 0<k,2n. Note that f (Jk
n11)5 f (J2n2k

n11 )
5Jk

n and that both maps are invertible when restricted to the
intervalsJ2n2k

n11 andJk
n11 . Therefore, the intervalsJk

n form a
tree, so thatf maps any interval in the tree to one in the level
directly above it, andf is invertible along the branches of the
tree. The inverses off mappingJk

n to Jk
n11 andJ2n2k

n11 will be
denoted byf n11

21 and f 2n2k
21 ~see Fig. 6!.

Let a5(a0 ,a1 ,...) be asequence of integers such that
0<ai,2i , so thatJa5(Ja0

0 ,Ja1

1 ,Ja2

2 ,...) is afixed path in this

tree, and let

Ga5øai
$Cai

i uCai

i :Jai

i →R,Cai

i PC~Jai

i !,

and 'BPR such thatuCai

i u,B for all i %,

be the collection of all sequences of bounded, continuous
functions, each of which maps an interval inJa into R. We
can define the distance betweenFa ,CaPGa by

d̄h~Fa ,Ca!5(
i 50

` di~Fai

i ,Cai

i !

eh i ,

whereh.0, anddi is the metric induced by the supremum
norm in C(Jai

i ).

Definition IV.1 The sequenceCa is invariant under (4)
if the graph of Cai 11

i 11 is mapped onto the graph ofCai

i

for i 50,1,... .More precisely

Cai

i ~ f ~x!!5g~x,Cai 11

i 11 ~x!!, ~8!

for all x on whichCai 11

i 11 is defined.

Finally, let S be the set of all integer sequencesa
5(a0 ,a1 ,...) with 0<ai,2i , and letG5øaPSGa , the col-
lections of graphs over the intervals in the entire tree. An
elementCPG is a collection of graphs over each possible
path in the tree of intervals. Thus, we have three levels at

which we can view the collection of maps defined on the tree
of intervals: the individual mapsCai

i , sequences of maps

Ca , and collections of sequencesC.

B. The synchronization set

In this section, we illustrate the proof of the following:
Theorem IV.2 For a system of the form (4), where f is a

continuous piecewise monotone map of the interval with all
critical points having finite forward orbits, and g satisfies
condition (6), the synchronization set is contained in a col-
lection of continuous graphs.

Since f is a Markov map, there exists a tree structure
analogous to the one described in the previous section, and
the synchronization set is a collection of continuous graphs
over the intervals that occur as branches in the tree. This
sequence is obtained as an invariant element inG.

The proof is a straightforward generalization of the
graph transform method to graphs defined over sequences of
intervals. We first assume thatf is a tent map, and then show
that a similar argument works in the general case. The state-
ment is proved by defining a mapGa :Ga→Ga which is a
contraction, and whose fixed point is the desired graph.

The graph transform is defined as

Gai
~Cai

i !~x!5g~ f ai 11
~x!,Cai 11

i 11 ~ f ai 11

21 ~x!!!.

Following the construction above, the mapGa

5(Ga0
,Ga1

,...) isdefined to act on sequences of graphs. It is
straightforward to check that a fixed point of the mapGa

satisfies~8!, and mapsGa into itself. It remains to check that
the map is a contraction, to show the existence of a fixed
point Ca* . This is done in the Appendix.

The argument is independent of the sequencea chosen
in the construction. Therefore, the union of all invariant
graphs øaPSCa* forms an invariant collection of graphs
C* . Under the dynamics of the system, graphs over one
level in the tree get mapped to graphs at the next level. Each
sequenceCa* terminates in the top level graphCa0

0* . To see

where the top level graph is mapped to, note that it is a union
of two graphsCb1

1* andCc1

1* , where the sequencesb andc

are defined byb5(b0 ,b1 ,b2 ,...)5(0,0,a1 ,a2 ,...) and c
5(c0 ,c1 ,c2 ,...)5(0,1,a1 ,a2 ,...), sothat the image ofCa0

0*

must beCb0

0* øCc0

0* .

By the same argument, the collection of all 2k graphs
that share the same terminating sequencea, but have differ-
ent initial sequences, i.e., all graphs corresponding to se-
quences of the form

the graph corresponding to the sequencea5(0,a1 ,a2 ,...).
This argument can be used directly to explain the struc-

ture of the synchronization set in Figs. 1~a! and 1~b! wheref
is given by ~2! map andg(x,y)5dy1x2. The attractor is
contained in a collection of graphs from@0,1# to R. Each of
the graphs in this collection is mapped to two graphs con-
nected atx51. Figure 7 illustrates this by showing the first
three iterates of the unit square.

FIG. 6. A tree of intervals for the map~2!.
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The attractor of system~4! is contained in the collection
of graphsC, although it is typically only a proper subset.

If f is a piecewise monotone map on@0,1# and the for-
ward orbits of the critical points off are finite (f is a Markov
map!, then these orbits provide a finite partition of the inter-
val I into intervalsI k . The preimage of eachI k consists of a
union of preimages, each of which lies in a distinct subinter-
val I j . We can therefore createk trees of intervals withI k

5I k
0 placed at the root of each tree. The remainder of the tree

is constructed exactly as in the case of the tent map discussed
above. Repeating the argument outlined above, we can again
obtain an invariant collection of graphs. The dynamics of this
collection is again determined completely by the path in the
tree chosen to construct the graph~which is exactly a sym-
bolic sequence for the Markov map!, and the attractor is
again contained in this invariant collection~see Ref. 6 for an
alternative construction!.

Remark IV.3 This argument only shows that there exists
an invariant collection of continuous graphs. The contrac-
tion mapping theorems used to prove the smoothness of the
invariant manifold in the case of invertible maps are more
technical,21–23 but can be extended to the present case. The
smoothness of the invariant manifold can be guaranteed only
if the rate of contraction of g given by c1 in (6) does not
exceed the reciprocal of the minimum rate of contraction of
f 21 given by1/c2 in (7). In the case when f is an expanding
map, this condition is always satisfied. However, if f is
smooth and noninvertible, then near the singular points1/c2

is unbounded. Orbits that return often to a neighborhood of
the these points will also be highly contractive, and the con-
ditions for smoothness may not be satisfied, regardless of the
contraction rate c1 in (6). Estimating the size of the set of
orbits on which such high contraction occurs is a delicate
question. For a more detailed discussion, see Refs. 7, 9, 23,
and 29.

C. Extensions of the construction

If the orbit of the critical point is not finite, the construc-
tion becomes somewhat more involved. In this case only part
of an interval that occurs in the construction of the tree may
be in the range off . When this occurs we need to ‘‘trim’’
away the part of the interval that is not in the range. We
present two particular examples. Although the first example
is trivial, it is chosen to clearly illustrate the general proce-
dure.

Let us again consider the tent map~2!, and let c,1.
Note that in this casef is not an expanding map. We again
start the construction of the tree by considering the root in-
terval I 0

05@0,1#. However, the image of the intervalsI 0
1

5@0,1/2# and I 1
15@1/2,1# is f (I 0

1)5 f (I 1
1)5@0,f (c)# is not

the entire interval. We therefore replace the intervalI 0
0

5@0,1# with the interval@0,f (c)# at this level of the con-
struction and obtain two paths (I 0,1

0 ,I 0,1
1 ) and (I 0,1

0 ,I 1,1
1 ),

where the second subscript denotes the level of construction
~see Fig. 8!.

To construct the next level of intervals, note that the
interval I 1

15@1/2,1# has no preimage underf , so the path
(I 0,1

0 ,I 1,1
1 ) terminates at this point. On the other hand, the

path (I 0,1
0 ,I 0,1

1 ) can be extended to create the next level of
paths (I 0,2

0 ,I 0,2
1 ,I 0,2

2 ) and (I 0,2
0 ,I 0,2

1 ,I 1,2
2 ) where I 0,2

0

5@0,f ( f (c))#,I 0,2
1 5@0,f (c)#,I 0,2

2 5@0,1/2#, andI 1,2
2 5@1/2,1#

~see Fig. 9!.
This construction can be continued indefinitely, and re-

sults in a single path

~ I 0,̀
0 ,I 0,̀

1 ,...,I 0,̀
n ,...!,

with I 0,̀
n 50 for all n. Although this is a very indirect way to

reach the conclusion that we can only construct an invariant
graph over the fixed pointx50, it illustrates the generally
applicable procedure of trimming intervals along the
branches tree.

FIG. 7. The light gray, dark gray, and black regions represent, respectively,
the first, second, and third iterates of the unit square under the evolution of
the drive–response system described in the text@compare with Figs. 1~a!
and 1~b!#.

FIG. 8. Constructing the first level of the tree for~2!, with c,1. The shaded
parts of the interval are trimmed at this level.

FIG. 9. The second level of the tree for~2!, with c,1 with shaded parts
being trimmed.
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The synchronization set in this case only contains one
point with x-coordinate 0, andy coordinate determined by
the response map. The same construction for the tent map
whenc.1 results in a number of sequences. Some of these
sequences may terminate, and some may result in sequences
of points rather than intervals. However, in the case of piece-
wise monotone maps, at least some of the sequences will
consist of nondegenerate intervals.30 Therefore, at least a
portion of the synchronization set will consist of graphs of
continuous curves over intervals. Unlike the case of Markov
maps, in general the topology of the invariant collection of
intervals is difficult to determine using this construction. De-
spite this, we will show in Sec. IV E that we can still ap-
proximate the invariant graph with a collection of intervals.

This construction is closely related to the inverse limit
construction discussed in Sec. III. The collection of graphs
constructed using this procedure corresponds to

ø
xP(X, f )

~x0 ,F~x!!5 ø
xP(X, f ),i PN

~xi ,F~x!!,

wherex5$x0 ,x1 ,x2 , . . . % is the inverse limit sequence de-
scribed in Sec. IV E, andF:(X, f )→Y is the invariant graph
over the inverse limit discussed in the previous section. This
explains our earlier claim that this graph may be viewed as
the projection of the graphF onto the first coordinate in the
inverse limit. We may also use this observation to conclude
that, since the graphF is bounded, there exists aC such that
uCaj ,`

j (x)u,C for any graph in the invariant collection.

Remark IV.4 There are several constructions of inverse
limits which are pseudoarcs and therefore do not contain any
intervals.28,31 If the bonding maps used to construct these
inverse limits are used in our construction, all sequences of
intervals will be degenerate, i.e., all will be sequences of
points. Therefore, no points of the synchronization set are
contained in continuous curves. As noted, this does not hap-
pen for piecewise monotone maps.

D. Connections between graphs in the invariant
collections

It is apparent in Fig. 1~a! that the different graphs in the
invariant collection are connected along the forward orbit of
the critical point. In this section we show that this is true in
the case of a tent map withc52, and discuss how to extend
these observations.

In the construction of the tree of intervals in Sec. IV A,
each pair of adjacent intervals shares an endpoint. Consider
the sequences $kn(1/2)n%n50

` , where k051 and
f (kn11(1/2)n11)5kn(1/2)n. Each such sequence corre-
sponds to one possible backward orbit of the critical point
1/2. There are two intervalsJi 1

n andJi 2
n which sharekn(1/2)n

as an endpoint. Therefore, there are two paths of intervals, in
the tree, such that at each level the two corresponding inter-
vals share an endpoint. Sincekn(1/2)nÞ1/2, it follows thatf
is invertible along this path, except at the top level. There-
fore, we can take the union of the two intervals at each level
to show that our construction gives a unique graph over the
interval@0,1# at the first level of the tree. This interval is then

mapped to two intervals at the zeroth level of the tree which
are joined at the image of the critical point,f (1/2)51.

In Sec. IV A it was shown that the invariant collection of
graphsC* equals the union of top level graphsCa0

* . The

argument in the previous paragraph shows that all connec-
tions among the top level graphs occur at the critical point
and its images. Moreover, two graphsCa0

* andCb0
* will be

connected if all pairs of intervalsJak

k and Jbk

k share a com-

mon endpoint corresponding to an orbit that eventually lands
at a critical point.

The same observation is true more generally. In the ex-
tended construction described in Sec. IV C, the intervals in
two branches in the extended tree will share a point, if and
only if each pair of intervals at a certain level shares an
endpoint which eventually maps to a critical point of the
map.

As a simple example, consider the map

f ~x!5H 2x if xPF0,
1

2D ,

2x1
3

2
if xPF1

2
,1G .

~9!

The tree of intervals corresponding to this equation hask
12 intervals at thekth level, and hence there are only a
countable number of branches. Using the argument outlined
above, it is immediate that the different branches correspond
to intervals that are joint alternately atx51/2 andx51. Not
surprisingly, the inverse limit for this map is equivalent to
the topologist’s sine curve.

A question posed in Ref. 6 is whether the invariant graph
can consist of a countably infinite number of curves when
the driving map has positive topological entropy. The follow-
ing example answers the question in the affirmative. It is a
drive–response system of the form~4!, where the drive is the
logistic map f (x)5m1x(12x) for m154. It is well known
that this drive has positive topological entropy. The response
is given by the formula

g~x,y!5h~x! m2 x~12x!1~12h~x!! f ~x!, ~10!

and m2 chosen to be near 4~for example, we usec53.7),
andh is a differentiable function defined by

h~x!5H N~x12x!2 if xP@0,x1!,

0 if xP@x1 ,x2#,

N~x2x2!2 if x.x2 ,

~11!

wherex15(121/&)/2, x15(111/&)/2, andN5 1/(2x1
2).

Note that f 21(@1/2,1#)5@x1 ,x2#. Thus, for xP@x1 ,x2#,
g(x,y)5 f (x). Thus, the synchronization set is the graph of a
single curve for allxP@1/2,1#. This single curve corre-
sponds to many different sequences in the inverse limit
space. As a result, the synchronization set consists of a
countably rather than uncountably infinite number of curves
above the interval@0,1/2#. To see this, consider two points
$x0 ,x1 , . . . % and $z0 ,z1 , . . . % in the inverse limit space for
(X, f ). If x05z0.1/2, then the points correspond to the
same point on the synchronization set independent of all
other values in the sequence. Therefore, except for a se-
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quence with all points less than 1/2, all other points on the
synchronization setS are determined by a finite sequence.

The number of curves above the interval~0,1/2! is count-
ably infinite rather than finite.~The curves all intersect at 0
and 1/2.! To show this, we calculate the unique curveGR of
S which is a graph over the interval~1/2,1# and the unique
curveG0 which is a graph over@0,1/2# with a kth backward
orbit in @0,x1

2k# for all k. We use the invariance of the syn-
chronization set; the image ofGR under the system has a
portion which is a graph over~0,1/2!. This is distinct from
G0 . As a result of this and the fact thatf is one-to-one on
this interval, every image of these two curves, restricted to
~0,1/2!, is a distinct curve as well. This gives a countably
infinite number of distinct curves.

The previous example is carefully constructed so that
many curves in the inverse limit space project onto the same
curve in the original space. We conjecture that this nonge-
neric collapse is necessary in order to have a countable num-
ber of curves when the topological entropy is positive.

E. Approximations of the invariant collection

In this section we show that the full invariant collection
of graphs can be approximated to arbitrary accuracy by a
specific finite collection of graphs whenf is uniformly ex-
panding. Therefore, even in very complex situations, the syn-
chronization set looks like a union of curves. The argument
is again presented for the case of a tent map~2! with c52,
and can be generalized.

For an arbitrarye.0, we will construct a finite set of
graphs, each of which will lie within a distancee of an un-
countable number of graphs in the invariant collection. The
union of these representative graphs provides the desired ap-
proximation.

Since f is uniformly expanding, the intervalsJan ,n
n

at the nth level of construction in the paths
(Ja0 ,n

0 ,Ja1 ,n
1 ,...,Jan ,n

n ,...) have length smaller than (1/2)n,

and there exists anN such that (1/2)N,e. Fix the finite
sequence$a0 ,...,aN%. In the case of the tent map withc
52, this first step is not necessary; however, it becomes es-
sential when the orbit of the critical point is not finite.

As noted earlier, all graphs in the invariant collection are
bounded by someC.0. Let M be such thatCc1

M,e where
c1 is defined in ~6!. Select a fixed sequence
$a0 ,...,aN ,...,aN1M% and continue the construction that was
terminated at the levelN to the levelN1M , to obtain the
paths (Ja0 ,N1M

0 ...,JaN ,N1M
N ,...,JaN1M ,N1M

N1M ). Consider the

functionsC̃aN1M ,N1M
N1M 50 defined over each interval at this

level, and consider theM th forward image of graph
(C̃aN1M ,N1M

N1M ). This is the graph of a function

C̃aN ,N
N :I aN ,N1M

N →Y. By construction

sup
xPI aN ,`

N

uC̃aN ,N
N ~x!2Cb

N* ~x!u,Cc1
M,e,

where Cb
N,* is the Nth graph ofany sequenceCb* in the

invariant collection such that $b0 ,...,bN1M%
5$a0 ,...,aN1M%, where $a0 ,...,aN1M% is the sequence

fixed in the previous step. Therefore,C̃aN ,N
N (x) gives ane

approximation of any graph in the invariant collection corre-
sponding to a sequence that starts with$a0 ,...,aN1M%. Tak-
ing the finite union of graphs corresponding to all possible
starting segments$a0 ,...,aN1M% gives ane approximation
of the entire invariant collection.

This argument can be extended to the case of nonuni-
formly expanding maps, and maps that are expanding on
average by modifying the choice ofm. Therefore, regardless
of the topological complexity of the invariant collection, it
can always be approximated by nearly invariant collection
consisting of finitely many graphs.

Remark IV.5 In Figs. 1(a) and 1(b), we took c
51.9999,since binary arithmetic makes numerical analysis
of the case c52 difficult. The results of this section show
that the invariant collections of graphs in the two cases will
be close. This follows from the facts that only a finite number
of images are necessary to construct an arbitrarily good ap-
proximation of the collection, and the dynamics depends con-
tinuously (even differentiably) on the parameter c.

F. A note on detection methods

In Ref. 9 it was shown that methods that rely on conti-
nuity for the detection of synchronous states typically fail in
the case of noninvertible systems. A typical example is given
by thee-d method, where one chooses a ballB(x,d) around
a reference pointx, and iterates the driving system in~4!
until the orbit falls withinB(x,d) a large number of times.
To each pointxai

PB(x,d) on the orbit, there corresponds a
point yai

PY such that (xai
,yai

) lies on the attractor of~4!.
Let e be the radius of the smallest ball iny containing allyai

.
If the attractor lies in a smooth or Lipschitz manifold, thene
decreases linearly withd. If f is noninvertible, the attractor
will be in a collection of graphs. In this casee will typically
not decay withd because nearby points inB(x,d) may have
different histories, and the corresponding pointsyi may not
lie on the same graph.

In Ref. 10 it was argued that a modification of the
method can be applied to detect synchronization in the case
wheref is noninvertible. Letx* andz* be two points on the
orbit of x0 andz0 on the attractor, under the evolution of the
driving system. Consider the subsets of the orbits ofx0 and
z0 defined by xp* 5(xn , f (xn),...,f p21(xn)), where xn is
some point on the orbit ofx0 satisfying f p21(xn)5x* , and
zp* 5(zm , f (zm),...,f p21(zm)5z* ) ~note that m does not
have to equaln). The pointz* is said to bedp close tox* if
u f k(xn)2 f k(zm)u,d for all 0,k,p21, so that entire por-
tions of the orbits ofx0 and z0 consisting ofp points are
required to bed close. This notion of distance and the asso-
ciatede-dp test can be used to detect synchrony even whenf
is noninvertible.

The effectiveness of this method can be explained
using the ideas described in the previous section. We
again consider the tent map~2! with c52 as an illustra-
tive case. Two pointsx* and z* are dp close, if their
partial orbits xp* 5(xn , f (xn),...,f p21(xn)5x* ) and zp*
5(zm , f (zm),...,f p21(zm)5z* ) constitute the head of two
close-by elements of the inverse limit space. This means that
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most likely f k(zm), f k(xn)PJa
p2k21 for some sequencea and

intervalsJa
0 ,...,Ja

p21 in the tree defined in Sec. IV A. Since
only the head of the two symbolic sequences corresponding
to x* andz* is required to match, their images do not nec-
essarily lie on the same graph. However, we know that the
pointsCa

0(x* ) andCb
0(z* ) in the invariant collection corre-

spond to two sequencesa and b such that$a0 ,...,ap21%
5$b0 ,...,bp21%. Therefore

uCa
0~x* !2Cb

0~z* !u

<~ uCa
0~x* !2Ca

0~z* !u1uCa
0~z* !2Cb

0~z* !u!

<e~d,x* !1c2
p21uCa

p21~zm!2Cb
p21~zm!u

<e~d,x* !1c2
p21C, ~12!

wherec2 is defined in~6!, C is the size of the attractor in the
vertical direction, and e(d,x* )5maxzPB(x* ,d)ùJ

a
0uCa

0(z)

2Ca
0(x* )u. As in the invertible case,e(d,x* ) will decay to 0,

and it will decay linearly ifC02a(x* ) is differentiable or
Lipschitz atx* .

Therefore, if the attractor of the system is contained in
an invariant collection of continuous graphs, thee-dp

method can be used to analyze the regularity of the graphs in
this collection. Increasingp decreasesc2

p21C, and therefore
the resolution of the method.

V. BIFURCATION TO A NONINVERTIBLE DRIVE

An example in Sec. II C illustrated how the invariant
graph either developed hooks@Fig. 10~b!#, or loops @Fig.
10~d!# as the map defining the driving system changes from
being invertible to noninvertible. In this section we provide a

heuristic argument why typically near the bifurcation, the
invariant graph is close to a smooth manifold without self-
intersecting loops.

Consider a system (x,y)°( f (x),g( f (x),y)) with y
PR. The idea of the argument is illustrated in Fig. 10. As-
sume that we have a piece of a graphf(x). Choose four
points x1,x2,x3,x4 in the domain of the graph. We as-
sume that the response system contracts they direction, and
that f does not change the ordering of the points, so that
f(x1),f(x2),f(x3),f(x4). Also assume thatf :R→R
has the shape of the cubic with two critical points atx2 and
x3 @see Fig. 5~b!#, so thatf (x1), f (x3), f (x2), f (x4). If f
is monotone betweenx1 andx4 @as in Fig. 10~a!#, it is easy to
see that the image of the graph off will be nonintersecting
@as in Fig. 10~b!#. On the other hand, iff has a critical point
betweenx2 and x3 @see Fig. 10~c!#, a loop will be formed
under one iterate@shown in Fig. 10~d!#.

More formally, the synchronization set is contained in
the invariant graph of a functionf which satisfiesf( f (x))
5g( f (x),f(x)). Assume that thef is a monotone increasing
function such thatf 8(x* )50 @see the middle graph in Fig.
5~a!#. Then, f 8(x) has the same sign for allxÞx* . The
tangent ofS is such that

f8~ f ~x!! f 8~x!5D1g~ f ~x!,f~x!! f 8~x!

1D2g~ f ~x!,f~x!!f8~x!,

wheneverf8(x* )D2g( f (x* ),f(x* ))Þ0, f8( f (x* )) limits
to a well-defined vertical tangent̀ or 2`, corresponding to
the sign off 8(x) for xÞx* . Therefore, by the implicit func-
tion theorem, the synchronization set can be written as the
graph of a smooth functionx5h(y) from Y to X. For
nearby parameter values, this smoothness may not persist, as

FIG. 10. ~a! When f is a monotone
graph of a function nearx, then~b! the
synchronization set nearf (x) becomes
multivalued without containing self-
intersections.~c! If the synchroniza-
tion set has a critical point correspond-
ing to a critical pointx of f , then ~d!
the synchronization set contains point
of self-intersection, or loops, immedi-
ately upon becoming multivalued.
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the points at whichh8(y)50 may be dense, depending on
the orbit of the critical point off . However, since we have
assumed that~6! holds, the contraction will make the large
images of this ‘‘wrinkle’’ very small, so that the set will still
be approximated well by a smooth manifold. Thus, the only
possible self-intersections will only be visible under very
high magnification. The closer we are to the bifurcation the
larger the magnification necessary to detect these potential
loops. However, iff8(x)D2g( f (x),f(x)) changes sign at
x* , then the left-hand and right-hand limits off8( f (x)) are
both infinite but disagree in sign, implying a cusp.

In our specific example, (u,f(u)) maps to
( f (u),cf(u)1g( f (u)). The functionf is increasing and has
a critical point ats50, whenu5r,v,a. Thus, the synchro-
nization set has a cusp exactly when it has a minimum~or
maximum! at u5r. For r near 1/2, this can be achieved by
varying the coupling parameterc.

VI. AN ALTERNATIVE CONSTRUCTION

In Sec. IV A we illustrated the construction of an invari-
ant collection of continuous graphs for system~4!, but did
not address the smoothness of the graphs in the collection. In
this section we show how to introduce an invariant map with
an invariant foliation which can be used to address this ques-
tion directly, and use a similar idea to explain the structure of
attractors of the systems introduced in Sec. II B.

As a simple example of the construction once again con-
sider the tent map~2!. A map g:Y→Y is a factor of a map
f :X→X if there exists a mapf:X→Y such thatf( f (x))
5g(f(x)). It is easy to see that the tent map is a factor of
the baker’s map

x185F1~x1!5H 2x1 x1,1/2

22x111/2 x1>1/2,
~13!

x285F2~x1 ,x2!5H ax2 x1,1/2

ax21~22a! x1>1/2,
~14!

wherea,1. In this casef:@0,1#3@0,2#→@0,1# is the pro-
jection onto thex axis, so thatf(x,y)5x is the projection

onto thex axis ~see Fig. 11!. Note that by choosinga close
to 1, the amount of contraction in thex2 direction can be
made arbitrarily small.

This map is not invertible on the entire unit square, since
the inverse is not defined outside of the shaded areas of Fig.
11. Since we are only interested in the invariant graph over
the attractor, we can either extend the map arbitrarily to an
invertible map of the plane, or restrict the map to its attractor.
The map is discontinuous, but only along the linex151/2.

Using a similar construction, we can extend any map
f :@0,1#→@0,1# with finitely many critical points, to an in-
vertible map of a rectangle@0,1#3@0,N# where N is the
number of critical points. An example is given in Fig. 12.

We can therefore associate a system

xn115F~xn!, yn115G~f~xn!,yn!, ~15!

with system~4! whereF is invertible. If A is the attractor of
~15!, then f̃(A) is the attractor of~4!, wheref̃ is the pro-
jection to the first and third coordinatesf̃(x1 ,x2 ,y)
5(x1 ,y).

We can use this extension to discuss the smoothness of
the graph over the attractor of the driving map. Since the
extended map is invertible, the usual theory of invariant
manifolds can be applied away from the orbits of points of
discontinuity—corresponding to the orbits of the critical
points of the map—which are expected to form a small set.
The graph over attractorA of ~15! is the restriction of the
invariant manifold to this set. Since the projectionf̃ is
smooth, any existing curves inA will be projected smoothly
to curves inf̃(A). The contraction in the map can be made
arbitrarily small, so that the smoothness of this manifold de-
pends only on the contraction of the noninvertible map used
in the construction.

FIG. 11. A schematic of baker’s map which can be thought of as an exten-
sion of the tent map. The two dotted lines on the left are preimages of the
dotted line on the right, and project to a point underf.

FIG. 12. An extension of a multimodal map. The graph of the factor map is
below the extension. Note that the vertical direction in the range off has
been shortened.
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We use a similar argument to explain the structure of the
synchronization set observed in Sec. II B, where the Lorenz
system was used as a drive. Letf denote the Poincare´ map
defined on the sectionz527,uxu,8. There is a stable invari-
ant foliation in the vicinity of the attractor in this Poincare´
section.18 If we denote the projection along this stable folia-
tion by f, the mapf̃ (x)5 f (f(x)) is a noninvertible map of
the interval which is discontinuous at a single point, and
monotone away from this point. If we considerf̃ as the driv-
ing map in a drive–response system of type~4!, the theory
discussed in Sec. III can be applied to construct a tree of
intervals and an invariant collection of graphs with a trans-
versal Cantor-type structure. Since the mapf̃ if is not uni-
formly expanding, the arguments about the smoothness of
the graphs in the collection require delicate estimates. Since
the only critical point off̃ is the point of discontinuity, the
different graphs in the collection will not be connected. A
particular projection of this invariant collection of graphs is
what is observed in Fig. 2.

We emphasize that in this situation there exists an invari-
ant graph C:R3→R. The attractor of the full four-
dimensional system lies in this invariant graph. What is ob-
served in Fig. 2 is a section of the attractor in this invariant
graph. Since the dissipation of the Poincare´ map in this case
is very strong, this section is very thin in the direction of the
stable foliation. The section is therefore very close to its
projection underf, and hence we observe an object close to
one which can be described using the arguments of Sec. III.
A similar argument explains the structure of the attractor in
the case of the Ro¨ssler system, although we are not aware of
a proof of the existence of an invariant foliation in this case.

We expect that strongly dissipative systems will result in
attractors with similar structures when used as drives in this
type of drive–response systems. In such cases the structure
in the strongly contracted directions may, in a sense, be re-
solved in the response system.

VII. CONCLUSION

We have shown that the attractors of certain drive–
response systems in general lie on an invariant collection of
graphs of functions from the phase space of the driving sys-
tem to the phase space of the response. Although this collec-
tion may have a very complex geometry, under certain con-
ditions it can be approximated by a finite collection of nearly
invariant graphs. This explains the occurrence of striated
structures frequently observed in in numerical and physical
experiments.7,32

It is likely that the attractors in many dissipative systems
have strong stable foliations along which they can be pro-
jected to lower dimensional, noninvertible systems.18,34

Moreover, noninvertibility is a natural occurrence in many
numerical and physical experiments. The arguments given in
this paper are applicable in many such cases, and can show
that certain response systems could provide an effective way
of studying the structure of their attractor.

We have not addressed several interesting questions: It is
clear from Fig. 1 that the different graphs in the invariant
collection will intersect at various points. Where do these

intersections occur? It would also be interesting to estimate a
dimension of the attractor as a function of the coupling
strength. We end with a discussion of the addition of noise.

In a drive–response system, synchronization sets are
global attractors. Therefore, results on random attractors
show that additive noise will not change the inherent struc-
ture of the attractor but only cause it to spread out.8 In par-
ticular, the attractor is upper semicontinuous, meaning that
the Hausdorff semidistance from the noisy attractor to the
true attractor approaches zero as the noise intensity limits to
zero.

For the both of the systems shown in Fig. 1, we per-
formed numerical experiments comparing the effect of add-
ing noise to the drive to the effect of a noisy response. In the
quadratic response case, for a large range ofd values (0.1
<d<0.5), the noise added to the drive had less of an effect
than the same noise added to the response. For the sine re-
sponse, the effect was reversed for a large range ink (0.1
<k<0.6). This difference in relative strengths appears to be
the result of the relative dissipation rate determined by the
choice of the response. The results of these simulations are
available at the URL in Ref. 33.
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APPENDIX: GA IS A CONTRACTION

Let Ca andFa be two sequences of graphs inGa . Then

di~Gai
~Cai

i !,Gai
~Fai

i !!

5supxPJ
ai

i uGai
~Cai

i !~x!2Gai
~Fai

i !u

5supxPJ
ai

i ug~ f ai 11
~x!,Cai 11

i 11 ~ f ai 11

21 ~x!!!

2g~ f ai 11
~x!,Fai 11

i 11 ~ f ai 11

21 ~x!!!u

,el supxPJ
ai 11

i 11 uCai 11

i 11 ~x!2Fai 11

i 11 ~x!u

5eldi 11~Cai 11

i 11 ,Fai 11

i 11 !, ~A1!

where the second to last inequality follows from~6!.
Inequality ~A1! implies directly that

d̄h~Ga~Ca!,Ga~Fa!!<(
i 50

`

el
di 11~Cai 11

i 11 ,Fai 11

i 11 !

eh i

5el1h (
i 50

` di 11~Cai 11

i 11 ,Fai 11

i 11 !

eh( i 11)

<el1h(
i 50

` di~Cai

i ,Fai

i !

eh i

5el1hd̄h~Ca ,Fa!, ~A2!
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and choosingh so thatl1h,0 ensures thatGa is a con-
traction on Ga . It follows from the contraction mapping
theorem that there exists an invariant sequence of graphs
Ca* PGa .
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