
Volume 7, Number Proof, 2022, 1–

A COMPUTER-ASSISTED STUDY OF RED CORAL

POPULATION DYNAMICS

SAYOMI KAMIMOTO, HYE KYUNG KIM, EVELYN SANDER, AND THOMAS WANNER

Abstract. We consider a 13-dimensional age-structured discrete red coral pop-
ulation model varying with respect to a fitness parameter. Our numerical results
give a bifurcation diagram of both equilibria and stable invariant curves of or-
bits. We observe that not only for low levels of fitness, but also for high levels
of fitness, populations are extremely vulnerable, in that they spend long time
periods near extinction. We then use computer-assisted proofs techniques to rig-
orously validate the set of regular and bifurcation fixed points that have been
found numerically.

1. Introduction

Coral plays an important role in the marine ecosystem, and coral reefs pro-
vide habitats to many sea animals and protect coastlines from breaking waves and
storms. Red coral is a long-lived, slow-growing species, dwelling on Mediterranean
rocky bottoms. Red coral populations are at risk due to both global climate change
and overharvesting [4]. Bramanti, Iannelli, and Santangelo [3, 17] investigated red
coral populations by scraping samples off the coast of Italy in Calafuria in the West-
ern Ligurian Sea (43◦30′ N, 10◦20′ E, Italy, at a depth between 20 and 45m depth)
and observing their growth rate over a four-year period. They used this data to
construct a Leslie-Lewis transition matrix, a static life table, and a 13-dimensional
dynamical population model. Using this model, they studied population trends
by comparing small young colonies and bigger older colonies. However, they only
considered a small range of population trends. In the current paper, we present a
systematic study of this coral population model, shedding light on the long-term
dynamics of the red coral populations. We can see the long-term effect of change in
reproduction fitness. We establish the equilibrium structure and bifurcation points
for the model, find a set of stable periodic invariant cycles, and show that for a
large range of reproduction fitness these cycles get close to population extinction.

In addition to these observations, we present and implement methods which allow
us to rigorously validate the model’s equilibrium and bifurcation structure, including
both a saddle-node and a Neimark-Sacker bifurcation. These validations use a
modification of the Newton-Kantorovitch type method developed in [15, 19, 20].
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Figure 1. Photographs of red coral colonies. The individual polyps
are visible particularly in the right-hand image. Photos from [1,8].

While the previous version of this method merely used natural continuation, this
paper contains an extension of these results in which we consider rigorous validation
using pseudo-arclength continuation [9, 10]. In addition, we use computer-assisted
proof methods to prove the existence of saddle-node and Neimark-Sacker bifurcation
points on the equilibrium branch. These methods significantly extend the range of
applications of the constructive implicit function theorem which was introduced
in [15]. While for the purposes of this paper we restrict ourselves to the case of
finite-dimensional Euclidean spaces, the results can easily be adapted to the general
Banach space setting, with little change. Thus, the pseudo-arclength results can be
used for example in the setting of partial differenial equations, such as the setting
described in [16]. In other words, the present paper presents a functional analytic
foundation for using pseudo-arclength continuation in the context of computer-
assisted proofs based on the constructive implicit function theorem presented in [15].

The remainder of this paper is organized as follows. We introduce the age-based
red coral model in Section 2. In addition, we present a bifurcation diagram of fixed
points and stability of the model, along with a detailed discussion of oscillations.
These results show how even at high fitness levels, the oscillations lead to extreme
vulnerability of the population. Section 3 contains a functional-analytic approach
to the rigorous validation of the regular branches in the bifurcation diagram, which
is based on a constructive version of the implicit function theorem. Subsequently,
Section 4 details the validation for the three bifurcation points on the main fixed
point branch; namely, the saddle-node bifurcation in 4.2, the Neimark-Sacker bifur-
cation in 4.1, and the transcritical bifurction in 4.3. Section 5 contains conclusions
and future work.

2. Red coral population model

In this section we present the red coral population model of Bramanti, Iannelli,
and Santangelo [3,17], based on their experimental and field data and a Leslie-Lewis
transition matrix. In addition, we describe the dynamics of the model in terms of
its bifurcation structure and discuss its implications.

2.1. Description of the model. A coral population is a self-seeding independent
group consisting of polyps, tiny soft-bodied organisms related to jellyfish. Polyps
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Figure 2. Life cycle of the coral population

form into colonies, which are distinct clusters with polyps residing on a surface, as
shown in Figure 1. A polyp is born to a parent colony in a free-swimming larval
stage. At the end of the larval stage, the polyp permanently attaches itself to a
colony and cannot move again. The age of a colony has implications in terms of
its size and polyp density. As a result, colony age determines the polyp attachment
rate, the larval birth rate, and the polyp survival rate. Based on these factors,
larvae will attach either to an existing colony or, especially if there is a high polyp
density, recruitment will occur. That is, larvae do not attach to existing colonies,
but instead form new colonies. Red coral polyps can reproduce larvae starting two
years after their birth, implying that there is no birth in a colony less than two years
old, since none of the polyps are old enough to reproduce. Reproduction occurs at
a discrete time in summer, implying that a discrete population model is a natural
modeling assumption.

Based on the setting above, rather than modeling the total large number of
polyps in a coral population, the age-based model is a discrete time model for
(x1, x2, . . . , xd), where xk is the number of colonies of age group k. The value d
is the oldest colony in the population. While in principle this d could be large,
in the observations made there was no colony of age group greater than 13. The
value of xk changes with respect to time (in years), where xnk denotes the number of
colonies of age group k at year n. The colony life cycle is displayed in the schematic
diagram shown in Figure 2. The downward arrows in Figure 2 indicate that xk+1,
the number of colonies in age group k+1, is determined exclusively by the number
of colonies in age group k in the previous year. This relation is linear with respect
to population, with the survival rate constant Sk, i.e., we have x

n
k+1 = Skx

n−1
k . The

survival rate values are determined by observation, and are given in Table 1, based
on [17, Table 2].
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Class k Survival rate Sk Fertility Fk

1 0.89 0
2 0.63 0
3 0.70 0.36
4 0.52 0.64
5 0.44 0.82
6 0.29 0.97
7 0.57 0.98
8 0.33 0.99
9 0.75 1
10 1 1
11 0.33 1
12 1 1
13 1

Table 1. Observational red coral data from [17]. Our calculations
are based on their fitting functions given in (2.1) and (2.2), which
were established using this data.

The upward arrows Figure 2 indicate that recruits may be larvae from any colony
of age two or greater. Though it is not obvious from the schematic diagram, the
recruitment rate is not linear, and it depends on both the total number of polyps
in the colonies, as well as on the larvae birth rates. Considering that the base
variables xk denote the number of colonies in age group k, the total number of
polyps can be deduced from the numbers pk of polyps per colony in a colony of age
group k, and the birth rates bk depend on the fertility rates Fk given in Table 1.
Combined with the observational data in [3], Bramanti et al. have then derived
empirical expressions for the polyp per colony numbers pk and the birth rates bk,
which are given by

(2.1) pk = 1.239 k2.324 and bk = Fk k
2.324 .

For our calculations in the present paper, we use these fitting functions rather than
the original data, in keeping with the equations in [3]. In addition to the birth
rates, the number of recruits x1 depends also on a nonlinear function ϕ, which in
turn depends on the density of polyps per unit area. This function ϕ is given by

ϕ(y) =
c1e

−αy

y2 + c2e−βy
, with c1 = 1.8 · 105, c2 = 1.3 · 107,(2.2)

α = 5 · 10−4, β = 3.4 · 10−3 ,

which again is a fit for the observational data in [3]. The shape of this nonlinearity
is depicted in Figure 3. For a small density of polyps, the function ϕ increases with
polyp density, whereas too large of a polyp density inhibits the creation of new
colonies due to competition for resources.

We now explain how to compute the polyp population density P . We have already
seen that the numbers pk of polyps per colony in a colony of age group k satisfy the
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Figure 3. The recruits-to-larvae ratio function ϕ plotted with re-
spect to polyp density P .

empirical formulas in (2.1). Thus, the total number of polyps in age group k is given
by pkxk. Now let Ω denote the total area of the population site, which was measured
to be equal to 36 dm2 in [3]. Moreover, let x = (x1, x2, . . . , xd) be a column vector
giving the number of colonies of each age group, and let p = (p1, p2, . . . , pd) denote
the vector of polyps per colony in each age group. Then the total number of polyps
in the (non-recruit!) population Q and the polyp population density P satisfy the
identities

(2.3) Q =
d∑

k=2

pkxk and P =
Q

Ω
.

Based on these preliminaries, let xn = (xn1 , x
n
2 , . . . , x

n
d ) represent the vector contain-

ing the number of colonies at year n, and let P be the polyp population density
defined in (2.3). If we now define

(2.4) L(λ, x) =


λb1ϕ(P ) λb2ϕ(P ) . . . λbd−1ϕ(P ) λbdϕ(P )

S1 0 . . . 0 0

0
. . .

. . .
...

...
. . .

. . . 0
...

0 . . . 0 Sd−1 0

 ,

where the bifurcation parameter λ is described below, then our model is given by

(2.5) xn+1 = L(λ, xn)xn .

The model (2.4) and (2.5) is an age-structured, nonlinear, discrete-time dynamical
model. For the parameter value λ = 1, it is precisely based on the observational
data in [3]. The nonlinearity arises only in the evolution of the variable x1, which
describes the number of recruit colonies. In a slight reformatting of notation, let the
function f : R × Rd → Rd be given by f(λ, x) = L(λ, x)x. Then xn+1 = f(λ, xn),
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meaning that the dynamical population variation corresponds to the iteration of
the parameter-dependent nonlinear map f .

We still have to justify the introduction of the bifurcation parameter λ in the
above formulas. Previous work concentrated on the effect of varying the biologically
relevant reproductive number R, the total number of larvae produced by a single
colony during its life span. This parameter is directly proportional to λ, as we
will show in Section 2.3. The birth rate parameters bk in the above equation are
determined by observation of a specific coral population over a small time period.
In order to consider a population model in which the population is placed under
stress, such as in the case of climate change, it is necessary to change the parameters
beyond what has been observed. While we could also consider modification of other
parameters, we choose to follow along the lines of [3] and vary the birth rates,
making the assumption that every birth rate parameter will be equally affected.
Therefore, in our subsequent analysis, for every k we let the birth rate be given by
λbk, a fixed scaling factor compared to the originally observed birth rate.

2.2. Fixed points of the coral population model. We now consider the set
of fixed points for the coral population model, given by the nonlinear function f
defined above, and how this set changes as a function of the parameter λ. That is,
we wish to determine the set of all pairs (λ, x) ∈ R× Rd such that f(λ, x) = x. As
it turns out, this can be reformulated equivalently as a one-dimensional problem.
To see this, assume that we have x = f(λ, x). Then for all indices k = 1, . . . , d− 1
one has xk+1 = Skxk. Using these statements iteratively, one readily obtains

x2 = S1x1 , x3 = S2S1x1 , . . . xd = Sd−1 · · ·S2S1x1 .

Thus, for all k = 2, . . . , d we have xk = akx1, where one uses the abbreviation

(2.6) ak =
k−1∏
i=1

Si ,

and we further define a1 = 1 then one also has x1 = a1x1. Since we can write each
component xk for k ≥ 2 as a function of x1 alone, the fixed point problem is a
one-dimensional problem, which is only a matter of determining x1. Recall that we
defined the polyp population density P in (2.3), and let b = (b1, b2, . . . , bd). Then
the equation for x1 is given by

x1 = λ(b · x) ϕ(P ) .

Moreover, let a = (a1, a2, . . . , ad). This immediately implies the identities

x = x1a , P =
x1
Ω

d∑
k=2

pkak , and b · x = (b · a) x1 .

Altogether, this shows that a vector x = (x1, . . . , xd) is a fixed point for the
map f(λ, ·) if and only if x = x1a and its first component x1 satisfies the non-
linear equation

(2.7) x1 = λ (b · a)x1 ϕ

(
x1
Ω

d∑
k=2

pkak

)
.
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From this equation, one can then determine all fixed points of the coral population
model. Notice that we clearly have the trivial solution x = 0 for all values of the
parameter λ, which corresponds to an extinct population.

2.3. The basic reproduction number. An important biological parameter for
the coral population is the total number of larvae produced by a single colony in
its entire life span. This number only depends on the birth and survival rates, and
one can easily see that it is given by

(2.8) R = λb1 + λb2S1 + λb3S2S1 + · · ·+ λbdSd−1Sd−2 . . . S1 = λ

d∑
i=1

aibi .

The number R is called the basic reproduction number . Using the notation from
the last subsection, the above equation can be rewritten as

(2.9) R = (b · a)λ .

In particular, while it is possible to vary R in such a way that the relationship
between the birth rate constants vary, under our assumptions, the vectors b and a are
fixed constant vectors, and we therefore have a fixed linear relationship between R
and λ. To make it easy to compare our results with those of previous papers, we
have chosen to plot all bifurcation diagrams with respect to the basic reproduction
number R.

2.4. The fixed point bifurcation diagram. We now turn our attention to a
description of the bifurcation diagram of the fixed points for the coral population
system. This diagram is shown in Figure 4, where the set of fixed points is plotted
in terms of the reproductive number R versus polyp population density P . The
color in the diagram depicts the stability of the fixed points, and the diagram
indicates the existence of three bifurcation points: a saddle-node and a Neimark-
Sacker bifurcation on the nontrivial branch, which itself bifurcates from the trivial
branch at a transcritical bifurcation. While subsequent sections of this paper will be
used to verify the bifurcation diagram using computer-assisted proofs, the remainder
of the current subsection is devoted to the discussion of dynamical aspects which
are observed through numerical simulations.

Throughout our computations, we used the case of d = 13 age groups. The bifur-
cation diagram in Figure 4 was computed using a numerical continuation method
starting at reproduction number R = 300, and allowing R to decrease. There ap-
pears to be a saddle-node point for R ≈ 12.28 (which corresponds to λ ≈ 0.4213),
after which the basic reproduction number R of the fixed points begins to increase
again. In Section 4 we use a computer-assisted proof to rigorously validate this
saddle-node bifurcation point. The curve continues further until the population
density reaches zero, which corresponds to an extinct population. We will see later
that the extinction point can be found explicitly, and that it occurs at R ≈ 72.22
(which corresponds to λ ≈ 2.478). Moreover, the stability of the trivial solution
x = 0 can readily be determined from the Jacobian matrix of f at the origin, and
this shows that the extinction fixed point is stable for small R, corresponding to low
fitness, and unstable for all larger values of the basic reproduction number R, with
instability index 1. The bifurcation between the extinction fixed point being stable
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Figure 4. The bifurcation diagram of polyp density P as a function
of the reproductive number R. While the diagram covers the range
R ∈ (12, 300), the birth rate data collected by Bramanti et al. in [3]
are for R ≈ 29.

and unstable occurs at the transcritical bifurcation point. All of these statements
will be established rigorously in Section 4, including the appearance of the transcrit-
ical bifurcation point. Unlike the other two bifurcation points, no computer-assisted
proofs are necessary along the trivial solution.

As mentioned before, the stability of the fixed points x∗ ∈ R13 is indicated by
color, with blue indicating stable fixed points and red representing unstable ones.
The local stability at each fixed point in Figure 4 is determined numerically, based
on whether all the eigenvalues of the Jacobian matrix Dxf(λ, x) lie inside the unit
circle or not. In the bifurcation diagram, we have not distinguished the index of the
stability. If at least one of the eigenvalues lies outside the complex unit circle, then
the fixed point is colored red, meaning unstable.

2.5. Oscillations. Figure 4 only shows the existence and stability behavior of fixed
point solutions. But what about the dynamical behavior of the system? In this last
subsection of Section 2, we focus on dynamical aspects of the model, in particular
its oscillatory behavior on attracting invariant circles that form as a result of the
Neimark-Sacker bifurcation. For a fixed parameter value R > 154.1 and for a
typical initial condition, solutions converge to these invariant circles, and therefore
the age-structured coral populations oscillate as time varies.

Figure 5 shows the dynamics of initial populations near fixed points, starting
at a variety of different parameters and different initial aged-structured population
vectors y ∈ R13. At reproduction number R = 8.744 (which corresponds to λ = 0.3),
the solutions converge to the stable fixed point zero, i.e., the point of extinction. For
R = 29.15 (corresponding to λ = 1), if we start at initial conditions ranging roughly
from 0.15y to 2y, where y is a vector of age-structured initial number of colonies
which was chosen with polyp population density P = 1500, then solutions converge
to a nontrivial stable fixed point. There is also an unstable fixed point denoted by
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Figure 5. Dynamical behavior of some sample orbits of the red
coral population model. All of these figures show the temporal evo-
lution of the polyp population density P , and they are simulated
over a time frame of 100 years each, at various parameter values.

the red line. In addition, one can observe bistability at this parameter value. If
we start at a smaller value of P , such as for example at initial populations with
polyp population density smaller than 0.15y, solutions converge to zero, i.e., the
coral population becomes extinct. At the basic reproduction number R = 87.4437
(λ = 3), though it takes longer time than 100 years, the solutions still converge to
a stable nontrivial fixed point. In contrast, at R = 160.31 (λ = 5.5), population
starting at P = 1.5y oscillate. We used connected lines to show these oscillations
more effectively, but recall that the map is in fact discrete.

The oscillations seen in the lower right subplot of Figure 5 form as a result of
the Neimark-Sacker bifurcation. The fixed point stability switches from stable to
unstable, and an invariant circle gains stability. Trajectories with initial conditions
near fixed points but after the bifurcation are displayed in Figure 6. Perturbations
around an unstable fixed point are repelled from the fixed point after the bifurcation,
converging to an invariant closed curve. As the parameters R and λ increase, the
size of the closed curve also increases, and the minimum population of a curve
approaches the extinction point at the origin. That is, red coral populations become
vulnerable at a large reproduction number, and a very small perturbation of the
population would endanger the survival of the population despite the existing long
recovery cycle.
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Figure 6. After the Neimark-Sacker bifurcation, oscillating orbits
appear. After removing transients in the orbit, the orbit lies on
an invariant closed curve. On the left, we plot the x1- and x2-
components of these limit cycles. As the parameter R increases, the
size of the closed curve increases. For large values of R, the coral
population is close to the extinction point at the origin. On the
right, the same orbits are shown with respect to R, along with the
corresponding unstable fixed points at the same parameter value.

Figure 7. Invariant cycles for ten (left) and 500 (right) different
parameter values. Even though we are guaranteed that some of the
cycles contain stable periodic orbits, the periods are sufficiently high
and the parameter ranges for which they exist are sufficiently small
that it is hard to see them even in a close zoom (not depicted). Each
orbit was computed using 100,000 iterates.

In order to better understand the stable invariant limit cycles that form after
bifurcation, we have computed the rotation number, meaning the average angle of
rotation per iterate, as a function of the parameter R. Specifically, we used the
projection to the x1x2-plane to compute the rotation numbers. Our computations
are performed using the weighted Birkhoff average method described in [7]. Fig-
ure 7 shows cycles at ten distinct parameter values on the left, and for 500 distinct
parameters on the right. The corresponding rotation numbers are shown in Fig-
ure 8. The values are angles, but they are rescaled to have values in the range (0, 1).
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Figure 8. The rotation number for the cycles shown in Figure 7
(top left) and a close up view of the rotation numbers (top right),
this time with one million iterates. The periodic orbits are of such
high periods that we cannot detect the devil’s staircase type be-
havior of the rotation number within the Arnold tongue locking re-
gions. The rotation number is computed using the angle difference
between successive values of (x1, x2), computed with respect to the
point (x1, x2) = (2500, 2500), and the angle versus angle difference
is depicted here (bottom) for the cycles for ten different R values.
The minimum occurs at the angle pointing towards the extinction
point.

Each rotation number was computed by considering the angle difference between
successive iterates when measured with respect to the point (2500, 2500). To verify
our numerics and check that we have used a sufficient number of iterates in our
calculation, we compared the rotation number computed with 50,000 iterates to the
rotation number computed with 40,000 for a series of test parameters. In these test
parameters, the answer differs by 10−15 or less.

Note that we would expect to see a devil’s staircase in the rotation numbers at the
parameter values when there are periodic orbits, but what we see looks smooth even
when quite zoomed in. This is due to the fact that the periodic orbits are extremely
high period. In particular, we are able to use a Farey tree calculation to find the
smallest denominator, corresponding to the lowest period, of a periodic orbit for
the case of a rational rotation number for this range of rotation numbers, using the
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method in [2, 14]. In particular, we find that the lowest denominator in the range
[0.126, 0.129] is 39 (fraction 5/39). Not only is the lowest possible period quite large
and therefore hard to distinguish from a limit cycle, but also the large periodicity
implies that the Arnold tongue locking regions are very small parameter ranges,
meaning that we are not able to resolve them without more delicate computations.

The average rotation number gives only the mean of how much the population
is changing with respect to time. This leaves out some information as to how the
change in population depends on the location of the population. In the bottom
subplot in Figure 8, we show the angle difference as a function of the angle for
ten different values of R. That is, for each point in the invariant circle, we graph
how much the population is changing in one iterate (corresponding to one year) at
each point in the invariant circle. The smallest angle difference, corresponding to
the slowest change, occurs for angle ≈ 0.625, corresponding to the values closest to
the origin extinction point. Therefore, a portion of the invariant circles is getting
dangerously close to the origin, such that a small perturbation could result in the
extinction of the whole coral population. To compound matters further, the orbits
are staying near the extinction point for longer than they remain in any other region,
since at these points the observed angle differences are very close to zero. Thus the
population remains extremely vulnerable for a particularly long time.

3. Branch validation and continuation

We now turn to the rigorous validation of fixed points, both for regular and
bifurcation values. Our general approach is the constructive implicit function the-
orem from [15]. This is a rigorous result that combines with a numerical interval
arithmetic calculation to give rise to a validated method for finding a branch in the
zero set of a function which depends on a single parameter. In the following four
subsections, we will first recall the constructive implicit function theorem, and then
define an extended system which can be used for pseudo-arclength continuation.
After that, we prove two results which form the basis of our approach, and describe
the necessary preconditioning for the coral population model application.

3.1. The constructive implicit function theorem. Before stating the full re-
sult, here is a summary. Given an approximate zero (α∗, x∗) of a function G(α, x)
where x is contained in a Banach space and α ∈ R, under certain hypotheses on
G and its derivatives evaluated at the approximate zero (α∗, x∗), combined with
Lipschitz estimates near this point, there exist two regions in parameter and phase
space. First, the accuracy region, which contains a curve of the zero set. Second,
a uniqueness region, in which that zero set curve is unique. See the schematic in
Figure 9. The blue dot shows the initial approximate zero. The orange curve is
the zero set curve, which is guaranteed to lie within the accuracy region (the blue
region). Note that the approximate zero does not in general lie on the zero set. The
accuracy region is contained within the uniqueness region, shown in orange. The
uniqueness region is largest in phase space when the parameter is closest α∗. As the
parameter varies, the uniqueness region shrinks (meaning we have worse isolation).
The constructive implicit function theorem guarantees that the uniqueness region
is characterized by a linear norm condition, as depicted by the straight sides in the
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Figure 9. A schematic depiction of the constructive implicit func-
tion theorem. The theorem guarantees that under appropriate hy-
pothesis, an approximate zero (blue dot) guarantees that within a
uniqueness region (orange region) there is a curve in the zero set with
a unique point at each fixed α value (red curve), and the this curve is
located within an accuracy region (blue region). The uniqueness re-
gion contains the accuracy region. It is bounded in norm by straight
lines, and the accuracy region is bounded in norm by parabolas.

schematic diagram. The accuracy region has best (i.e., smallest) accuracy when
the parameter is near the parameter of the original point α∗. The accuracy region
grows (meaning we have worse accuracy) with a quadratic norm condition. This is
depicted schematically by its parabolic shape. We now state the formal theorem.

Theorem 3.1 (Constructive Implicit Function Theorem). Let P, X , and Y be
Banach spaces, suppose that the nonlinear operator G : P × X → Y is Fréchet
differentiable, and assume the following hypotheses.

(H1) Small residual: There exists a pair (α∗, x∗) ∈ P × X and a ρ > 0 such that

‖G(α∗, x∗)‖Y ≤ ρ .

(H2) Bounded derivative inverse: There exists a constant K > 0 such that∥∥DxG(α∗, x∗)−1
∥∥
L(Y,X )

≤ K ,

where ‖ · ‖L(Y,X ) denotes the operator norm in L(Y,X ).
(H3) Lipschitz bound: There exist positive real constants L1, L2, ℓx, as well as

ℓα ≥ 0 such that for all (α, x) ∈ P×X with ‖x−x∗‖X ≤ ℓx and ‖α−α∗‖P ≤
ℓα we have

‖DxG(α, x)−DxG(α∗, x∗)‖L(X ,Y) ≤ L1 ‖x− x∗‖X + L2 ‖α− α∗‖P .

(H4) Lipschitz-type bound: There exist positive real constants L3 and L4, such
that for all parameters α ∈ P with ‖α− α∗‖P ≤ ℓα one has

‖DαG(α, x∗)‖L(P,Y) ≤ L3 + L4 ‖α− α∗‖P ,

where ℓα is the constant that was chosen in (H3).
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Figure 10. Left, the validated bifurcation diagram of polyp den-
sity P as a function of the reproductive number R, along with
the three validated bifurcation points. The blue curve consists of
5000 continuation steps, corresponding to 5000 linked boxes, for
the preconditioned map with α = 0.8 δα. The initial validated
box contains (R,P ) = (300, 3256), which is in the upper right cor-
ner of the bifurcation diagram, and the last validated box contains
(R,P ) = (71.91, 1.493), which is close to the green transcritical bi-
furcation point. For comparison purposes, 4000 continuation steps
for the unconditioned map are shown in red within the extremely
small square region in the upper right-hand corner. Right, the norm
of the uniqueness region of the solution. As the solution gets near
the transcritical bifurcation at the origin, the uniqueness region gets
smaller. This is expected, since there is no longer any uniqueness
when the two branches of the solution curve meet.

Finally, suppose that

(3.1) 4K2ρL1 < 1 and 2Kρ < ℓx .

Then there exist pairs of constants (δα, δx) with 0 ≤ δα ≤ ℓα and 0 < δx ≤ ℓx, as
well as

(3.2) 2KL1δx + 2KL2δα ≤ 1 and 2Kρ+ 2KL3δα + 2KL4δ
2
α ≤ δx ,

and for each such pair the following holds. For all α ∈ P with ‖α−α∗‖P ≤ δα there
exists a uniquely determined element x(α) ∈ X with ‖x(α) − x∗‖X ≤ δx such that
G(α, x(α)) = 0. In other words, if we define

BX
δ = {ξ ∈ X : ‖ξ − x∗‖X ≤ δ} and BP

δ = {p ∈ P : ‖p− α∗‖P ≤ δ} ,

then all points of the solution set of the equation G(α, x) = 0 in the product set
BP
δα

× BX
δx

lie on the graph of the function α 7→ x(α).

In its classical form, the implicit function theorem is one of the central tools
of bifurcation theory. Not only can it be used to establish the existence of small
solution branches in nonlinear parameter-dependent equations, but by applying it as
a tool to modified problems it can frequently be used to provide sufficient conditions
for bifurcations. For example, the celebrated Crandall-Rabinowitz result [6] on
bifurcation from a simple eigenvalue proves the existence of a bifurcating branch by
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applying the implicit function theorem to a modification of the original nonlinear
problem which removes the trivial solution. The constructive implicit function
theorem can similarly be used as a tool for bifurcation analysis, yet in a computer-
assisted proof setting. In fact, some first applications in this direction have already
been provided in [12,15]. With the current paper, we add two more applications.

More precisely, in the following we will be applying Theorem 3.1 in two different
situations. In the remainder of this section, we apply it for branches of regular
points. Through the introduction of a suitable extended system we can reformulate a
validated step of pseudo-arclength continuation as an application of the constructive
implicit function theorem to this extended system. Combined with suitable linking
conditions, this establishes the existence of entire branches covered by slanted boxes.

In addition, in Section 4 we use Theorem 3.1 to validate bifurcation points. In
that setting, and motivated by our earlier work [12], we will apply the theorem to
an extended system without any parameter, as the parameter will be incorporated
into the function for which we find a root. This parameter-free case means that we
no longer need to find the Lipschitz constants relevant to the parameter variations,
and we set these unused constants equal to zero.

3.2. Continuation and an extended system. To elaborate further on the vali-
dation of regular fixed points, the constructive implicit function theorem as stated
in [15] only applies to a single region, validated at a single point. The same paper
contains a version of this theorem for slanted boxes, using natural continuation in
order to validate a branch of solutions by linking their validation sets to validate
a larger portion of the branch. However, natural continuation leaves something to
be desired in terms of efficiency. In this section, we develop a method of valida-
tion of bifurcation branches using pseudo-arclength continuation which allows for
the direct application of the constructive implicit function theorem, and apart from
Lipschitz estimates, only requires estimates at a single point in each box. This
method is an improvement on the previous natural continuation method in that we
can continue at limit points without having to change coordinates. The methods
in this section apply for regular orbits along branches. In the next section, we will
show how to adapt the constructive implicit function theorem in order to rigorously
validate bifurcation points.

Before launching into further technicalities, we describe our results. Applying
the pseudo-arclength continuation method to a preconditioned version of the coral
model (preconditioning is discussed in Section 3.4 below), the resulting rigorously
validated curve of fixed points is shown in Figure 10. While Figure 4 shows a
similar picture, the distinction is that those points were found using numerical
methods, and though we have a priori error estimates for these methods, we cannot
guarantee existence or accuracy. In contrast, the points shown on the new figure are
rigorously validated. The depicted points are an accurate indication of existing fixed
points of the system, with known and validated accuracy and uniqueness region.
In particular, the accuracy of our solutions is known individually for each separate
box, and is always less than 1.453 · 10−13, where the error in x ∈ R13 is measured in
the maximum norm. Figure 10 shows the norm of the uniqueness for each separate
box. The uniqueness shrinks when the curve approaches zero. This is not surprising,
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Figure 11. A schematic diagram of the the pseudo-arclength con-
tinuation method. Top left image: The result guarantees a unique-
ness region for the zero set. This takes place in an adapted coor-
dinate system, meaning that the box is slanted, but the uniqueness
region is still bounded by straight lines. Since we only continue the
curve in one direction, this figure only depicts the left half of the
uniqueness region. The center line segment of this region is given
by (λ∗

k, u
∗
k) + α(µk, vk) for 0 ≤ α ≤ δα. At a fixed α value, we use

Newton’s method to find the next approximate zero along the line
(λ∗

k, u
∗
k)+α(µk, vk)+(σ, x), where (σ, x) denotes the vector pointing

from (λ∗
k, u

∗
k) + α(µk, vk) to the point (λ∗

k, u
∗
k) + α(µk, vk) + (σ, x),

and which is orthogonal to (µk, vk). Top right image: After we fixed
the value α = α∗, we label this next approximation (λ∗

k+1, u
∗
k+1).

Bottom image: Inside the uniqueness region (orange) is an accuracy
region (blue). The accuracy region is bounded by curves which are
parabolic in norm in the adapted coordinate system.

since x = 0 is part of the zero set, putting a barrier on the size of the uniqueness
region.

We now proceed with the constructive implicit function theorem for a validated
pseudo-arclength continuation. In each continuation step we use continuation in a
box with slanted sides, where the predictor step is performed along the middle of the
box in the direction a specified vector (µ, v) (usually the estimated tangent to the
zero set curve), and the corrector step uses a computation such as Newton’s method
to refine the estimate. This refinement is performed in a direction orthogonal to
the predictor direction (µ, v). This is depicted in Figure 11. The left-hand image
is a schematic diagram showing the box with its midline between two blue dots.
The midline is the estimated tangent line in the direction (µ, v). Our validation
gives us a maximum length of the box for which we can guarantee accuracy and
uniqueness of the solution. The predictor, shown with a red dot, must be chosen
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inside that box. The corrector, shown with a green dot is along an orthogonal
line to the midline. The right-hand image shows the accuracy region in blue and
the uniqueness region in orange. Note that the uniqueness region has large width
near the starting point, and the accuracy region grows towards the ending point.
In Figure 11, the uniqueness region for the box is approximately diamond shaped,
whereas in Figure 12, the box is not only slanted but also has a uniqueness region
which is asymmetric, more of a half-diamond. The half-diamond shape is in fact
only half of the uniqueness box. In particular, as we are merely continuing in one
direction, which in Figure 12 is to the left, we only show one side of the uniqueness
box. The fact that we could continue to the right as well is not relevant for our
continuation.

We now turn to the technical details of this approach. For this, we consider
F : R × U → U , where U denotes an arbitrary Euclidean space. Our goal is to
implement pseudo-arclength continuation based on Theorem 3.1 to find branches
of zeros of the nonlinear function F . For the specific application of this paper,
we will consider U = R13 and F (λ, x) = f(λ, x) − x, where f is the coral model.
Nevertheless, we use the more general notation based on F to indicate that these
methods are general. In fact, the methods readily generalize to the Banach space
setting as well. However, in this paper for convenience of notation we only consider
the Euclidean space case. For any (λ0, u0) ∈ R×U , an approximate zero of F , and
for a fixed direction vector (µ0, v0) ∈ R × U , define G : R × (R × U) → R × U as
follows

(3.3) G(α, (σ, x)) =

(
µ0σ + vt0x

F (λ0 + αµ0 + σ, u0 + αv0 + x)

)
.

The zeros of G as the parameter α varies correspond to the pseudo-arclength con-
tinuation solutions of F for a single continuation box. The first component of the
function G guarantees that the pair (σ, x) is orthogonal to the direction (µ0, v0). As
we will show in the next subsection, one can apply the constructive implicit func-
tion theorem from [15] directly to the extended function G and thereby perform
rigorously validated pseudo-arclength continuation.

Since we will need them later, we close this subsection by explicitly stating the
derivatives of G with respect to both the variables (σ, x) and with respect to the
parameter α. These are respectively given by

(3.4) D(σ,x)G(α, (σ, x)) =

(
A11 A12

A21 A22

)
,

where

A11 = µ0 , A12 = vt0 ,

A21 = DλF (λ0 + αµ0 + σ, u0 + αv0 + x) ,(3.5)

A22 = DuF (λ0 + αµ0 + σ, u0 + αv0 + x) ,

as well as

(3.6) DαG(α, (σ, x)) =

(
B1

B2

)
,
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where

B1 = 0 ,

B2 = DλF (λ0 + αµ0 + σ, u0 + αv0 + x)µ0(3.7)

+DuF (λ0 + αµ0 + σ, u0 + αv0 + x)v0

3.3. Pseudo-arclength validation theorem. We are now in a position to start
establishing assumptions under which we can validate a branch in the zero set of
F using pseudo-arclength continuation. For this we need the following modified set
of assumptions. For the purposes of this paper, we use the vector norm ‖(α, x)‖ =
max{|α|, ‖x‖U} for all (α, x) ∈ R× U , even though this could easily be modified.

(P1) We assume both

(3.8) ‖F (λ0, u0)‖U ≤ ρ and ‖DλF (λ0, u0)µ0 +DuF (λ0, u0)v0‖U ≤ ξ .

(P2) Assume that there exists an explicit constant K > 0 which is a bound on
the operator norm of the inverse of the matrix

D(σ,x)G(0, (0, 0)) =

(
µ0 vt0

DλF (λ0, u0) DuF (λ0, u0)

)
,

i.e., we suppose that∥∥D(σ,x)G(0, (0, 0))−1
∥∥
L(R×U,R×U)

≤ K .

For this, we interpret the matrix as a linear map on the product space R×U ,
and the operator norm is the norm in L(R× U,R× U).

(P3) Let M1, M2, M3, and M4 be Lipschitz constants such that for all pairs (λ, u)
which satisfy ‖u− u0‖ ≤ du and |λ− λ0| ≤ dλ we have the estimates

‖DuF (λ, u)−DuF (λ0, u0)‖L(U,U) ≤ M1‖u− u0‖U +M2|λ− λ0| ,

‖DλF (λ, u)−DλF (λ0, u0)‖L(R,U) ≤ M3‖u− u0‖U +M4|λ− λ0| ,

where as usual we will identify the norm in L(R, U) with the norm ‖ · ‖U in
the following.

We would like to point out that all of the above three conditions are formulated
in terms of the nonlinear parameter-dependent function F and an approximate
solution (λ0, u0) of the equation F (λ, u) = 0.

We now turn our attention to the extended system described by the operator G
introduced in (3.3). It turns out that the above three assumptions are tailor-made to
establish the hypotheses (H1) through (H4) from the constructive implicit function
theorem for the mapping G. One can easily see that (P1) implies

‖G(0, (0, 0))‖R×U ≤ ρ ,

i.e., hypothesis (H1) is satisfied. Furthermore, using the explicit derivative formulas
from the end of the last subsection, the assumption (P2) immediately yields the
estimate

‖D(σ,x)G(0, (0, 0))‖L(R×U,R×U) ≤ K ,
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which establishes (H2). It remains to show that (P3) furnishes the estimates in (H3)
and (H4). For this, let ξ be defined as in (3.8), and define the four constants

L1 = max(M1 +M3,M2 +M4) ,

L2 = (M1 +M3)‖v0‖U + (M2 +M4)|µ0| ,

L3 = ξ ,

L4 = (M1‖v0‖U +M2|µ0|)‖v0‖U + (M3‖v0‖U +M4|µ0|)|µ0| .
Then the constants L1 through L4 are the Lipschitz constants for the extended
function G as required by (H3) and (H4). For this, first note that in view of (3.4)
and (3.5) we have

D(σ,x)G(α, (σ, x))−D(σ,x)G(0, (0, 0)) =(
0 0

DλF (w1)−DλF (w2) DuF (w1)−DuF (w2)

)
,

where DλF and DuF are evaluated at w1 = (λ0 + αµ0 + σ, u0 + αv0 + x) and
w2 = (λ0, u0). Then one can readily see that (H3) follows from (P3) and the
estimates

‖D(σ,x)G(α, (σ, x))−D(σ,x)G(0, (0, 0))‖L(R×U,R×U)

≤ ‖DuF (λ0 + αµ0 + σ, u0 + αv0 + x)−DuF (λ0, u0)‖L(U,U)

+ ‖DλF (λ0 + αµ0 + σ, u0 + αv0 + x)−DλF (λ0, u0)‖L(R,U)

≤ M1(|α|‖v0‖U + ‖x‖U ) +M2(|α||µ0|+ |σ|)

+ M3(|α|‖v0‖U + ‖x‖U ) +M4(|α||µ0|+ |σ|)

= (M1 +M3)‖x‖U + (M2 +M4)|σ|

+((M1 +M3)‖v0‖U + (M2 +M4)|µ0|)|α|

= L1‖(σ, x)‖R×U + L2|α| .
Similarly, using (3.6) and (3.7) one can show that (H4) follows from (P1) and (P3),
in combination with the inequalities

‖DαG(α, (0, 0))‖L(R,R×U)

≤ ‖DλF (λ0, u0)µ0 +DuF (λ0, u0)v0‖U

+ ‖DuF (λ0 + αµ0, u0 + αv0)v0 −DuF (λ0, u0)v0‖U

+ ‖DλF (λ0 + αµ0, u0 + αv0)µ0 −DλF (λ0, u0)µ0‖U

≤ ξ + (M1‖v0‖U +M2|µ0|)|α|‖v0‖U

+(M3‖v0‖U +M4|µ0|)|α||µ0|

= L3 + L4|α| .
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Altogether, these estimates lead to the following result.

Theorem 3.2 (Pseudo-arclength continuation for a branch segment). Consider the
fixed pairs (u0, λ0) and (v0, µ0) in R×U , let dλ and du be two positive constants, and
suppose that our hypotheses (P1), (P2), and (P3) are satisfied. Moreover, assume
that both

4K2ρ < 1 and 2Kρ < du

hold. Then we can choose constants

0 < δα ≤ dλ , 0 < δu ≤ du , where δα‖(µ0, v0)‖+ δu ≤ min(du, dλ) ,

and such that

2KL1δu + 2KL2δα ≤ 1 and 2Kρ+ 2KL3δα + 2KL4δ
2
α ≤ δu .

Then for every α ≤ δα there exists a unique (σ, x) in the zero set of G with ‖(σ, x)‖ ≤
δu.

These statements guarantee that there is a unique element of the zero set of F
which lies on the hyperplane orthogonal to the center line in the slanted box be-
tween (λ0, u0) and (λ0+δαµ0, u0+δαv0) and passes through the point (λ0+αµ0, u0+
αv0). This unique zero is given by (λ0 + αµ0, u0 + αv0) + (σ, x). Additionally, let

δmin = 2Kρ .

Then for α = 0 we can guarantee that the resulting pair in the zero of G is ac-
curate within δmin of (λ0, u0), and this zero is unique within the set ‖(σ, x)‖ ≤
min{(2KL1)

−1, du, dα}.

Proof. To show the theorem we follow the proof of [15, Theorem 5]. Aside from
the changes in the Lipschitz constants which have already been derived before the
formulation of the theorem, the only changes to the cited proof are due to the fact
that for a fixed parameter of G, the values of both the parameter λ and the phase
space value x of F can vary. Therefore, in order to guarantee that the Lipschitz
estimates on F hold, we need to assure that for every α ≤ δα and all ‖(σ, x)‖ ≤ δu
the norm ‖α(µ0, v0)+(σ, x)‖ is bounded by both du and dλ. This immediately leads
to the additional constraints in the formulation of the theorem. □

The above theorem gives a method for validating a branch segment of the zero
set within a single slanted box. In practice we use this result successively to val-
idate a whole solution branch. For each pair (λ∗

k, u
∗
k), and for the approximate

tangent (µk, vk), we then define an extended function Gk, and validate a branch
segment for F within the k-th box. For a fixed parameter value αk ≤ δα, we then use
Newton’s method to find an approximate zero of F which is orthogonal to (µk, vk),
i.e., which is a zero of Gk. We abbreviate this approximate zero as (λ∗

k+1, u
∗
k+1),

and can now repeat the entire process for the (k + 1)-st branch segment, see also
Figure 12. What remains to be shown is that the successive validated boxes are
linked, meaning that the branch segment in the k-th box and the branch segment
in the (k + 1)-st box are on the same branch. That is, the accuracy region of the
(k + 1)-st box has to be contained within the uniqueness region of the k-th box at
the point αk where we made the numerical estimate. We give the linking condition
for two boxes in the next theorem.
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Figure 12. Left image: Associated with each successive approxi-
mation, there is a uniqueness region and an accuracy region. Right
image: In order to guarantee that the k-th and (k+ 1)-st region en-
close the same component of the zero set (the green curve), we must
verify the linking condition. This requires that the accuracy curve
of the (k + 1)-st box at α = 0 (such as the blue point on the upper
edge of the (k+1)-st blue box) is contained in the uniqueness region
of the k-th box (orange region).

Theorem 3.3 (Linking branch segments). Let δk+1,min = 2Kk+1ρk+1 be the accu-
racy of the solution

(λ∗
k+1, u

∗
k+1) = (λ∗

k + αkµk + σ∗, u∗k + αkvk + x∗) .

In order to guarantee that the two validated boxes are linked, we require the estimates

|αk|+
δk+1,min

‖(µk, vk)‖
< δk,α and |(σ∗, x∗)|+ δk+1,min < δk,u .

Proof. The accuracy of the (k + 1)-st solution at α = 0 is given by δk+1,min. That
is, there exists a unique exact solution to F = 0 of the form

(λ̃, ũ) = (λ∗
k+1 + σnew, u

∗
k+1 + xnew) ,

where ‖(σnew, xnew)‖ < δk+1,min. In order to derive our linking condition we need
to establish that this solution is contained in the uniqueness region of the k-th
segment. We can therefore write

(λ̃, ũ)− (λ∗
k, u

∗
k) = (αk + α+)(µk, vk) + (σ∗ + σ+, x∗ + x+) ,

where (σnew, xnew) = α+(µk, vk) + (σ+, x+), and (µk, vk) is orthogonal to the vec-
tor (σ+, x+). Thus we have

‖α+(µk, vk) + (σ+, x+)‖ < δk+1,min .

By the orthogonality of the two vectors, both the estimate |α+|‖(µk, vk)‖ < δk+1,min

and the estimate ‖(σ+, x+)‖ < δk+1,min are satisfied. In order to satisfy the linking
condition, we have to require that both |αk+α+| < δk,α and ‖(σ∗+σ+, x∗+x+)‖ <
δk,u hold. This translates into the conditions

|αk + α+| ≤ |αk|+
δk+1,min

‖(µk, vk)‖
< δk,α ,
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as well as
‖(σ∗ + σ+, x∗ + x+)‖ ≤ ‖(σ∗, x∗)‖+ δk+1,min < δk,u .

This completes the proof of the theorem. □
3.4. Preconditioning the coral map. If we use the above method on the coral
system, it is extremely slow to produce the bifurcation diagram. This is due to
the different relative sizes of the components of the population and the parameter.
We are able to significantly speed up the method by using preconditioning. In
particular, for k = 1, . . . , d let

f̃k(R̃, ũ) =
fk(100R̃, (s1ũ1, . . . , sdũd))

sk
,

where s1, . . . , sd are empirically determined positive scale constants. Then it is
clear that if we write (R, u) = (100R̃, (s1ũ1, . . . , sdũd)), then (R, u) is a fixed point

of f if and only if (R̃, ũ) is a fixed point of the preconditioned map f̃ . However,

the map f̃ is better scaled in the sense that we expect all components and the
parameter to be of the same order of magnitude. Therefore the pseudo-arclength
continuation can be performed more efficiently. In particular, we find that the size
of δα in the preconditioned version is (in comparable coordinates) around two orders
of magnitude larger than those for the system without modification. This means
that we are able to validate a much larger portion of the bifurcation diagram with
the same number of continuation steps. Figure 10 shows 5000 continuation steps
for the preconditioned case starting at R = 300 in the upper right corner, shown
in blue. For comparison purposes, 4000 continuation steps are shown in red for the
unmodified case. The bifurcation curve goes through a limit point and almost to
‖u‖ = 0 for the preconditioned case, but is hardly even a visible piece of red curve
for the original unmodified map. A similar preconditioning is performed in the case
of the bifurcation points, as described in the next section.

4. Validation of the bifurcation points

In this section, we discuss the validation of the bifurcation points. Namely,
we have used a computer-assisted proof to validate the Neimark-Sacker bifurcation
point, where the invariant circles form in Section 4.1 and the saddle-node bifurcation
point in Section 4.2. In each case, to do so we create an extended system H such
that H = 0 guarantees the needed conditions for a bifurcation point. We then apply
the constructive implicit function theorem to H. In both cases, we use interval
arithmetic for a separate computational validation of the extra transversality and
nondegeneracy conditions. We also prove that there is a transcritical bifurcation
point on the extinction axis. However, this last case does not require a computer-
assisted proof for validation, since the calculations are simple enough for a closed
form calculation.

4.1. Validation of the Neimark-Sacker bifurcation point. In Sections 2.4
and 2.5, we observed that at (R,P ) ≈ (154.1, 2689), there is a change in stability of
the fixed points, and for R > 154.1, typical initial conditions converge to populations
which are oscillating in time. This is the behavior associated with a Neimark-
Sacker bifurcation. In this section we detail the process of rigorous validation of the
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Neimark-Sacker bifurcation point seen in the upper right corner of Figure 4. While
this is the first time that a rigorous validation of a Neimark-Sacker bifurcation has
been performed in this way, rigorous validation of Hopf bifurcations was performed
in [18] in the context of ordinary and partial differential equations, but using a
quite different method. Rather than considering conditions along a curve of fixed
points or equilibria, instead the method used a validated continuation of periodic
orbits with a renormalization technique, validating that there was a bifurcation of
equilibria at the turning point of this invariant closed curve of solutions. Moreover,
computer-assisted proofs were used in [5] to rigorously establish an invariant circle
in a two-dimensional map, which is created via a Neimark-Sacker bifurcation. They
do not, however, establish the bifurcation point itself directly. While it would be
interesting to adapt their method to the coral model, this lies beyond the scope of
the current paper.

We now proceed with our validation of the Niemark-Sacker bifurcation. As a first
step, we state the standard theoretical Neimark-Sacker bifurcation theorem found
in a bifurcation theory textbook. We then show how to adapt this classical result
to create a rigorous computer-assisted bifurcation theorem.

Theorem 4.1 (Neimark-Sacker bifurcation point). There is a Neimark-Sacker bi-
furcation for the coral system in (2.4) and (2.5) for the basic reproduction number
R∗ ≈ 154.1 and with polyp population density P∗ ≈ 2689. The precise error bounds
are stated in Table 2.

The remainder of this subsection is devoted to the proof of this theorem. Our
approach is to verify the classical conditions for a Neimark-Sacker bifurcation , as
described for example in [11] — and which we briefly review in the following. Con-
sider a smooth map f : R × Rd → Rd. Furthermore, we begin by assuming the
following two conditions:

(a) Existence of a fixed point: The map f has a fixed point at a specific param-
eter value, i.e., we assume that f(λ0, x0) = x0.

(b) Pair of imaginary eigenvalues on the unit circle: The Jacobian matrix
Dxf(λ0, x0) has exactly one simple conjugate pair of imaginary eigenval-
ues on the unit circle. We denote these eigenvalues by e±iθ0 , for some an-
gle 0 < θ0 < π.

These two conditions have to be supplemented by another three transversality and
nondegeneracy conditions, which will be stated in detail below. For this, however,
we first need to introduce some additional notation.

Due to the implicit function theorem, as long as the Jacobian matrix in (b) does
not have the eigenvalue 1, there exists a smooth curve of locally unique fixed points,
which we denote by (λ, x0(λ)). Moreover, we define

A(λ) = Dxf(λ, x0(λ)) .

We would like to point out that in our application to the coral system, the rigorously
established existence of the branch of fixed points as a side effect also implies that
along the branch near the Neimark-Sacker point, the Jacobian matrix never has an
eigenvalue 1.
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Now let p ∈ Cd and q ∈ Cd denote the right eigenvectors of A(λ0) corresponding
to eiθ0 and e−iθ0 , respectively, and normalized in such a way that 〈p, q〉 = 1, where
the bracket notation denotes the usual complex scalar product 〈p, q〉 := ptq. Finally,
by Taylor’s formula we can expand the function f in the form

(4.1) f(λ0, x)− x0 = A(λ0)x+
1

2
B(x, x) +

1

6
C(x, x, x) +O(‖x‖4) ,

whereB and C denote the second- and third-order derivative terms at the point (λ0, x0)
in the form

Bi(y, z) =

d∑
j,k=1

∂2f

∂xj∂xk
(λ0, x0)yjzk

and

Ci(y, z, w) =
d∑

j,k,l=1

∂3f

∂xj∂xk∂xl
(λ0, x0)yjzkwl .

After these preparations, we can now complete our description of the conditions
needed for the Neimark-Sacker theorem:

(c) Transversality condition: Using the notation above, suppose that

Re

(
e−iθ0

〈
p,

dA

dλ
(λ0)q

〉)
6= 0 .

(d) Nondegeneracy condition I: Suppose that

θ0 6=
π

2
and θ0 6=

2π

3
.

(e) Nondegeneracy condition II: Suppose that

Re ( e−iθ0(〈p, C(q, q, q̄)〉+ 2〈p,B(q, (I −A)−1B(q, q̄))〉

+〈p,B(q, (e2iθ0I −A)−1B(q, q))〉) ) 6= 0 .

To summarize, the transversality condition implies that the pair of complex con-
jugate eigenvalues at λ0 crosses the imaginary axis with nonzero speed. The first
nondegeneracy condition indicates that the eigenvalues e±iθ0 are not k-th roots of
unity for k = 1, . . . , 4. Since the proof of the Neimark-Sacker theorem is based
on the Poincaré normal form theorem, this condition excludes resonances. Finally,
the left-hand side of the second nondegeneracy condition gives the coefficient of the
cubic term in the complex Poincaré normal form, and its sign distinguishes between
a sub- and super-critial Neimark-Sacker bifurcation. For more details we refer the
reader to the part of [11, Section 5.4] devoted to the Neimark-Sacker bifurcation.

Under the above conditions, the Neimark-Sacker theorem guarantees that a lo-
cally unique invariant closed curve bifurcates from the set of fixed points at the
point (λ0, x0). As already mentioned, the type of bifurcation depends on the sign
of the left-hand side of (e).

In order to create the validation version of this theorem, we use a suitable ex-
tended system to validate assumptions (a) and (b). After having established an
existence and uniqueness result for this extended system, one can then validate
conditions (c), (d), and (e) separately using interval arithmetic. For convenience,
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R λ x1 P
154.1 5.286 1794 2689

δ1 δ2 ρ K
1.473 · 10−10 1.220 · 10−8 6.166 · 10−11 1.000

L1 (c) (d) (e)
4.097 · 107 4.338 · 10−2 46.85 −1.21 · 10−6

Table 2. Validation constants for the system (4.2) at the Neimark-
Sacker bifurcation point. All values are written with four decimal
places, unless less accuracy is known. For more efficient computa-
tion, we multiplied by a preconditioning matrix and determined the
bounds ρ, K, and L1. We selected a matrix close to the Jacobian
matrix of Hns, whose inverse was used as a preconditioner. The ac-
curacy constant δ1 and the isolation bound δ2 were derived using ρ,
K and L1. For the three conditions (c), (d), and (e), which were
checked separately after the validation involving Hns, we used an
interval arithmetic enclosure of the approximate solution with ra-
dius δ1. Note that the angle in (d) is given in degrees.

we have converted the complex system into the following real system of equations.
We are seeking zeros of the function Hns : Rm → Rm, which is defined as

(4.2) Hns(x, λ, w, u, a, b) =



f(λ, x)− x

Dxf(λ, x)w − aw + bu

Dxf(λ, x)u− bw − au

a2 + b2 − 1

‖w‖2 − 1

‖u‖2 − 1


.

The first equation in the system is the fixed point condition. The second through
fourth equations form the simple complex eigenvalue pair condition, where we write
e±iθ0 = a±ib, and the eigenvectors p and q are given by u±iw, up to normalization.
The last two equations are included to single out a locally unique eigenvector.

For a function of the form f : R×Rd → Rd, we have x ∈ Rd, λ ∈ R, u,w ∈ Rd, as
well as a, b ∈ R. Therefore, the extended system Hns : Rm → Rm lives in dimension
m = 3d + 3. In our numerical validation, we are working with a 13-dimensional
system, implying that this extended system has dimension 42.

Using standard numerical methods, we obtained an approximate bifurcation point
satisfying Hns(x, λ, w, u, a, b) = 0, for the function Hns in (4.2), and with values
for R, λ, x1, and P as stated in Table 2. Since Hns is parameter free, we only seek
rigorous solutions of the extended system in (4.2) which satisfy Hns = 0 in R42. Thus
we only need to verify the hypotheses of the constructive implicit function theorem
which involve the values of ρ, K, L1, and ℓx > 0 at our computed approximation
point. See also Theorem 3.1. Table 2 summarizes the constants found for the
validation of the solution of system (4.2).
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We obtain the bounds ρ and K by using interval arithmetic. While the bound ρ
can be found in a straightforward way, the constant K cannot easily be found by
using interval arithmetic to compute matrix inverses. Therefore, we first compute
an approximate numerical inverse. However, we still need a bound on the exact
inverse, and a bound on the accuracy of the approximate inverse. This is required
in both the computation of K and twice when we verify condition (e). The required
quantities can be determined using the following lemma. While we apply this lemma
only for matrices, it is stated for the case of Banach spaces.

Lemma 4.2 (Inverse bounds). Let A be a bounded linear operator between two
Banach spaces, and let B be an approximate inverse of A. Assume further that

‖I −BA‖ ≤ ρ1 < 1 as well as ‖B‖ ≤ ρ2 .

Then A is one-to-one, onto, and we have both

‖A−1‖ ≤ ρ2
1− ρ1

and ‖B −A−1‖ ≤ ρ1ρ2
1− ρ1

.

The bound on A−1 is due to a Neumann series argument, and the proof can be
found in [15]. In addition, the second bound is a consequence of ‖B − A−1‖ ≤
‖I −BA‖‖A−1‖.

Having described how the constants ρ and K can be estimated rigorously, we
now turn our attention to the Lipschitz constant L1. It can be determined using
the mean value theorem for multivariate functions from the calculations in (4.3)
below. For this, suppose that the function Hns : Rm → Rm is differentiable and let
hij(x) = (∂(Hns)i/∂xj)(x). Then hij : Rm → R, and we let h : Rm → Rm×m denote
the matrix-valued function with entries hij . Throughout our computations, we used
the maximum norms for vectors x, and the induced matrix norm for matrices A.
Recall that one then has ‖x‖ = ‖x‖∞ = maxi=1,...,m |xi|, as well as ‖A‖ = ‖A‖∞ =
maxi=1,...,m

∑m
j=1 |Aij |. After these preparations, the mean value theorem implies

|hij(x)− hij(y)| ≤ max
c∈D

‖∇hij(c)‖1 ‖x− y‖ ,

where D denotes the line segment between the points x and y. Together with the
definition of the functions hij one further obtains

|hij(x)− hij(y)| ≤ max
c∈D

∥∥∥∥(∂2(Hns)i
∂x1∂xj

(c), . . . ,
∂2(Hns)i
∂xn∂xj

(c)

)∥∥∥∥
1

‖x− y‖

≤ m max
c∈D, k=1,...,m

∣∣∣∣∂2(Hns)i
∂xk∂xj

(c)

∣∣∣∣ ‖x− y‖ .

This finally furnishes

‖h(x)− h(y)‖ = max
i=1,...,m

m∑
j=1

|hij(x)− hij(y)|

≤ max
i=1,...,m

m∑
j=1

(
m max

c∈D, k=1,...,m

∣∣∣∣∂2(Hns)i
∂xk∂xj

(c)

∣∣∣∣) ‖x− y‖ .(4.3)
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The factor in front of ‖x−y‖ on the right-hand side is then the Lipschitz constant L1,
and it can be determined via interval arithmetic and automatic differentiation.

Altogether, our rigorous computer-assisted proof of Theorem 4.1 can be summa-
rized as follows. After completing the validation of the conditions that guarantee
that the constructive implicit function theorem holds, we are able to verify the ac-
curacy and uniqueness regions for the bifurcation point. In addition, we can use
Intlab [13] to rigorously show that the Jacobian matrix Dxf(λ0, u0) has in fact only
two eigenvalues on the unit circle, by verifying that the remaining eleven eigenvalues
all lie inside the unit disk. This implies that a bifurcation occurs within the specified
error of the approximate bifurcation point. We then verify that this bifurcation is
indeed a Neimark-Sacker bifurcation by showing that conditions (c), (d), and (e)
hold using interval arithmetic on these conditions. Here are a few remarks which
give a more detailed explanation:

• For each condition, we show that the interval containing the exact answer
does not contain zero for (c) and (e), and does not contain any of the avoided
angles for (d).

• While we are able to work with real-valued quantities a, b, u, v in the initial
calculations of parts (a) and (b), we must switch to the complex case to verify
the extra conditions (c), (d), (e), and we normalize the complex vectors p
and q using the normalization condition 〈p, q〉 = 1.

• We need to be able to guarantee that all three conditions are satisfied for
the entire accuracy region. Therefore we evaluate these conditions on an
interval vector whose midpoint is the approximate bifurcation point, and
whose radius is δ1. That is, every component of the vector is an interval.
The actual computed values of the conditions (c)-(e) are intervals, but the
values given in Table 2 are the worst-case scenario values. Even with the
interval calculations, conditions (c) and (d) are known to more than four
significant digits, but condition (e) is only known to three digits of accuracy.

This completes the proof of Theorem 4.1.

4.2. Validation of the saddle-node bifurcation point. In this section, we use
a computer-assisted proof to show that there is a saddle-node bifurcation point in
the coral model. The precise result can be stated as follows.

Theorem 4.3 (Saddle-node bifurcation point). The coral model in (2.4) and (2.5)
has a saddle-node bifurcation point near the basic reproduction number R∗ ≈ 12.28,
which corresponds to the parameter value λ∗ ≈ 0.4213, and for polyp population
density P∗ ≈ 853.4. The precise error bounds are stated in Table 3.

As in the previous subsection, the remainder of the present one is devoted to the
verification of this theorem via computer-assisted rigorous methods. In order to
establish the theorem, we need to verify the following conditions from the classical
saddle-node bifurcation theorem , see for example [11]. Let f : R × Rd → Rd be a
smooth mapping. Furthermore, assume the following four conditions:

(a) Existence of a fixed point: The map f has a fixed point at a specific param-
eter value, i.e., we assume that f(λ0, x0) = x0.
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R λ x1 P δ1 δ2
12.28 0.4213 569.5 853.4 3.306 · 10−12 4.015 · 10−7

ρ K L1 (c) (d)
1.653 · 10−12 1 1.245 · 106 −353.4 −9.924 · 10−4

Table 3. Validation constants for the extended system in (4.4) at
the saddle-node bifurcation point. All values are written up to four
decimal places. For more efficient computation, we multiplied by
a preconditioning matrix and obtained the bounds ρ, K, and L1.
We selected a matrix close to the Jacobian matrix of Hsn, whose
inverse was used as a preconditioner. The accuracy constant δ1 and
the isolation bound δ2 were derived using ρ, K, and L1. For the
two conditions (c) and (d), which were checked separately after the
validation involving Hsn, we used an interval arithmetic enclosure of
the approximate solution with radius δ1.

(b) Simple eigenvalue 1: The Jacobian matrix Dxf(λ0, x0) has a simple eigen-
value of 1. Let p and q denote the corresponding left and right eigenvectors,
and suppose they are normalized to satisfy ptq = 1.

(c) Transversality condition: Using the above notation we assume

ptDλf(λ0, x0) 6= 0 .

(d) Nondegeneracy condition: Now let A(λ0) = Dxf(λ0, x0), and consider the
expansion of f given in (4.1). Then we suppose further that

ptB(q, q) 6= 0 .

Then the classical saddle-node bifurcation theorem guarantees a saddle-node bifur-
cation at the pair (λ0, x0).

In order to validate our bifurcation point using this theorem, we use again an
extended system of the form Hsn = 0 to validate conditions (a) and (b), and then
we verify conditions (c) and (d) separately afterwards. This time, the extended
mapping Hsn is a map Hsn : R27 → R27, and it is defined as

(4.4) Hsn(x, v, λ) =

 f(λ, x)− x

Dxf(λ, x)v − v

‖v‖2 − 1

 .

In order to validate (c), and (d), we use interval arithmetic for both of these condi-
tions, and show that 0 does not lie in the interval containing the resulting answer.
Note that the vector q is just a multiple of v, and p can be found in a verified way
using Intlab [13]. The summary of the constants of this validation process is given
in Table 3. This computer-assisted proof is quite similar to the one used for the
Neimark-Sacker bifurcation in the last subsection, and therefore we do not give any
more elaboration on the technique used to compute these values. This completes
the proof of Theorem 4.3.
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4.3. Validation of the transcritical bifurcation point. We close this section by
showing that there is indeed a transcritical bifurcation on the trivial solution curve,
i.e., the extinction curve. This time, it is not necessary to perform a computer-
assisted proof, as the bifurcation can be established directly by hand.

Theorem 4.4 (Transcritical bifurcation point). For the coral population model
in (2.4) and (2.5) there exists a transcritical bifurcation point for basic reproduction
number R∗ = c2/c1 ≈ 72.22, which corresponds to the parameter value λ∗ = R∗/(b ·
a) and to x∗ = 0 ∈ R13. Recall that the constants c1 and c2 were introduced in (2.2),
and the vectors a and b were defined in (2.6) and the following paragraph.

Proof. It is clear from the model that x = 0 is a fixed point for all values of the
parameter λ. Furthermore, one can easily show that

det(Dxf(λ, 0)− I) = λ− c2
c1(b · a)

.

Therefore, the Jacobian matrix of f(λ, ·) at the origin has a simple eigenvalue of 1
if and only if λ equals

λ∗ =
c2

c1(b · a)
.

Now denote the right and left eigenvectors of Dxf(λ∗, x∗) by v and w, respectively.
One can show directly that v = a defined in (2.6), and w is such that

w1 = b · a , wd = bd , and wk = bk + Skwk+1 for k = 2, . . . , d− 1 .

Then in order to establish the transcritical bifurcation, two nondegeneracy condi-
tions have to be verified. Since we have wtDλf(λ∗, x∗) = 0, one first has to show
that

wtDxλf(λ∗, x∗)v =
(b · a)c1

c2
wtb

is nonzero, which is clearly satisfied since all the terms of b and w are non-negative,
and contains terms of the form b2k (which are strictly positive for each nonzero bk).

Second, we need to show that wtDxxf(λ∗, x∗)[v, v] 6= 0. Since only the first
component of f , which we call f1, is nonlinear, one merely needs to consider the
second derivative of this component function. We get the following formula.

Dxxf1(λ∗, x∗)[v, v] =
2(β − α)

Ω

d∑
k=2

pkak.

By looking at the corresponding parameter values, this value is also nonzero, and
therefore the second nondegeneracy condition holds. This completes the proof of
the theorem. □

5. Conclusion

In this paper, we have considered an age-structured population model for red coral
populations with a parameter of fitness. When the fitness increases sufficiently, a
set of stable invariant closed curves of oscillating orbits form, and these stable
curves persist for large values of the fitness parameter. It is not surprising that
for small fitness parameters, solutions limit to extinction, but we see that even for
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large fitness, populations become extremely vulnerable, as they limit to oscillation
spending long period of time near extinction.

The coral population model has a curve of fixed points containing a Neimark-
Sacker, saddle-node, and transcritical bifucation point. We develop new methods
based on previous computer-assisted proof methods and use these methods to vali-
date the branch of fixed points, and the three bifurcation points.
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