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Abstract. Diblock copolymers are a class of materials formed by the reaction
of two linear polymers. The different structures taken on by these polymers

grant them special properties, which can prove useful in applications such as the

development of new adhesives and asphalt additives. We consider a model for
the formation of diblock copolymers first proposed by Ohta and Kawasaki [26].

Their model yields a Cahn-Hilliard-like equation, where a nonlocal term is

added to the standard Cahn-Hilliard energy. We study the long-term dynamics
of this model on one-dimensional domains through a combination of bifurca-

tion theoretic results and numerical simulations. Our results shed light on how

the complicated bifurcation behavior of the diblock copolymer model is related
to the better known bifurcation structure of the Cahn-Hilliard equation. In

addition, we demonstrate that this knowledge can be used to predict the long-

term dynamics of solutions originating close to the homogeneous equilibrium.
In particular, we show that the periodicity of the long-term limit of such solu-

tions can be predicted by tracking certain secondary bifurcation points in the
bifurcation diagram, and that the long-term limit is in general not given by

the global energy minimizer.

1. Introduction. Diblock copolymers are formed by the chemical reaction of two
linear polymers, or blocks, which contain different monomers. These blocks may
often be thermodynamically incompatible, which means that following the reaction
the blocks may be compelled to separate. However, following the reaction the blocks
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are already covalently bonded. This means that it is not possible for them to sepa-
rate on a macroscopic scale without adopting an entropically unfavorable extended
configuration, in which the number of available states is severely limited relative to
the native configuration. This conflict causes a phenomenon called microphase sepa-
ration, where the two blocks separate on a mesoscopic scale. Microphase separation
grants diblock copolymers the capacity for self-assembly into special geometries.
These allow for the creation of materials with designer physical properties [3, 4, 9].

In the present paper, we consider the model for microphase separation in diblock
copolymers described in [23], which in its original form was proposed by Ohta and
Kawasaki [26] and Bahiana and Oono [2]. A derivation of this equation and the
corresponding parameters is given in Choksi and Ren [7, 8]. On the domain Ω,
the model defines the free-energy functional for the relative macroscopic monomer
density u (i.e. the difference between the two monomer densities) by

Eλ,σ[u] =

∫
Ω

(
1

2λ
|∇u|2 +W (u)

)
dx+

σ

2

∫
Ω

∣∣∣(−4)−1/2(u(x)− µ)
∣∣∣2 dx (1)

where µ =
∫

Ω
u dx is the total mass of u, and W is a double-well potential with

minima at ±1. In the following, we always use the potential W (u) = (u2 − 1)2/4.
The resulting evolution equation is then given by

ut = −∆ (∆u+ λf(u))− λσ(u− µ)

µ =

∫
Ω

u(x) dx (2)

∂u

∂n
=
∂∆u

∂n
= 0 , x ∈ ∂Ω ,

where f = −W ′ is the negative derivative of W , i.e., we have f(u) = u − u3. The
density function u is the locally averaged density of the two components across the
domain, with the value 1 being interpreted as only component A being present at
a point, and the value −1 being interpreted as only component B being present
at a point. There are also three varying parameters, λ, σ, and µ, which have
physical meanings. The parameters λ and σ are dimensionless functions of material
parameters defined as follows:

λ =
3NA

N

(
1− NA

N

)
χ|Ω|2/3

l2
,

σ =
36|Ω|2/3(

NA

N

)2 (
1− NA

N

)2
l2χN2

,

where NA is the number of A units in the chain, N is the total length of the chain, χ
is the Flory-Huggins interaction parameter describing the strength of the repulsion,
|Ω| is the (physical) size of the domain, and l is the Kuhn statistical length which
essentially measures typical distances between monomers. Informally, λ being large
represents the short range repulsions being strong, inducing a strong compulsion to
separate, while σ being large represents the long range chain elasticity forces being
strong, inducing a strong compulsion to hold together. When σ = 0, this equation
reduces to the standard Cahn-Hilliard equation.
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In this paper, we focus our study on the one-dimensional domain Ω = (0, 1), in
which case the model reduces to

ut = − (uxx + λf(u))xx − λσ(u− µ)

µ =

∫ 1

0

u(x) dx

ux = uxxx = 0 , x = 0, 1 ,

with f(u) = u−u3. There are a number of previous treatments of this model showing
the existence of a variety of solutions [16, 22, 25, 27, 28, 31] and using a combination
of direct numerical simulations and analytical treatments [6, 7, 13, 17, 24, 32]. A
closely related model for triblock copolymers has also been studied [18, 20, 29, 30,
33, 34].

Much of the previous theoretical work on the diblock copolymer model has con-
centrated on global minimizers of the energy functional Eλ,σ described above. These
studies have led to a wealth of results establishing the existence of global minimiz-
ing solutions on a variety of domains and in various dimensions. In addition, many
results have described the geometry of the global minimizers in detail. Since our
study is focused on the one-dimensional diblock copolymer model, we briefly men-
tion one result due to Ren and Wei [28]. For the case µ = 0, σ > 0, and Ω = (0, 1),
they show that the global minimizer of the diblock copolymer energy (1) is in gen-
eral uniquely determined up to multiplication by −1, and is periodic with minimal
period Pλ,σ satisfying

Pλ,σ =

(
96
√

2 ·
∫ 1

−1

√
W (s) ds

)1/3

·
(

1

λσ2

)1/6

+O

(
1

λ1/3

)
for λ→∞ , (3)

where
∫ 1

−1

√
W (s) ds = 2/3 for our nonlinearity. Thus, asymptotically for large

integers k ∈ N, the global energy minimizer has a wave number k (i.e., it is quali-
tatively like cos kπx), or in other words, a minimal period of 2/k, if the interaction
parameters λ and σ satisfy

σ
√
λ ≈ 96

√
2 · 2

3
·
(
k

2

)3

= 8
√

2 · k3 . (4)

Thus, for large values of λ the global minimizers of the diblock copolymer energy
exhibit fine structure, i.e., periodicity with large wave number k. In addition, it
was shown in [22] that in the limit λ → ∞ the number of local minimizers of the
energy functional Eλ,σ converges to ∞. These results are in stark contrast to the
Cahn-Hilliard case σ = 0. It is known [14] that the one-dimensional Cahn-Hilliard
model has only two stable equilibrium solutions with exactly one transition layer
each. One of these solutions is increasing, while the other one is decreasing.

The discussion of the last paragraph raises two natural questions. On the one
hand, which mechanism introduces numerous stable solutions into the equilibrium
structure of the diblock copolymer equation as σ is increased from zero? On the
other hand, how do these changes affect the long-term dynamics of solutions to (2)
which originate close to the unstable homogeneous equilibrium? In particular, while
generic solutions of the Cahn-Hilliard model always converge to the global energy
minimizer, can the same be said for the diblock copolymer model?

It is the goal of the present paper to shed light on the answers to these ques-
tions. In the course of this, we give rigorous bifurcation-theoretic results showing
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how intricate mode interactions lead to a wealth of secondary bifurcations in the
equilibrium diagram for the diblock copolymer model, which in turn leads to nu-
merous stable equilibrium solutions. Moreover, we demonstrate that the long-term
behavior of solutions of (2) which originate close to the homogeneous equilibrium is
in general not described by the global energy minimizer. Rather, generic solutions
are trapped by a local minimizer which can be found by tracking certain secondary
bifurcation points in the bifurcation diagram for the diblock copolymer equation.

The remainder of the paper is organized as follows. In Section 2 we present
a rigorous local bifurcation analysis of mode interactions as the parameter σ is
increased from zero. We show that these mode interactions occur at bifurcation
points with two-dimensional kernels, and that the interaction types can be classified
into three categories. The results of this section rigorously describe the bifurcation
diagrams of the diblock copolymer model near the homogeneous state. In order
to address the global bifurcation structure and the dynamical properties of the
model, we turn to numerics. In Section 3 we describe our numerical methods
for equilibrium continuation, spatial discretization, and direct simulation of the
diblock copolymer model. In Section 4, we describe the results from our numerical
simulations. Namely, the parameter space can be divided into regions with different
dynamical behavior. We then use information from our bifurcation analysis to
explain the transitions between these regions. In particular, we show that in general
solutions of (2) which originate close to the homogeneous state will not reach the
global energy minimizer. Finally, Section 5 contains a summary and discussion on
the results of this paper.

2. Local bifurcation analysis. As a first step towards uncovering the bifurcation
structure of the one-dimensional diblock copolymer equation this section is devoted
to giving a rigorous discussion of the local bifurcations which occur close to the
constant equilibrium u ≡ µ. Finding equilibrium solutions of the evolution equation
is equivalent to solving the nonlinear operator equation

F (λ, σ, u) = −∆ (∆u+ λf(u))− λσ(u− µ) = 0 , (5)

where we consider F as a parameter-dependent operator F : R×R×Xµ → Y , with
Hölder type spaces

Xµ =

{
u ∈ C4,%[0, 1] :

∫ 1

0

u(x) dx = µ and

ux(0) = uxxx(0) = ux(1) = uxxx(1) = 0} , (6)

Y = C0,%[0, 1] ,

and with nonlinearity f(u) = u−u3. Notice that for every choice of the parameters λ
and σ the constant function u ≡ µ satisfies (5). In the following, we refer to this
solution as the trivial solution. We completely describe the bifurcation diagram
in the neighborhood of the trivial solution. For this, it is useful to employ the
eigenvalues and eigenfunctions of the negative Laplacian −∆ on the one-dimensional
domain Ω = (0, 1) and subject to homogeneous Neumann boundary conditions.
Recall that these are given by

κk = k2π2 and ϕk(x) =
√

2 cos kπx for k ∈ N . (7)
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Note that since the space Xµ contains a mass constraint, the constant eigenfunction
with eigenvalue zero will play no role in the following and has therefore been omitted.
Using this notation, the following simple lemma explicitly determines the possible
bifurcation points from the trivial solution of (5).

Lemma 1. Using the above setting, bifurcations from the trivial solution u ≡ µ of
the stationary diblock copolymer problem (5) can only occur at the λ-values

λ(k, σ, µ) =
κ2
k

f ′(µ) · κk − σ
, (8)

where σ ≥ 0. Since we are only interested in bifurcation points at positive λ-values,
the indices k have to satisfy

κk >
σ

f ′(µ)
,

and the total mass µ has to be in the spinodal region, i.e., we need to assume
that f ′(µ) > 0.

Proof. The result is an immediate application of the implicit function theorem. For
this, note that the Frechet derivative of F with respect to u is given by

DuF (λ, σ, u)[v] = −∆ (∆v + λf ′(u)v)− λσv for v ∈ X0 .

One can readily see that for u = µ and v = ϕk we have

DuF (λ, σ, µ)[ϕk] =
(
λf ′(µ)κk − κ2

k − λσ
)
ϕk for k ∈ N .

Since the functions ϕk are complete in X0, standard results show that the spectrum
of DuF (λ, σ, µ) consists only of the eigenvalues λf ′(µ)κk − κ2

k − λσ, where k ∈ N.
If all of these eigenvalues are nonzero, then DuF (λ, σ, µ) is invertible with bounded
inverse and the implicit function theorem rules out any bifurcation. Bifurcations can
only occur when one of these eigenvalues is zero, and this is equivalent to (8).

While the above result does provide a necessary condition for the location of the
bifurcation points, it is not automatically guaranteed that bifurcations do occur at
these points. For the special case of the Cahn-Hilliard equation, which corresponds
to σ = 0, the potential bifurcation points are located at λ = κk/f

′(µ) = k2π2/f ′(µ).
It was shown in [14] that at each of these points a new solution branch bifurcates.
These new branches do not contain any further bifurcation points themselves, and
the k-th branch exists for all λ > κk.

In order to gain some first insight into what happens in the diblock copolymer
case, we present a few numerically computed bifurcation diagrams in Figure 1 for
the case of vanishing mass µ = 0. In the top row of this figure, we present part
of the bifurcation structure of the Cahn-Hilliard model, i.e., for σ = 0. In both
panels, the horizontal axis represents λ in the interval [0, 300]. In the left panel, the
vertical axis is the solution energy, while in the right panel the vertical axis is the
L2-norm of the solutions. In both panels, one can clearly see new solution branches
emanating from the trivial solution curve u ≡ 0. Notice that each point on the
bifurcating branches corresponds to two new solutions. For comparison, the second
row in Figure 1 shows the numerically computed bifurcation diagram for the diblock
copolymer model with σ = 6. While there still seem to be bifurcations occurring at
all potential bifurcation points, the bifurcating branches exhibit considerably more
complicated behavior that includes secondary bifurcation points. For the remainder
of this section we provide a first theoretical insight into this behavior.



3676 IAN JOHNSON, EVELYN SANDER AND THOMAS WANNER

Figure 1. A few bifurcation diagrams. In each case the horizontal
axis is λ. The panels in the top row are for the case σ = µ = 0, i.e.,
for the classical Cahn-Hilliard case, while the panels in the second
row are for σ = 6 and µ = 0. In the left column, the vertical axis
is given by the associated energy, while in the right column the
L2-norm of the stationary solutions are used.

It is not hard to see that if u∗ 6= 0 denotes a nontrivial stationary solution
for the classical Cahn-Hilliard equation for λ = λ∗ as well as σ = 0, then the
point (λ∗, u∗) is a regular perturbation point with respect to perturbation in σ. In
other words, as σ increases from 0, the bifurcation diagram of the Cahn-Hilliard
model does not change qualitatively in a neighborhood of (λ∗, u∗). In view of the
bifurcation diagrams shown in Figure 1, it is therefore natural to wonder how the
complicated bifurcation diagram for σ > 0 arises from the one for σ = 0. For
this, we take another look at the location (8) of possible bifurcation points derived
in Lemma 1. We have already seen that for σ = 0 one obtains infinitely many
bifurcation points λ(k, 0) = κk for k ∈ N. Now consider a fixed k ∈ N. As σ
increases from 0 towards f ′(µ) ·κk > 0, the location λ(k, σ) of the bifurcation point
increases monotonically from κk to +∞. For σ ≥ f ′(µ) · κk there is no longer a
bifurcation point on the positive λ axis with kernel function ϕk. In other words, as
we increase σ, the bifurcation points shown in the top row of Figure 1 move to the
right and converge to +∞ at finite values of σ. Since this motion is continuous with
respect to σ, the branch corresponding to k ∈ N has to cross all branches for ` > k.
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In fact, one can show that

λ(k, σ, µ) = λ(`, σ, µ) if and only if σ =
f ′(µ)
1
κk

+ 1
κ`

=
κkκ`f

′(µ)

κk + κ`
. (9)

This formula also shows that the following holds:

• The linearization DuF (λ, σ, µ) of (5) has a two-dimensional kernel which is
spanned by the functions ϕk and ϕ` if and only if λ = λ(k, σ) = λ(`, σ) for
some k < `, i.e., if (9) holds.

• The linearization DuF (λ, σ, µ) of (5) has a one-dimensional kernel which is
spanned by the function ϕk if and only if λ = λ(k, σ) for some k ∈ N, and if
σ 6= f ′(µ)κkκ`/(κk + κ`) for arbitrary ` 6= k.

• For all other choices of λ and σ the linearization DuF (λ, σ, µ) is invertible.

Thus, in order to understand the local bifurcation structure of (5), (6) close to
the trivial solution u ≡ µ, one only has to discuss the above-mentioned potential
bifurcation points with one- or two-dimensional kernel. This is accomplished in the
remainder of this section. For the sake of simplicity, we restrict our attention to
the case µ = 0, even though the general case can be treated analogously. We begin
with the case of one-dimensional kernels.

Theorem 2.1 (One-Dimensional Kernel). Consider the nonlinear problem (5)
for u ∈ Xµ as in (6), and assume that µ = 0 and f(u) = u − u3, i.e., we have
f ′(µ) = 1. Furthermore, assume that

λ∗ = λ (k, σ∗) =
κ2
k

κk − σ∗
for some k ∈ N

and that σ∗ is such that (9) does not hold for any ` ∈ N\{k}. Then the point (λ, u) =
(λ∗, 0) is a bifurcation point for the nonlinear problem

F (λ, σ∗, u) = 0 with (λ, u) ∈ R+ ×X0 ,

and there is exactly one branch of nontrivial solutions emanating from (λ∗, 0). More
precisely, there exists a smooth parameterization of the form (λ(α), u(α)) for the
nontrivial solution branch, with α from a small interval around zero, which satisfies

λ(α) = λ∗ +
3κ3

k

2 (κk − σ∗)2 · α
2 +O

(
α3
)

and

u(α) = α · ϕk +O
(
α2
)
,

as α→ 0. In other words, the nontrivial solutions appear via a supercritical pitch-
fork bifurcation as λ increases through λ∗, and close to the bifurcation point the
nontrivial solutions are qualitatively similar to ϕk(x) =

√
2 cos kπx.

Proof. This result follows from a standard application of the Crandall-Rabinowitz
theorem as described in [35, Theorem 8.A].

Thus, at simple bifurcation points, i.e., at bifurcation points with one-
dimensional kernel, the diblock copolymer model exhibits the bifurcation of one
branch of nontrivial solutions. Moreover, one can easily show that the above re-
sult remains true for σ-values sufficiently close to σ∗, if the value of λ∗ is adjusted
appropriately.

We now turn our attention to the case of two-dimensional kernels. Since this
involves understanding the interaction of two crossing branches, it is important to
let the parameter σ vary as well. Recall that if we fix an integer ` ≥ 2, then the
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Figure 2. Local bifurcation structure for the case of a two-
dimensional kernel with eigenfunctions ϕk and ϕ`, where k < `/

√
2

and k 6= `/3, for σ < σ∗. As σ increases towards σ∗ the loop
contracts and converges to the primary bifurcation point, and then
disappears for σ ≥ σ∗.

`-branch, i.e., the nontrivial solution branch guaranteed by the previous theorem to
originate from the bifurcation point (λ, σ, u) = (λ(`, σ), σ, 0), will interact with the
k-branches for all 1 ≤ k < `. Depending on the specific value of k there are three
different interactions possible. These are the subject of the following three results.

Theorem 2.2 (Two-Dimensional Kernel of Type I). Consider the nonlinear elliptic
problem (5) for u ∈ Xµ as in (6), and assume that µ = 0 and f(u) = u−u3, i.e., we
have f ′(µ) = 1. Furthermore, assume that the parameters λ∗ and σ∗ are chosen in
accordance with (9) in such a way that λ∗ = λ(k, σ∗) = λ(`, σ∗), for some integer k
satisfying

1 ≤ k < `√
2

and k 6= `

3
.

Then the local bifurcation structure of (5) in a neighborhood of the point (λ∗, σ∗, 0)
can be described as follows.

• For σ < σ∗ the k-branch originates to the left of the `-branch with respect
to λ. On each half of the `-branch a secondary solution branch is generated
through a supercritical pitchfork bifurcation, and these branches disappear in
two subcritical pitchfork bifurcations on the two halves of the k-branch; see
also Figure 2. In other words, the k- and the `-branch are connected via
a secondary loop of nontrivial solutions. As σ → σ∗ from below, this loop
contracts towards the bifurcation point (λ∗, σ∗, 0).

• For σ = σ∗ there are exactly two nontrivial solution branches emanating from
the bifurcation point (λ∗, σ∗, 0), and these branches can locally be described as
in Theorem 2.1.

• For σ > σ∗ the k-branch originates to the right of the `-branch with respect
to λ, and the two solution branches are no longer locally connected.

More details on the convergence of the secondary bifurcation points as σ → σ∗ from
below can be found in the proof.
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Proof. We consider the nonlinear problem

F (λ, σ, u) = −∆ (∆u+ λf(u))− λσu = 0 with u ∈ X0 , (10)

where the space X0 was defined in (6). Standard results from nonlinear functional
analysis show that the operator F is a Fredholm operator with index 0, i.e., the
same is true for the Frechet derivative

Lv = DuF (λ∗, σ∗, 0)[v] = −∆ (∆v + λv)− λσv , L : X0 → Y ,

where we have used the fact that f ′(0) = 1. Based on our choice of λ∗ and σ∗, the
operator L has a two-dimensional nullspace which is given by

N(L) = span [ϕk, ϕ`] ,

where ϕk and ϕ` were defined in (7). Using the methods described in [35, Sec-
tion 8.4] one can easily show that we can decompose the spaces X0 and Y in the
form

X0 = N(L)⊕ X̃0 and Y = Ỹ ⊕R(L) ,

where X̃0 is the closed subspace of X0 consisting of all functions whose L2-inner

products with both ϕk and ϕ` vanish. Moreover, we have Ỹ = span[ϕk, ϕ`] andR(L)
consists of all functions in Y whose L2-inner products with both ϕk and ϕ` vanish.

Let E : Y → Y denote the projector with range R(L) and kernel Ỹ , so that

Eϕk = Eϕ` = 0 , as well as Eϕm = ϕm for all m ∈ N \ {k, `} . (11)

Finally, we represent functions u ∈ X0 uniquely in the form

u = αϕk + βϕ` + w ∈ N(L)⊕ X̃0 for α, β ∈ R and w ∈ X̃0 .

Then the method of Lyapunov-Schmidt described in [35, Section 8.6] shows that
the equation

EF (λ, σ, αϕk + βϕ` +W (λ, σ, α, β)) = 0

uniquely determines a function W (λ, σ, α, β) which is defined in a neighborhood

of (λ∗, σ∗, 0, 0) and which takes values in X̃0. Moreover, the function W is
smooth and one can show that all partial derivatives of W up to order two at
the point (λ∗, σ∗, 0, 0) vanish. Using this function W , solving the nonlinear prob-
lem (10) is then equivalent to solving the bifurcation equation

B(λ, σ, α, β) = (I − E)F (λ, σ, αϕk + βϕ` +W (λ, σ, α, β)) = 0 , (12)

see [35, Section 8.6] for more details. Notice that B : R4 → Ỹ = span[ϕk, ϕ`],
so solving the bifurcation equation amounts to solving a nonlinear system of two
equations in the two unknowns α and β, and with two parameters λ and σ.

Since all functions involved in the definition of B in (12) are smooth, one can
use a Taylor expansion to study the zeros of B close to the bifurcation point. Using
standard techniques, and using the above knowledge on the derivatives of W up to
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order two, one can show that

DαλB(λ∗, σ∗, 0, 0) = (κk − σ∗)ϕk ,
DβλB(λ∗, σ∗, 0, 0) = (κ` − σ∗)ϕ` ,
DασB(λ∗, σ∗, 0, 0) = −λ∗ϕk ,
DβσB(λ∗, σ∗, 0, 0) = −λ∗ϕ` ,
DαλσB(λ∗, σ∗, 0, 0) = −ϕk ,
DβλσB(λ∗, σ∗, 0, 0) = −ϕ` ,
DαααB(λ∗, σ∗, 0, 0) = −9λ∗κkϕk − 3λ∗κ3k(I − E)ϕ3k , (13)

DααβB(λ∗, σ∗, 0, 0) = −6λ∗κ`ϕ` − 3λ∗κ|`−2k|(I − E)ϕ|`−2k| , (14)

DαββB(λ∗, σ∗, 0, 0) = −6λ∗κkϕk ,

DβββB(λ∗, σ∗, 0, 0) = −9λ∗κ`ϕ` ,

and that all remaining derivatives of B of order at most three vanish at (λ∗, σ∗, 0, 0).
Note that there are two derivatives whose precise value depends on the choice of k
and `. In the present situation, we have assumed that ` 6= 3k, which together with
k 6= 3k and (11) shows that the second term in (13) vanishes. Similarly, one can
show that |` − 2k| 6= k as well as |` − 2k| 6= `, and therefore also the second term
in (14) vanishes. If we now project the equation B(λ, σ, α, β) = 0 onto the subspaces
spanned by ϕk or ϕ`, and then multiply the resulting equations by 2/(3λ∗κk) or
by 2/(3λ∗κ`), respectively, and if we introduce the abbreviations

ν = λ− λ∗ as well as η = σ − σ∗ ,

then the bifurcation equation (12) is equivalent to the two-dimensional system

0 = α
(
c11ν − c12νη − c13η − α2 − 2β2

)
+Rα(α, β, ν, η) , (15)

0 = β
(
c21ν − c22νη − c23η − 2α2 − β2

)
+Rβ(α, β, ν, η) , (16)

where we define

c11 =
2(κk − σ∗)

3λ∗κk
, c12 =

2

3λ∗κk
, c13 =

2

3κk
,

c21 =
2(κ` − σ∗)

3λ∗κ`
, c22 =

2

3λ∗κ`
, c23 =

2

3κ`
,

and with

Rα/β(α, β, ν, η) = |(α, β)| ·O
(
|(α, β, ν, η)|3

)
.

By employing scaling methods as in [19], one can easily see that solving the bifurca-
tion equation can then be reduced to solving the above system to leading order, i.e.,
by ignoring the remainder terms Rα/β(α, β, ν, η). The actual solutions will differ
from the ones of the reduced system only by higher-order terms.

One can readily see that in the case α = 0, the variable β can be determined
by equating the expression in parentheses in (16) to zero, and that this in fact
furnishes the k-branch from Theorem 2.1. Similarly, setting β = 0 and determining
the variable α in such a way that the expression in parentheses in (15) equals zero
gives the `-branch. Thus, nontrivial solution branches occur if the system

α2 + 2β2 = c11ν − c12νη − c13η , (17)

2α2 + β2 = c21ν − c22νη − c23η (18)
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has nontrivial solutions. One can easily see that this system of equations only has a
nontrivial solution if both right-hand sides are positive. Moreover, in this case the
solution for each separate equation is given by an ellipse in the α-β-plane, where the
ellipse in (17) is stretched vertically and the one in (18) is stretched horizontally.
Since the expressions on the right-hand sides are different, these ellipses do not have
to intersect. In fact, there exist nontrivial intersections if and only if

1

2
≤ c21ν − c22νη − c23η

c11ν − c12νη − c13η
≤ 2 . (19)

If the fraction equals 1/2, then the ellipses intersect in two points on the β-axis,
if it equals 2 then they intersect in two points on the α-axis; values in between
yield four nontrivial solutions away from the coordinate axes. Solving these two
equalities for ν one obtains that

ν = ν∗` (η) = − (c13 − 2c23)η

(2c21 − c11) + η(c12 − 2c22)
gives two solutions on the `-branch ,

(20)
while

ν = ν∗k(η) = − (2c13 − c23)η

(c21 − 2c11) + η(2c12 − c22)
gives two solutions on the k-branch ,

(21)
as long as the right-hand sides in both (17) and (18) are strictly positive.

Using our assumptions on k and ` one can now verify that all the expressions
in parentheses in both (20) and (21) are strictly positive, so for η close to 0 these
identities yield ν-values close to 0 of the opposite sign. Furthermore, one can show
the case η > 0 > ν leads to negative right-hand sides in both (17) and (18), i.e., to
no nontrivial solutions. On the other hand, if η < 0 < ν satisfy (20) and (21), then
we do in fact obtain nontrivial solutions. Finally, we have

ν∗` (η) < ν∗k(η) for σ < 0 close to zero ,

and this guarantees the secondary loop described in the theorem for all η < 0 close
to zero. In fact, the solutions on this loop are given by

α = ±
√

2(c21ν − c22νη − c23η)− (c11ν − c12νη − c13η)

3
, (22)

β = ±
√

2(c11ν − c12νη − c13η)− (c21ν − c22νη − c23η)

3
, (23)

to leading order, for all σ < 0 close to zero and all ν∗` (η) < ν < ν∗k(η). This
completes the proof of the theorem.

The above theorem rigorously proves that in contrast to the case of the Cahn-
Hilliard equation, the diblock copolymer model does indeed exhibit multiple non-
trivial secondary solution branches. We now turn our attention to the exceptional
case k = `/3 which had to be excluded above. This case is a resonance phenomenon
which is due to the specific form of our nonlinearity f(u) = u − u3, and can be
described as follows.

Theorem 2.3 (Two-Dimensional Kernel of Type II). Consider the nonlinear ellip-
tic problem (5) for u ∈ Xµ as in (6), and assume that µ = 0 and f(u) = u − u3,
i.e., we have f ′(µ) = 1. Furthermore, assume that the parameters λ∗ and σ∗ are
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Figure 3. Local bifurcation structure for the case of a two-
dimensional kernel with eigenfunctions ϕk and ϕ`, where k = `/3,
for σ < σ∗. As σ increases towards σ∗ the secondary bifurcation
points on the red `-branch converge to the primary bifurcation
point. For σ ≥ σ∗ the two branches are no longer connected locally.

chosen in accordance with (9) in such a way that λ∗ = λ(k, σ∗) = λ(`, σ∗), for some
integer k satisfying

k =
`

3
.

Then the local bifurcation structure of (5) in a neighborhood of the point (λ∗, σ∗, 0)
can be described as follows.

• For σ < σ∗ the k-branch originates to the left of the `-branch with respect to λ.
Each half of the k-branch intersects a half of the `-branch via a supercritical
pitchfork bifurcation as shown in Figure 3. In other words, the k- and the
`-branch are connected at two secondary bifurcation points. As σ → σ∗ from
below, these bifurcation points converge to the bifurcation point (λ∗, σ∗, 0).

• For σ = σ∗ there are exactly two nontrivial solution branches emanating from
the bifurcation point (λ∗, σ∗, 0), and these branches can locally be described as
in Theorem 2.1.

• For σ > σ∗ the k-branch originates to the right of the `-branch with respect
to λ, and the two solution branches are no longer locally connected.

Proof. The proof of this result uses the same framework as the proof of the previous
theorem. The changes in the bifurcation behavior are due to the last terms in
equations (13) and (14). In the case ` = 3k these terms are nonzero, and this
implies that the bifurcation equation (12) is now equivalent to the two-dimensional
system

0 = α
(
c11ν − c12νη − c13η − α2 − αβ − 2β2

)
+Rα(α, β, ν, η) ,

0 = β
(
c21ν − c22νη − c23η − 2α2 − β2

)
− α3

3
+Rβ(α, β, ν, η) ,

where the constants cij were defined in the context of (15) and (16), and we have

Rα/β(α, β, ν, η) = |(α, β)| ·O
(
|(α, β, ν, η)|3

)
.
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Using a discussion similar to — but somewhat more tedious than — the one in the
proof of Theorem 2.2 one can then establish the claimed bifurcation picture.

Note that the above two results furnish complete descriptions for the interactions
of the k- and the `-branch for all k < `/

√
2. In particular, the secondary bifurcations

in Figure 1 at σ = 6.0 are of Types I and II. The following final result of this section
addresses the missing cases, i.e., we now consider `/

√
2 < k < `.

Theorem 2.4 (Two-Dimensional Kernel of Type III). Consider the nonlinear el-
liptic problem (5) for u ∈ Xµ as in (6), and assume that µ = 0 and f(u) = u− u3,
i.e., we have f ′(µ) = 1. Furthermore, assume that the parameters λ∗ and σ∗ are
chosen in accordance with (9) in such a way that λ∗ = λ(k, σ∗) = λ(`, σ∗), for some
integer k satisfying

`√
2
< k < ` .

Then the local bifurcation structure of (5) in a neighborhood of the point (λ∗, σ∗, 0)
can be described as follows.

• For σ < σ∗ the k-branch originates to the left of the `-branch with respect
to λ. Each half of the `-branch undergoes a supercritical pitchfork bifurcation
which leads to two additional branches of nontrivial solutions as shown in the
top row of Figure 4. As σ → σ∗ from below, the secondary bifurcation points
converge to the bifurcation point (λ∗, σ∗, 0).

• For σ = σ∗ there are exactly four nontrivial solution branches emanating from
the bifurcation point (λ∗, σ∗, 0). Two of these branches can locally be described
as in Theorem 2.1, the remaining two are described in the proof below.

• For σ > σ∗ the k-branch originates to the right of the `-branch with respect
to λ. Each half of the k-branch undergoes a supercritical pitchfork bifurcation
which leads to two additional branches of nontrivial solutions as shown in the
bottom row of Figure 4. As σ increases beyond σ∗, the secondary bifurcation
points move away from the bifurcation point (λ∗, σ∗, 0).

More details on the convergence of the secondary bifurcation points as σ → σ∗ can
be found in the proof.

Proof. The proof of this result uses exactly the same setting as the proof of Theo-
rem 2.4. Under the present assumptions on k and ` the last terms in equations (13)
and (14) vanish. Thus, the bifurcation equation (12) is equivalent to the two-
dimensional system (15), (16) that was already discussed before, and we can again
restrict our discussion to the leading order system (17), (18). In other words, for
nontrivial solutions to exist we need both

c11ν − c12νη − c13η > 0 and c21ν − c22νη − c23η > 0 , (24)

as well as
1

2
≤ c21ν − c22νη − c23η

c11ν − c12νη − c13η
≤ 2 . (25)

The left inequality is satisfied as an equality if

ν = ν∗` (η) =
(2c23 − c13)η

(2c21 − c11)− η(2c22 − c12)
, and furnishes two solutions

on the `-branch , (26)
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Figure 4. Local bifurcation structure for the case of a two-
dimensional kernel with eigenfunctions ϕk and ϕ`, where `/

√
2 <

k < `. The top row corresponds to σ < σ∗, the bottom row to
σ > σ∗. As σ increases towards σ∗ from below, the secondary
bifurcation points on the red `-branch converge to the primary bi-
furcation point. For σ > σ∗ these two branches are now attached
to the blue k-branch and the secondary bifurcation points on this
branch move away from the primary bifurcation point.

while the right inequality is satisfied as an equality if

ν = ν∗k(η) =
(2c13 − c23)η

(2c11 − c21)− η(2c12 − c22)
, and furnishes two solutions

on the k-branch . (27)

Notice that while the formulas for ν∗` (η) and ν∗k(η) are the same as before, we
rewrote them slightly for our current discussion. More precisely, the terms have
been rearranged in such a way that all the expressions in parentheses in both (26)
and (27) are strictly positive.

As in the proof of Theorem 2.2 one can show that for η close to 0 these identities
yield ν-values close to 0, which now are of the same sign as η. In order to satisfy
the positivity requirement in (24) and the inequalities in (25) one has to have η < 0
and ν∗` (η) ≤ ν, or η > 0 and ν∗k(η) ≤ ν. The first of these inequalities corresponds
to the secondary supercritical branches on the `-branch, while the second inequality
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Branch Interactions at Two-Dimensional Kernels
k-Range Interaction Figure Description

1 ≤ k < `

3
Type I 2 A secondary loop which connects the

k- and the `-branches disappears

k =
`

3
Type II 3 Nontrivial linking between the

k- and the `-branch disappears
`

3
< k <

`√
2

Type I 2 A secondary loop which connects the
k- and the `-branches disappears

`√
2
< k < ` Type III 4 Two secondary branches switch from

the `-branch to the k-branch

Table 1. List of branch interactions at bifurcations points with
two-dimensional kernels. In this table we make the assumption
that λ∗ = λ(k, σ∗) = λ(`, σ∗) for some 1 ≤ k < `. The last column
describes what happens as σ increases through σ∗.

corresponds to the secondary supercritical branches on the k-branch. The specific
solutions for these cases are given again by the formulas in (22) and (23) to leading
order. This completes the proof of the theorem.

A brief overview of the three types of interactions with the associated ranges for
the integer k is given in Table 1. From a local perspective these interactions give
a complete description of how the well-known bifurcation diagram for the Cahn-
Hilliard equation changes as σ increases from zero. In particular, these results show
that bifurcating branches corresponding to low mode numbers eventually disappear.
This has direct implications on how the trivial solution u ≡ µ = 0 becomes unstable.
While in the Cahn-Hilliard case the trivial solution always loses its stability to the
1-mode solution, in the diblock copolymer model the stability can be transferred to
any k-mode solution. The details are collected in the following simple lemma which
is stated for later reference, and whose straightforward proof is omitted.

Lemma 2 (Stability Transfer from the Trivial Solution). Consider the nonlinear
elliptic problem (5) for u ∈ Xµ as in (6), and assume that µ = 0 and f(u) = u−u3,
i.e., we have f ′(µ) = 1. For arbitrary σ ≥ 0 define the positive integer kstab(σ) by

kstab(σ) = m for all
κm−1κm
κm−1 + κm

≤ σ < κmκm+1

κm + κm+1
, for m ∈ N , (28)

where we use again the definition κk = k2π2. Then for fixed σ ≥ 0, as λ increases
from zero, the trivial solution u = 0 loses its stability to the nontrivial solutions on
the kstab(σ)-branch when

λ > λstab(σ) =
κ2
kstab(σ)

κkstab(σ) − σ
. (29)

For λ ≤ λstab(σ) the trivial solution is stable. Moreover, the function λstab(·) is
continuous on R+

0 , even though kstab(·) obviously is not.

We close this section with a brief statement concerning symmetry connections
between different solution branches. Due to the choice of boundary conditions, if an
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equilibrium solution is extended to a larger interval by successive even reflections at
the boundary, and if the so-extended solution is then rescaled to the interval (0, 1),
the resulting function is again an equilibrium solution for the diblock copolymer
equation, yet for different values of the parameters λ and σ. More precisely, one
can show that an m-fold reflection followed by the compression x 7→ x/m of an equi-
librium u for the parameters (λ, σ), results in a new equilibrium at the parameter
pair (m2λ,m2σ).

3. Numerical methodology. There are three primary numerical methods used
in this work: direct simulation, numerical continuation in one and two parameters,
and stability computations for equilibrium solutions. Direct simulations are used
to compute the typical behavior of solutions at a variety of parameter values. Nu-
merical continuation is then used to elucidate the results of direct simulations, in
combination with the theoretical results from the last section. One-parameter con-
tinuation is used to compute the bifurcation structure of the problem with respect
to the parameter λ. This choice is due to the fact that σ = 0 yields the Cahn-
Hilliard equation, for which the bifurcation structure with respect to λ is known
analytically. Thus our approach is to look at how the bifurcation diagram with
respect to λ varies as σ increases from zero. A stability computation is performed
at each equilibrium point computed. Numerical continuation in two parameters is
used to follow the location of specific bifurcations observed in the one parameter
case in the (σ, λ) plane. This allows us to easily locate bifurcation points as they
move further from the known equilibrium.

3.1. Spectral discretization. All of these numerical methods require a discretiza-
tion of the underlying partial differential equation. This discretization is done using
a spatial spectral method. Specifically, it is natural to use a discretization using
Fourier series, since the only differential operator in the equation is the Laplacian,
whose eigenfunctions on the domain Ω = (0, 1) subject to Neumann boundary con-
ditions are given by cos(kπx) for k ∈ N0. It is well known that the Fourier cosine
series expansion of a smooth solution to our partial differential equation will ex-
hibit exponentially fast convergence in the number of involved series terms. In
other words,

u(x) =

∞∑
k=0

ak cos(kπx) ≈
N∑
k=0

ak cos(kπx)

for relatively small values of N . In most of this work we have found that N = 60 is
sufficient to see little variation in the approximations when we increase the number
of involved terms. That is, the coefficients of the modes whose frequency is near N
are very small relative to the others, and the modes of even higher frequency are
generally even smaller and thus can be reasonably discarded. Our computations
have shown that the resulting errors are less than 10−6 when measured in the
maximum norm of the solutions.

Much of the computational aspect of the problem is simplified by using this dis-
cretization. In particular, the operation of computing the second derivative reduces
to multiplying the vector of Fourier coefficients by a diagonal matrix, since the
entries of this vector are coefficients of the cosines. That is, if we have

u =

N∑
k=0

ak cos(kπx) , then u′′ = −
N∑
k=1

k2π2ak cos(kπx) ,



BRANCH INTERACTIONS AND LONG-TERM DYNAMICS 3687

and so the coefficients ak are each multiplied by −k2π2. The discretization does
not need to be as fine as, for example, a finite difference method. However, the
operation of computing the nonlinearity is made more complicated, because there
is no simple function relating the Fourier coefficients of a function to the Fourier
coefficients of the third power of that function. However, a Galerkin method can be
used to compute the nonlinearity. By computing at least 3N function values, the
Fourier coefficients of this particular nonlinearity can be computed exactly. This is
due to the identity

u3 =

(
N∑
k=0

ak cos(kπx)

)3

=

N∑
i=0

N∑
j=0

N∑
k=0

aiajak cos(iπx) cos(jπx) cos(kπx)

=

N∑
i,j,k=0

aiajak
4

(cos((i− j − k)πx) + cos((i+ j − k)πx)

+ cos((i− j + k)πx) + cos((i+ j + k)πx)) ,

which shows that the highest frequency term in this sum is the cos(3Nπx)-term.
In practice the vector of Fourier coefficients is then truncated back to length N ,
resulting in a good approximation of the nonlinearity. Computationally speaking,
the Fourier transforms necessary to do this analysis were performed by FFTW’s
discrete cosine transform in this work, which can be called directly either from the
direct simulation code or from the user-provided function file in AUTO.

3.2. Direct simulation. Direct simulation is used in combination with numerical
continuation in this work. The two methods complement each other closely. For
example, numerical continuation may find that there are multiple globally stable
equilibria for a given parameter value. Without direct simulation, information about
attraction to the different equilibria from different initial conditions is not available.
It is even possible that the basins of attraction of some stable equilibria may not
contain the initial conditions of interest, which in our context are random, small
perturbations from the homogeneous equilibrium. Note that such initial conditions
simulate a state which is almost perfectly mixed; such a state would be typical of a
diblock copolymer melt before separation.

On the other hand, direct simulation also misses certain information. One such
example is metastability, during which a given state may appear to be stable in
the simulation, whereas this apparent stability is only due to the fact that the time
frame for further evolution is too long to be captured numerically. Using direct
simulation alone, an incorrect conclusion could be drawn. It is also possible for
motion to be so slow in the continuous case that it does not even appear in the
discretized equation until the discretization becomes much more fine, or in some
cases infinitely fine. Numerical continuation can often resolve metastability issues;
since normally a metastable state would be near an equilibrium point, stability
computation at that equilibrium would show that it was weakly unstable. For more
details on this phenomenon in the context of the related Cahn-Hilliard model we
refer the reader to [5, 10].

For our direct simulations of the diblock copolymer equation we combine
the above-mentioned spectral spatial discretization with a linearly implicit time-
stepping algorithm. The scheme used was developed for the diblock copolymer
model in [1], and is based on related methods which were discussed in [10, 11, 15].
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In compact notation, this scheme is defined by

û
(k+1)
j =

û
(k)
j + hλ ̂(u− u3)

(k)

j Kj

1 + hK2
j + hλσ

,

where the subscripts j = 1, 2, . . . , N index vectors, superscripts denote temporal
iterates, hats denote vectors of Fourier coefficients. Furthermore, K is a vector
which contains the eigenvalues of the Laplacian subject to homogeneous Neumann
boundary conditions, and h is the step size for the time-stepping. For more details
we refer the reader to [1, 10, 11, 15]. The size N of the spectral discretization is
again generally chosen to be 60, and h is on the order of 10−6 or 10−7. The primary
reason for the choice of h is due to the fact that the observed motion of the solution
is quite fast early on in a simulation. A dynamic step size could significantly improve
the method, but this was not necessary for our studies.

All direct simulations in this paper were performed from small random perturba-
tions of the homogeneous equilibrium. Perturbations were applied to each of the 60
modes using a uniform distribution between −10−4 and 10−4 for each mode; as a
consequence the initial conditions are smooth but oscillatory with high frequency
and low amplitude.

3.3. Equilibrium continuation. As mentioned before, while direct simulations
are essential for understanding the transient solution behavior, long-term dynamics
and issues of metastability can only be determined by developing an understanding
for the equilibrium structure of the diblock copolymer equation. It is well known
that the diblock copolymer model is dissipative, see for example [21]. In fact, it is a
gradient system with respect to the energy defined in the introduction. Moreover,
one can show that the model exhibits a global attractor, which consists of equilib-
rium solutions and the heteroclinic connections between them. It is therefore not
surprising that a detailed study of the dynamic behavior of the model has to include
a study of its equilibrium set.

For the purposes of this paper we make use of numerical continuation methods,
which track equilibrium solutions in parameter dependent systems. Of particular
interest for our studies is the fact that the diblock copolymer model reduces to the
Cahn-Hilliard model for σ = 0, and for the latter model the complete equilibrium
structure is known [14]. Starting at these known equilibria we can then determine
branches of equilibrium solutions as the parameters in the system are changed
continuously.

For our computations we make use of the software package AUTO [12]. This
package allows for one- and two-parameter continuation, finds bifurcation points
on solution branches, and enables us to follow the bifurcating branches. AUTO
uses a method called pseudo-arclength continuation, which is well-suited for our
applications. The discretization of the underlying diblock copolymer equilibrium
problem is again based on the spectral discretization discussed in Section 3.1. One
can easily see that the discretized problem furnishes the nonlinear algebraic system

0 = −k4π4ûk + λk2π2
(
û− u3

)
k
− λσûk for k = 1, . . . , N ,

where û1, . . . , ûN denote the Fourier coefficients of the basis functions cos(kπx) for
k = 1, . . . , N . Solving the nonlinear system in this form, however, turns out to be
numerically infeasible for the parameter ranges that we are interested in. This is due
to the fact that the Jacobian of the right-hand side is extremely stiff. This problem
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can be overcome by suitably scaling each of the individual equations in the system.
While this obviously does not change the solution set of the nonlinear system, it
greatly improves the condition number of its Jacobian. For our applications, we use
the scaled system

0 = −ûk +
λ
(
û− u3

)
k

k2π2
− λσûk
k4π4

for k = 1, . . . , N ,

and in this form solving the system is numerically feasible for the parameter ranges
used in our study. Note, however, that this rescaling has implications for the sta-
bility computations which are described in more detail in the next section.

3.4. Stability computation. While AUTO does determine the bifurcation points
along solution branches, it does so without computing the spectrum of the lineariza-
tion of the nonlinear system. Bifurcation points are detected only by monitoring the
sign of the determinant, and bifurcation points with an even dimensional kernel of
the linearization can therefore in principle not be detected. Besides this deficiency
of AUTO, information on the spectrum of the linearization of the diblock copolymer
equation is also crucial for describing the precise stability of the equilibrium solu-
tions, specifically as we increase the parameter σ from 0 and move away from the
Cahn-Hilliard case, in which the stability information has been derived analytically.

For these reasons, we have implemented our own method for the computation of
the index of an equilibrium solution. The index code is incorporated into our AUTO
code and is performed each time an equilibrium solution is computed during the
running of AUTO. For any equilibrium solution u of the diblock copolymer model
its spectrum consists of an infinite sequence of real eigenvalues, which converge
to −∞. We are interested in the precise index, i.e., the number of positive eigenva-
lues for each equilibrium. For this, we begin by linearizing the diblock copolymer
equation at u in the direction of a perturbation v. Every term in the equation
except for (u3)xx is already linear, and the latter can be linearized as (3u2v)xx.
Thus, finding the eigenvalues of the diblock copolymer model at an equilibrium u
amounts to solving the eigenvalue problem

−vxxxx − λvxx + λ(3u2v)xx − λσ(v − µ) = Λv ,

subject to homogeneous Neumann boundary conditions. In this formulation, Λ
denotes an eigenvalue of the linearization. Furthermore, admissible perturbations v
have to satisfy a mass constraint of zero in addition to the Neumann boundary
conditions, since the diblock copolymer equation is mass conserving.

Given this setting, we need to determine a matrix representation of the linear
operator on the left-hand side of the eigenvalue problem. This is accomplished
again using Fourier techniques, by using the same basis functions as in the spa-
tial discretization discussed earlier. This approach makes most of the terms in the
resulting matrix straightforward to compute. The second derivative operator is sim-
ply a diagonal matrix −K whose diagonal entries are given by the eigenvalues of
the Laplacian, i.e., they are given by −k2π2 for k = 1, . . . , N . Similarly, the fourth
derivative is represented by the diagonal matrix K2 whose diagonal entries are given
by k4π4 for k = 1, . . . , N . Finally, the matrix representation of the term 3u2v is
obtained by column-wise computation. The k-th column of this matrix consists of
the Fourier coefficients of the function 3u(x)2 cos kπx. Given the Fourier coefficients
of u, this vector can be computed by a simple application of the inverse discrete
Fourier transform, followed by the computation of the product in real space, and
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finally followed by a discrete cosine transform. Applying the matrix −K then yields
the matrix representation for (3u2v)xx. Altogether, if we denote the matrix associ-
ated with the linear operator v 7→ 3u2v by A(u), then the matrix representation of
the linearization of the diblock copolymer equation at the equilibrium u is given by

J(u) = −K2 + λK − λKA(u)− λσI ,

where I denotes the identity matrix. Eigenvalues of the matrix J(u) may then
be computed in order to perform the index computation, with each positive eigen-
value indicating the existence of an unstable direction. In our implementation of
this stability computation is performed by first assembling the matrix J(u) inside
the AUTO function file, and then calling LAPACK’s dgeev solver, also directly from
the AUTO function file. Notice that while this method seems to be unnecessarily
elaborate, we cannot simply enable AUTO’s built in eigenvalue method, since we
are working with a rescaled system — and this rescaling modifies the spectrum of
the linearization.

4. Numerical study of the long-term dynamics. In this section we study the
long-term dynamics of solutions to the one-dimensional diblock copolymer model (2)
which originate close to the homogeneous equilibrium u ≡ µ. We begin by provid-
ing some initial intuition through direct simulations, by randomly selecting initial
conditions close to µ and following the corresponding solutions until they converge
to a stable equilibrium. In this way, we are able to numerically determine a parti-
tion of the σ-λ-parameter plane with respect to the periodicity of the final limiting
state. In the second part of the section we use numerical continuation techniques
in combination with our theoretical results from Section 2 to provide some first
insight into the observed behavior. The limiting solution behavior exhibits sharply
delineated transitions between different regions, and in the third part of the section
we use two-parameter continuation to track certain secondary bifurcation points
in the σ-λ-plane. The resulting curves agree extremely well with the numerically
computed region boundaries. This shows that the typical long-term behavior of so-
lutions originating close to the homogeneous state is not determined by the global
energy minimizer, but rather by local minimizers with considerably longer periods.
In the final fourth part of the section we study the scaling properties of these curves.

4.1. Parameter space decomposition based on long-term dynamics. We
begin our study of the long-term dynamics of the one-dimensional diblock copolymer
model by numerically determining the limiting behavior of typical solutions. Since
we are only interested in typical microphase separation behavior, we only consider
solutions which originate close to the constant equilibrium solution µ. For the
purposes of this paper we only consider the case µ = 0. Starting with initial
conditions which are small random perturbations of the homogeneous state µ = 0,
we follow their evolution until they converge to a stable equilibrium state.

Figure 5 shows typical examples of the result of using such direct simulation
techniques for the parameter values σ = 2 and µ = 0. Originating from a small
random perturbation of the homogeneous state (shown as blue curve), the solution
is followed for increasing time, and the solution shape for time t = 0.01 is then
depicted in each of the two panels (green curve). The left panel corresponds to
the parameter value λ = 100, while the right panel is for λ = 260. Notice that
depending on the specific λ-value, the solution snapshot is either a 2-mode or a 3-
mode solution. At the parameter value λ = 100, if one follows the solution further,
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Figure 5. Simulation snapshots of solutions to the diblock copoly-
mer model for σ = 2 and µ = 0. The left image is for λ = 100, and
shows a randomly chosen initial condition (blue curve), together
with the solution at time t = 0.01 (green curve). For larger time,
the solution profile does not change, and therefore the long-term
limit appears to be an attracting 2-mode equilibrium. The right
image is for λ = 260. Again in this case, the initial condition is a
small perturbation of the homogeneous state (blue curve). The so-
lution snapshot at time t = 0.01 is now a 3-layered function (green
curve). However, the solution continues to evolve and eventually
reaches a stable 2-mode solution (red curve).

the solution profile no longer changes. In other words, the green curve in the left
panel of Figure 5 is close to the long-term limit. On the other hand, for λ = 260
the solution continues to change, resulting in the annihilation of one of the layers,
with ultimate convergence to the attracting 2-mode solution (shown in red in the
right panel). The solution behavior indicated in Figure 5 is fairly typical. Starting
with a small random perturbation of the homogeneous state µ = 0, solutions of
the diblock copolymer equation quickly develop a periodic layered structure. Some
of these layers are annihilated during the subsequent evolution, until the solution
converges to a periodic stable equilibrium.

In order to obtain a more complete picture of the periodicity of the long-term dy-
namics of solutions originating close to the homogeneous state µ = 0 we performed
Monte-Carlo type simulations in a region of the first quadrant of the σ-λ-parameter
plane. As indicated in the left panel of Figure 6, we subdivided this region into
squares of equal size. For parameter pairs (σ, λ) which correspond to the lower left
corner of these squares, we randomly chose initial conditions close to the homo-
geneous equilibrium and followed their evolution until convergence. The number
of transition layers of the observed limits are then indicated by a coloring of the
underlying square, as indicated in the color bar next to the left panel. For dark
blue squares, the homogeneous state is attracting, so no phase separation takes
place. The colors light blue, green, and red correspond to limits with one, two,
and three transition layers. We refer to these solutions as 1-mode, 2-mode, and
3-mode solutions. Notice that in some squares, intermediate colors are observed,
most notably the orange squares in the center of the left panel. In these cases the
periodicity of the long-term limit was not unique, i.e., we observed multi-stability.
Some of the long-term limits are shown in the right panel of Figure 6. From top left
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Figure 6. Parameter space decomposition based on the periodic-
ity of the long-term limit. The panel on the left shows a partition
of part of the σ-λ-parameter plane into squares. For the parameter
values corresponding to the lower left corner of each square, direct
long-term simulations were performed until the solutions reached
their limiting attracting equilibrium. Colors in the image relate to
the periodicity of this limit — the numbers in the color bar indicate
how many layers the limit has. Dark blue squares indicate that the
homogeneous state is attracting. Intermediate colors denote ap-
parent multi-stability, i.e., different runs lead to long-term limits
with different periodicities. The right panel shows some of the ob-
served long-term limits. From top left to bottom right, the images
are for the parameter values (σ, λ) = (2, 60), (10, 110), (16, 140),
and (20, 140). The locations of these parameter combinations are
indicated by black dots in the left panel. Note the bistability in
the third of these examples.

to bottom right, the images are for the parameter values (σ, λ) = (2, 60), (10, 110),
(16, 140), and (20, 140), as indicated by black dots in the left panel. Note that the
third of these parameter combinations led to bistability, i.e., we observed 2-mode
and 3-mode equilibria as long-term limits.

Despite the coarseness of the diagram in Figure 6, some early conclusions can be
drawn. First, for fixed λ and as the parameter σ increases, lower mode equilibria
become less and less stable until eventually the homogeneous equilibrium becomes
globally stable. This is an immediate consequence of Lemma 2, which also shows
that the boundary of the dark blue region is in fact given by the continuous function
λ = λstab(σ) defined in (29). Second, if we keep σ > 0 fixed and increase λ, then the
number of transition layers in the limiting equilibrium increase by one at discrete
values of the parameter λ. While there are signs of multi-stability, these seem to
be confined to a fairly narrow region around well-defined smooth curves in the σ-λ-
parameter plane. In the remainder of this section we describe these curves in more
detail.

4.2. One parameter bifurcation diagrams. In this section we use the numeri-
cal continuation techniques described in Section 3.3 to understand the equilibrium
structure of the diblock copolymer model for fixed σ. Specifically, we use the con-
tinuation software AUTO [12] to compute one parameter bifurcation diagrams with
bifurcation parameter λ > 0. Four such diagrams were already shown in Figure 1
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Equilibrium Index Color Legend

Index 0 1 2 3 4 5
Color Black Red Blue Green Magenta Cyan

Table 2. Color legend for the index information shown in the
bifurcation diagrams.

in Section 2. The figure contains the bifurcation diagrams for the classical Cahn-
Hilliard model, i.e., for σ = 0, and the diblock copolymer bifurcation diagram for
σ = 6. Each diagram is presented in two different ways: In the left column the
vertical axis shows the energy of the equilibria, while the right column uses the
L2-norm. The branches in all of these diagrams are color coded in such a way that
the index of the equilibria can readily be read off. The legend used throughout this
paper is contained in Table 2.

It was shown rigorously in Section 2 that as σ increases from zero, the bifurcation
points on the horizontal trivial solution line move to the right. In fact, we saw that
the bifurcation point associated with the kernel function ϕk(x) =

√
2 cos kπx will

converge to +∞ and on the way interact with the `-mode branches for all ` > k.
This is further illustrated in Figure 7. When σ is nonzero, but small enough that
the interaction between the 1-mode and the 2-mode branches has not yet occurred,
i.e., if 0 < σ < 4π2/5 ≈ 7.896, the branches are still in the same order as their mode
index. Near the homogeneous equilibrium, each bifurcating branch has one more
unstable direction than the one before it. This can be seen in the top left panel of
Figure 7, showing σ = 6. However, unlike the Cahn-Hilliard case, every nontrivial
branch exhibits secondary bifurcation points. This allows both 2-mode and 3-mode
equilibria to be stable at σ = 6 for sufficiently large values of λ.

As σ increases past 4π2/5 and towards π2 ≈ 9.8696, infinitely many branch
interactions occur, with each of the `-branches for ` ≥ 3. These local interactions
result in meaningful changes in the stability and dynamics. As the 1-mode branch
approaches the `-mode branch, the first secondary bifurcation point on the `-mode
branch moves towards the homogeneous equilibrium, leading to the three types of
local branch interactions which were rigorously described in Section 2. It can be seen
from the remaining panels in Figure 7 that these local interactions affect the indices
of the stationary solutions on the involved branches. The top right panel shows
the situation for σ = 8. The first bifurcating branch is the 2-mode branch, which
is now stable — due to the local interaction between the 1- and 2-mode branches
at σ = 4π2/5. The 1-mode branch bifurcates with solutions of index 1. The lower
left panel in Figure 7 shows the situation after the local interactions between the
1- and 3-mode branches, which occurred at 9π2/10 ≈ 8.883. For σ = 9, the first
two bifurcating branches are the 2-mode and the 3-mode branches, and the 1-mode
branch bifurcates with solutions of index 2. Finally, the lower right panel is for
σ = 9.5, which is after the 1-mode branch has interacted with the 5-mode branch,
but before it crosses the 6-mode branch. The 1-mode branch now contains equilibria
of index 4. As σ increases towards π2, the 1-mode branch converges to +∞.

The pattern described above then repeats for each of the remaining branches.
First the 2-mode branch interacts with the `-mode branches for ` ≥ 3, until it
eventually disappears to infinity at σ = 4π2, and so on. As this proceeds, the
higher mode branches gradually become more and more stable, until eventually
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Figure 7. Bifurcation diagram changes with increasing σ. For
σ = 6 part of the 1-mode branch is still stable, as indicated by the
color black. As σ increases to σ = 8, the 1-mode branch moves to
the right and interacts with the 2-mode branch. For σ = 8, the
2-mode branch is now the leftmost branch, and it has inherited the
stability from the 1-mode branch. The latter bifurcates from the
trivial solution now as an index 1 branch, as indicated in red. As σ
increases further, the 1-mode branch moves further to the right.
For σ = 9 it bifurcates between the 3-mode and 4-mode branches
and contains equilibria of index 3, and for σ = 9.5 it bifurcates
to the right of the 5-mode branch and contains index 5 equilibria.
Colors indicate the stability properties on the equilibrium solutions,
according to Table 2.

when the (` − 1)-mode branch crosses the `-mode branch, at which point the `-
mode branch becomes stable. It should not come as a surprise that these latter
stability-inducing interactions are of central importance. They are studied in more
detail in the next section.

We close this section by demonstrating how the information of the bifurcation
diagrams relates to the direct solution simulations in Section 4.1. For this, consider
the two bifurcation diagrams in Figure 8, which are for σ = 2 and µ = 0. Both
diagrams depict the same equilibrium solutions, but in the left panel the energy is
used on the vertical axis, while in the right panel we use again the L2-norm. In
Figure 5 of the previous section, we presented solution snapshots of two diblock
copolymer solutions which originate close to the homogeneous state µ = 0. The
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Figure 8. Bifurcation diagrams for σ = 2 and µ = 0. In the left
diagram, the value of the equilibrium energy is used on the vertical
axis, while in the right diagram the L2-norm is used. Colors indi-
cate the stability properties of the equilibrium solutions, according
to Table 2.

first of these is for λ = 100, and the solution converges to the 2-mode equilibrium
as t → ∞. It is evident from the bifurcation diagrams in Figure 8 that the 2-
mode stationary solution is an attracting solution with index 0. In fact, the 2-mode
solutions gain stability at a secondary bifurcation point at λ ≈ 76.5973. Note,
however, that the attracting 2-mode equilibrium is not the global energy minimizer
for λ = 100. The left panel in Figure 8 shows that the energy of the 1-mode solution
is in fact lower. In other words, the dynamics leads the solution to a local energy
minimizer, rather than the global minimizer.

In contrast, we now reconsider the solution snapshots shown in the right panel
of Figure 5, where λ = 260. In this case we have seen that while the solution
seems to approach the 3-mode equilibrium, it eventually converges to the 2-mode
equilibrium. As it turns out, for λ = 260 the `-mode equilibria for ` = 1, 2, 3 are all
attracting, since the stability-inducing secondary bifurcation on the 3-mode branch
occurs at λ ≈ 253.079. In other words, even though the 3-mode equilibrium is
attracting, the evolution only takes the solution close to the associated domain of
attraction, rather than into it.

We would like to close this section by demonstrating that the diblock copolymer
evolution can lead solutions close to equilibrium solutions, even if they are unstable.
The left panel of Figure 9 shows snapshots of a solution which originates close to the
homogeneous state, for λ = 56, σ = 5, and µ = 0. The evolution takes the solution
close to the 2-mode equilibrium, before the apparent symmetry of the solution is
broken and it converges to the stable 1-mode equilibrium. In the right panel of
Figure 9 one can see the associated bifurcation diagram for σ = 5 and µ = 0. The
solutions on the 2-mode branch become stable at λ ≈ 56.77, i.e., for λ = 56 the
2-mode equilibrium has still index 1. Nevertheless, the dynamic evolution “senses”
the fact that this state is close to stability, and therefore remains close to it for a
fairly long time. This phenomenon is often referred to as intermittency.

4.3. Stability region boundaries and two-parameter continuation. The re-
sults of the previous two sections have provided us, among other things, with the
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Figure 9. The left panel contains simulation snapshots for λ = 56,
σ = 5, and µ = 0. The initial condition is shown in blue, the green
curve shows the state at time t = 0.1, and the red curve is for
t = 0.3. In both cases, the solution qualitatively has the shape of
the 2-mode equilibrium, albeit with broken symmetry. The long-
term limit is shown in cyan, and is reached after about t = 0.4.
The panel on the right shows the bifurcation diagram for σ = 5.
The secondary bifurcation point on the 2-mode branch occurs at
λ ≈ 56.77, i.e., the 2-mode equilibrium is still unstable with index 1
for λ = 56.

following crucial insights. If the first branch bifurcating from the trivial solu-
tion line is the (k − 1)-mode branch for some k ≥ 2, then the solutions appear-
ing on this nontrivial branch exhibit the same periodicity as the kernel function
ϕk−1(x) =

√
2 cos((k − 1)πx). As σ increases, the (k − 1)-branch moves to the

right until it interacts with the k-branch along the homogeneous equilibrium. Note
that solutions on the k-branch have the same periodicity as the kernel function
ϕk(x) =

√
2 cos(kπx). Before the branch interaction, the (k − 1)-branch is stable

near the homogeneous equilibrium, and the k-branch is unstable with index 1 near
the homogeneous equilibrium. In addition, our rigorous local analysis from Sec-
tion 2 shows that for σ below and near the interaction, there exists a secondary
bifurcation point on the k-branch beyond which solutions are attracting (index 0).
Immediately after the bifurcation where the (k−1)-mode branch interacts with the
k-mode branch, the solutions on the k-branch are all attracting. Near the homo-
geneous equilibrium, solutions on the k-branch remain attracting until the k- and
(k+1)-branches interact. In particular, the secondary bifurcation point is no longer
present on the k-mode branch after the local branch interaction, as it has converged
to the trivial line. However, our rigorous results are local and thus do not rule out
the possibility of secondary bifurcations for σ values far from both the bifurcation
and the homogeneous equilibrium.

The situation described in the above paragraph can be seen for k = 2 in Figure 7.
In particular, for σ = 6.0 the system is prior to bifurcation. The 1-branch is the
leftmost branch, and the 2-branch is immediately to the right of it. Near the
homogeneous equilibrium, all solutions on the 1-branch are stable (black) and all
solutions on the 2-branch are index 1 (red). Away from the trivial line, there
is a secondary bifurcation to stable solutions on the 2-branch. This secondary
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bifurcation can also be seen at σ = 5 and λ ≈ 56.77 as shown in the righthand
image of Figure 9. The system is shown after the bifurcation at σ = 8.0, 9.0, 9.5.
The 2-branch is the leftmost branch — consisting of stable solutions, and the 1-
branch is immediately to the right of it — consisting of index 1 solutions near the
homogeneous equilibrium.

We have seen using direct simulation that when λ exceeds the λ-value of the
stabilizing secondary bifurcation point described above, the newly stabilized branch
is often reached by solutions originating close to the homogeneous state in the long
term, even if other stable solutions exist. In fact, we have seen cases where the
stable solutions on the k-mode are the long-term limit of solutions starting near
the homogeneous state, even though they are not global energy minimizers. Thus
the stabilizing secondary bifurcation point is central to our understanding of the
dynamics of the diblock copolymer equation, as we emphasize with the following
definition.

Definition 4.1 (Stabilizing Secondary Bifurcation Point). Assume that µ = 0, and
let k ≥ 2 be an integer. It was shown rigorously in Theorems 2.2 and 2.4 that for
σ-values right before the local interaction between the (k − 1)-branch and the k-
branch, there exists a secondary bifurcation point on the k-branch, which converges
to the trivial solution as σ approaches κk−1κk/(κk−1 + κk). This point is called a
stabilizing secondary bifurcation point on the k-mode branch, and it exists at least
locally on a smooth curve for σ < κk−1κk/(κk−1 + κk). The corresponding local
interaction between the (k − 1)-branch and the k-branch is of Type I for k = 2, 3,
and of Type III for k ≥ 4.

The stabilizing secondary bifurcation points can easily be seen in the local bifur-
cation pictures in Section 2. For the case of a Type I interaction, i.e., for k = 2, 3,
the (k − 1)-mode branch is shown in blue in Figure 2, the k-mode branch is shown
in red, and the stabilizing secondary bifurcation point is the point at which the red
and green branches connect. For the case of a Type III interaction, i.e., for k ≥ 4,
the analogous statement applies to Figure 4.

As we mentioned earlier, numerical evidence from the last section points towards
the significance of the stabilizing secondary bifurcation points with respect to the
long-term dynamics of solutions originating close to the homogeneous equilibrium.
Therefore, we used two-parameter continuation in AUTO to numerically determine
the location of these points in the σ-λ-plane. The results of these computations are
shown in Figure 10 for the case µ = 0. In the left panel, the blue, green, red, cyan,
and magenta curves correspond to the stabilizing secondary bifurcation points on
the 2-, 3-, 4-, 5-, and 6-mode branch, respectively. These curves were determined
as follows. For each of the mode numbers k = 2, . . . , 6 we considered a fixed σ
slightly less than κk−1κk/(κk−1 + κk), i.e., slightly to the left of each cusp in the
figure. (The leftward offset of σ results in the appearance of a slight gap between
the analytical curve (yellow) and the numerically computed curves in Figure 10,
when in fact these curves are connected.) Then the stabilizing bifurcation point
exists, but is still close to the homogeneous equilibrium, making it easy to obtain
by regular one parameter continuation. This bifurcation point is continued in two
parameters in the direction of decreasing σ, using AUTO’s built in method. The
yellow lower boundary curve in Figure 10 is the graph of the function λ = λstab(σ)
defined in (29). Recall that this curve has been analytically determined, and it
delineates the region in which the homogeneous state is stable from the region of
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Figure 10. The left panel shows a bifurcation theoretic parameter
space decomposition based on the stabilizing secondary bifurcation
points introduced in Definition 4.1. The blue, green, red, cyan, and
magenta curves correspond to the stabilizing secondary bifurcation
points on the 2-, 3-, 4-, 5-, and 6-mode branch, respectively, ob-
tained via two-parameter continuation. The yellow lower boundary
curve is the graph of the function λ = λstab(σ) defined in (29). All
computations were performed for total mass µ = 0. For the region
indicated by black lines in the left image, the right panel shows an
overlay of the diagram from Figure 6 with the curves of the left
panel. Since the direct simulations were performed for the param-
eter values at the bottom left corner of each square, the location
curves of the stabilizing secondary bifurcation points seem to de-
lineate the regions found in Figure 6.

its instability. The cusps in the curve are the points at which the mode number k
changes as in (28). In the right panel of Figure 10 these smooth location curves are
finally superimposed onto the numerically obtained parameter space partition from
Figure 6. The panels in this figure give a surprisingly clear picture of the long-term
dynamics of the diblock copolymer model, with smooth separations between the
regions of different long-term periodicity. This is particularly surprising since the
curves shown in the left panel arise from local stability changes, while the direct
simulation partition in the right panel addresses the global, long-term dynamics.

In order to determine in more detail how well the location curves based on two-
parameter continuation delineate the regions with different long-term behavior, we
performed another set of direct simulations, which are now based on the results from
the bifurcation study. These continuation-informed simulation diagrams are shown
in Figures 11 and 12. For this, we performed direct simulations of solutions to the
diblock copolymer model which originate close to the homogeneous equilibrium,
but for parameter combinations (σ, λ) chosen from a small neighborhood of the
location curves from Figure 10. Each dot in Figure 11 corresponds to one considered
parameter combination, and the color of the dot represents the observed periodicity
of the long-term limit, corresponding to the color bar on the right. Blowups of the
behavior close to each of the four location curves are shown in Figure 12.

While it is intuitive to perform simulations at points near the suspected stability
boundaries, the nearby points must be chosen in some way. A natural albeit simple
way to do this is to go out from the stability boundaries along perpendicular lines.
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Figure 11. The full continuation-informed simulation diagram.
Colors correspond to indices as in Figure 6. The overall trend is
that above each curve we see a new index to a significant extent; the
strength of this effect appears to decrease somewhat as λ increases.
For comparison, the location curves of the stabilizing secondary
bifurcations from the left panel of Figure 10 are also shown.

In generating Figures 11 and 12, our notion of “perpendicular” is in a modified
coordinate system where σ and λ are on the same scale, so that the lines actually
appear perpendicular in the figure. That is, if (Tσ, Tλ) ∈ R2 is the tangent to the
location curve at a given point, then the “perpendicular direction” (Pσ, Pλ) ∈ R2

satisfies the identity
PσTσ
σmax,k

+
PλTλ
λmax,k

= 0 ,

where σmax,k and λmax,k are the maximal considered values of σ and λ, respectively,
for the location curve of the stabilizing secondary bifurcation points on the k-mode
branch as shown in Figure 12.

The overall result of these simulations is that the location curves of the stabiliz-
ing secondary bifurcation points are indeed central to understanding the long-term
dynamics of the diblock copolymer equation, at least in the context of solutions orig-
inating close to the homogeneous equilibrium. In general, slightly below a k-mode
location curve, we see long-term limits with the same periodicity as the (k−1)-mode
equilibrium, and occasionally lower periodicities as well. Slightly above the loca-
tion curve of the stabilizing secondary bifurcation points on the k-mode branch we
tend to see a mix of (k− 1)-mode and k-mode long-term limits, but as the distance
from the location curve increases the k-mode equilibria begin to dominate the long-
term behavior. For the case k = 2, which was discussed in Section 4.1, the newly
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Figure 12. The individual continuation-informed simulation dia-
grams. These correspond to the location curves of the stabilizing
secondary bifurcations on the k-mode branches for k = 2, 3, 4, 5,
from top left to bottom right. Notice that for k = 4 and k = 5
the level of multi-stability is somewhat more pronounced than for
k = 2 and k = 3.

stabilized 2-mode stationary solution dominates the dynamics almost immediately.
Recall also that for k = 3 we have seen in Figures 5 and 8 that for relatively small
distances from the location curve the 2-mode solution still dominates the behavior.

We would like to point out that at first glance, Figure 12 seems to indicate that for
the mode numbers k = 4 and k = 5 there are three different periodicities present on
the perpendicular simulation lines. However, a closer look reveals the reason for the
appearance of the third periodicity. These points are located at small σ-values and
high λ-values, i.e., towards the upper left corner of the diagrams, which can clearly
be seen for the case k = 5. Thus, due to the choice of scale used for the perpendicular
lines, they actually cross the location curves of the stabilizing secondary bifurcation
points for lower mode numbers, thereby leading to their appearance as long-term
limits.

Overall, two-parameter continuation of the location curves of the stabilizing sec-
ondary bifurcation points introduced in Definition 4.1 seems to provide a systematic
a priori way to determine the typical periodicity of the long-term limit of solutions
of the diblock copolymer model which originate close to the homogeneous equilib-
rium. Moreover, while the diblock copolymer model does exhibit multi-stability in
the simulations for a fixed (σ, λ)-parameter pair, the dominance of certain mode
numbers is established already at fairly short distances from the location curves.
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4.4. Asymptotic analysis and scaling behavior. In this final part of the sec-
tion we discuss the scaling behavior of the location curves introduced above, as the
mode number k increases to ∞. It was mentioned at the end of Section 2 that the
diblock copolymer equation exhibits the following fundamental scaling property:
If m ∈ N is an arbitrary positive integer, and if u denotes a stationary solution of
the diblock copolymer model for the parameter combination (σ, λ) with the same

periodicities as the k-mode kernel function ϕk(x) =
√

2 cos kπx, then an m-fold
reflection followed by the compression x 7→ x/m furnishes a new equilibrium at the
new parameter combination (m2σ,m2λ) which has the same periodicities as the
kernel function ϕmk. In other words, branches of k-mode solutions the parameter
pair (σ, λ) immediately give rise to branches of mk-mode solutions at the new pa-
rameter combination (m2σ,m2λ). Even more is true. If the function u corresponds
to a bifurcation point in the bifurcation diagram for (σ, λ), then the new solution
corresponds to a bifurcation point for (m2σ,m2λ).

At first glance, the above reasoning appears to allow us to obtain detailed scaling
information for the location curves of the stabilizing secondary bifurcation points
on the k-mode branch, as k → ∞. Unfortunately, this is not quite true. To
see this, consider the branch interaction which generates the secondary bifurcation
points of interest, i.e., the interaction between the (k − 1)-mode and the k-mode
branch. Using the above scaling, one can relate this interaction to the interaction
between the m(k−1)-mode and the mk-mode branch. Yet, the stabilizing secondary
bifurcations on the mk-mode branch are generated through its interaction with the
(mk− 1)-branch — and this interaction occurs in fact for a larger λ-value. In other
words, the scaling can only provide a lower bound on the location curves with higher
mode numbers. Despite this fact, the scaling (σ, λ) 7→ (m2σ,m2λ) is of importance,
as the following simple lemma shows.

Lemma 3. Consider the diblock copolymer model on the domain Ω = (0, 1) with
f(u) = u− u3 and assume that the total mass µ satisfies f ′(µ) > 0. For any mode
number k ≥ 2, consider the parameter combination

σ∗k =
f ′(µ)κk−1κk
κk−1 + κk

and λ∗k =
κ2
k

f ′(µ)κk − σ∗k
=
κk−1 + κk
f ′(µ)

at which the (k − 1)-mode branch interacts with the k-mode branch as described in
Section 2. Then we have

lim
k→∞

(
σ∗k
k2
,
λ∗k
k2

)
=

(
f ′(µ)π2

2
,

2π2

f ′(µ)

)
.

In other words, after division by k2 the lower right endpoints of the location curves
of the stabilizing secondary bifurcation points on the k-mode branch converge.

Proof. The proof follows immediately from the fact that κm = m2π2 in our situa-
tion.

Since the lower right endpoints of the location curves of the stabilizing secondary
bifurcation points on the k-mode branch converge after rescaling by 1/k2, it is
natural to wonder whether the location curves as a whole converge as well. In the
left panel, the rescaled curves are shown in blue, green, red, cyan, and magenta for
k = 2, 3, 4, 5, 6, respectively.1. This diagram clearly indicates that the curves seem

1According to the above Lemma 3, the lower right endpoints of the rescaled location curves will
converge to the point (ln(π2/2), ln(2π2)) ≈ (1.596, 2.983). The discrepancy apparent in Figure 13
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Figure 13. Scaled versions of the location curves of the stabilizing
secondary bifurcation points on the k-mode branch, as introduced
in Definition 4.1. The left panel shows these location curves scaled
by 1/k2 in both the σ- and the λ-direction in a log-log plot. The
curve corresponding to mode number k = 2, 3, 4, 5, 6 is shown in
blue, green, red, cyan, magenta, respectively. The dashed black
curve is a least squares fit of the visible linear behavior. The right
panel contains all the curves shown on the left, but in addition also
the rescaled curve at which the k-mode solution becomes the global
energy minimizer. The latter curve is shown as dashed red line.

to converge to a universal limit. In fact, since we chose logarithmic units on both
axes, the figure implies that after the rescaling the location curves satisfy a power
law. Using a least squares fit, which ignores the transient behavior on the lower
right ends of the curves, this furnishes the following relation:

• Stabilizing secondary bifurcation point on k-mode branch:

λ

k2
≈ 19.88 ·

( σ
k2

)−0.2738

. (30)

This formula provides an asymptotic estimate as to when the stable k-mode equilib-
rium can be expected to be the long-term limit of solutions of the diblock copolymer
equations which originate close to the homogeneous equilibrium. But what does this
limiting periodicity have to do with the periodicity of the global energy minimizer?
In other words, is there an asymptotic formula for when the k-mode equilibrium
becomes the global energy minimizer? As was stated in the introduction, asymp-
totically this happens when λ, σ, and k satisfy (4), and this formula clearly also
respects the scaling by 1/k2. In fact, formula (4) can be rewritten as follows:

• Global energy minimizing k-mode equilibrium:

λ

k2
≈ 128 ·

( σ
k2

)−2

. (31)

This limiting curve lies considerably above the curve in (30), as shown in the right
panel of Figure 13. Thus, in general the observed periodicity of the long-term
limit of solutions of the diblock copolymer equations which originate close to the
homogeneous equilibrium is not described by the periodicity of the global energy

is due to the fact that our numerically computed location curves do not start exactly at the

interaction point of the (k − 1)- and k-branches, but somewhat to the left, as discussed in the
previous section.
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minimizer, but rather by a local minimizer with higher periodicity. In particular,
the difference in the exponents on the right-hand sides of (30) and (31) shows that
the observed periodicity will in practice be considerably larger than that of the
global mininizer.

5. Conclusion. This paper is concerned with the typical long-term behavior of
solutions of the diblock copolymer model on one-dimensional domains, which origi-
nate close to the homogeneous equilibrium and exhibit microphase separation. Our
study is based on two different, yet complementing points of view.

First of all, by combining rigorous bifurcation theoretic results which describe
the complete bifurcation structure of the equilibrium set close to the trivial solution
line with numerical continuation techniques, we are able to provide insight into
the global bifurcation structure. This demonstrates that even though the limit
σ → 0 reduces the diblock copolymer model to the classical Cahn-Hilliard model, the
bifurcation structure of the former model is considerably more complicated. While
the classical Cahn-Hilliard equation supports only two stable 1-layer equilibrium
solutions, the diblock copolymer equation exhibits a wealth of stable local energy
minimizers. We have described that as σ increases from zero, solution branches
which were present in the Cahn-Hilliard diagram move to the right and converge to
infinity, and thereby lead to an infinite sequence of branch interactions with two-
dimensional bifurcation kernel. One specific type of these interactions, namely the
interaction between the (k − 1)-mode and the k-mode branch leads to the creating
of stable solutions on the k-mode branch.

Secondly, we have used direct numerical simulations to determine a partition of
the (σ, λ)-parameter plane into regions in which the long-term limit of the dynam-
ics exhibits a certain periodicity. We have seen that even though multi-stability
clearly does occur, the boundaries of these regions seem to be delineated by smooth
parameter curves.

By combining the above two points of view, we were able to identify the delin-
eating curves as the location curves of the stability inducing secondary bifurcation
points on the k-mode branch. This was validated numerically by a new set of
continuation-informed direct simulations. In addition, we obtained scaling informa-
tion on the delineating curves as a function of the mode index k. This demonstrates
that for the one-dimensional diblock copolymer model, the global energy minimizer
does not in fact describe the typical long-term behavior of solutions originating close
to the homogeneous equilibrium.
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