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Abstract. Period-doubling cascades are among the most prominent fea-
tures of many smooth one-parameter families of maps, F : R×M → M,
where M is a locally compact manifold without boundary, typically R

N .
In particular, we investigate F (μ, ·) for μ ∈ J = [μ1, μ2], when F (μ1, ·)
has only finitely many periodic orbits while F (μ2, ·) has exponential
growth of the number of periodic orbits as a function of the period. For
generic F , under additional hypotheses, we use a fixed point index argu-
ment to show that there are infinitely many “regular” periodic orbits at
μ2. Furthermore, all but finitely many of these regular orbits at μ2 are
tethered to their own period-doubling cascade. Specifically, each orbit
ρ at μ2 lies in a connected component C(ρ) of regular orbits in J ×M;
different regular orbits typically are contained in different components,
and each component contains a period-doubling cascade. These compo-
nents are one-manifolds of orbits, meaning that we can reasonably say
that an orbit ρ is “tethered” or “tied” to a unique cascade. When F (μ2)
has horseshoe dynamics, we show how to count the number of regular
orbits of each period, and hence the number of cascades in J ×M.

As corollaries of our main results, we give several examples, we
prove that the map in each example has infinitely many cascades, and
we count the cascades.
Mathematics Subject Classification (2010). 37G, 37B.
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1. Introduction

In Figure 1, as μ increases towards a value μF ≈ 3.57, the logistic map has a
family of periodic orbits that undergoes an infinite sequence of period dou-
blings with the period of these orbits tending to∞. Such a family with periods
going to infinity is called a cascade. A period-doubling cascade was first re-
ported by Myrberg in 1962 [25]. The existence of many such cascades is one
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Figure 1. Cascades and their connected components. An
attracting set for the logistic map F (μ, x) = μx(1 − x) is
shown in blue. There are infinitely many cascades, each with
infinitely many period-doubling bifurcations. Each saddle-
node bifurcation creates both a cascade and a path of regular
unstable orbits (shown in black for up to period 6).

of the most prominent features observed in the study of parametrized maps.
Robert May popularized their existence to a huge scientific audience [23].
They are found numerically and experimentally in a large number of scien-
tific contexts and are often associated with the onset of chaos. For examples,
see [1, 2, 3, 4, 10, 13, 14, 15, 16, 17, 22, 31, 32, 33, 35].

The quadratic map μ−x2 has an infinite number of cascades, which fol-
lows from the monotonicity result of Milnor and Thurston [24], which states
that for this map, periodic orbits are never destroyed as μ increases. Or-
bits are created at saddle-node bifurcations and the attractor branch cre-
ated there can only undergo supercritical period-doubling bifurcations. This
family of maps has no inverted saddle-node bifurcations and no inverted
period-doubling bifurcations. Without special behavior such as monotonic-
ity, showing that there are infinitely many cascades is much more difficult.

Once a cascade is known to exist, it can be understood using the el-
egant scaling and renormalization theory found in the work from the early
1980s of Feigenbaum [12] and others [5, 6, 7, 8, 9, 11, 21] as well as some
more recent results in [19, 20] (see also the references in [20]). This theory
in particular focuses on the “Feigenbaum” scaling of a typical cascade. For
example there is a so-called Feigenbaum number δ ∼ 4.66920 so that if μn is
the parameter value of the nth period-doubling bifurcation of a cascade, and
μ∞ = limn→∞ μn, then for a typical cascade,

|μn − μ∞| ∼ kδ−n for some k > 0. (1)

These works have shown that the value of δ given above is a universal constant
which does not in general depend on the family. This is described in more
detail in Section 6.

Considering the beauty and successes of the several approaches to cas-
cades from the 1980s, one might wonder the purpose of reconsideration of the
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question of cascades thirty years later. The reason is thus, there is a gap in
the classical theory. Specifically, this theory does not explain when cascades
exist in the first place. In this paper, we answer this question and in addition
we provide a means for enumerating cascades as a function of the periodic
orbit from which they arise. The classical methods of renormalization theory
are not well suited for understanding existence and enumeration. Instead, we
use methods of topological index theory.

From a scientific point of view, one might imagine that an existence
proof for cascades is an unnecessary mathematical argument, since so often
the existence of cascades is clear from a simple numerical simulation. But our
theory shows that many higher-dimensional cascades are unstable and thus
could not be found easily using numerical methods. Specifically, under quite
weak assumptions, we show that cascades—potentially unstable ones—occur
whenever there is an onset of chaos. Thus the understanding of cascades is
critical to the understanding of chaos. Furthermore, our ability to enumerate
cascades gives a new tool for classifying complexity.

There are only a few results about the existence of cascades [34] for
general systems. In several recent papers [29, 28, 27, 30], we have described
the results of a new general theory of cascades, which explains why cascades
exist and why chaotic dynamical systems often have infinitely many cascades.
However, each of these results has relied on being able to count the number of
regular (a.k.a. nonflip) periodic orbits. We show here that it suffices to count
only the number of periodic orbits. To this end, the main result of Section 2
is the Regular Periodic Orbits Theorem (Theorem 3), which says that the
number of regular periodic orbits is approximately half of the total number
of periodic orbits. In particular, if there are infinitely many of one, there are
infinitely many of the other.

The paper proceeds as follows. Section 2 begins with definitions and
prior results, ending with the Regular Periodic Orbits Theorem (Theorem 3).
In Section 3, we concentrate on the question of quantification. We start by
giving results on counting the number of period-k points in a generalized
high-dimensional horseshoe and end by using the abstract results to count
the number of period-k cascades for each integer k.

In Section 4 we examine the scalar map

Sμ(x) = μ sin(2πx) mod 1.

This map has the interesting property that its topological entropy is un-
bounded as μ → ∞. We show that for each period p, the number of cascades
having period-p orbits is unbounded. The key lemma we prove for this map
is that for positive integer values of μ, the map Sμ(x) is conjugate to an
expanding map Tμ(y), that is, inf |dT/dy| > 1.

In Section 5, we give an example of a map in which chaos forms without
cascades and a conjecture that this is not typical. We end in Section 6 by
giving further background of the history of cascades research.
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2. Finding cascades

In this section, we give a series of definitions involved in our study of cas-
cades. We describe our prior results on cascades, using the number of regular
periodic orbits. The first main result of this paper is to show that we can
drop assumptions on the number of regular periodic orbits. Specifically, we
show that the number of regular periodic is approximately half of the number
of periodic orbits.

2.1. Preliminaries

We investigate smooth (i.e., C∞) maps F : J×M → M where J is an interval
and M is any smooth manifold M of finite dimension. We write F (μ, x) where
μ ∈ J and x ∈ M.

We say that a point (μ, x0) is a period-p point if F p(μ, x0) = x0 and
p is the smallest positive integer for which that is true. Its orbit, sometimes
written [(μ, x0)], is the set

{(μ, x0), (μ, x1), . . . , (μ, xp−1)}, where xj = F j(μ, x0).

By the eigenvalues of a period-p point (μ, x0) or of its orbit, we mean
the eigenvalues of the Jacobian matrix DxF

p(μ, x0).

An orbit is called hyperbolic if none of its eigenvalues has absolute value
1. All other orbits are bifurcation orbits.

We call a periodic orbit a flip orbit if the orbit has an odd number
of eigenvalues less than −1, and −1 is not an eigenvalue. (When M is one
dimensional, this condition is ∂F p/∂x(μ, x) < −1. In dimension two, flip
orbits are those with exactly one eigenvalue less than −1.) All other periodic
orbits are called regular. For typical F , a period-doubling orbit is one that
has an eigenvalue equal to −1. As μ increases, a path of periodic orbits of
constant period that passes through a typical period-doubling bifurcation
orbit will switch between flip and regular orbits at that bifurcation orbit
since an eigenvalue crosses −1.

There is an equivalent way to define a period-p orbit [(μ, x0)] to be
a “flip” orbit. Let E be the maximum unstable subspace of the tangent
space Tx(μ, x0). That is, E is the tangent plane of the unstable manifold
(in M) of (μ, x0). Then (μ, x0) is flip exactly when it is hyperbolic and the
DxF

p(μ, x0) is orientation reversing on E; that is, the determinant of DxF
p

on E is negative.

For some interval K, assume Y : K → J × M is continuous. Write
Y (ψ) = (μ(ψ), x(ψ)) where ψ ∈ K. We say that Y is a (regular) path if

(i) Y (ψ) is a regular periodic point for each ψ ∈ K;
(ii) Y does not retrace orbits; that is, Y is never in the same orbit for

different ψ.

Let I ⊂ J and M ⊂ M, where I is an interval. We write RPO(I ×M)
for the set of regular periodic orbits with (μ, x) ∈ I ×M . We say that a path
Y (·) is maximal in I ×M if the following additional condition holds:
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(iii) Y cannot be extended further to a larger interval; that is, it cannot be
redefined to include more points of RPO(I ×M).

Note that [Y (·)] is in effect a path in RPO, and it is continuous when
we put the Hausdorff metric on RPO.

We call a (regular) path Y (·) ⊂ RPO(I ×M) a cascade in I ×M if the
domain of Y is a half-open interval, say [a, b), and the path contains infinitely
many period-doubling bifurcations, and for some period p, the set of periods
of the points in the path is precisely the unbounded set {p, 2p, 4p, 8p, . . .}. As
one traverses the cascade, the periods need not increase monotonically, but
lim inf of the period of Y (ψ) is ∞ as ψ → b.

Write fixed(μ, p) for the set of fixed points of F p(μ, ·), and Per(μ, p)
for the set of period-p points of F . Write | fixed(μ, p)| and |Per(μ, p)|, re-
spectively, for the number of those points. Correspondingly, let rpf(μ, p) de-
note the set of regular periodic points which are fixed points of F p, hence,
(rpf(μ, p) ⊂ fixed(μ, p)), and let ρ(μ, p) denote the set of regular period-p
points (ρ(μ, p) ⊂ Per(μ, p)).

We say that there is an exponential periodic orbit growth at μ if there
is a number G > 1 for which | fixed(μ, p)| ≥ Gp for infinitely many p. For
example, this inequality might hold for all even p, but for odd p there might
be no periodic orbits. This is equivalent to

h = lim sup
p→∞

log | fixed(μ, p)|
p

≥ logG > 0. (2)

Call h in the above equation the periodic orbit entropy. If h < ∞, the sequence
(pj) is an entropy achieving sequence if limj→∞ pj = ∞ and this lim sup is
achieved by the sequence. That is,

lim
j→∞

log | fixed(μ, pj)|
pj

= h. (3)

Entropy achieving sequences are guaranteed to exist.

We say that a map F (μ, ·) has periodic orbit (PO) chaos at a parameter
μ if there is exponential periodic orbit growth. This occurs whenever there is
a horseshoe for some iterate of the map. It is sufficiently general to include
having one or multiple coexisting chaotic attractors, as well as the case of
nonattracting chaotic orbits. As hinted at by equation (2), in many cases PO
chaos is equivalent to positive topological entropy.

The unstable dimension Dimu(μ, x0) of a periodic point (μ, x0) or pe-
riodic orbit is defined to be the number of its eigenvalues λ having |λ| > 1,
counting multiplicities. (We always count multiplicities of an eigenvalue λ by
considering the Jacobian DxF

p(μ, x0) in Jordan canonical form and counting
the number of occurrences of λ on the main diagonal. For Dimu we count the
number of diagonal entries with absolute value greater than 1.)
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We say there is virtually uniform PO chaos at μ if there is PO chaos, and
all but a finite number of periodic orbits have the same unstable dimension,
denoted by Dimu(μ); x0 is omitted to indicate that it is independent of x0.

Generic maps. Our results are given for generic maps of a parameter. Specif-
ically, we say that the map F is generic if all of the bifurcation orbits are
generic, meaning that each bifurcation orbit is one of the following three
types.

1. A standard saddle-node bifurcation. (Where “standard” means the form
of the bifurcation stated in a standard textbook, such as Robinson [26].)
In particular, the orbit has only one eigenvalue λ for which |λ| = 1,
namely λ = 1.

2. A standard period-doubling bifurcation. In particular, the orbit has only
one eigenvalue λ for which |λ| = 1, namely λ = −1.

3. A standard Hopf bifurcation. In particular, the orbit has only one com-
plex pair of eigenvalues λ for which |λ| = 1. We require that these
eigenvalues are not roots of unity; that is, there is no integer k > 0 for
which λk = 1.

Each regular hyperbolic orbit O is locally contained in a unique path
of periodic orbits. Furthermore, O has a neighborhood N in the Hausdorff
metric topology in which all orbits in N are on that path. In particular, the
connected component C of the orbit in RPO is locally a one-manifold near
0.

Our motivation for considering generic bifurcations is that this same
property also holds, if O is, instead, a regular bifurcation orbit. That is, let
C denote the connected component of the orbit O in RPO. Then O has a
neighborhood N for which C ∩N is a one-manifold.

Each generic regular bifurcation periodic orbit has a neighborhood N
in which all RPOs in N are locally contained in a unique path of RPOs.
Hence the connection to cascades can be summarized as follows: starting at
each regular periodic orbit Q for μ ∈ [μ1, μ2], there is a local path of regular
periodic orbits through Q. Enlarge this path as far as possible, either the
path reaches μ1 or μ2, or there is a cascade.

2.2. Theorems about infinitely many cascades

We start by listing our assumptions, and then state our main theorems.

List of assumptions.

(A0) Assume F is a generic smooth map; that is, F is infinitely differentiable
in μ and x, and all of its bifurcation orbits are generic.

(A1) Let I = [μ1, μ2], where μ1 < μ2. Assume there is a bounded set M that
contains all periodic points (μ, x) for μ ∈ I.

(A2) Assume all periodic orbits at μ1 and μ2 are hyperbolic.
(A3) Assume that the number Λ1 of periodic orbits at μ1 is finite.
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(A4) Assume that at μ2, there is virtually uniform PO chaos. Write Λ2 for
the number of periodic orbits at μ2 having unstable dimension not equal
to Dimu(μ2).

Theorem 1. Assume (A0)–(A4). Then there are infinitely many distinct
period-doubling cascades in I ×M.

Before proceeding, we reformulate Theorem 1 in a less compact but more
comprehensible way, making it clearer from whence the cascades appear.

Theorem 2. Assume (A0)–(A4). Define S = I ×M. Then the following are
true.

(B1) There are infinitely many regular periodic points at μ2.
(B2) For each maximal path Y (ψ) = (μ(ψ), x(ψ)) in S starting from a reg-

ular periodic point Y0 = (μ2, x0), the set of traversed orbits, denoted
by Orbits(Y ), depends only on the initial orbit containing Y0. That is,
different initial points on the same orbit yield paths that traverse the
same set of orbits, so we can write Orbits(Y0) for Orbits(Y ).

(B3) Let Y0 = (μ2, x0) and Y1 = (μ2, x1) be regular periodic points on differ-
ent orbits. Then Orbits(Y0) and Orbits(Y1) are disjoint.

(B4) Let K denote the unstable dimension of a regular periodic point (μ2, x0).
For a maximal path Y (ψ) = (μ(ψ), x(ψ)) in S starting from (μ2, x0), let
k(ψ) denote the unstable dimension of Y (ψ). At each direction-reversing
bifurcation, k(ψ) changes parity; that is, it changes from odd to even or
vice versa. Initially Y (a) = (μ2, x0), so initially μ(ψ) is decreasing and
k(a) = K, so initially k(a) + K is even. Hence, in general, μ(ψ) is
decreasing if K + k(ψ) is even and increasing if it is odd.

(B5) Let Y be a maximal path on [a, b] in S and μ(a) = μ2. If μ(b) = μ2, then
μ(ψ) is increasing at ψ = b, but decreasing at ψ = a. Hence k(a) + k(b)
is odd, so k(a) 
= k(b).

(B6) There are infinitely many distinct period-doubling cascades on [μ1, μ2]×
M.

(B7) There are at most Λ = Λ1+Λ2 regular periodic orbits at μ2, with unstable
dimension Dimu(μ2), that are not connected to cascades.

This theorem was proved in [29], under the additional assumption that
at μ2, there are infinitely many regular periodic points. The main result of
this section shows that the additional assumption holds automatically under
assumptions (A0)–(A4).

Definition 1 (Asymptotic regularity). We say that asymptotically half of the
periodic points are regular at μ if for every entropy achieving sequence (pj),

lim
j→∞

| rpf(μ, pj)|
| fixed(μ, pj)| =

1

2
. (4)

We now state the main theorem of this section.

Theorem 3 (Regular Periodic Orbits). Under assumptions (A0)–(A4), asymp-
totically half of the periodic points are regular at μ2. In particular, at μ2, there
are infinitely many regular periodic orbits.
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The next subsection contains a proof of this theorem, after introducing
the required topological index theory.

2.3. Fixed point index and proof of the main theorem

We now introduce the fixed point index of a hyperbolic periodic point. As-
sume F p(μ, x) = x and the orbit of x is hyperbolic. In particular, the period of
(μ, x) is either p or a divisor of p. Let M be the Jacobian matrix DxF

p(μ, x).
Define Pos(μ, x, p) to be the number of eigenvalues (counting multiplicities)
of M that are greater than +1. Define Indexp(μ, x) = (−1)Pos(μ,x,p). Let
(μ, x) be a period p0 point. Then

Indexkp0(μ, x) = − Indexp0(μ, x) (5)

if and only if k is even and the orbit of (μ, x) is flip.
If (μ, x) is a periodic point, write Per(μ, x) for its (minimum) period. We

will use the shorthand IndexPer(μ, x) for Indexk(μ, x) where k = Per(μ, x).
For any finite subset S of fixed(μ, p), define the fixed point index of S

to be Index(S) = Σx∈S Indexp(μ, x). When | fixed(μ, p)| < ∞, we use the
shorthand notation Index(μ, p) for Index(fixed(μ, p)). Define average fixed
point index of S to be

〈Index(S)〉 = Σx∈S Indexp(μ, x)

|S| . (6)

With the notation developed, we now prove Theorem 3.

Proof of Theorem 3. Assume (A0)–(A4), and let (pj) be an entropy achieving
sequence for F at μ2. We consider two cases: the case in which all pj are odd,
and the case in which some pj are even.

Odd pj case. Assume first that it is possible to choose all periods pj to be
odd.

Assumptions (A1) and (A2) imply that fixed(μ, p) is finite for each p. In
particular, Index(μ1, p) and Index(μ2, p) are well defined. Assumptions (A0)
and (A1) imply that Index(μ1, p) = Index(μ2, p) for each period p. Since the
total number of periodic orbits at μ1 is finite, there is some integer

B1 = max
1≤p<∞

| Index(μ1, p)|.
That B1 is finite is a straightforward fact since we assume that the

periodic orbits at μ1 are hyperbolic and since the index of each periodic orbit
is ±1 for each p. Homotopy invariance [18] implies that for each period p,

Index(μ1, p) = Index(μ2, p),

and in particular,

| Index(μ2, p)| ≤ B1 for some B1.

For the sequence (pj), the number of fixed points goes to infinity. Thus the
number of points with index +1 is nearly equal to those with index −1, the
difference being at most B1. Hence

〈Index(μ2, pj)〉 → 0.
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Notice that since pj is odd, for each fixed point x of F pj (μ2, ·), we have

IndexPer(μ2, x) = Indexpj (μ2, x).

Since the average tends to 0, the fraction of fixed points of F pj (μ2, ·) that has
index +1 tends to half, as j → ∞, as does the fraction with index −1. If two
orbits have the same unstable dimension Dimu and one has index +1 and the
other has index −1, then one has an odd number of eigenvalues less than −1
and the other has an even number. Hence one is contained in a regular orbit
and the other is contained in a flip orbit. Since by (A4) all but a finite number
of orbits at μ2 have the same unstable dimension, we see that asymptotically
half the periodic points are regular, and that as | fixed(μ, pj)| → ∞, there
must be infinitely many regular periodic orbits.

Even pj case. Assume now that it is not possible to choose all the periods (pj)
to be odd. Then there are only finitely many that are odd. After discarding
all odd pj from the sequence, we can assume all pj are even. In this case,
some of the points in fixed(μ, p) may have period k, for which p/k is even.
Hence k also divides p/2. That means that such a point is also a fixed point
in fixed(μ, p/2). Only for such points is it possible that,

IndexPer(μ2, x) 
= Indexpj (μ2, x).

Since the growth rate G0 has been chosen to be as large as possible, we
have

| fixed(μ, pj

2 )|
| fixed(μ, pj)| → 0 as j → ∞.

Hence as j → ∞, such points have negligible effect on the calculations in the
odd case, and we can again conclude that asymptotically half of the periodic
points are regular, and that there are infinitely many regular orbits at μ2. �

3. Counting cascades

The previous section included results on the existence of cascades. This sec-
tion develops methods to count them. We start in the first subsection by
giving an abstract set of results on counting the number of regular periodic
orbits for an m-shift. Since the number of regular periodic orbits is in one-to-
one correspondence with the number of cascades, we are able to apply these
results to counting cascades. We do so in the following subsection.

3.1. Counting regular orbits of an m-shift

In this section, we give a recursive formula for the number of regular periodic
orbits for an m-shift. A formula for the two-shift or tent map appears in [28]
using a bifurcation theory argument, but the general case has not previously
been shown.

Definition 2 (Regular periodic orbits for the m-shift). Consider the full shift
on m symbols. That is, let Σm be the space of all possible infinite sequences
of m symbols, and let σm be the shift map on Σm. In addition to the standard
sequence, we additionally define a mapping Sgn with range ±1 on each of the
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m fixed points of Σm. If the value of Sgn on the fixed point (s, s, s, . . .) is
positive, we refer to s as a positive symbol. Likewise, if Sgn((s, s, s, . . .)) =
−1, we refer to s as a negative symbol. The terms positive and negative are
intended to call to mind that the derivative at the point is positive (or in
higher dimensions orientation preserving) or negative (orientation reversing
in higher dimensions). If there are j positive symbols and m − j negative
symbols, we denote the shift mapping by σ(m,j), as shorthand for the existence
of the mapping Sgn. We now extend Sgn to periodic orbits: let (s1, s2, . . .)
be a periodic point under σ(m,j). That is, for some (not necessarily least) k,
sj+k = sj for all j ≥ 1. Let r be the number of symbols in the set (s1, . . . , sk)
(with multiplicity) which are negative. We define Sgn(s, k) = (−1)r.

Let a = (a1, a2, . . .) be a (least) period-k point of σ(m,j). The point a
is called a regular periodic point if Sgn(s, k) = 1. A periodic point which is
not regular is called a flip periodic point. These definitions are the symbol
analogue of the definitions given for a map in a hyperbolic set on a smooth
manifold.

Definition 3 (Counting notation). We define a series of quantities, some of
which we will use only later. (The subscript s denotes that these are the
symbol analogue of a quantity already defined for a smooth map.)

Pers(m, j, k) = the set of period-k points of σ(m,j);

ρs(m, j, k) = the set of regular period-k points of σ(m,j);

Fixs(m, j, k) = the set of fixed points of σk
(m,j);

e(m, j, k) = the set of fixed points of σk
(m,j) such that Sgn(·, k) = 1;

θ(m, j, k) = the set of fixed points of σk
(m,j) such that Sgn(·, k) = −1.

Note that Pers(m, j, k) and Fixs(m, j, k) are independent of j and that

Pers(m, j, k) = ρs(m,m, k) and Fixs(m, j, k) = e(m,m, k).

Furthermore, Pers(m, j, k) ⊂ Fixs(m, j, k). In addition, since each fixed point
s of σk

(m,j) has either Sgn(s, k) = 1 or Sgn(s, k) = −1, then

Fixs(m, j, k) = e(m, j, k) ∪ θ(m, j, k).

By standard counting arguments, |Fixs(m, j, k)| = mk. Thus

|θ(m, j, k)| = mk − |e(m, j, k)|.
Theorem 4 (Recursive counting formula for RPOs of an m-shift). Let

Odd(k) = {n < k : k/n is odd }.
If k is odd, then

|ρs(m, j, k)| = |e(m, j, k)| −
∑

n∈Odd(k)

|ρs(m, j, n)|,
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and if k is even, then

|ρs(m, j, k)| = |e(m, j, k)| −
∑

n∈Odd(k)

|ρs(m, j, n)| −mk/2,

where | · | denotes the number of elements in the set.

Proof. Define

Even(k) = {n < k : k/n is even}.
Note that Even(k) is empty if k is odd. We proceed by showing the following.

(a) The following formula holds:

|ρs(m, j, k)| = |e(m, j, k)| −
∑

n∈Odd(k)

|ρs(m, j, n)| −
∑

n∈Even(k)

|Pers(m, j, n)|.

(b) If k is even, then
∑

n∈Even(k) |Pers(m, j, n)| = |Fixs(m, j, k/2)|.
The results of the theorem follow from (a) and (b), along with the fact noted
above, that for all k, |Fixs(m, j, k)| = mk.

Proof of (a). We know that ρs(m, j, k) ⊂ e(m, j, k). The elements of

e(m, j, k) \ ρs(m, j, k)

are exactly those elements which are fixed under σk
(m,j), with the least period

less than k. Every point fixed under σk
(m,j) is of the form (a1, . . . , an), a period-

n point (where the overbar denotes repetition to form a forward infinite
sequence), where k/n = r, since the concatenation of r copies of the length-n
sequence (a1, . . . , an) is a length-k sequence. If r is even, then concatenating
r copies of any period-n sequence yields a length-k sequence with an even
number of negative symbols. That is, it is an element of e(m, j, k)\ρs(m, j, k).
However, if r is odd, then r copies of a length-n sequence a yields a length-k
sequence with an odd number of negative symbols, indicating that the fixed
point of σk

(m,j) is contained in e(m, j, k)\ρs(m, j, k), only when a is a regular

periodic orbit.

Proof of (b). Assume that k is even. Let X be a period-n orbit, where n ∈
Even(k), and define p by the formula k/n = 2p. Then X is in an element of
Fixs(m, j, k/2). Furthermore, as shown in the proof of part (a), every element
of Fixs(m, j, k/2) is either a period-k/2 orbit, or is a period-n orbit, where
n divides k/2. But n divides k/2 exactly when k/(2n) = p, which is the
condition for being a member of Even(k). Therefore, there is a one-to-one
correspondence between the elements of Pers(m, j, n) for n ∈ Even(k) and
the elements of Fixs(m, j, k/2). �

The only quantity left to compute is e(m, j, k). The following lemma
gives an algorithmic formula for computing e(m, j, k).

Lemma 1 (Computing e(m, j, k)). For the case k = 1,

|e(m, j, 1)| = j and |θ(m, j, 1)| = m− j.
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For k > 1,

|e(m, j, k)| = j · |e(m, j, k − 1)|+ (m− j) · |θ(m, j, k − 1)|
and

|θ(m, j, k)| = j · |θ(m, j, k − 1)|+ (m− j) · |e(m, j, k − 1)|.
Proof. The k = 1 case is clear, since there are j positive symbols and m− j
negative symbols. We can get all elements of e(m, j, k) by adding a symbol
to the right of a length-(k − 1) sequence of symbols Ψ in such a way that
there are an even number of negative symbols in the resulting sequence of k
symbols. That is, one of the following occurs:

(e1) Ψ ∈ e(m, j, k − 1) and the added symbol is positive, or
(e2) Ψ ∈ θ(m, j, k − 1) and the added symbol is negative.

Likewise, θ(m, j, k) is formed by adding one symbol to a length-(k − 1) se-
quence Ψ in such a way that one of the following occurs:

(θ1) Ψ ∈ θ(m, j, k − 1) and the added symbol is positive, or
(θ2) Ψ ∈ e(m, j, k − 1) and the added symbol is negative. �

Recall that for any k, |θ(m, j, k)| = mk − |e(m, j, k)|. We combine both
facts into a formula only containing e as follows:

|e(m, j, k)| = j · |e(m, j, k − 1)|+ (m− j) · (mk−1 − |e(m, j, k − 1)|).
The next lemma gives a general relationship between e(m, k, j) and

θ(m, k, j).

Lemma 2. Assume that

j = (m+ 
)/2.

This is equivalent to j − (m − j) = 
, meaning that 
 is the difference be-
tween the number of positive symbols and the number of negative symbols.
The quantity 
 can either be positive or negative. Then

|e(m, j, k)| = (mk + 
k)/2,

or equivalently,

|e(m, j, k)| − |θ(m, j, k)| = 
k.

Proof. The equivalence of the two different forms of the formula is straight-
forward. We prove the second one. The formula holds for k = 1, since

|e(m, j, 1)| − |θ(m, j, 1)| = j − (m− j) = 
.

Proceeding inductively, assume |e(m, j, n)| − |θ(m, j, n)| = 
n for all n < k.

|e(m, j, k)| − |θ(m, j, k)| = (j · |e(m, j, k − 1)|+ (m− j) · |θ(m, j, k − 1)|)
− (j · |θ(m, j, k − 1)|+ (m− j) · |e(m, j, k − 1)|)

= (j − (m− j)) · 
k−1 = 
k. �

This algorithm can be automated using a symbolic computation pack-
age. We include such a code in the Appendix. The resulting |ρs| values for a
number of m, j, and k are tabulated in Table 1.
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Table 1. The number of regular period-k orbits for an m-
shift, with j positive symbols for all values of 2 ≤ m ≤ 5,
0 ≤ j ≤ m, and k ≤ 10.

Values of |ρs(m, j, k)|
(m, j) k = 1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10

(2,0) 0 1 0 3 0 9 0 30 0 99

(2,1) 1 0 1 1 3 4 9 14 28 48

(2,2) 2 1 2 3 6 9 18 30 56 99

(3,0) 0 3 0 18 0 116 0 810 0 5880

(3,1) 1 1 4 8 24 56 156 400 1092 2928

(3,2) 2 1 4 8 24 56 156 400 1092 2928

(3,3) 3 3 8 18 48 116 312 810 2184 5880

(4,0) 0 6 0 60 0 670 0 8160 0 104754

(4,1) 1 3 9 30 99 335 1161 4080 14532 52377

(4,2) 2 2 10 28 102 330 1170 4064 14560 52326

(4,3) 3 3 11 30 105 335 1179 4080 14588 52377

(4,4) 4 6 20 60 204 670 2340 8160 29120 104754

(5,0) 0 10 0 150 0 2580 0 48750 0 976248

(5,1) 1 6 16 82 288 1340 5424 24746 107408 490920

(5,2) 2 4 20 72 312 1280 5580 24336 108500 487968

(5,3) 3 4 20 72 312 1280 5580 24336 108500 487968

(5,4) 4 6 24 82 336 1340 5736 24746 109592 490920

(5,5) 5 10 40 150 624 2580 11160 48750 217000 976248

The case of m-tent maps. We now consider our counting in the special case
in which j is as close to m/2 as possible. This occurs for example for one-
dimensional m-tent maps, in which every other crossing of the origin has a
negative derivative. The map can start with either a positive or a negative
derivative close to zero. For m even, this distinction does not change the
number of crossings for which the derivative is negative, but for m odd, it
does. However, in the next lemma we show that this distinction only changes
the number of regular periodic points for k = 1.

Lemma 3. If m is odd, then for every k > 1,∣∣∣∣ρs
(
m,

m− 1

2
, k

)∣∣∣∣ =
∣∣∣∣ρs

(
m,

m+ 1

2
, k

)∣∣∣∣ .
Proof. Let j− = (m− 1)/2 and j+ = (m+ 1)/2. Clearly

|ρs(m, j±, 1)| = j±
and

|ρs(m, j±, 2)| = m2 + (±1)2

2
− 21 =

m2 + 1

2
− 2.

Inductively, assume equality for all n < k. Consider the expression for
|ρs(m, j±, k)| given in Theorem 4. By our inductive hypothesis, there are only
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two terms in that expression that could possibly differ. They are |e(m, j±, k)|
and |ρs(m, j±, 1)|. There are two cases.

If k is even, then 1 is not contained in Odd(k), and

|e(m, j±, k)| = mk + (±1)k

2
,

which is the same in both cases. This completes the proof of the even k case.
If k is odd, then 1 is contained in Odd(k). Further,

|e(m, j±, k)| − |ρs(m, j±, 1)| = mk + (±1)k

2
− m± 1

2
=

mk −m

2
.

Therefore, |ρs| is the same for j+ and j−. This completes the proof of the
odd k case. �

The techniques of this proof lead to the following statement for general
m and j (not restricted to tent maps).

Lemma 4. For all m, if k is even, then for any 
 < m such that (m− 
)/2 is
an integer, ∣∣∣∣ρs

(
m,

m− 


2
, k

)∣∣∣∣ =
∣∣∣∣ρs

(
m,

m+ 


2
, k

)∣∣∣∣ .
Proof. Define j± = (m±
)/2. For k = 2, |ρs(m, j±, 2)| = (m2+(±
)2)/2−m
and are thus equal for j+ and j−. For any even k,

|e(m, j±, k)| = mk + (±
)k

2
,

and are thus equal for j+ and j−. If k is even, then every n ∈ Odd(k) is also
even. Therefore the result follows by induction. �

3.2. Counting cascades for smooth maps

We now use the results of the previous subsection to count the infinitely many
cascades shown to exist in Theorems 1 and 2. There are guaranteed to be
infinitely many cascades under the hypotheses of these theorems, but they
fall into distinct categories which are enumerable. Assume that F satisfies
assumptions (A0)–(A4). There are two fundamentally different types of cas-
cades on [μ1, μ2]×M : cascades which are unique in their maximal paths on
[μ1, μ2] ×M , called solitary cascades, and cascades which are not unique in
their maximal path in [μ1, μ2]×M , in which case their maximal path contains
exactly two cascades. Such cascades are called paired cascades (cf. [30]).

The maximal path of a paired cascade is contained entirely within the
interior of [μ1, μ2] × M and never intersects the boundary. We have shown
previously that if μ0 < μ1 < μ2 are such that (A0)–(A4) are satisfied on
the parameter intervals [μ0, μ1] and [μ2, μ1], a condition we call off-on-off
chaos, then all but a finite number of cascades are paired. Paired cascades
are sensitive to perturbations and are easy to create and destroy. Therefore
counting them is of little interest, since they are not dynamically stable in
any reasonable sense.
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In contrast to the paired case, solitary cascades are robust to large
changes in the map. Thus these are the cascades which we count. Solitary
cascades are most familiar in the dynamical literature, as all cascades of
quadratic maps are solitary. Theorems 1 and 2 only describe solitary cascades,
showing that the maximal path of a solitary cascade contains exactly one
regular orbit on the boundary of the parameter region (i.e., at μ = μ1 or
at μ = μ2). We refer to the period of this regular orbit as the stem period
of the cascade on [μ1, μ2]. In the examples in the current section, we can
find a value μ∗2 sufficiently large such that for any κ > μ2, each cascade has
the same stem period on [μ1, μ

∗
2] and on [μ1, κ]. In the next section, we will

discuss a map such that cascades continue to form as μ → ∞.

Definition 4 (Dynamical horseshoe). Assume that F satisfies assumptions
(A0)–(A4). Assume that at μ2, there is a hyperbolic invariant set of F which
is topologically conjugate to the m-shift with j positive symbols and m − j
negative symbols. Assume that the conjugacy sends points in any orbit with
an orientation-reversing Jacobian to negative symbols and points in an orbit
with orientation-preserving Jacobian to positive symbols. We call this set a
dynamical {m, j} horseshoe for F (μ2, ·).

The following lemma links the previous section to the number of cas-
cades.

Lemma 5. Assume that F satisfies assumptions (A0)–(A4), that there are no
periodic orbits at μ1, and that at μ2, there is a hyperbolic invariant set for F ,
which is a dynamical {m, j} horseshoe, and there are no periodic orbits out-
side the hyperbolic invariant set. Then the number of stem period-k solitary
cascades is |ρs(m, j, k)|, as computed in the previous section.

Proof. This is a corollary of Theorem 2. Note that Γ1 = 0 by assumption.
Since all periodic orbits are contained in a hyperbolic invariant set of F (μ2, ·),
they all have the same unstable dimension, and Γ2 = 0. Thus every solitary
cascade corresponds to a unique regular point at μ2. The topological conju-
gacy maps regular period-k points of F to regular period-k points of σ(m,j)

(and flip period-k points of F to flip period-k points of σ(m,j)). Therefore,
the number of regular period-k points for F at μ2 is equal to |ρs(m, j, k)| as
computed in the previous section. �

Counting stem period-k cascades. Lemma 5 is quite general, in that it applies
to any horseshoe. We use it to compute cascades in a few specific examples.

One-dimensional examples. We now present three illustrative examples.

Quad(μ, x) = μ− x2 + g(μ, x), (7)

Cubic(μ, x) = μx− x3 + g(μ, x), (8)

Quart(μ, x) = x4 − 2μx2 + μ2/2 + g(μ, x), (9)
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where for some real positive β,

|g(μ, 0)| < β for all μ,

|gx(μ, x)| < β for all μ, x.
(10)

For μ sufficiently negative, (7) and (9) have no periodic orbits. For μ
sufficiently negative, (8) has only one periodic point and it is a flip fixed
point. Hence (8) has no regular orbits.

For large μ, all three equations have dynamical horseshoes and all their
periodic points are part of their horseshoe. See [29] for the detailed calcu-
lations for the first two maps, and [30] for the third. The horseshoes are,
respectively, {2, 1}, {3, 1}, and {4, 2} horseshoes. Thus for a residual set of g,
the number of stem period-k solitary cascades for each can be read directly
off the corresponding rows of Table 1 in the previous section. Although the
existence of infinitely many cascades has been shown in [29], the current
paper is the first to compute these values.

Two-dimensional examples. Similarly, we have shown in [28] that large per-
turbations of the Hénon map are planar systems such that for small param-
eters, there are no periodic orbits, and for large values of μ, there is a {2, 1}
dynamical horseshoe. Specifically, we refer to the system

H(μ, x1, x2) =

(
μ+ βx2 − x2

1 + g(μ, x1, x2)

x1 + h(μ, x1, x2)

)
, (Hénon)

where β is a nonzero fixed value, and the added function (g, h) is smooth
and is very small for ‖(μ, x1, x2)‖ sufficiently large. Thus, for a residual set
of (g, h), the number of stem period-k solitary cascades is equal to |ρs(2, 1)|
in Table 1.

N -dimensional examples. Another example is an N -dimensional coupled sys-
tem of equations, namely,

xi �→ Ki(μ)− x2
i + gi(x1, . . . , xN ), (Coupled Quadratic)

where g = (g1, . . . , gN ) is bounded with bounded first derivatives, and

lim
k→±∞

Ki(μ) = ±∞.

In such a system, if μ is small, there are no periodic orbits. If μ is large,
there is a {2N , 2N−1} dynamical horseshoe. Thus for a residual set of g, the
number of stem period-k solitary cascades is given by |ρs(2N , 2N−1)|. For
example, for the planar case, the number of cascades is equal to the number
of cascades for the quartic class of map Quart in the one-dimensional section
above.

4. An example with ever-increasing topological entropy

In our previous examples, there is a finite parameter interval containing all
bifurcations. In this section we give an example such that the number of
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Figure 2. A bifurcation diagram for Sμ, showing a portion
of the attracting set for each μ. Cascades continue to form as
μ goes to infinity. Note that for μ ∈ [0, 1

2π ), x = 0 is stable.
For some μ, there are multiple attractors. The union of the
attractors is symmetric about x = 1

2 for each μ. The appar-
ent asymmetry of the figure reveals that another attractor
exists but is not shown. See, for example, the cascade near
μ = 0.4; this is paired with another cascade which is not
shown.

cascades continues to increase for arbitrarily large values of the parameter.
Specifically, we investigate the map Sμ : [0, 1] → [0, 1) defined by

Sμ(x) := μ sin(2πx) mod 1.

The bifurcation diagram is shown in Figure 2. The map is depicted in Fig-
ures 3 and 4.

As the parameter μ is increased, many dynamical systems reach a level
of maximum topological entropy followed by a decrease to zero entropy. Con-
sider the forced damped pendulum and the forced Duffing equation, where
T is the period and μ is the strength of the forcing. The time T map for
both the differential equations has that property; there is no chaos for large
|μ|. For the quadratic map and the Hénon map, the entropy reaches a max-
imum, namely ln 2, and is thereafter, a constant. For this system, however,
the entropy increases without bound as μ → ∞. In fact, the number of cas-
cades in the system and consequently the chaos in the system increases as
μ increases, and the system has an ever-increasing number of solitary cas-
cades for μ ∈ [0,m] as m is increased to higher and higher integer values.
Specifically, we calculate the number of period-k solitary cascades, for k > 1,
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Figure 3. Sμ(x) and its conjugate map Tμ(y) for μ = 1.

Figure 4. Sμ(x) and its conjugate map Tμ(y) for μ = 3.

for positive integer values of μ ∈ [0,m], where m ∈ N. As in the previous
examples, each solitary cascade in μ ∈ [0,m] is contained in a component of
RPO([0,m]×[0, 1]) that includes a regular orbit at μ = m. We do not rule out
the possibility that a solitary cascade on [0,m] would be a paired cascade on
[0,∞). In that case, the cascade it is paired with would have μ value greater
than m. In order to complete these calculations, we show that for positive
integer values of μ, Sμ is conjugate to a map Tμ for which inf |T ′μ| > 1. Thus
Sμ(x) is unstable for μ > 0 an integer. This allows us to conclude that for
each positive integer μ, the map Sμ is chaotic, and every periodic orbit is
unstable. We can apply Lemma 5 to enumerate the number of cascades in
the system at a given value of μ.
The map. For each positive integer μ, i.e., μ ∈ N, the map is rotationally
symmetric with respect to point ( 12 ,

1
2 ). The interval [0, 1) is divided into 4μ

parts, each of which maps onto [0, 1).
The map C : [−1, 1] → [0, 1] given by

C(y) =
1− cos(πy)

2
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has been used to establish a conjugacy between the logistic map and the tent
map.

We define the map Tμ := C−1(Sμ(C)) where

C−1(x) =
cos−1(1− 2x)

π
.

Lemma 6. For μ ∈ N, the conjugate map Tμ satisfies inf |T ′μ| > 1.1

Proof.

Tμ(y) = C−1(Sμ(C(y)))

=
cos−1(1− 2 [μ sin(π cos(πy)) mod 1])

π
.

(11)

Hence,

dTμ(y)

dy
=

2(μ sin(π cos(πy)) mod 1)′

π
√
(1− (1− 2[μ sin(π cos(πy)) mod 1])2

=
(μ sin(π cos(πy)) mod 1)′

π
√
(μ sin(π cos(πy)) mod 1)− (μ sin(π cos(πy)) mod 1)2

=
(μ sin(π cos(πy)))′

π
√
(μ sin(π cos(πy)) mod 1)− (μ sin(π cos(πy)) mod 1)2

,

(12)

where ′ denotes derivative. Therefore,∣∣∣∣dTμ(y)

dy

∣∣∣∣
2

=
[(μ sin[π cos(πy)])′]2

π2[(μ sin(π cos(πy)) mod 1)− (μ sin(π cos(πy)) mod 1)2]

since the “mod1” does not affect the derivative of the function at a point, so
long as the derivative is defined at that point.

The derivative dTμ(y)/dy is defined everywhere on [0, 1] except for a
finite number of points. In this section, our notation will ignore the fact that
we are taking infima of functions which are not defined at a finite number of
points.

Define Lμ = infy∈(0, 12 ) |dTμ(y)/dy|. Considering y ∈ [0, 1], Tμ
′(y) =

Tμ
′(1− y). Hence, Tμ

′(y) is symmetric with respect to the line y = 1
2 . Hence,

it is enough to prove that Lμ > 1 which is equivalent to showing that Lμ
2 >

1. For convenience, write θ(y) = θ = π cos(πy) for y ∈ (0, 1
2 ) which gives

θ ∈ (0, π). Rewrite [μ sin(π cos(πy)) mod 1] = [μ sin θ mod 1] as (μ sin θ − k)
where k is an integer such that 0 ≤ (μ sin θ−k) < 1, i.e., k is the integer part
of μ sin θ. Depending on θ ∈ (0, π), k ranges from 0 to μ− 1.

Thus, we prove

Lμ
2 = inf

θ∈(0,π)
μ2(π2 − θ2) cos2 θ

(μ sin θ − k)− (μ sin θ − k)2
> 1. (13)

1Note that | dTμ(0)

dy
| = √

2πμ which appears to be infy∈(0, 1
2
) |

dTμ(y)

dy
|
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Case 1: μ = 1. For μ = 1, k = 0.

L1
2 = inf

θ∈(0,π)
(π2 − θ2) cos2 θ

sin θ − sin2θ

= inf
θ∈(0,π)

(1 + sin θ)(1− sin θ)(π2 − θ2)

sin θ(1− sin θ)

= inf
θ∈(0,π)

(
1 +

1

sin θ

)
(π2 − θ2).

(14)

However,

inf
θ∈(0,π)

(
1 +

1

sin θ

)
(π2 − θ2) > inf

θ∈(0,π)

(
1

sin θ

)
(π − θ).

Hence, it is enough to show that(
1

sin θ

)
(π − θ) ≥ 1 for θ ∈ (0, π),

which is equivalent to showing that

g(θ) = π − θ − sin θ ≥ 0 for θ ∈ (0, π). (15)

Now, g′(θ) = −1 − cos θ < 0 for θ ∈ (0, π). Hence, g(θ) is a decreasing
function for θ ∈ (0, π), so g attains a minimum as θ → π− and limθ→π− g(θ) =
0. Therefore, (15) holds, and hence

L1
2 = inf

θ∈(0,π)
(π2 − θ2) cos2 θ

sin θ − sin2θ
> 1. (16)

This finishes the case μ = 1.
Figure 3 shows the graph of Sμ(x) and the corresponding graph of Tμ(y)

for μ = 1.
Case 2: μ > 1. Assume μ ∈ N, μ > 1. In this case, we show that

Lμ
2 = inf

θ∈(0,π)
μ2(π2 − θ2) cos2 θ

(μ sin θ − k)− (μ sin θ − k)2
> 1.

From (16), it is enough to show that for θ ∈ (0, π),

μ2(π2 − θ2) cos2 θ

(μ sin θ − k)− (μ sin θ − k)2
≥ (π2 − θ2) cos2 θ

sin θ − sin2θ
(17)

⇐⇒ μ2

(μ sin θ − k)− (μ sin θ − k)2
≥ 1

sin θ − sin2θ

⇐⇒ μ2(sin θ − sin2θ) ≥ (μ sin θ − k)− (μ sin θ − k)2

⇐⇒ μ2 sin θ ≥ μ sin θ − k − k2 + 2μk sin θ

⇐⇒ (μ2 − μ− 2μk) sin θ ≥ −k − k2. (18)

Note that k is an integer and a function of θ, that is, k = k(θ) such
that 0 ≤ μ sin θ−k < 1. Since sin θ is a continuous function, k(θ) is piecewise
continuous with jump discontinuities. Also,

(μ2 − μ− 2μk) sin θ ≥ (μ2 − μ− 2μk).
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Hence, from (18), it is enough to show that (μ2 − μ− 2μk) ≥ −k− k2 which
is equivalent to showing that

(μ− k)2 ≥ (μ− k),

which is always true since (μ − k) is an integer. This proves (17). Hence,
infy∈(0, 12 ) |T ′μ(y)| > 1 for μ > 1, when μ is an integer. �

Figure 4 shows the graphs of Sμ(x) and the corresponding graphs of
Tμ(y) for μ = 3.

The above lemma shows that every periodic orbit of the map Tμ(y) is
unstable, and since Tμ(y) and Sμ(x) are conjugates, every periodic orbit of
the map Sμ(x) = μ sin(2πx) mod 1 is unstable, for positive integer values
of μ.

Counting cascades for Sμ. Since Sμ maps periodically onto [0, 1), we can view
the phase space of Sμ as M = a circle. Thus, there is no spatial boundary
to worry about. By the above calculations, at μ = m where m a positive
integer, the map is a dynamical {4m, 2m} horseshoe. Therefore, there are
|ρ(4m, 2m, k)| regular period-k orbits at μ = m. There is a unique periodic
point at μ = 0: a globally stable fixed point at x = 0, implying that Λ1 = 1
in Theorem 1. From Theorem 2, a residual set of maps in any neighborhood
of Sμ has |ρ(4m, 2m, k)| solitary stem period-k cascades on [0,m]×M, plus
one extra stem period-one cascade, as a result of the RPO(μ = 0, x = 0). The
map Sμ itself has some degenerate bifurcations, including symmetry breaking
pitchfork bifurcations. However, if one permits the one-manifolds containing
cascades to overlap at some isolated points, then there is no difference in
counting the number of solitary cascades, and the formulas remain true.

Note that we have stated that there is exactly one extra cascade from
the stable fixed point at μ = 0, although the theorem only guarantees that
there is a possible addition or subtraction of one cascade as a result of the
RPO(μ = 0, x = 0). We are able to show this stronger statement as follows:
there is an orientation of the RPO at μ = 0 inherited from the index, and it
is the opposite of the orientations that all that RPOs at μ = m > 0 inherit
from their indices. We have shown in [29] that the orientation inherited from
the index remains fixed along a component Y of RPOs. Therefore, the stable
fixed point at μ = 0 cannot be in the same component as any RPO at μ = m.
It thus gives rise to an extra solitary cascade. The number of cascades for Sμ

is given for two sample intervals in Table 2.

5. Cascade-free chaos and a conjecture

In this section, we give an example to show that if there is no dominant
dimension of instability, then it is possible to have a route to chaos without
cascades. We then conjecture that this example is demonstrating atypical
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Table 2. The number of solitary cascades of stem period
k for every large-scale perturbation of the quadratic, cubic,
and quartic maps, respectively, labeled Quad(k), Cubic(k),
Quart(k), and Sμ(k). It is described in the text that for
the first three maps, as long as μ1 is small and μ2 is suf-
ficiently large, there are the same number of cascades. The
number of cascades for Sμ is ever-growing as μ increases.
We have enumerated the cascades for two sample parame-
ter intervals here. Quad(k) and Quart(k) are, respectively,
also equal to the number of solitary cascades of stem period
k for large-scale perturbations of the Hénon map and the
two-dimensional coupled quadratic system.

k Quad(k) Cubic(k) Quart(k) Sμ(k) on [0, 2] Sμ(k) on [0, 3]

1 1 1 2 4+1 6+1

2 0 1 2 12 30

3 1 4 10 84 286

4 1 8 28 496 2556

5 3 24 102 3276 24,882

6 4 56 330 21756 248,534

7 9 156 1170 149,796 2,559,414

8 14 400 4064 1,048,064 26,871,264

9 28 1092 14560 7,456,512 286,654,368

k � 10 ∼ 2k/2k ∼ 3k/2k ∼ 4k/2k ∼ 8k/2k ∼ 12k/2k

behavior. Consider the following uncoupled one-parameter family of functions
from the plane to itself:

f(μ, x, y) = μ− x2,

g(μ, x, y) = μ− 5− y2.

The periodic points of this uncoupled system are of the form (a, b),
where a is a periodic point for f alone, and b is a periodic point for g alone.
For μ < −0.75, f has no periodic points, and for μ > 2, f has infinitely many
periodic points, and all are unstable. For μ < 4.75, g has no periodic points.
At μ = 4.75, a saddle-node bifurcation creates a stable and an unstable
fixed point. Thus the full system has no periodic points for μ < 4.75. For all
μ > 4.75, there are infinitely many periodic points, all of which are unstable.
Thus there is chaos without cascades. The key to how this occurred is that
half the regular periodic orbits have unstable dimension one, and half have
unstable dimension two. Specifically, the RPOs corresponding to the stable
fixed point of g have unstable dimension one, and the RPOs corresponding
to the unstable fixed point of g have unstable dimension two. This lack of a
dominant unstable dimension results in a route to chaos devoid of cascades.
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We have shown that virtual uniform chaos is sufficient for cascades, but we
conjecture that this can be weakened to asymptotically uniform chaos. This
is stated more formally as follows.

Definition 5 (Asymptotically uniform chaos). Let ρ(μ, p, L) denote the set
of regular periodic orbits with unstable dimension L. We say that F has
asymptotically uniform chaos if there exists an N such that

lim
p→∞

∑
L �=N |ρ(μ, p, L)|
|ρ(μ, p,N)| = 0.

Conjecture 1. Assume hypotheses (A0)–(A3) and the weakened version of
(A4), such that at μ2, F has asymptotically uniform chaos. Then, there are
infinitely many cascades.

6. Background

In this section, we give a more detailed contrast between our work on existence
and the well-known theory of scaling of cascades. We describe the scaling
theory to spell out its achievements and to describe what it does not do,
noting in particular that our goals are quite different. Our theory addresses
the problem of describing a cascade, once it is known to exist.

The difficulty of showing that there are cascades is illustrated by the fol-
lowing quote from Collet and Eckmann [5], giving the problem a probabilistic
interpretation:

“If a one-parameter family shows subharmonic bifurcations to pe-
riods 1, 2, 4, for example, then there is so to speak a higher prob-
ability of finding period 8 at a further parameter variation than of
finding a period 4 when only periods 1 and 2 have appeared.” [5,
p. 39]

That is, using these methods, one is unable to predict whether the next
bifurcation of a general family of orbits will be a supercritical period doubling
(the nice case) rather than an inverted saddle-node or a subcritical period-
doubling bifurcation. We avoid this difficulty by use of a topological invariant
that is effective for generic families of maps.

Collet and Eckmann introduce one of their goals as follows [5, p. 37].

“Theorem. (Feigenbaum [1978], Collet-Eckmann-Lanford [1980]).
For sufficiently smooth families of maps of the interval to itself the
number δ does not in general depend on the family.”

Of course there are extremely smooth scalar maps (like μ−x or cos(μ2−x)) for
which there are no cascades. The assertion means that for every sufficiently
smooth map, each typical cascade (if indeed there are any cascades) will
scale as (1). The phrase “in general” acknowledges that there are exceptional
cascades which do not satisfy this property.

There is also a local result that we quote here for maps in R
2, but the

analogue also holds for scalar families of maps. “Every one-parameter family
R

2 → R
2, which passes sufficiently close to [a universal map] will exhibit an
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infinite sequence of period doublings” [5, p. 57] and these will exhibit scaling.
The scalar map μ− x2 is an example of a map whose first cascade is known
to in fact exhibit scaling.

7. Appendix

Computing the number of regular periodic orbits for an m-shift. The follow-
ing Mathematica function computes the first Nu values of |ρs(m, j, k)|, where
j = (m+ 
)/2:

rho[m_, ell_, Nu_] := Module[{t},

et[1] = (m + ell)/2;

orb[1] = et[1]/1;

SetAttributes[et, Listable];

SetAttributes[orb, Listable];

For[k = 2, k < Nu + 1, k++,

J = Select[Drop[Divisors[k], -1], ! Divisible[k/#, 2] &];

L = If[EvenQ[k], m^(k/2), 0];

et[k] = (m^k + ell^k)/2 - Total[et[J]] - L;

orb[k] = et[k]/k;

];

t = orb[Range[Nu]]]

In order to see these values, we set m, ell, and Nu to specific values. For
example, the line

rho[4, 0, 12]

yields the output

{2, 2, 10, 28, 102, 330, 1170, 4064, 14560, 52326, 190650, 698700}
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