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1. Motivation

As 3D printers become increasingly common in science
and engineering, they are also making their way into math-
ematics departments. One potential use is in visualizing
dynamical systems. These mathematical structures illus-
trate some of the important progress in roughly the last
sixty years regarding approaches to understanding the role
of dynamical models in scientific research. In addition
to the illustration of principles, we are in no small part
motivated by the beautiful three-dimensional structures of
strange chaotic attractors, such as can be seen in [Atm]. See
for example the Langford attractor in Figure 1. The aim of
this paper is to describe how to practically 3D print actual
physical models of such dynamical structures.
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In many cases, it is possible to use a black box differen-
tial equations solver to create printable objects. However,
in some cases, a black box method is inadequate. We have
therefore developed a mixed curvature method to make
printing possible in these cases. We mostly restrict our dis-
cussion to solutions of differential equations, but we end
with a description of how 3D printing can be applied in
the context of more general dynamical structures for iter-
ated maps and ordinary and partial differential equations.

Our paper proceeds as follows: In Section 2, we give
a straightforward method for generating 3D printable
chaotic attractors using built in commands in Mathemat-
ica. In Section 3, we describe a new method for creat-
ing more visually accurate 3D printable chaotic attractors.
This mixed curvature method uses a combination of Mat-
lab and the cost-free software OpenSCAD |[Kin], designed
specifically for 3D print design. In Section 4 we describe
our future directions in creating printable chaotic and dy-
namical objects. In Appendix A conditions of the objects
shown in the figures. In Appendix B, we give a brief in-
troduction to the nuts and bolts of 3D printing so that
a reader will be able to use the methods and codes pro-
vided in this article to create their own printed attractors.
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Figure 1. The Langford chaotic attractor in equation (8) (often
erroneously referred to as the Aizawa attractor), modeled in
Mathematica and 3D printed in FDM PLA.

Appendix C contains a set of detailed annotated descrip-
tions of all of the code needed to create the chaotic attrac-
tors in this article. The full version of all code is available
for download at [LST20].

2. Straightforward Approach

Strange chaotic attractors have interesting dynamical prop-
erties, such as the plethora of periodic orbits (in fact in-
finitely many) and sensitive dependence on initial condi-
tions, meaning that no matter how close solutions start,
they will diverge over time [Rue06]. These properties are
not visible when looking at the printed attractor. Rather,
one sees the strangeness, or fractal, structure of the attrac-
tor. Any cross-section of the attractors shown here con-
sists of a Cantor set: the fractal dimension of the attrac-
tors is between 1 and 2. This can be seen particularly well
in the Rossler attractor in Figure 2, the Lorenz attractor in
Figure 3, the Rucklidge attractor in Figure 4, and the An-
ishchenko attractor in Figure 5.

From the practical point of view of generating chaotic
attractors, the most useful properties are the existence of a
dense orbit, and the fact that the set is attracting. The first
property implies that we can create an arbitrarily good ap-
proximation of the chaotic attractor with a single solution
starting within the attractor. The second property implies
that we do not even need to start with a solution within
the attractor. In particular, as long as we start our solution
close enough to the attractor, the solution will converge to
the attractor as time increases. Based on these principles,
in this section we describe how to generate a 3D printable
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Figure 2. The Rdssler chaotic attractor in equation (5),
modeled in Matlab and OpenSCAD and 3D printed in SLS
nylon.

Figure 3. The Lorenz chaotic attractor in equation (4),
modeled in Mathematica and 3D printed in FDM PLA.

solution to a given differential equation starting at a spec-
ified initial point.

Mathematical software packages such as Mathematica
and Matlab have built in routines for solving systems of
first order ordinary differential equations. They allow for
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Figure 4. The Rucklidge chaotic attractor in equation (10),
modeled in Matlab and OpenSCAD and 3D printed in SLS
nylon.

Figure 5. The Anishchenko chaotic attractor in equation (11),
modeled in Matlab and OpenSCAD and 3D printed in SLS
nylon.

the creation of solutions to differential equations with-
out prior knowledge of numerical methods, and relatively
minimal knowledge of the theory of differential equations.
Here we present a method using the NDSolve command
in Mathematica. The choice of Mathematica over Matlab
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Figure 6. The Langford chaotic attractor in equation (8),
modeled in Matlab and OpenSCAD and 3D printed in SLA
resin.

is based on the fact that the package has better developed
methods for creating 3D printable objects, meaning that
it is possible to generate data for and create a printable
(STL format) file within a single software package. This has
been successfully used in a class consisting of undergrad-
uate students who had only seen elementary differential
equations and had never seen any numerical methods for
solving differential equations. They were equipped with
the code in Appendix C.1, and were able to adapt it to gen-
erate and print many of the examples listed in Appendix A.

The Mathematica command NDSoTve is proprietary
and to some extent a black box, though it is possible to
change some of the default settings. In particular, the user
inputs an equation of the form

x = f(t,x), x(ty) = Xg,

where x(t),xy(t) € R" and f : R X R" —» R". Here and in
all subsequent equations, we use the notation X to repre-
sent the derivative of x. In most of the cases we consider,
n = 3 since that is the dimension of our printing space.
The input of the method includes the form of the equation,
the initial condition, and the minimum ¢, = 0 and max-
imum T time values for which a solution should be cal-
culated. The method is an adaptive Runge-Kutta one that
makes an approximation of the error and correspondingly
adjusts the size of the time step. It outputs an interpolation
for x(t) on a discrete but unevenly spaced set of t € [0, T1.
The method determines the spacing of the ¢t values such
that the approximate solution achieves a desired accuracy.
That s, at each ¢ if we denote by Xoyq¢;(£) and Xgpprox(£) the
exact and approximate solutions, resp., then the method
computes approximations with prescribed small values of
the absolute error [Xexqe:(£) — Xgpprox(£)| and relative error
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|Xexact(t) - Xapprox(t)l/lxexact(t)l' Note that Xexact is un-
known, but the method still is able to say with some confi-
dence that the approximate solution is sufficiently close to
the exact one in terms of both of these measures of error.
When these desired accuracy requirements are not set by
the user, they remain at default values internal within the
software package.

After generating an approximation in the form of an
interpolation for x(¢t) for t € [0, T], we can then use the
Mathematica command ParametricPlot3D to create a
piecewise smooth curve approximating the exact solution.
By using the PT1otPoints option with a large value such
as 100, we are able to control the level of smoothness of
the curve. At this stage, the curve is not a solid printable
object since it is infinitely thin. We use the Tube graphing
option to create a tube of a specified thickness around the
curve, thereby making it into a solid and therefore print-
able object. This solid object can be saved in printable STL
format. See Appendix B for more information on how to
proceed from an STL file to a physical object.

While our primary goal is to create chaotic attractors for
ordinary differential equations, with minimal extra effort

Figure 7. The Hénon-Heiles quasiperiodic set in equation (9),
projected to three dimensions, modeled in Mathematica and
3D printed in FDM PLA.
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Figure 8. The Mackey-Glass attractor in equation (12),
projected to three dimensions, modeled in Mathematica and
3D printed in FDM PLA.

the same commands in Mathematica can be used to gen-
erate solutions to delay differential equations. Figure 8 de-
picts a chaotic attractor for the Mackey-Glass delay differ-
ential equation. In a delay differential equation, the de-
rivative X(t) depends not only on ¢ and x(t), but also on
the value of x at a previous time t — 7 for 7 > 0. In addi-
tion to chaotic attractors, the method works equally well
for generating other types of solutions to differential equa-
tions. For example, Figure 7 shows a quasiperiodic torus
solution to the Hénon-Heiles equation.

Figures 1, 3, 7, 8, and 9 were 3D printed using this
straightforward approach.

3. Mixed Curvature Method

In this section, we present a new mixed curvature method
for preparing a 3D printable differential equation solution.
The method produces a file with a smaller number of data
points, but still with the same or in some cases greater vi-
sual accuracy. In many cases, the straightforward approach
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described in Section 2 is completely sufficient for generat-
ing a visibly excellent approximation of a chaotic attractor.
For example, Figures 9 and 10 are both equally acceptable
3D printed representations of the Arneodo attractor, where
Figure 9 was created using the straightforward method and
Figure 10 used the mixed curvature approach. The same
applies to the Langford attractor shown in Figures 1 and 6.

There are, however, cases where the straightforward ap-
proach does not lead to a visually accurate object, usually
when the curvature of the solution curve varies substan-
tially along its length. The straightforward approach tends
to produce curves that lack the required smoothness in the
high curvature regions, since the data distribution is not
considering the shape of the object that we wish to eventu-
ally print. Attempts to fix this by increasing the requested
density of points leads to a vast data set that is difficult
for printers to work with, and contains superfluous data
in the low curvature areas of the curve. An example where
this behavior is particularly noticeable is when attempting
to visualize the solution to the autocatalytic chemical reac-
tion system [GS90]

W = —0.002w,

X = 0.002w — 0.08x — x)?, (1)
y = 0.08x + xy* — y,

z=Y,

with w(0) = 500, x(0) = 0, y(0) = 0, and z(0) = 0. This
system does not have an analytic solution (apart from w =
500e~0:092%) but it can be approximated to prescribed accu-
racy using a standard numerical solver, such as NDSoTlve
in Mathematica, or ode45 in Matlab. Figure 11 shows the
solutions produced using ode45 to the autocatalytic sys-
tem with the default settings on the interval ¢t € [0,1000].

Figure 9. The Arneodo chaotic attractor in equation (7),
modeled using the straighforward method in Mathematica
and 3D printed in FDM PLA.
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Figure 10. The Arneodo chaotic attractor in equation (7),
modeled using the mixed curvature method in Matlab and
OpenSCAD, and 3D printed in SLS nylon.

Two plots are shown due to the very different size scales
involved in the solutions, with the ode45 approximation
containing 2093 data points.

However, a more intuitive visualization is to plot a
projection in three-dimensional space of the position
(x(t), y(t), z(t)). Dividing z by one hundred and making
the axes of equal length, we get the picture in Figure 14.
Note that if we didn't scale the z variable, then the curve
would be extremely long and thin, and inappropriate for
3D printing. While not as compact as the chaotic attrac-
tors, this is still an interesting object for 3D printing, as
shown in Figure 15. In all that follows, we scale the z axis
for the autocatalytic system.

3.1. Default point placement. Unfortunately, the data
that produced Figures 11 and 14 is not particularly

500 T T T T
—w
—z
0 . . . .
0 200 400 600 800 1000
4 T T T T
—X
Y
2 .
0 1 n
0 200 400 600 800 1000

Figure 11. Solutions to the autocatalytic system in equation (1)
using ode45 as a function of time.
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useful when developing a structure for 3D printing. If one
is not using the built-in Mathematica routines, the stan-
dard approach is to take a set of data points along the
curve, join them by straight line segments, then expand
them into tubes with some given cross-section of a pleas-
ing radius. This step is identical to the use of the Math-
ematica Tube command used in the straightforward ap-
proach. Having the points placed so that the joins between
the tubes don't form obvious corners leads to a structure
that is more pleasing to the eye. Unfortunately, the typical
data output from a numerical solver is not of this form. An
adaptive solver like ode45 will try and use the minimum
number of points in time to satisfy some requested error
bound over the interval of interest. Even though solutions
between data points can be interpolated, the velocity along
a curve will usually vary, and straight line tubes will be of
wildly varying lengths. In this particular example, the de-
fault ode45 output looks quite poor in the middle parts
of the solution (see Figure 13), where the x and y compo-
nents are oscillating.

3.2. Equally spaced points in space. As a first attempt be-
yond default output data points, we require the data points
that define the tube endpoints to be equally spaced along
the curve in the three-dimensional phase space. This can
be done most efficiently by adding an additional differen-
tial equation to the original set that gives the length of the
curve so far as a function of time. Given that the arc length
of the curve defined by (x(t), y(t),z(t)), 0 <t < T, is

t
s(t) = / V2@ + y) + 2w du
0

taking the derivative gives us

3(0) = /5O + 9O + 1) with  5(0) = o0.

Formulas for X, y, and Z are given in the original system
of differential equations. For example, Figure 12 shows
the length of the curve for the autocatalytic system, with z
divided by 100, as a function of time. Clearly, the veloc-
ity is not constant along this curve, which has total length
163.45, and the default output produces line segments that
vary in length from 5.02 X 10 to 4.53.

To produce data points equally spaced in terms of dis-
tance along a curve on some time interval [0, T], since
we have the distance function s(t), we want data at times
{t;}12, that satisfy

is(T)
m

s(t;) — =0 for
where t, = 0 and t,,, = T. An easy way to solve for the t;’s
assumes we know s(t) for 0 < t < T and then use the se-
cant method with the initial guesses t; and ¢; + 107> when
trying to find t;,,. While Matlab’s ode45 outputs the
solutions at particular points, it allows for interpolation

i=0,1,..,m,
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Figure 12. Length of the autocatalytic curve as a function of
time (scaled in z direction). The lower graph shows a closer
view of the boxed region outlined in the upper graph.
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Figure 13. Straight line segments for the autocatalytic system
in equation (1) scaled in the z direction with 3000 equally
spaced (in terms of arc length) points.

between these data points, so we can find the length of the
curve at any time. Since s is an increasing function, the se-
cant method is a robust way of finding these data points.

For example, Figure 13 shows the three-dimensional
curve for the autocatalytic problem with 3000 equally
spaced points in terms of arc length. It is immediately
obvious that this is not a particularly good representa-
tion. Even with more data points than output from ode45,
there are places along the curve where it is clearly not
smooth, particularly in the lower section after the initial
spiral inwards.
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3.3. Bounding curvature. The problem with the equally
spaced approach is that regions of the curve with high cur-
vature will lead to straight line segments with a noticeable
corner between them. An alternative approach, then, is
to choose data points so that the maximum distance from
the actual curve to the approximating straight line segment
has an upper bound. The radius of curvature of the curve
could be calculated along the curve with some additional
analysis, and keeping the curve close to the line segments
is equivalent to bounding the angle of the sector of the os-
culating circle that the curve moves through between data
points.

While it is theoretically possible to calculate the radius
of curvature along the curve and choose an interval length
associated with the smallest radius of curvature on the in-
terval, it turns out to be a challenging numerical exercise
not worth detailing here. Even worse, we found that sim-
ply using the radius of curvature was also a poor choice.
Choosing interval lengths to place a sufficient number of
points in regions of high curvature means far too many
points were placed in regions where the curvature is small.

3.4. Mixed curvature method. Ideally we wish to have a
combination approach, with some upper bound on the
arc length between points when the curvature is low, then
placing more points where the curvature is high. While
sophisticated analysis is possible, we suggest the follow-
ing simple approach that works well in every situation we
have considered. Start with the equally spaced in space
approach, giving some initial length of line segments that
initially appears reasonable when the curvature is not high.
Then, if either of the angles at the joins of the current line
segment with its neighbors is too small, less than some
angle (180 — d)°, bisect the line segment by adding a data
point at the middle of the arc length curve, splitting the
original line segment into two equal length pieces, thus
increasing the density of data points in regions of high cur-
vature. If any line segment has been split, repeat a full pass
over the current set of line segments, splitting as necessary,
until eventually all of the angles between line segments are
sufficiently close to 180°.

For the autocatalytic example with time interval
[0, 1000], we chose to start with 1000 equally spaced points
and angle bound d = 10. The choice of 1000 points made
the relatively straight parts of the curve look good: even
small angles are more noticeable between straight line seg-
ments when they are long. After six passes subdividing
problematic intervals, we ended up with 4012 data points
and the picture in Figure 14.

Once data points for a curve have been established by
the mixed curvature method, we need to transform from
line segments to tubes and form an STL format file for
3D printing. Our experience thus far is that this pro-
cess is not particularly straightforward or successful within
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Figure 14. Straight line segments for the autocatalytic system
scaled in the z direction with initially 1000 points and
minimum angle 170°.

Figure 15. Autocatalytic system in equation (1) with scaled z
variable modeled with the mixed curvature method and 3D
printed in SLS Nylon.

Matlab, and so we turned to using the application Open-
SCAD [Kin] to take as input this data, produce a tubular
structure, then form an STL file. Figures 2, 4, 5, 6, 10, 15,
and 21 were 3D printed using the mixed curvature method.

It is appropriate at this time to compare the STL
files formed by the straightforward and mixed curvature
method approaches. As we have stated, for most of the
chaotic attractors we have printed and shown previously,
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Figure 16. Mesh comparison of straightforward (light model)
and mixed curvature (dark model) methods for the scaled
autocatalytic system. Note the higher accuracy and more
appropriate mesh variation in the mixed curvature model.

it is very difficult to tell which approach has been used.
Most of the time, the straightforward approach is by far the
simplest and best. But Figure 16 places the mesh formed
by the two methods in the same visualization space. It is
obvious that the mixed curvature model provides a more
pleasing object to print.

4. Future Directions

While it is not hard to find examples of 3D printed objects
related to both multivariable calculus and geometry, there
is relatively less material available on the topic of 3D print-
ing in dynamical systems. The examples in this article are
only one step in filling such a gap, and there is plenty of
room for future work in this direction. In particular, there
are many dynamical objects beyond solutions to and at-
tractors of differential equations that are well suited for 3D
printing. We include a few examples of possible future di-
rections below.

The methods described in this paper can be used to con-
sider differential equations which vary with respect to a
parameter, and used to create a series of attractors in three
dimensions as a parameter varies. This allows for the visu-
alization of bifurcations in attracting sets. An example of
this appeared in [Gagl18].

Attractors of three-dimensional iterated maps are
equally well suited to 3D printing as those of differential
equations. However, since the orbit of an iterated map
consists of a set of disconnected points which only form a
connected set when combined, it is more difficult to create
a printable mesh. The most obvious method of combin-
ing such points is to create a small sphere at each iterate,
and combine these overlapping spheres to create an ob-
ject. While this is doable, it results in an object with an
extremely large file size. In addition, overlapping objects
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Figure 17. A delay embedded Hénon attractor in equation (2)
created using a branch of the unstable manifold.

can cause mesh errors because it is not clear what to inter-
pret as the boundary of the objects, and this is only exac-
erbated by the fractal nature of a strange attractor. These
can often be fixed using a mesh repair program, but this is
an extra and not always successful step. A more in-depth
mathematical solution to the creation of an attractor of an
iterated map is to use the structure of the chaotic attractors.

An attractor of a three-dimensional iterated map almost
always falls into one of two categories, a multiply folded
one-dimensional curve or a two-dimensional surface, de-
scribed in [ASY97] as the spaghetti-lasagna dichotomy. In
the spaghetti case, the attractor is typically the closure of a
branch of a one-dimensional unstable manifold of a fixed
point or periodic point of the map. The advantages of
using this characterization is that the unstable manifold
is a connected curve, and therefore there are no longer
the same meshing issues as with small spheres. Figure 17
shows (x, y, h51(x, y)) for an attractor of the Hénon

h(x,y) = (1.4 — x? — 0.3y, x) (2)

created using a branch of the unstable manifold. The at-
tractor lies in two dimensions, but we have included a
preimage for a delay embedded version, making the graph
three dimensional. The creation of attractors which arise
as the closure of a curve is rather straightforward, though
it involves more mathematical discussion than the differ-
ential equations case. However, the creation of a lasagna-
type attractor surface is quite involved and better done us-
ing previously written software packages. For an idea of
the difficulties involved, the creation of a crocheted Lorenz
unstable manifold is described in [OKO04].

For a two-dimensional dynamical system which varies
with respect to a parameter, each attractor or other dynami-
cal object will be contained in a plane. Therefore we can ex-
plore variation with respect to a parameter in the scope of a
single 3D print. Namely, each dynamical object occurring
at a fixed parameter occurs at a single slice, and together
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Figure 18. For the Chirikov standard map in equation (13), the
quasiperiodic curve with golden mean rotation number
varying with respect to parameter k.

Figure 19. 3D printed model of the curve in Figure 18, in PLA
plastic with colored stripes made possible from a Palette
filament splicer.

the slices form a 3D object. For example, the Chirikov
standard map in equation (13) in Appendix A is an area-
preserving map on the unit square which varies with re-
spect to a parameter k. At each fixed k value between k = 0
and k ~ 0.971635406, there is an invariant curve consist-
ing of the closure of a single periodic orbit with the prop-
erty that the rotation number (average of f(x) — x along
the orbit) is equal to the golden mean (/5 = 1)/2. Rather
than being chaotic, these invariant curves are quasiperiodic.
Figure 18 shows how the curves vary with respect to k for
0 < k < 0.9716. At each fixed k, we use a root finding
method to find the curve with the given rotation number.
Figure 19 is a photo of a 3D printed model of these curves.

We also note that iterated maps can be made higher di-
mensional by including point density information using a
binning approach, where we count how often a map visits
regions in some mesh. For example, Figure 20 shows the
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Figure 20. The logistic map in equation (3) where the height is
the probability of visiting a particular location as r varies.

iterated logistic map

Xpg1 = rxp(1 = xp), (3)
where the height is a measure of how likely it is for the
map to visit a particular region as we vary r.

Finally, parabolic partial differential equations can also
be viewed as dynamical systems for solutions of the form
u(t, x), and at fixed t values, the solution u can have rich
structure. These provide a rich set of examples for creation
of 3D prints. An example of a 3D print of a spinodal de-
composition in the Cahn-Hilliard equation is in [San15].

A. List of Dynamical Systems

We have tested the standard algorithm on the following ex-
amples, chosen both for beauty and for importance. Many
of these examples can be found in [ASY97] and [Meil7].

» Lorenz attractor [Lor63]:

x =o(y—x),
y=x(p—2z)-y, (4)
z = xy— fz,

with ¢ = 3, 8 = 1, and p = 28, and initial condi-
tions xqg = 0, yo = 1, zy = 0. The Lorenz system
is the first chaotic attractor within the scientific
community. It is an atmospheric model created
to understand unpredictability of linear models in
weather prediction. See Chapter 9 of [ASY97] for
a detailed discussion of the history of the model.
» Rossler attractor [R6s76]:

X=-y-—z
y=x+ay, (5)
z=b+z(x—c),
with a = 0.1, b = 0.1, ¢ = 18, and initial condi-
tions x, = 0, yo = 1, zp = 0. This system was

created to show that chaos could occur in systems
that were even simpler than the Lorenz equations.
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« Chen double scroll attractor [CU99]:

x =a(y —x),
y=(c—a)x—xz+cy, (6)
z=Xxy— bz,

with a = 40, b = 3, ¢ = 28, and initial conditions
xo = —0.1, yo = 0.5, z; = —0.6. This system was
created to exhibit properties of both Lorenz and
Réssler attractors.

« Arneodo attractor [ACST85]:

X=y,
y=z (7)
z=—ax—By—z+56x3,

with a = —5.5, 8 = 3.5, § = —1, and initial condi-
tions xy = 0.2, yy = 0.2, z5 = —0.75. This attractor
was developed to illustrate chaos in a physical sys-
tem near a triple instability.

 Langford attractor [Lan84]:

X =(z—-b)x—dy,
y =dx+ (z - b)y, (8)
z=c+az—23/3—(x*+y*)(1 +ez) + fzx3,

with a = 095 b = 0.7, ¢ = 0.6, d = 3.5,
e = 0.25, f = 0.1, and initial conditions x, = 0.1,
Yo = 1, zg = 0. Note that while this attractor is
commonly named after Yoji Aizawa, it cannot be
found within his published work, and was in fact
developed by Langford [Lan84]. He was investi-
gating models of chaotic behavior moving upon a
torus.
« Hénon-Heiles invariant torus [HH64]:

X=2z,

y=uw, 9)
z=—Xx—2xy,

W =—y—x%+)>?

with initial conditions x, = 0, yy = 0, z, = 0.35,
wy = —0.3. The total time length is 200. This
system models the motion of individual stars as
affected by the rest of a galaxy. Unlike the other
models in this paper, this is a four-dimensional
example. We project and only plot (x,y,z). The
system is Hamiltonian, so the chaotic solutions
are not strange attractors and thus do not make
very pretty prints. We have chosen an initial con-
dition corresponding to a quasiperiodic solution
(it has energy approximately 0.10625), which is a
topological torus in four dimensions.

+ Rucklidge attractor [Ruc92]:

X=xx—Ay—yz

y=x, (10)
Z=—z+)?
with ¥ = —2, 1 = —6.7, and initial conditions x, =

1, yo =0, zy = 4.5. This system came about when
modelling two-dimensional convection in a fluid
layer rotating uniformly about a vertical axis.
Anishchenko-Ashtakhov attractor [AA83]:

X=ux+y—xz
y=—x, (11)
z = —nz + nH(x)x?,

with u = 1.2, » = 0.5, H(x) is the Heaviside
function, and with initial conditions x, = —0.1,
Yo = 0.5, z5 = —0.6. This system was proposed
in the study of nonlinear oscillators. The original
paper is in Russian, but a description appears in
English in [AS98].

Mackey-Glass attractor [MG77]:

x(t) = Bx(t — )/ + x(t — 7)) — yx(t), (12)

withy =1, =2, 7 =2, and n = 9.65, and initial
condition x(t) = t? for —t < t < 0. This equa-
tion models dynamical diseases including respira-
tory disorders such as irregular breathing apnea
and hematologic disorders such as chronic myel-
ogenous leukemia, in which blood cell counts os-
cillate rather than staying constant. Unlike other
examples this produces a strange chaotic attrac-
tor for a delay differential equation. We plot
the solution in three dimensions by projecting to
(x(t), x(t—7), x(t—7)). Both Mathematica and Mat-
lab have built in delay equations solvers, making
it possible to use a black box code for solving this
equation.

Chirikov standard map [Chi79]:

Xip1 =X+ Y mod 1,
k .
Yee1 = Vet =5 sin(27x;). (13)

This iterated map is a well-known example in the
study of area-preserving maps and Kolmogorov-
Arnold-Moser theory. When k = 0, all points lie
on “rotational” invariant circles, which are graphs
of x as a function of y. For each fixed rotation
number w € (0,1), rotational invariant circles
exist and vary smoothly for a parameter interval
(0,k,). The largest value of k,, occurs when w is
equal to the golden mean (or its inverse).

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1701



B. 3D Printing Notes

The physical models photographed in this paper were 3D
printed using a variety of methods, which we outline here
so that others can use these techniques to print their own
models.

The 3D models shown in Figures 1, 3, 7, 8, and 9 were
3D printed with desktop filament-deposition (FDM) ma-
chines in PLA plastic. When printing with FDM, one layer
of plastic is drawn out at a time, each supporting the next.
If your model has overhangs (as will certainly be the case
for these attractors), then you will also have to include ex-
tensive support material as part of your print. This support
material can be removed after printing, but leaves marks
and can damage or break the model during cleanup. For
this reason models printed with FDM can have a rough sur-
face and in addition need to have thicker path diameter for
strength, so less detail is possible.

The model in Figure 6 was printed on a desktop resin
3D printer using stereolithography (SLA) technology. This
method uses a laser to harden liquid resin one thin layer
at a time, with the model developing upside-down while
attached from a build plate that dips into a pool of resin.
Models printed with SLA can in general be very delicate,
but the sweeping curves of attractors do tend to break dur-
ing support removal and cleanup, so a thick path diameter
is recommended with this method as well. SLA printing
also requires washing with isopropyl alcohol and curing
with sunlight or a UV light. The final printed models have
a very high-quality finish.

The models shown in Figures 2, 4, 5, 10, 15, and 21 were
printed by the service bureau Shapeways in Nylon plastic,
using Selective Laser Sintering (SLS). With this technology,
the model is created by depositing very thin layers of pow-
der which are solidified by a laser in the spots that intersect
the design. At the end of printing the model is completely
encased and supported by loose powder, so there are no
supports to remove. Very thin and detailed models can
be printed successfully with this method. Compare the
detail in the SLS model of the Langford attractor shown
in Figure 21 with the coarser models of about the same
overall size printed in FDM (Figure 1) and SLA (Figure 6).
SLS printing is a particularly good option for art/display-
quality models and for those without their own 3D print-
ers in house.

Finally, the model in Figure 19 was printed on an FDM
machine with an additional Palette attachment that al-
lowed for splicing filament colors together mid-print, re-
sulting in a striped multicolor pattern that highlights the
levels of the surface.

C. Code Resources

The authors were inspired by Segerman’s seminal article
[Seg12] that provided executable code that others could
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Figure 21. The Langford chaotic attractor (8). Modeled in
Matlab and OpenSCAD and 3D printed in SLS nylon.

use to get started on related projects, and in the same spirit
we include this Appendix. In this section we provide ex-
cerpts of fully executable, commented code for creating
3D-printable files with Mathematica, Matlab, and Open-
SCAD. Full code files can be found at [LST20].

C.1. Mathematica. The following Mathematica code,
available in the Mathematica . hb form from [LST20], can
be used to create 3D-printable solutions to differential
equations using the straightforward method, and is partic-
ularly adapted for chaotic attractors. This particular code
creates the Chen double-scroll attractor [CU99], but can
be easily adapted to create all the other solutions described
here.

(* Set the parameters *)
a=40; b =3; c = 28;

(* Set the differential equation *)

Fllx_, y_, z_] :=a (y - x)
F2[x_, y_, z.] :=(c-a) x-xz+cCy
F3[x_, y_, z_] :(=x y-bz

(* Set the initial conditions *)
x0 = -0.1; yO = 0.5; z0 = -0.6; ta = 2;

(* Solve, keeping the final value because
we are removing transient behavior
and waiting for the solution to
converge to the attractor *)

ap = NDSolve[

{xa’[t] == Fl[xa[t], ya[t], za[t]],
ya’'[t] == F2[xa[t], yal[t], za[tl],
za’[t] == F3[xa[t], ya[t], za[t]l],
xa[0]==x0 , ya[0]==y0, za[0]==z0},
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{xa, ya, za}, {t, 0, ta},
MaxSteps -> Infinity]

(* Start a new computation at the place
where the last solution ended. *)
x1 = xa[ta] /. ap;

yl = ya[tal /. ap;
z1 = za[ta] /. ap;
tb = 50;

(* Solve again, except this time
starting at the place the solution
ended the Tast time *)

bp = NDSolve[

{xb’[t] == F1[xb[t], yb[t], zb[t]],
yb’[t] == F2[xb[t], yb[t], zb[t]l],
zb’ [t] == F3[xb[t], yb[t], zb[t]l],
xb[0]==x1, yb[0]==y1l, zb[0]==z1},
{xb, yb, zb}, {t, 0, tb},

MaxSteps -> Infinity]

(* Plot the attractor for viewing
on screen *)

ParametricPlot3D[
{xb[t], yb[t], zb[t]} /. bp,
{t, 0, tb}, PlotRange -> Al1]

(* Plot again 1in 3D printable form *)
cp = ParametricPlot3D[
{xb[t], yb[t]l, zb[t]l} /. bp,
{t, 0, tb}, PlotStyle -> Tube[.5],
PlotPoints -> 100, PlotRange -> Al1]

(* Export a 3D printable STL file *)
Export[”chenattractor.stl1”, cp]

C.2. Matlab. The following Matlab code can be used to
produce data points that can be joined by tubes in Open-
SCAD for 3D plots. See [LST20] for a Matlab .m format
copy. Here we are implementing the Rucklidge attractor,
but this can be easily adapted for any dynamical system.
The following function defines the Rucklidge attractor:

function ret=rucklidge(~,y)

% Function for the Rucklidge attractor
% 1: xX’=-2x+6.7y-yz

% 2: y'=x

% 3: z'=-z+yA2

% 4: s’=sqrt(x’A2+y’A2+z’A2)
ret=zeros(4,1); % Column vector
ret(L)=-2*y(1)+6.7*y(2)-y(2)*y(3);
ret(2)=y(1);

ret(3)=-y(3)+y(2)A2;
ret(4)=sqrt(ret(1)A2+ret(2)A2+ret(3)A2);

The following function implements the secant method
to find a given t such that s(¢) = b:
function newt=secant(sol,s,p0)
% Secant method to find the time when the

% length of a curve is a given value
% Input: sol = ode solution, values can

% be found at any time
% s = required curve length
% pO0 = initial guess

N=500; % N is maximum number of steps
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tol=1.0e-11; % tol is error bound
i=2; % 1 is function eval count
y=deval(sol,p0); % y is sol at time pO
q0=y(4)-s; % first function value
pl=p0+le-4; y=deval(sol,pl);
gql=y(4)-s; % second function value
while i<=N && abs(p0-pl)>tol
% secant step and update
p=p1l-q1*(pl-p0)/(ql-q0);
i=i+1; pO=pl; qO0=ql; pl=p;
y=deval (sol,pl); ql=y(4)-s;
end
if abs(p-p0)>tol, error(’no conv’); end
newt=p;

The following code constructs the data points using
the mixed curvature approach, called runrucklidge.m at
[LST20]:

% Matlab code for plotting chaotic
% attractors. Output is data that is
% initially equally spaced points along the
% curve, but subdivide if the angle between
% line segments is not large enough
N=500; % N is maximum number of steps
NUM=1000; % NUM 1is the initial number of
% pieces of equal arc length
T=200; % T is the total time
init=[1,0,4.5]; % initial conditions
% solve the system, initial Tlength=0
sol=ode45(@rucklidge, [0,T],[init,0]);
%y is the solution at a given time
y=deval(sol1,T);
Ten=y(4); % len is the length of the curve
% Initialize data arrays, pos is position
% data, seg is segment length data
segnum=NUM; % current number of segments
% First point
pos=zeros(segnum+1,3); pos(l,:)=init;
% Last point
pos(segnum+1, :)=[y(1),y(2),y(3)];
% Location along arc of points
segment=(0:segnum)*1en/segnum;
time=zeros(segnum+1l,1); time(1)=0;
time(segnum+1)=T;
% time is time at each position
for i=1:segnum-1
% Solve for the time for each new
% constant length piece using the
% secant method starting at the
% previous time, and plus a bit
time(i+1)=secant(sol,segment(i+l),
time(i));
y=deval(sol,time(i+1));
pos(i+1,:)=[y(1),y(2),y(3)];
end
% Plot equally-spaced-in-time data points
figure(l)
plot3(pos(:,1),pos(:,2),pos(:,3),’.-")
axis square, axis equal
pause
done=false;
% Keep going until no segments need to be
% split
while ~done
done=true;
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% Identify 1line segment vectors and
% lengths
vec=zeros(segnum,3);
Tenvec=zeros(segnhum,1);
for i=1:segnum
vec(i,:)=pos(i+l,:)-pos(i,:);
lenvec(i)=norm(vec(i,:));
end
% Identify angles between segments and
% which ones to split
ang=zeros(segnum-1,1);
split=zeros(segnum,1);
for i=1:segnhum-1
ang=acosd(sum(vec(i,:).* ...
vec(i+1,:))/(Tenvec(i)* ...
Tenvec(i+1)));
if ang>10, split(i)=1;
split(i+1)=1; done=false;
end
end
disp(sum(split));
% Split segments at half the distance
% between endpoints
newn=segnum+sum(split);
newpos=zeros(newn+1,3);
newpos (1, :)=init;
newseg=zeros (newn+1,1);
newseg(1)=0; newtime=zeros(newn+1l,1);
newtime(1)=0; newtime(newn+1)=T;
j=1;
for i=1:segnum
if split(i) % Add a new midpoint
j=j+1;
news=(segment(i)+segment(i+1))/2;
newtime(j)=secant(sol,news,
time(i)); y=deval(sol,newtime(j));
newpos (3, :)=[y(1),y(2),y(3)1];
newseg(j)=news;
end
% Add endpoint
j=j+1; newpos(j,:)=pos(i+l,:);
newseg(j)=segment(i+l);
newtime(j)=time(i+1);
end
% Update variable 1ist
segment=newseg; poS=newpos;
time=newtime; segnum=newn;

figure(1)
plot3(pos(:,1),pos(:,2),pos(:,3),’.-")
axis square, axis equal
pause

end

% output data to file
f=fopen(’rucklidge.txt’,’w’);
for i=1:seghum+1

fprintf(f,’ [%f, %f, %f]1,\n’,pos(i,:));
end
% Final plot of data
figure(l1)
plot3(pos(:,1),pos(:,2),pos(:,3),’.")
axis square, axis equal
figure(2)
plot3(pos(:,1),pos(:,2),pos(:,3))
axis square, axis equal

C.3. OpenSCAD. The following OpenSCAD code takes
lists of data points as inputs and constructs a 3D-printable
tubular polyhedron following those data points. A self-
contained version of the code is provided at [LST20].

// input files
use <list-comprehension/sweep.scad>
use <scad-utils/shapes.scad>

// choose start and end datapoints

step = 1;
start = 32;
end = 2740;

// style and size parameters

radius = 1;

sides = 8;

function shape() =
circle(radius, $fn=sides);

// overall scale applied before the
tubular polyhedron is constructed
scale = 12;

// large Tlist of datapoints
obtained from Matlab solver

points = [

[2.000000, 3.000000, 1.000000],

[2.147146, 2.904262, 1.173744],

[2.268546, 2.805048, 1.364594],

[2.362653, 2.702993, 1.568898],

(thousands of data points omitted)

[0.864680, 1.798989, 3.940367],
[0.792858, 1.667819, 3.743417],
[0.747632, 1.539176, 3.538058],
[0.700565, 1.276545, 3.119037]
1;

// construct tubular polyhedron
following curve of datapoints
path =
[ for (i=[start:step:end])
scale * points[i] ];
path_transforms =
construct_transform_path(path,true);
sweep (shape(), path_transforms,false);
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