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Abstract. We develop general methods for rigorously computing continuous
branches of bifurcation points of equilibria, specifically focusing on fold points

and on pitchfork bifurcations which are forced through Z2 symmetries in the

equation. We apply these methods to secondary bifurcation points of the one-
dimensional diblock copolymer model.

1. Introduction. Understanding the equilibrium structure of nonlinear partial dif-
ferential equations lies at the heart of many important applied problems. Unfor-
tunately, there are no general techniques which allow one to obtain a complete
answer for any such problem. In some cases, maximum principle methods can be
used to obtain partial results, in other cases one can reduce the problem to study-
ing specific connecting orbits in associated ordinary differential equations. Both of
these types of methods are restricted to the case of partial differential equations on
one-dimensional domains, but even in this case many answers remain elusive.

One alternative that has been developed over the last decades is the use of
computer-assisted proofs in the study of equilibrium problems of nonlinear partial
differential equations. Part of the allure of these methods is that they do not depend
on the order of the partial differential equation. For example, in contrast to classical
maximum principle methods, which cannot generally be used for fourth-order par-
tial differential equations, rigorous computational methods have been successfully
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applied to the stationary Cahn-Hilliard equation [13, 22, 23], the diblock copolymer
model [35, 36, 37, 38], as well as to others such as [25, 40].

Almost all equilibrium problems that arise in applications involve a number of
parameters, and one is generally interested in understanding how the structure of
the equilibrium set changes as these parameters are varied. In this context, pre-
cise mathematical methods from bifurcation theory exist which can predict where
changes in the solution set occur, i.e., they address the location of bifurcation
points. In addition, they can provide complete local descriptions of emerging solu-
tion branches. Yet, these methods usually fail to provide information on the global
structure of such branches. Also in this context, rigorous computational techniques
have successfully been used, see for example [2, 11, 14, 35, 31] and [1, 28, 29], where
the latter group considered bifurcation points as well as solution branches.

In the current paper, we show that rigorous computational methods can locate
curves in parameter space along which certain types of bifurcation points occur.
Our focus is on studying secondary bifurcation points using rigorous computational
techniques, including saddle-node bifurcations and symmetry-breaking pitchfork bi-
furcations. Our interest in this problem stems from recent work on the diblock
copolymer equation, which for the one-dimensional domain Ω = (0, 1) is given by

ut = − (uxx + λf(u))xx − λσ(u− µ) , (1)

subject to the mass constraint µ =

∫ 1

0

u(x)dx ,

as well as ux(x) = uxxx(x) = 0 for x = 0, 1 .

where in the following we use the nonlinearity f(u) = u−u3. This partial differential
equation is a model for microphase separation in diblock copolymers as described
in [26]. These are formed by the reaction of two linear polymers, or blocks, contain-
ing different monomers. The function u is the relative macroscopic density of the
two monomers. The parameter µ is the total mass of u. Roughly speaking, large λ
represents strong short range repulsion, resulting in short range separation. Large
σ indicates strong long range elasticity forces. In two and three dimensions, the
interaction between the two forces results in the formation of special geometries,
which induce patterns such as spots, stripes, and gyroids. In its original form it
was proposed by Ohta and Kawasaki [27] and Bahiana and Oono [3]. For more in-
formation regarding its derivation and the involved parameters we refer the reader
to Choksi and Ren [8, 9].

In [17] we combined rigorous bifurcation-theoretic results with numerical sim-
ulations to shed light on the long-term dynamics of the diblock copolymer model
in one dimension. It is well-known that the model exhibits multi-stability, i.e.,
the coexistence of multiple stable equilibrium solutions. Furthermore, the constant
function u ≡ µ is always an equilibrium solution for the diblock copolymer model,
representing a homogeneous polymer blend. For sufficiently large values of the pa-
rameter λ this stationary state loses its stability, and one is generally interested
in the long-term behavior of solutions of (1) which originate close to µ. It was
shown in [17] that the spatial periodicity of the long-term limit of typical solutions
changes along well-defined curves in the λ-σ-parameter plane. In fact, numerical
path-following computations suggested that these curves are the locations of very
specific secondary bifurcation points in the diblock copolymer bifurcation diagram.

The diblock copolymer model is a regular perturbation, with respect to the pa-
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Figure 1. Equilibrium bifurcation diagrams of the Cahn-Hilliard
model (left image) and the diblock copolymer model for σ = 6
(right image). In both figures, µ = 0. Most of the shown branches
actually correspond to two or more solution branches, since the L2-
norm of the associated solutions is used as the vertical diagram axis.
The colors correspond to the indices of the solutions. Along the
horizontal trivial solution branch they increase from zero (black)
to five (cyan).

rameter σ, of the standard Cahn-Hilliard model, which corresponds to σ = 0. The
equilibrium structure of the Cahn-Hilliard equation has been completely described
by Grinfeld & Novick-Cohen [15] by combining phase-plane analysis with transver-
sality arguments, and this leads to a bifurcation diagram as in the left image of
Figure 1. The method of [15] relies on the fact that the stationary Cahn-Hilliard
problem in one dimension can be integrated twice, reducing it to a second-order non-
linear boundary value problem. However, this is no longer the case in the diblock
copolymer model — which is certainly responsible for the fact that our knowledge
of its equilibrium structure is extremely limited. Nevertheless, as a regular pertur-
bation problem the bifurcation diagram of the Cahn-Hilliard model changes in a
continuous manner as σ is increased from zero. Part of this change was discussed
in [17]. Namely, it was shown that as σ increases from zero, there is an infinite
sequence of branch interactions near the trivial solution line as the branches suc-
cessively move to the right. These local interactions have been rigorously described
in [17] using analytical bifurcation-theoretic techniques. Further, the local bifur-
cations are observed to combine with global bifurcations from infinity, leading to
different types of branch interactions at secondary bifurcations. Five of these sec-
ondary bifurcation points can be seen in the right image of Figure 1, which shows
part of the diblock copolymer bifurcation diagram for σ = 6. While one of these
points is a regular saddle-node type bifurcation point, the remaining four are of
pitchfork type. Understanding the locations of these secondary bifurcation points
in the λ-σ-parameter plane lies at the heart of understanding how the complicated
diblock copolymer bifurcation diagram is obtained from the simple Cahn-Hilliard
diagram. For more details, we refer the reader to the survey [37].

Motivated by the above discussion, in this paper we develop a rigorous compu-
tational method to compute the location curves of secondary bifurcation points as
above. For the case of the saddle-node type bifurcation point this is accomplished
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by considering a standard extended system which encodes both the existence condi-
tion for the equilibrium point and the existence of a one-dimensional non-degenerate
kernel of the linearization of the diblock copolymer model at this equilibrium. This
extended system will lead to a well-defined continuation problem. However, for
the remaining four secondary bifurcation points in the right image of Figure 1 this
extended system has a degeneracy. This is due to the fact that these bifurcation
points are pitchfork bifurcations which are forced by symmetries in the model. In
these cases we employ a method due to Werner & Spence [39] to derive a well-
defined continuation problem. While in this paper we concentrate on the case of
the diblock copolymer model, similar questions arise in the study of nucleation in
the Cahn-Hilliard model, as described in [4, 5, 6, 12]. In this paper, we develop
a generally applicable method for solving problems with saddle-node bifurcations
and Z2 symmetry-breaking pitchfork bifurcations. While we only apply this method
in the context of the diblock copolymer equation (with µ = 0 chosen in order to
allow for antisymmetric solutions), the method is directly applicable in a broad
range of applications. In addition, we believe that the method can be extended to
symmetry-breaking bifurcations for other symmetry classes.

After developing the general functional analytic method for rigorously verifying
the existence of bifurcation points, we apply it in several specific secondary bifurca-
tions for the one-dimensional diblock copolymer model. We do so using the method
of radii polynomials. In this context, we write everything in terms of the Banach
space of Fourier series. We then use a series of previously established estimates on
the functional manipulation of such series. This allows us to be able to handle the
rigorous estimates on the infinite-dimensional function space.

Our final results using the radii polynomial techniques consist of a set of three
validated branches of saddle-node bifurcations and three validated branches of
symmetry-breaking pitchfork bifurcations. Each of these cases were found numeri-
cally in [17], where it was observed numerically that there was scaling law of different
bifurcation branches. From the point of view of the general techniques of the first
part of this paper, these results serve as a proof of concept. From the point of
view of better understanding the diblock copolymer equations, the validation of
these branches of bifurcations is a first step, where our eventual goal is to combine
such results with analytical methods in order to validate the scalings of bifurcation
branches that we observed in the previous paper.

The remainder of the paper is organized as follows. In Section 2 we present the
functional-analytic setting for our studies, showing how the results of [39] can be
adapted to our situation. In Section 2.1 we view the set of equilibria of a differen-
tial equation as the zero set of a nonlinear mapping in an abstract function space.
We use the Lyapunov-Schmidt reduction technique to study the zero set of such a
mapping. This section includes the introduction of equivariant symmetry, with the
goal of being able to treat symmetry-breaking bifurcations. In Section 2.2, we then
apply the Lyapunov-Schmidt method to saddle-node bifurcations. We introduce
an extended system consisting of the nonlinear mapping whose zero set consists of
equilibria, along with two other bifurcation conditions. We then apply our abstract
approach to the extended system to prove the existence of saddle-node bifurcation
points. Finally, in 2.3, we treat the case of pitchfork bifurcations. This time we
make assumptions of equivariance of the nonlinear mapping, and the existence of
a solution which is either symmetric or antisymmetric. This allows us to prove
the existence of symmetry-breaking pitchfork bifurcation points. In Section 2.4, we
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demonstrate that the diblock copolymer equation satisfies all the assumptions nec-
essary for our abstract setting. Section 3 gives specific details of how to transfer the
abstract functional-analytic existence results into a rigorous computational method.
In particular, we give existence results for equilibrium solutions at regular and bifur-
cation points, where our solutions are proved to be contained in a precisely defined
small neighborhood of a function given in the form of a truncated Fourier series ex-
pansion. Section 3.1 gives the function-analytic background for rigorous bounds on
manipulated functions given in terms of Fourier series expansions. Section 3.2 de-
tails the method of sequentially validating the curve of equilibrium solutions of the
equation as a parameter is varied using the radii polynomial approach. Section 3.3
and Section 3.4 provide the detailed estimates and the bounds required to define the
radii polynomial associated to the saddle-node bifurcations and respectively to the
pitchfork bifurcations. Finally, in Section 3.5, the radii polynomial approach is com-
bined with the Lyapunov-Schmidt results in Section 2 in order to establish branches
of saddle-node and pitchfork bifurcations for the diblock copolymer equation.

2. Extended systems for locating bifurcation points. In this section we
present the functional-analytic framework which will be used to study the con-
tinuation of bifurcation points using rigorous computational techniques. As we
anticipate that our methods are applicable to a wide variety of settings, we formu-
late the results first in a general Banach space setting, and apply them only later to
the diblock copolymer model. We note that a number of these results are standard,
but we include a brief version of the proofs for completeness in the efforts of keeping
the paper self-contained, as well as to set the results into our notation.

2.1. Lyapunov-Schmidt reduction and equivariance. We begin by recalling
the basic functional-analytic tool which can be used to study the equilibrium set
of nonlinear equations in Banach spaces — the Lyapunov-Schmidt reduction. The
results of this section are all well-known and stated only to keep the presentation
as self-contained as possible. For more details we refer the reader to [10, 41]. We
study nonlinear operator equations of the form

F (λ, u) = 0 , (2)

where F : R×X → Y is a smooth nonlinear mapping, and X and Y are real Banach
spaces. Throughout this section, we assume the following.

Assumption 2.1 (Fredholm Property). Let X and Y denote real Banach spaces,
and assume that the parameter-dependent nonlinear operator F : R × X → Y is
sufficiently smooth. Suppose that the point (λ0, u0) is a solution of (2), i.e., that
we have the identity F (λ0, u0) = 0. Finally, we assume that the Fréchet derivative
L = DuF (λ0, u0) ∈ L(X,Y ) is a Fredholm operator of index zero.

In addition, we will only consider possible bifurcation points which exhibit a
one-dimensional nullspace. This leads to the following second assumption.

Assumption 2.2 (One-Dimensional Kernel). Suppose that Assumption 2.1 holds.
Assume further that the linearization L = DuF (λ0, u0) has a one-dimensional ker-
nel. Since it has index zero, its range has co-dimension one. In this case, we have

N(L) = span[ϕ0] and R(L) = N (ψ∗0)
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for some nonzero elements ϕ0 ∈ X and ψ∗0 ∈ Y ∗, where Y ∗ denotes the dual space

of Y . Finally, let X̃ ⊂ X and Ỹ ⊂ Y denote closed subspaces such that

X = N(L)⊕ X̃ and Y = Ỹ ⊕R(L) ,

where the continuous linear projector P : Y → Y is defined via the two identities
R(P ) = Ỹ and N(P ) = R(L), while the projector Q : X → X is defined via

R(Q) = N(L) and N(Q) = X̃. Notice that both P and Q have rank one.

In the above situation, one can study the solution set of (2) in a neighborhood
of (λ0, u0) by solving an associated real-valued equation which involves only two
real arguments, the so-called bifurcation equation. It is the subject of the following
proposition which describes the Lyapunov-Schmidt reduction.

Proposition 2.3 (Lyapunov-Schmidt Reduction). In the situation of Assump-
tions 2.1 and 2.2 there exist a neighborhood Λ0 of λ0, a neighborhood V0 of v0 =
Qu0 ∈ N(L), a smooth function W : Λ0 × V0 → X̃, as well as a smooth real-valued
function b which is defined in a neighborhood of the point (λ0, 0) ∈ R2 such that the
following hold:

(a) If (λ, α) is sufficiently close to the point (λ0, 0) ∈ R2 and satisfies b(λ, α) = 0,
then we have

F (λ, u) = 0 for u = v0 + αϕ0 +W (λ, v0 + αϕ0) .

(b) Conversely, if (λ, u) is close enough to (λ0, u0) and solves F (λ, u) = 0, then
for α defined via v0 +αϕ0 = Qu we have b(λ, α) = 0 and u = Qu+W (λ,Qu).

In other words, the solution set of b(λ, α) = 0 in a neighborhood of (λ0, 0) ∈ R2 is
in one-to-one correspondence to the solution set of F (λ, u) = 0 in a neighborhood
of the point (λ0, u0).

Proof. According to Assumption 2.2, solving the nonlinear problem (2) is equivalent
to solving the two equations

PF (λ, v + w) = 0 , as well as (3)

(I − P )F (λ, v + w) = 0 . (4)

where v = Qu and w = (I − Q)u. If we define G(λ, v, w) = (I − P )F (λ, v + w),

then our assumptions readily imply that G : R×N(L)× X̃ → R(L). If we further
introduce the abbreviations v0 = Qu0 and w0 = (I −Q)u0, then G(λ0, v0, w0) = 0,
and

DwG(λ0, v0, w0) = (I − P )L|X̃ = L|X̃ ∈ L
(
X̃, R(L)

)
.

According to our definition of X̃ the continuous linear operator DwG(λ0, v0, w0) is
therefore one-to-one and onto, hence continuous with continuous inverse — and one
can apply the implicit function value theorem to solve (4) locally for w as a function
of λ and v. This furnishes the function W as in the formulation of the theorem.
Plugging W into (3) shows that locally near (λ0, u0) a pair (λ, u) solves F (λ, u) = 0
if and only if (λ, v) = (λ,Qu) satisfies

PF (λ, v +W (λ, v)) = 0 .

If we now set b(λ, α) = ψ∗0(PF (λ, v0 + αϕ0 + W (λ, v0 + αϕ0))), then the result
follows due to our choices of ψ∗0 and P .
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Dλb(λ0, 0) = ψ∗0DλF (λ0, u0) ,

Dλαb(λ0, 0) = ψ∗0DλuF (λ0, u0)[ϕ0]

+ ψ∗0DuuF (λ0, u0)[ϕ0, DλW (λ0, v0)] ,

Dααb(λ0, 0) = ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0] ,

Dαααb(λ0, 0) = ψ∗0DuuuF (λ0, u0)[ϕ0, ϕ0, ϕ0]

+ 3ψ∗0DuuF (λ0, u0)[ϕ0, DvvW (λ0, v0)[ϕ0, ϕ0]] ,

LDλW (λ0, v0) = −(I − P )DλF (λ0, u0) ,

LDvvW (λ0, v0)[ϕ0, ϕ0] = −(I − P )DuuF (λ0, u0)[ϕ0, ϕ0] .

Table 1. Some of the partial derivatives of the bifurcation func-
tion b(λ, ν) at the point (λ0, 0) up to order three, together with the
required partial derivatives of W .

Important for applications is the fact that one can easily derive a Taylor ex-
pansion for the bifurcation function b(λ, α) near the point (λ0, 0). One can show
that

b(λ0 + ν, α) = ν ·Dλb(λ0, 0) +
ν2

2
·Dλλb(λ0, 0) + αν ·Dλαb(λ0, 0)

+
α2

2
·Dααb(λ0, 0) +

ν3

6
·Dλλλb(λ0, 0)

+
αν2

2
·Dλλαb(λ0, 0) +

α2ν

2
·Dλααb(λ0, 0)

+
α3

6
·Dαααb(λ0, 0) +R(ν, α) (5)

with R(ν, α) = O(‖(ν, α)‖4), where the derivatives of b can be computed explicitly as
in Table 1, which also contains the necessary derivatives of W . Notice that the latter
derivatives are all obtained through solving an inhomogeneous linear equation which
involves the restriction of L onto X̃, which in this case is an invertible mapping.

The method of Lyapunov-Schmidt is one ingredient for our rigorous computa-
tional study of bifurcation points in the diblock copolymer equation. In order to
treat pitchfork bifurcation points, we also make use of symmetry methods. For the
purposes of this paper, we assume that symmetry occurs in the following specific
form.

Definition 2.4 (Z2-Equivariance). In the situation of Assumption 2.1, suppose
there exist bounded linear operators SX ∈ L(X) and SY ∈ L(Y ) such that

SX 6= I , SY 6= I , S2
X = I , S2

Y = I ,

as well as

F (λ, SXu) = SY F (λ, u) for all λ ∈ R and u ∈ X . (6)

Then we say that F is Z2-equivariant . Based on the symmetry operators SX and SY
one can also decompose the underlying Banach spaces into the symmetric elements
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and the antisymmetric elements. More precisely, for the Banach space X we define

Xs = {u ∈ X : SXu = u} and Xa = {u ∈ X : SXu = −u} ,
and analogously one can define the subspaces Ys and Ya of Y . Then it is straight-
forward to show that

X = Xs ⊕Xa as well as Y = Ys ⊕ Ya .
In our applications below, the operators SX and SY are usually given by the same
formula, even though they act on different Banach spaces. We therefore simply
drop the subscripts in the following to simplify notation. It will always be clear
from context whether S acts on X or on Y .

For the nonlinear equation (2), equivariance has immediate consequences regard-
ing invariance of subspaces, both for the equation and for certain derivatives of F .
For example, by differentiating the identity (6) with respect to u one immediately
obtains

DuF (λ, SXu) [SXv] = SYDuF (λ, u) [v] (7)

for all λ ∈ R and u, v ∈ X. If one assumes in addition v ∈ Xs, then (7) furnishes the
Z2-equivariance of the Fréchet derivative DuF (λ, u). The following lemma collects
a number of similar properties, which will be useful later on. The results are stated
without their straightforward proofs, see also [39].

Lemma 2.5 (Equivariance of Partial Derivatives). Suppose that Assumption 2.1
holds, and that (2) is Z2-equivariant as in Definition 2.4. Then the following state-
ments hold for all parameters λ ∈ R, as long as we have u ∈ Xs:

(a) We have both F (λ, u) ∈ Ys and DλF (λ, u) ∈ Ys.
(b) Both the inclusions DuF (λ, u)[Xs] ⊂ Ys and DuF (λ, u)[Xa] ⊂ Ya are satisfied,

as well as DλuF (λ, u)[Xs] ⊂ Ys and DλuF (λ, u)[Xa] ⊂ Ya.
(c) The inclusions DuuF (λ, u)[Xs, Xs] ⊂ Ys and DuuF (λ, u)[Xa, Xa] ⊂ Ys hold,

as well as DuuF (λ, u)[Xs, Xa] ⊂ Ya.

The above lemma applies to the derivatives of F at any point (λ, u), as long as
u ∈ Xs. If we consider in particular the point (λ0, u0) from Assumption 2.2, even
more can be said. The following result shows that both the eigenfunction ϕ0 and the
element ψ∗0 are symmetric or antisymmetric. In addition, the complements X̃ and Ỹ
in Assumption 2.2 can be chosen such that they respect the symmetry operations
as well. Note that while most of the following result is contained in the work of
Werner and Spence, we were unable to find a full treatment of the details of the
symmetry preservation under linear mapping as stated below.

Lemma 2.6 (Equivariance Effects of a One-Dimensional Kernel). Suppose that
Assumption 2.2 holds, that (2) is Z2-equivariant as in Definition 2.4, and that
u0 ∈ Xs. Then the following hold:

(a) The eigenfunction ϕ0 which spans the nullspace N(L) of L = DuF (λ0, u0)
is either an element of Xs or of Xa, i.e., we have SXϕ0 = εXϕ0 for some
εX ∈ {±1}.

(b) The element ψ∗0 which characterizes R(L) is either symmetric or antisymmet-
ric with respect to the equivariance S∗Y , i.e., we have S∗Y ψ

∗
0 = εY ψ

∗
0 for some

εY ∈ {±1}.
(c) If in (b) we have εY = +1, then the image L[Xs] has codimension one in the

symmetric space Ys, and L[Xa] = Ya. In contrast, if εY = −1, then L[Xs] =
Ys, and the image L[Xa] has codimension one in the antisymmetric space Ya.
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(d) The projectors P and Q in Assumption 2.2 can be chosen in such a way that
they commute with the symmetry actions, i.e., such that SY P = PSY and
SXQ = QSX .

Proof. According to Lemma 2.5(b) we have both LXs ⊂ Ys and LXa ⊂ Ya, i.e., the
splitting into symmetric and antisymmetric elements is respected by L. One can
then easily see that

ϕ0 = ϕ0,s + ϕ0,a ∈ Xs ⊕Xa if ϕ0,s =
ϕ0 + SXϕ0

2
and ϕ0,a =

ϕ0 − SXϕ0

2
.

This splitting furnishes 0 = Lϕ0 = Lϕ0,s + Lϕ0,a, and therefore Lϕ0,s = −Lϕ0,a,
which in turn implies that both Lϕ0,s and Lϕ0,a are contained in Xs ∩Xa = {0}.
Combining these results, both ϕ0,s and ϕ0,a are in N(L), hence multiples of ϕ0.
Together this implies that either we have ϕ0 ∈ Xs or ϕ0 ∈ Xa, which is equivalent
to SXϕ0 = ϕ0 or SXϕ0 = −ϕ0, respectively. This completes the proof of (a).

In order to establish (b), note that since L is a Fredholm operator of index zero
with one-dimensional nullspace, the same is true for its adjoint operator L∗, and
the closed range theorem then implies that N(L∗) = span[ψ∗0 ]. The equivariance
identity SY L = LSX immediately gives S∗XL

∗ = L∗S∗Y . As above, one obtains
L∗Y ∗s ⊂ X∗s and L∗Y ∗a ⊂ X∗a , if the symmetric and antisymmetric elements in the
dual spaces are defined via the adjoints S∗Y and S∗X . The remainder of the proof
of (b) proceeds completely analogous to the proof of (a) above.

We now turn our attention to (c). If we assume that both L[Xs] = Ys and
L[Xa] = Ya are satisfied, then one can easily see that L[X] = L[Xs⊕Xa] = Ys⊕Ya =
Y . This, however, contradicts the fact that the range R(L) has codimension one
in Y . In other words, we necessarily have Ys \L[Xs] 6= ∅ or Ya \L[Xa] 6= ∅, or both.

Now let ψ0 denote an arbitrary element in (Ys \ L[Xs]) ∪ (Ya \ L[Xa]) 6= ∅.
Since ψ0 6= 0 and ψ0 6∈ R(L) we can assume without loss of generality that this
element is scaled in such a way that ψ∗0(ψ0) = 1. In addition, due to ψ0 ∈ Ys ∪ Ya
there exists a sign κ ∈ {±1} such that SY ψ0 = κψ0. Then one obtains

κ = ψ∗0(κψ0) = ψ∗0(SY ψ0) = (S∗Y ψ
∗
0)(ψ0) = εY ψ

∗
0(ψ0) = εY ,

i.e., we have SY ψ0 = εY ψ0.
Now assume εY = 1. Then the above arguments readily show that Ya\L[Xa] = ∅,

and this in turn implies Ys \ L[Xs] 6= ∅. Therefore, the subspace L[Xs] has codi-
mension one in Ys, and L[Xa] = Ya. The case εY = −1 can be treated analogously
and leads to the opposite configuration.

It remains to establish (d), and we begin with the statement concerning the
projection P . As in the proof of (c), let ψ0 denote an arbitrary element in (Ys \
L[Xs]) ∪ (Ya \ L[Xa]) 6= ∅, and we can again assume without loss of generality
that ψ∗0(ψ0) = 1. In addition, one automatically obtains SY ψ0 = εY ψ0. Now define

Ỹ = span[ψ0], and let P be the associated projector as in Assumption 2.2. Then
Py = ψ∗0(y)ψ0, and this implies for all y ∈ Y the identity

SY Py = ψ∗0(y)SY ψ0 = εY ψ
∗
0(y)ψ0 = (S∗Y ψ

∗
0) (y)ψ0 = ψ∗0 (SY y)ψ0 = PSY y ,

i.e., the operators P and SY commute.
In order to prove the remaining statement for Q, choose any ϕ∗ ∈ X∗ with

ϕ∗(ϕ0) 6= 0. One can then write ϕ∗ in the form ϕ∗ = ϕ∗s + ϕ∗a, where S∗Xϕ
∗
s = ϕ∗s

and S∗Xϕ
∗
a = −ϕ∗a. Due to the inequality ϕ∗(ϕ0) 6= 0, we can therefore find an

element ϕ∗0 ∈ X∗ with ϕ∗0(ϕ0) = 1 and S∗Xϕ
∗
0 = κϕ∗0 for some κ ∈ {±1}, as well as

κ = κϕ∗0(ϕ0) = S∗Xϕ
∗
0(ϕ0) = ϕ∗0(SXϕ0) = ϕ∗0(εXϕ0) = εX ,
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i.e., we have S∗Xϕ
∗
0 = εXϕ

∗
0. If we now define Qx = ϕ∗0(x)ϕ0 and X̃ = N (ϕ∗0), then

one finally obtains

SXQx = ϕ∗0(x)SXϕ0 = εXϕ
∗
0(x)ϕ0 = S∗Xϕ

∗
0(x)ϕ0 = ϕ∗0(SXx)ϕ0 = QSXx ,

and the proof of the lemma is complete.

Using these results, we can now show that equivariance also leads to the following
symmetry properties in the method of Lyapunov-Schmidt.

Proposition 2.7 (Equivariant Lyapunov-Schmidt Reduction). Suppose that all
the assumptions of Proposition 2.3 are satisfied, and that F is Z2-equivariant as in
Definition 2.4. Finally, assume that u0 ∈ Xs, and suppose that the projections P
and Q are chosen as in Lemma 2.6(d). Then the following hold:

(a) The nullspace N(L) of L = DuF (λ0, u0) is invariant under SX , and the
range R(L) is invariant under SY .

(b) The mapping W appearing in the the Lyapunov-Schmidt reduction in Propo-
sition 2.3 is Z2-equivariant, i.e., we have

W (λ, SXv) = SXW (λ, v) for all λ ∈ R and v ∈ N(L) .

(c) The bifurcation function b(λ, α) satisfies

b(λ, εXα) = εY b(λ, α) for all (λ, α) close to (λ0, 0) ,

where εX and εY encode the symmetry properties of ϕ0 and ψ∗0 , respectively,
as shown in Lemma 2.6.

Proof. The invariance of N(L) and R(L) follows immediately from (7) and SXu0 =
u0. To show (b), for arbitrary λ ∈ R and v ∈ N(L) the equivariance of F , combined
with the construction of W in the proof of Proposition 2.3 and Lemma 2.6(d) show

(I − P )F (λ, SXv + SXW (λ, v)) = (I − P )SY F (λ, v +W (λ, v))

= SY (I − P )F (λ, v +W (λ, v))︸ ︷︷ ︸
=G(λ,v,W (λ,v))

= 0 ,

which implies that w = SXW (λ, v) solves G(λ, SXv, w) = (I−P )F (λ, SXv+w) = 0.
Due to the uniqueness property of W guaranteed by the implicit function theorem,
this furnishes

SXW (λ, v) = W (λ, SXv) ,

i.e., the mapping W is Z2-equivariant. Finally, to show (c), for all (λ, α) ∈ R2 close
to (λ0, 0) we have

εY b(λ, α) = εY ψ
∗
0PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))

= S∗Y ψ
∗
0PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))

= ψ∗0SY PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))

= ψ∗0PF (λ, v0 + αSXϕ0 +W (λ, v0 + αSXϕ0))

= ψ∗0PF (λ, v0 + αεXϕ0 +W (λ, v0 + αεXϕ0))

= b(λ, εXα) ,

where we have used the fact that SXv0 = SXQu0 = QSXu0 = Qu0 = v0. This
completes the proof of the lemma.



RIGOROUS CONTINUATION OF BIFURCATION POINTS 11

While in general it does not seem to be the case that εX and εY have to be
related, there are special situations when they have to coincide. One such situation
is outlined in the following lemma, and it will be important for the application to
the dibock copolymer model.

Our previous results give invariance conditions on symmetric spaces. However,
there is no guarantee from these statements that a linear mapping preserves sym-
metry classes. The following result gives sufficient conditions on a linear mapping J
under which we can guarantee that symmetric spaces are preserved rather than re-
versed. This will be critical in order to be able to state conditions for the occurence
of a symmetry-breaking pitchfork bifurcation.

Lemma 2.8 (Forcing Sign Equality). Suppose that all the assumptions of Propo-
sition 2.3 are satisfied, and that F is Z2-equivariant as in Definition 2.4. Assume
that u0 ∈ Xs, suppose that the projections P and Q are chosen as in Lemma 2.6(d),
and let ϕ0 and ψ∗0 define nullspace and range of the linearization L = DuF (λ0, u0)
as before. Furthermore, suppose that there is a linear mapping J : X → Y which
satisfies JSX = SY J , as well as

Jϕ0 6∈ R(L) , or equivalently ψ∗0Jϕ0 6= 0 .

Then the signs εX and εY defined via SXϕ0 = εXϕ0 and S∗Y ψ
∗
0 = εY ψ

∗
0 satisfy

εX = εY , i.e., they necessarily coincide.

Proof. The assumptions immediately imply

εX · ψ∗0Jϕ0 = ψ∗0J (εXϕ0) = ψ∗0JSXϕ0 = ψ∗0SY Jϕ0 = S∗Y ψ
∗
0Jϕ0 = εY · ψ∗0Jϕ0 ,

and dividing both sides by ψ∗0Jϕ0 6= 0 furnishes the result.

Notice that if Lemma 2.8 holds, then part (c) of Proposition 2.7 is particularly
useful. In the nontrivial case, one has εX = εY = −1, which immediately implies
that the bifurcation equation b(λ, α) = 0 is odd with respect to α — and therefore
forces the existence of a trivial solution. This situation will correspond to symmetry-
breaking bifurcations discussed further below.

2.2. Saddle-node bifurcation points. We now turn our attention to the first
type of bifurcation considered in this paper — the saddle-node bifurcation. In
generic systems, this is the only type of bifurcation point that can be observed.
For this, assume that we have a solution (λ0, u0) of the problem (2), and that
Assumption 2.2 holds. Then the condition

ψ∗0DλF (λ0, u0) 6= 0 (8)

is generically satisfied, and in this case one often refers to (λ0, u0) as a simple saddle-
node bifurcation point , see for example [39]. In fact, the left-hand side of (8) is the
first term in the Taylor expansion (5) of the bifurcation equation. In combination
with the implicit function theorem this shows that under condition (8), the bifur-
cation equation b(λ, α) = 0 can be solved for λ in a neighborhood of (λ0, 0). While
this could lead to a situation where no bifurcation actually occurs, for example if
the solution curve is monotone with respect to α, by assuming an additional generic
condition one can guarantee a true saddle-node bifurcation point.

Proposition 2.9 (Existence of Saddle-Node Bifurcations). Suppose that Assump-
tion 2.2 is satisfied and that (8) holds. If in addition the generic condition

ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0] 6= 0 (9)
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holds, then the nonlinear problem (2) undergoes a saddle-node bifurcation at (λ0, u0).
Furthermore, if ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0]/ψ∗0DλF (λ0, u0) > 0, then the bifurcating
solutions exist for λ < λ0 close to the bifurcation point, and if the ratio is negative
for λ > λ0.

Proof. Proposition 2.3 shows that characterizing the solution set of (2) in a neigh-
borhood of (λ0, u0) is equivalent to solving the bifurcation equation

b(λ0 + ν, α) = 0 (10)

in a neighborhood of (0, 0) ∈ R2, where the Taylor expansion for b is given in (5).
Due to (8) and the implicit function theorem there exists a smooth function ν = h(α)
which is defined in a neighborhood of 0 and whose graph contains all solutions of (10)
in that neighborhood. In particular, we have h(0) = 0. Differentiating the identity
b(λ0 + h(α), α) = 0 twice with respect to α and then setting α = 0 furnishes

Dλb(λ0, 0)h′(0) +Dαb(λ0, 0) = 0 ,

Dλb(λ0, 0)h′′(0) +Dλλb(λ0, 0)h′(0)2 + 2Dλαb(λ0, 0)h′(0) +Dααb(λ0, 0) = 0 .

According to Dαb(λ0, 0) = 0 and Dλb(λ0, 0) = ψ∗0DλF (λ0, u0) 6= 0 the first equation
implies h′(0) = 0. Together with the second equation we finally obtain

h′′(0) = −Dααb(λ0, 0)

Dλb(λ0, 0)
= −ψ

∗
0DuuF (λ0, u0)[ϕ0, ϕ0]

ψ∗0DλF (λ0, u0)
,

which completes the proof of the lemma.

While the above result provides generic conditions that guarantee a saddle-node
bifurcation, we need to reformulate these to make them amenable to a rigorous
computational approach which involves Newton’s method. In other words, we need
to derive a nonlinear system with an isolated zero which corresponds to the bifurca-
tion point. For this, we follow the approach in [24] and consider a suitable extended
system. More precisely, we supplement the nonlinear parameter-dependent equa-
tion (2) by another equation which forces the existence of an eigenfunction v of
the appropriate Fréchet derivative, together with a normalizing condition on this
eigenfunction. This leads to an extended system of the form

F (λ, u) = 0 ,

DuF (λ, u)[v] = 0 , (11)

`(v)− 1 = 0 ,

where ` ∈ X∗ is a fixed element of the dual space of X. We abbreviate this system
as

F(λ, u, v) = (0, 0, 0) , (12)

where

F :

{
R×X ×X → R× Y × Y

(λ, u, v) 7→ (`(v)− 1, F (λ, u), DuF (λ, u)[v])
.

Then the following result is analogous to [24, 32]. Since in these two citations, the
only operators acting on one Banach space are considered, we present the straight-
forward extension to mapping between different Banach spaces in detail.

Theorem 2.10 (Saddle-Node Bifurcations via Extended Systems). Suppose that
Assumption 2.1 is satisfied. Then the following two statements hold.
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(a) If the nonlinear operator F satisfies Assumption 2.2, as well as both con-
ditions (8) and (9), and if ` ∈ X∗ is any functional such that `(ϕ0) = 1,
then the Fréchet derivative D(λ,u,v)F(λ0, u0, ϕ0) is invertible, i.e., the solu-
tion (λ0, u0, ϕ0) of the extended system (11) is an isolated non-degenerate zero
of the mapping F .

(b) Conversely, if there exists an ` ∈ X∗ and a ϕ0 ∈ X such that F(λ0, u0, ϕ0) =
(0, 0, 0), and if the Fréchet derivative D(λ,u,v)F(λ0, u0, ϕ0) is invertible, then
the nonlinear operator F satisfies Assumption 2.2, as well as both condi-
tions (8) and (9).

Thus, the nonlinear problem (2) undergoes a saddle-node bifurcation at (λ0, u0) in
the sense of Proposition 2.9, if and only if the triple (λ0, u0, ϕ0) is a non-degenerate
zero of the nonlinear map F which defines the extended system (11).

Proof. (a) One can easily see that the Fréchet derivative of F is given by

D(λ,u,v)F(λ0, u0, ϕ0)[λ̃, ũ, ṽ] =
(
`(ṽ), λ̃ ·DλF (λ0, u0) + Lũ,

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ] + Lṽ
)
,

where we again use the abbreviation L = DuF (λ0, u0).
To begin with, we show that the Fréchet derivative is one-to-one. Assume that

D(λ,u,v)F(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, 0).

We will now show that this implies (λ̃, ũ, ṽ) = (0, 0, 0). Applying ψ∗0 to the second
component of the Fréchet derivative of F , together with R(L) = N(ψ∗0), yields

0 = λ̃ · ψ∗0DλF (λ0, u0) + ψ∗0Lũ = λ̃ · ψ∗0DλF (λ0, u0)︸ ︷︷ ︸
6=0

,

and this in turn furnishes λ̃ = 0. Substituting this identity into the second com-
ponent one obtains Lũ = 0, i.e., there exists a constant γ ∈ R such that ũ = γϕ0.
Applying ψ∗0 to the third component of the Fréchet derivative of F then implies

0 = ψ∗0DuuF (λ0, u0)[ϕ0, ũ] + ψ∗0Lṽ = γ · ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0]︸ ︷︷ ︸
6=0

,

implying γ = 0, and ũ = γϕ0 = 0. Now the third component reduces to Lṽ = 0,
which gives ṽ = ηϕ0. The first component then yields 0 = `(ṽ) = η · `(ϕ0) = η, i.e.,
we have ṽ = 0. Thus the Fréchet derivative of F is one-to-one.

It remains to show that the Fréchet derivative is onto. Let (τ, y, z) ∈ R× Y × Y
be arbitrary. If we define λ̃ = ψ∗0y/ψ

∗
0DλF (λ0, u0), then there exists a unique ũ ∈ X̃

which satisfies Lũ = y − λ̃DλF (λ0, u0), and for every γ ∈ R we have

λ̃ ·DλF (λ0, u0) + L[ũ+ γϕ0] = y .

Now let γ = γ̃ denote the unique solution of the equation

ψ∗0
(
λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ γϕ0]

)
= ψ∗0z ,

which exists due to ψ∗0DuuF (λ0, u0)[ϕ0, ϕ0] 6= 0. Then there exists a unique ṽ ∈ X̃
such that for all η ∈ R we have

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ γ̃ϕ0] + L[ṽ + ηϕ0] = z .
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If we finally define η̃ = τ − `(ṽ), then one can easily verify that

D(λ,u,v)F(λ0, u0, ϕ0)[λ̃, ũ+ γ̃ϕ0, ṽ + η̃ϕ0] = (τ, y, z) ,

and this completes the proof of (a).
(b) Now assume that there exists an ` ∈ X∗ and a ϕ0 ∈ X such that (λ0, u0, ϕ0)

is a non-degenerate zero of F . According to the form of the third component of F
we know that ϕ0 ∈ N(L). Assume there is another element ϕ1 ∈ N(L) which is
linearly independent of ϕ0. Then one can immediately verify that for all numbers
α ∈ R the linear combination

ϕα = (1− α`(ϕ1))ϕ0 + αϕ1 satisfies `(ϕα) = 1 ,

and is of course also in the kernel of L. This in turn implies that for all scalars
α ∈ R we have F(λ0, u0, (1−α`(ϕ1))ϕ0 +αϕ1) = (0, 0, 0), i.e., the zero (λ0, u0, ϕ0)
is not isolated and therefore the linearization of F at this point cannot be invertible.
Thus, the operator F satisfies Assumption 2.2.

Now assume that (9) is not satisfied, i.e., we have DuuF (λ0, u0)[ϕ0, ϕ0] ∈ R(L).

If we even have DuuF (λ0, u0)[ϕ0, ϕ0] = 0, then one can see that (λ̃, ũ, ṽ) = (0, ϕ0, 0)
is a nontrivial element in the kernel of the linearization D(λ,u,v)F(λ0, u0, ϕ0), which
violates its assumed invertibility. On the other hand, if DuuF (λ0, u0)[ϕ0, ϕ0] 6= 0,
then there exists a function v̂ 6∈ N(L) such that Lv̂ = −DuuF (λ0, u0)[ϕ0, ϕ0]. In

this case, one can verify that (λ̃, ũ, ṽ) = (0, 0, v̂ − `(v̂)ϕ0) is a nontrivial element
in the kernel of the linearization D(λ,u,v)F(λ0, u0, ϕ0), which again violates the
assumed invertibility of the Fréchet derivative. This implies the validity of (9).

Finally, assume that (8) does not hold. This shows that DλF (λ0, u0) ∈ R(L),
and there exists a function û such that Lû = −DλF (λ0, u0). Thus, for all α ∈ R
we have

DλF (λ0, u0) + L[û+ αϕ0] = 0 .

Due to the already established validity of (9) and

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û+ αϕ0] =

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û] + α ·DuuF (λ0, u0)[ϕ0, ϕ0] ,

we can find a value α̂ ∈ R such that

ψ∗0 (DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û+ α̂ϕ0]) = 0 ,

and therefore there exists a function v̂ ∈ X such that

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, û+ α̂ϕ0] + Lv̂ = 0 .

This implies that the triple (λ̃, ũ, ṽ) = (1, û + α̂ϕ0, v̂ − `(v̂)ϕ0) is contained in
the kernel of the linearization D(λ,u,v)F(λ0, u0, ϕ0), violating the assumed non-
degeneracy. Thus, (8) holds and the proof of the lemma is complete.

The above lemma shows that generically, one can use standard path-following
techniques to follow simple saddle-node bifurcation points as zeros of the sys-
tem (12), as long as this system has an additional free parameter. This will be
the case in our applications to the diblock copolymer model. Notice also that we
do not have to separately establish the non-degeneracy conditions (8) and (9), as
long as we can guarantee that the zero of the extended system is non-degenerate.
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2.3. Pitchfork bifurcation points forced by symmetry. We now turn our at-
tention to the case of pitchfork bifurcation points. Of course, such bifurcation points
are non-generic in general systems. Nevertheless, our numerical path following re-
sults presented in the introduction clearly indicate that they do in fact occur in the
diblock copolymer system. Unfortunately, however, at such pitchfork bifurcations
the linearization of the extended system F defined in (12) in the previous section is
no longer invertible — which prevents the use of Newton’s method to locate them
via a computer-assisted proof.

To remedy this problem we need to understand why these non-generic bifurcation
points frequently do occur in partial differential equations. As it turns out, pitchfork
bifurcations are usually forced through inherent symmetries. For the purposes of
this paper, we assume that the symmetry occurs in the specific form introduced in
Definition 2.4, i.e., via Z2-equivariance. It was shown in Proposition 2.7 that by
choosing appropriate projections in the method of Lyapunov-Schmidt, equivariance
propagates to the function W , and in some sense also to the bifurcation equation
b(λ, α) = 0 through the signs εX and εY introduced in Lemma 2.6. If both of these
signs are negative, we are in the situation of a symmetry-breaking bifurcation, and
we have the following result.

Proposition 2.11 (Existence of Symmetry-Breaking Pitchfork Bifurcations). Sup-
pose that Assumption 2.2 is satisfied and that F is Z2-equivariant as in Defini-
tion 2.4. Furthermore, assume that

SXu0 = u0 , SXϕ0 = −ϕ0 , as well as S∗Y ψ
∗
0 = −ψ∗0 , (13)

that the projections P and Q are chosen as in Lemma 2.6(d), and that

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0] 6= 0 , (14)

where ξ0 denotes the unique solution of the equation

DuF (λ0, u0)[ξ0] + (I − P )DλF (λ0, u0) = 0 with ξ0 ∈ Xs . (15)

Then the nonlinear problem (2) undergoes a pitchfork bifurcation at (λ0, u0). Locally
at this point the solution set of (2) consists of a smooth solution curve parameterized
by λ, together with a parabolic curve which is tangent to ϕ0 at (λ0, u0). Consider
the ratio

% =
ψ∗0DuuuF (λ0, u0)[ϕ0, ϕ0, ϕ0] + 3ψ∗0DuuF (λ0, u0)[ϕ0, ζ0]

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0]
,

where ξ0 was defined in (15) and ζ0 ∈ Xs is defined by

DuF (λ0, u0)[ζ0] + (I − P )DuuF (λ0, u0)[ϕ0, ϕ0] = 0 .

If the ratio % is positive, then the solutions on the parabolic branch exist for λ < λ0

close to the bifurcation point, if % is negative then they exist for λ > λ0. If % = 0,
either half of the branch could lie on either side of λ0.

Proof. The assumptions of the proposition show that both Proposition 2.3 and
Proposition 2.7 hold. In particular (13) implies that εX = εY = −1. Thus, the
left-hand side of the bifurcation equation b(λ, α) = 0 satisfies

b(λ,−α) = −b(λ, α) for all (λ, α) close to (λ0, 0) ,
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which immediately implies that b(λ, 0) = 0 as well as Dααb(λ, 0) = 0 for all λ close
to λ0. Now define a function r in a neighborhood of (λ0, 0) by setting

r(λ, α) =


b(λ, α)

α
for α 6= 0 ,

Dαb(λ, 0) for α = 0 .

Then in a neighborhood of (λ0, 0) the mapping r is smooth. Furthermore, it satis-
fies the identity b(λ, α) = α · r(λ, α) — and this in turn shows that the bifurcation
equation has the trivial solution branch α = 0. From Proposition 2.3(a) this trivial
branch gives rise to the smooth solution curve λ 7→ v0 +W (λ, v0) which is param-
eterized by λ and uses the projection v0 = Qu0. The mapping W is defined in
Proposition 2.3, and Proposition 2.7(b) implies that W is equivariant.

In order to find the second solution branch, we need to solve the equation
r(λ, α) = 0. For this, notice that the definition of r and (5), together with the
fact that b(λ, 0) = 0 for all λ close to λ0 implies Dλkb(λ0, 0) = 0 for all k ≥ 1, lead
to the expansion

r(λ0 + ν︸ ︷︷ ︸
=λ

, α) = ν ·Dλαb(λ0, 0) +
ν2

2
·Dλλαb(λ0, 0) +

αν

2
·Dλααb(λ0, 0)

+
α2

6
·Dαααb(λ0, 0) +Rr(ν, α) ,

with Rr(ν, α) = O(‖(ν, α)‖3). We clearly have r(λ0, 0) = Dαb(λ0, 0) = 0, and (14)
implies with Table 1 that Dλr(λ0, 0) = Dλαb(λ0, 0) 6= 0. The implicit function
theorem then yields a smooth function α 7→ h(α) which is defined near α = 0,
satisfies h(0) = λ0, and such that in a neighborhood of (0, 0) one has

r(λ, α) = 0 if and only if λ = h(α) .

This establishes the second solution branch α 7→ v0 + αϕ0 +W (h(α), v0 + αϕ0).
In order to finish the proof, we only have to verify the tangency statement regard-

ing the second solution branch, as well as its opening side. For this, one just has to
differentiate the identity r(h(α), α) = 0 twice with respect to λ. One differentiation
implies

Dλr(h(α), α)h′(α) +Dαr(h(α), α) = 0 ,

which for (λ, α) = (λ0, 0) gives Dλr(λ0, 0)h′(0) + Dαr(λ0, 0) = 0. Due to the
inequality Dλr(λ0, 0) 6= 0, together with Dαr(λ0, 0) = 0, this implies h′(0) = 0.
Computing the second derivative of r(h(α), α) = 0 with respect to α and then
letting α = 0 finally implies

Dλr(λ0, 0)h′′(0) +Dααr(λ0, 0) = 0 ,

and therefore

h′′(0) = −Dααr(λ0, 0)

Dλr(λ0, 0)
= −Dαααb(λ0, 0)

3Dλαb(λ0, 0)
= −%

3
,

where we also used Table 1. This completes the proof of the proposition.

In order to rigorously determine the location of symmetry-breaking bifurcation
points, we would like to consider an extended system similar to the one defined
in (11) and (12). Unfortunately, if we were to consider this system as is, while the
point (λ0, u0, ϕ0) would still be a zero, it would no longer be isolated and therefore
preclude the use of any Newton-type method for its solution.
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The prevalent role of symmetries in the formation of the pitchfork bifurcation
allows for a simple adjustment. For this, we still consider the extended system
as defined in (11) and (12). This time, however, one component of the map Fr
induced by the system is restricted in domain and range to subspaces of X and Y ,
respectively. That is, we consider the restriction of the full system F given by

Fr :

{
R×Xs ×X → R× Ys × Y

(λ, u, v) 7→ (`(v)− 1, F (λ, u), DuF (λ, u)[v])
(16)

i.e., we restrict the argument u to the space of symmetric elements, and consider the
image of the second component only in the symmetric subspace of Y . Notice that
this restriction to Ys in the image is justified by Lemma 2.5(a). Then the following
result holds, which is in the spirit of a related result in [39], and extended to the
case of different Banach spaces in domain and range.

Theorem 2.12 (Symmetry-Breaking Pitchfork Bifurcations via Extended Sys-
tems). Suppose that Assumption 2.1 is satisfied and that F is Z2-equivariant as
in Definition 2.4. Then the following two statements hold.

(a) Suppose that all assumptions of Proposition 2.11 are satisfied, and let ` ∈ X∗
be such that `(ϕ0) = 1. Then the Fréchet derivative D(λ,u,v)Fr(λ0, u0, ϕ0) of
the mapping in (16) is invertible, i.e., the solution (λ0, u0, ϕ0) ∈ R×Xs ×X
of the extended system

Fr(λ, u, ϕ) = (0, 0, 0) (17)

is an isolated non-degenerate zero.
(b) Conversely, if there exists an ` ∈ X∗ and a ϕ0 ∈ Xa such that (λ0, u0, ϕ0) is

a zero of the map Fr, and if the Fréchet derivative D(λ,u,v)Fr(λ0, u0, ϕ0) is
invertible, then the nonlinear operator F satisfies all assumptions of Proposi-
tion 2.11.

Thus, the problem (2) undergoes a symmetry-breaking pitchfork bifurcation at (λ0, u0)
in the sense of Proposition 2.11, if and only if (λ0, u0, ϕ0) ∈ R×Xs×Xa is a non-
degenerate zero of (17).

Proof. (a) As before, the Fréchet derivative of Fr is given by

D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] =
(
`(ṽ), λ̃ ·DλF (λ0, u0) + Lũ,

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ] + Lṽ
)
,

where we use the abbreviation L = DuF (λ0, u0). In the following, we assume that
the projections P and Q have been chosen as in Lemma 2.6(d).

We begin by showing that the Fréchet derivative D(λ,u,v)Fr(λ0, u0, ϕ0) is one-to-

one. For this, assume that D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, 0), and then show

that this implies (λ̃, ũ, ṽ) = (0, 0, 0). To begin, suppose that λ̃ 6= 0 — which will lead
to a contradiction. Due to Lemmas 2.5(a) and 2.6(c) we have DλF (λ0, u0) ∈ Ys =
L[Xs] ⊂ R(L), and together with N(P ) = R(L) this implies PDλF (λ0, u0) = 0.
Therefore the second component of the Fréchet derivative leads to

λ̃(I − P )DλF (λ0, u0) + Lũ = 0 ,

which in turn implies ξ0 = ũ/λ̃, where ξ0 is defined in (15). Plugging this into the
third component of the Fréchet derivative yields

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0] + Lṽ/λ̃ = 0 ,
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and applying ψ∗0 , together with N(ψ∗0) = R(L), results in

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0] = 0 .

Since this last identity contradicts (14), we must have λ̃ = 0. The second component
of the Fréchet derivative then implies Lũ = 0, and therefore ũ ∈ N(L) ∩Xs = {0}.
Now the third equation reduces to Lṽ = 0, which gives ṽ ∈ N(L), i.e., we have
ṽ = ηϕ0. The first component finally yields 0 = `(ṽ) = η · `(ϕ0) = η, i.e., one
further obtains ṽ = 0. In other words, the Fréchet derivative of Fr is one-to-one.

It remains to show that the Fréchet derivative is onto. Let (τ, y, z) ∈ R× Ys× Y
be arbitrary. Since y ∈ Ys ⊂ R(L) and N(L) ∩ Xs = {0} there exists a unique
element ũ ∈ Xs such that

Lũ = y .

Now choose λ̃ via

λ̃ =
ψ∗0z − ψ∗0DuuF (λ0, u0)[ϕ0, ũ]

ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0]
.

Then in combination with Lemma 2.5(b),(c) and R(L) = N(ψ∗0) one can show that

z −DuuF (λ0, u0)[ϕ0, ũ]− λ̃ · (DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0]) ∈ R(L) ,

and therefore there exists a ṽ ∈ X such that for all η ∈ R we have

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ λ̃ξ0] + L[ṽ + ηϕ0] = z .

Furthermore, due to Lũ = y we have

λ̃ ·DλF (λ0, u0) + L[ũ+ λ̃ξ0] = −λ̃ · Lξ0 + L[ũ+ λ̃ξ0] = Lũ = y .

If we finally define η̃ = τ − `(ṽ), then employing the two previous identities one can
easily verify that

D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ+ λ̃ξ0, ṽ + η̃ϕ0] = (τ, y, z) ,

and this completes the proof of (a).
(b) We now turn our attention to the proof of (b), and assume that there exists

an ` ∈ X∗ and a triple (λ0, u0, ϕ0) ∈ R×Xs×Xa such that Fr(λ0, u0, ϕ0) = (0, 0, 0),
and that the Fréchet derivative of Fr at this point is invertible. Due to the specific
form of the third component of Fr we have ϕ0 ∈ N(L). If there were another
element ϕ1 ∈ N(L) which is linearly independent of ϕ0, then one can immediately
verify that for all α ∈ R the linear combination ϕα = (1−α`(ϕ1))ϕ0 +αϕ1 satisfies
`(ϕα) = 1, and it is clearly also in the kernel of L. Thus, we have Fr(λ0, u0, (1 −
α`(ϕ1))ϕ0 + αϕ1) = (0, 0, 0) for all α ∈ R, i.e., the zero (λ0, u0, ϕ0) is not isolated
and therefore the linearization of Fr at this point cannot be invertible. Thus, the
operator Fr satisfies Assumption 2.2.

From our assumptions, we already know that SXu0 = u0, that SXϕ0 = −ϕ0,
and we can choose the projections P and Q as in Lemma 2.6(d). In addition, we
have S∗Y ψ

∗
0 = εY ψ

∗
0 for some as of yet unknown sign εY ∈ {±1}. Finally, since the

projection I−P maps Xs into Ys∩R(L) and since N(L)∩Xs = {0}, Lemma 2.5(a)
shows that there exists a unique ξ0 ∈ Xs which solves (15).

In order to establish εY = −1, we first show that in fact L[Xs] = Ys. For this,
let zs ∈ Ys be arbitrary. Since the derivative D(λ,u,v)Fr(λ0, u0, ϕ0) is invertible,

there exists (λ̃, ũ, ṽ) ∈ R × Xs × X with D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, zs),
which in turn implies the identity

λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ] + Lṽ = zs .
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If we now decompose ṽ ∈ X as ṽ = ṽs + ṽa ∈ Xs ⊕ Xa, then Lemma 2.5(b),(c)
implies

Lṽs︸︷︷︸
∈Ys

+ Lṽa︸︷︷︸
∈Ya

= zs︸︷︷︸
∈Ys

−
(
λ̃ ·DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ]

)
︸ ︷︷ ︸

∈Ya

,

and together with Y = Ys ⊕ Ya this leads to Lṽs = zs, i.e., we have L[Xs] = Ys. In
view of Lemma 2.6(c), one therefore has to have εY = −1, i.e., the equalities in (13)
hold.

It remains to show that (14) is satisfied. For this, let z ∈ Y \R(L) be arbitrary.

Then the assumptions of (b) imply that there exists a (λ̃, ũ, ṽ) ∈ R×Xs ×X such
that

D(λ,u,v)Fr(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, z) . (18)

Assume for the moment that we have in fact λ̃ = 0. Then the equation for the second
components of (18) implies Lũ = 0, which in turn gives ũ ∈ N(L)∩Xs = {0}. But in
this case the last component of (18) reduces to Lṽ = z 6∈ R(L), which is impossible.

Thus, we necessarily have to have λ̃ 6= 0, and the second component in (18) implies
in combination with DλF (λ0, u0) ∈ Ys ⊂ R(L) = N(P ) the identity

(I − P )DλF (λ0, u0) + L[ũ/λ̃] = DλF (λ0, u0) + L[ũ/λ̃] = 0 ,

i.e., according to (15) one obtains ũ = λ̃ξ0. Substituting this expression into the
last component of (18) finally yields

λ̃DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, λ̃ξ0] + Lṽ = z ,

and applying ψ∗0 to both sides leads to

λ̃ · (ψ∗0DλuF (λ0, u0)[ϕ0] + ψ∗0DuuF (λ0, u0)[ϕ0, ξ0]) = ψ∗0z 6= 0 ,

due to ψ∗0Lṽ = 0 and z 6∈ R(L). This establishes (14), and therefore all assumptions
of Proposition 2.11 are satisfied. This completes the proof of the theorem.

Remark 2.13 (Alternative Expressions for ξ0 and ζ0). The proof of the above
theorem shows that the functions ξ0 ∈ Xs and ζ0 ∈ Xs defined in Proposition 2.11
can equivalently be defined as solutions of the two identities

DuF (λ0, u0)[ξ0] = −DλF (λ0, u0) ,

DuF (λ0, u0)[ζ0] = −DuuF (λ0, u0)[ϕ0, ϕ0] ,

which no longer include the projection P .

As in the previous subsection, the above theorem shows that generically, one can
use standard Newton-type techniques to determine symmetry-breaking pitchfork
bifurcation points as zeros of the system (17). This time, however, the system is
restricted to symmetry subspaces, and this will in fact lead to significant reductions
in dimensions later on.

To close this section, let us briefly contrast the reduced system (17) to the one
considered in [39]. As we mentioned earlier, this reference is concerned with a
numerical method for computing the location of symmetry-breaking pitchfork bi-
furcations, and it employs the even further restricted system Frr(λ, u, v) = (0, 0, 0),
where

Frr :

{
R×Xs ×Xa → R× Ys × Ya

(λ, u, v) 7→ (`(v)− 1, F (λ, u), DuF (λ, u)[v])
(19)
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i.e., they restrict the argument u to the space of symmetric elements, and the
argument v to the space of antisymmetric elements. From a purely computational
point of view, this system leads to a reliable method. We would like to point
out, however, that it cannot easily be used in a computer-assisted proof setting.
As the following example shows, even if the system Frr(λ, u, v) = (0, 0, 0) has an
isolated zero, this does not guarantee the existence of a symmetry-breaking pitchfork
bifurcation as in Proposition 2.11. The reason for this surprising behavior lies in
the fact that even for an isolated zero of this further reduced system, the Fréchet
derivative DuF (λ0, u0) does not necessarily have a one-dimensional kernel; it could
be higher-dimensional. While this precludes a computer-assisted proof, it does work
in a purely numerical setting, since in this setting the kernel is almost-surely one-
dimensional.

Example 2.14 (Degenerate Symmetry-Breaking Bifurcations). In this example we
show that even if the reduced system Frr(λ, u, v) = (0, 0, 0), with Frr as in (19), has
an isolated zero, this does not mean that the Fréchet derivative of the underlying
map F has a one-dimensional kernel. To see this, consider the class of functions
suggested in [39], which are of the form

F (λ, (x1, x2)) = (f(λ, x1), f(λ, x2)) ,

where f : R2 → R will be specified later on. If we let X = Y = R2, then one can
easily see that the mapping F : R ×X → Y is Z2-equivariant with respect to the
symmetries

SX = SY =

(
0 1
1 0

)
,

and the symmetric and antisymmetric subspaces are given by

Xs = {(x1, x2) : x1 = x2} and Xa = {(x1, x2) : x1 = −x2} .
Based on the form of F , if there is a curve (λ, x(λ)) such that f(λ, x(λ)) = 0 holds,
then we automatically have F (λ, x(λ), x(λ)) = (0, 0). Consider now the specific
function

f(λ, y) = y − λ

1− y2
.

Then one can easily see that f(λ, y) = 0 whenever we have λ = y − y3. Moreover,

if we define λ± = ±2/(3
√

3) and x± = ±1/
√

3, then

∂f

∂y
(λ±, x±) = 0 ,

which in turn implies

D(x1,x2)F (λ±, x±, x±) =

(
0 0
0 0

)
.

Thus, the Fréchet derivative D(x1,x2)F (λ±, x±, x±) has a two-dimensional kernel
on X, and a one-dimensional kernel on Xa. One can show that despite the fact
that (λ±, x±, x±) are isolated solutions of the system Frr(λ, u, v) = (0, 0, 0), the
bifurcation at these two points is not a pitchfork bifurcation in the sense of Propo-
sition 2.11. Rather, at each point we have a degenerate bifurcation point. See also
Figure 2. The same type of degenerate bifurcation occurs for the coupled cell reac-
tion model with an Arrhenius reaction rate term in Example 4.1 of [39] with ε = 0.
These simple examples illustrate the general problem that we cannot determine the
kernel of the linearization by only looking at the antisymmetric part of the space.
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Figure 2. Two degenerate symmetry-breaking bifurcations as de-
scribed in Example 2.14.

2.4. Application to the diblock copolymer equation. In this section we dem-
onstrate how the diblock copolymer model (1) fits into the framework described
above. For more details we refer the reader to [17]. Rather than studying the model
in the form described in the introduction, we apply the transformation u 7→ µ + u
so that in the following we always consider the mass constraint zero and have
incorporated µ into the equation. After this transformation, finding equilibrium
solutions of the evolution equation is equivalent to solving the nonlinear operator
equation

F (λ, u) = − (uxx + λf(µ+ u))xx − λσu = 0 , (20)

where F is a parameter-dependent operator F : R × X → Y on the Hölder-type
spaces

X =

{
u ∈ C4,%[0, 1] :

∫ 1

0

u(x) dx = 0 and

ux(0) = uxxx(0) = ux(1) = uxxx(1) = 0} , (21)

Y =

{
u ∈ C0,%[0, 1] :

∫ 1

0

u(x) dx = 0

}
,

and with nonlinearity f(u) = u−u3. In order to keep our notation uniform through-
out the section, we only emphasize the parameter λ in the definition of F , since
this is our primary bifurcation parameter. However, the secondary parameter σ
will prove to be essential in order to find location curves of bifurcation points in the
diblock copolymer model. Notice also that for every choice of the parameters λ, σ,
and µ the constant function u ≡ 0 satisfies (20). This solution is referred to as the
trivial solution.

The bifurcation diagram of (20) in a neighborhood of the trivial solution has
been completely described in [17] using a standard Lyapunov-Schmidt approach. In
order to describe these results, note that the eigenvalues and eigenfunctions of the
negative Laplacian −∆ on the one-dimensional domain Ω = (0, 1) and subject to
homogeneous Neumann boundary conditions, are given by

κk = k2π2 and ϕk(x) =
√

2 cos kπx for k ∈ N . (22)
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Since the space X contains a mass constraint, the constant eigenfunction with
eigenvalue zero will play no role in the following and has therefore been omitted.
Using this notation, it was shown in [17] that the bifurcation points from the trivial
solution of (20) are given by

λ(k, σ, µ) =
κ2
k

f ′(µ) · κk − σ
, (23)

where σ ≥ 0. Since we are only interested in bifurcation points at positive λ-values,
the indices k have to satisfy κk > σ/f ′(µ), and one needs to assume that f ′(µ) > 0,
i.e. the total mass µ has to be in the spinodal region.

It was shown in [17], and briefly described in the introduction, that most of
the solution branches of (20) which bifurcate from the trivial solution undergo a
variety of secondary bifurcations. Studying these secondary bifurcation points using
rigorous computational techniques is the main subject of this paper. For this, we
need to first show that the nonlinear mapping F defined above satisfies all the
conditions of the abstract results described so far. This will be accomplished in the
following proposition.

Proposition 2.15. Consider the nonlinear operator F defined in the diblock copoly-
mer equilibrium equation (20), and let the Banach spaces X and Y be defined
as in (21). Furthermore, assume that (λ0, u0) ∈ R+ × X is arbitrary, and that
σ = σ0 > 0 and µ = µ0 ∈ R are fixed. Then the following hold.

(a) The Fréchet derivative L = DuF (λ0, u0) ∈ L(X,Y ) is a Fredholm operator of
index zero.

(b) The kernel N(L) is spanned by linearly independent solutions ϕ0, . . . , ϕn−1 of
the linear elliptic problem

Lv = − (vxx + λ0f
′(µ0 + u0)v)xx − λ0σ0v = 0 with v ∈ X ,

i.e., the functions ϕk solve this linear differential equation subject to the zero
mass constraint and Neumann boundary conditions as in (1).

(c) If ψ0, . . . , ψn−1 ∈ C4,%[0, 1] denote n linearly independent solutions of the
adjoint problem

L∗w = −wxxxx − λ0f
′(µ0 + u0)wxx − λ0σ0w = 0 ,

subject to the Neumann conditions wx(0) = wxxx(0) = wx(1) = wxxx(1) = 0,
but without imposing any integral constraint, then the range of L is charac-
terized by

R(L) =

{
w ∈ Y :

∫ 1

0

ψk(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}
.

Proof. Rather than considering X and Y directly, we first consider the standard
Hölder spaces without mass constraint given by

X =
{
u ∈ C4,%[0, 1] : ux(0) = uxxx(0) = ux(1) = uxxx(1) = 0

}
,

Y =
{
u ∈ C0,%[0, 1]

}
.

Then F : R×X → Y is a smooth nonlinear operator. In fact, standard elliptic theory
shows that in this setting, the operator F is a Fredholm operator of index zero: For
any choice of λ0, σ0, µ0 ∈ R and any u0 ∈ X the linearization L = DuF (λ0, u0) is an
elliptic operator with principal term −vxxxx. The latter operator is Fredholm with
index zero, since in the associated Sobolev setting it is in fact self-adjoint. Since
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the additional terms in L are of lower differentiation order, they are a compact
perturbation, and (a) follows for L, but with X and Y replacing X and Y . For
more details we refer the reader to [41, pp. 259ff].

We now turn our attention to the operator F restricted to the spaces X and Y
which impose the zero mass constraint. To begin with, it is easy to see that for
any λ0 ∈ R and u0 ∈ X one has F (λ0, u0) ∈ Y , i.e., considering F as an operator
from R×X into Y is well-defined. Similarly, we have L(X) ⊂ Y . But even more is
true. If v ∈ X is arbitrary, then∫ 1

0

Lv(x) dx = −λ0σ0 ·
∫ 1

0

v(x) dx ,

due to the imposed boundary conditions and integration by parts. The latter iden-
tity, together with our assumptions λ0 6= 0 and σ0 6= 0, furnishes:

For every v ∈ X \X we have Lv ∈ Y \ Y . (24)

This identity will prove to be essential below. Now let

N (L|X ) = span[ϕ0, . . . , ϕn−1] ⊂ X
denote the nullspace of L|X considered as operator between X and Y, and let

N (L∗|X ) = span[ψ0, . . . , ψn−1] ⊂ X
denote the nullspace of L∗|X considered as operator between X and Y. Due to
our above discussion, both nullspaces have to have the same finite dimension n.
Furthermore, property (24) immediately shows that

N (L|X ) ⊂ X , i.e., we have dimN (L|X) = dimN (L|X ) = n .

We now turn our attention to the characterization of the range of L. According to
the closed range theorem, the operator L|X : X → Y satisfies

R (L|X ) =

{
w ∈ Y :

∫ 1

0

ψk(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}
. (25)

It is clear from the form of the adjoint operator L∗|X that the functions ψk are in
general not in the space X. Thus, choose α0, . . . , αn−1 ∈ R and ψ̄0, . . . , ψ̄n−1 ∈ X
such that ψk = αk + ψ̄k for all k = 0, . . . , n − 1. We claim that the functions
ψ̄0, . . . , ψ̄n−1 ∈ X are linearly independent. For this, assume that γ0, . . . , γn−1 ∈ R
are such that

0 =

n−1∑
k=0

γk · ψ̄k =

n−1∑
k=0

γk · (ψk − αk) =

n−1∑
k=0

γkψk −
n−1∑
k=0

γkαk .

Applying L∗|X on both sides, together with the fact that every constant function
is an eigenfunction of L∗|X with eigenvalue −λ0σ0, then furnishes

0 =

n−1∑
k=0

γk L
∗ψk︸ ︷︷ ︸
=0

−L∗
n−1∑
k=0

γkαk︸ ︷︷ ︸
=const

= λ0σ0 ·
n−1∑
k=0

γkαk ,

which due to λ0σ0 6= 0 finally implies

n−1∑
k=0

γkψk =

n−1∑
k=0

γkαk = 0 .
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Figure 3. Equilibrium solutions u0 (in blue) of the diblock copoly-
mer equation for σ0 = 6, together with their associated kernel func-
tions ϕ0 (in orange). These two distinct stationary solutions are
both saddle-node bifurcation points at the same parameter value
λ0 ≈ 262.9 and the same L2-norm close to 0.562. In fact, the entire
non-trivial portion of the bifurcation diagram is multiply covered.
These equilibria are rigorously proved in Theorem 3.7.

The assumed linear independence of ψ0, . . . , ψn−1 then yields γ1 = . . . = γn−1 = 0,
and therefore also the reduced functions ψ̄0, . . . , ψ̄n−1 are linearly independent.

After these preparations we can now easily complete the proof of Proposition 2.15.
With the help of (24) one can show that

R (L|X) = R (L|X ) ∩ Y ,

and this furnishes with (25) the identity

R (L|X) =

{
w ∈ Y :

∫ 1

0

ψk(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}

=

{
w ∈ Y :

∫ 1

0

ψ̄k(x)w(x) dx = 0 for all k = 0, . . . , n− 1

}
.

Since ψ̄0, . . . , ψ̄n−1 are linearly independent in Y , the range R(L|X) ⊂ Y therefore
has codimension n in Y , which equals the dimension of the nullspace N(L|X) ⊂ X.
This completes the proof.

The above proposition shows that despite imposing the mass constraint both
in the domain and in the range of the nonlinear operator, we retain the crucial
Fredholm property. We would also like to stress again the point that the solu-
tions ψ0, . . . , ψn−1 of the adjoint problem, which are used to characterize the range
of L, do not in general satisfy the zero mass constraint. Finally, if in Proposition 2.15
the kernel is one-dimensional, and if we define a functional ψ∗0 ∈ Y ∗ via

ψ∗0(w) =

∫ 1

0

ψ0(x)w(x) dx ,

then one can readily see that R(L) = N(ψ∗0), i.e., we are exactly in the situation of
Assumption 2.2.
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Figure 4. Equilibrium solutions u0 (in blue) and associated ker-
nel functions ϕ0 (in orange) of the diblock copolymer equation for
σ0 = 6, with λ0 ≈ 142.1, 53.6, 203.1 for top left, top right, and
bottom right, respectively. All four solutions are pitchfork bifurca-
tion points. They are the first bifurcation points on the first four
branches bifurcating from the trivial solution in the right image sof
Figure 1. Note that as in Figure 3, the bifurcation diagram is a
double cover; corresponding to each of these four solutions, there
is another solution at the same point in the bifurcation diagram.
See also Theorems 3.13, 3.14, and 3.15.

Proposition 2.15 enables us to apply the general results of the previous sections
to the diblock copolymer model. For example, we can use the nonlinear system (11)
to determine saddle-node bifurcation points via a standard Newton iteration, see
also Theorem 2.10. Examples of such saddle-node bifurcation points are shown in
Figure 3.

Similarly, we can use symmetry methods to establish the location of symmetry-
breaking pitchfork bifurcation points via the solution of the extended system (16)
using Newton’s method, see also Theorem 2.12. For this, of course, we need to spec-
ify suitable symmetry operations. Consider for example the symmetry operators SX
and SY defined via

(S2u) (x) = u(1− x) for u ∈ X or u ∈ Y ,
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i.e., via the same formula in both X and Y . Since X ⊂ Y is embedded via the iden-
tity map, we can apply Lemma 2.8 with J = I. This implies that if ϕ0 6∈ R(L), then
the signs εX and εY in Lemma 2.6 necessarily have to agree. In the right column
of Figure 4, two equilibrium solutions of the diblock copolymer model are depicted
in orange, along with the kernel functions of the Fréchet derivative DuF (λ0, u0),
which are shown in blue. These solutions are symmetry-breaking pitchfork bifurca-
tion points which lie on the second and fourth bifurcation branches from the trivial
solution curve shown in the right image of Figure 1. The equilibria are symmetric el-
ements with respect to the above symmetry S, and the associated kernel functions
are antisymmetric. Thus these solutions satisfy the symmetry conditions needed
for a symmetry-breaking pitchfork bifurcation, and in both of these cases, Proposi-
tion 2.15 will enable us to use Theorem 2.12 to rigorously prove their existence.

But what about the pitchfork bifurcation points on the first, third and fifth
branches shown in the right image of Figure 1? In these cases, the solutions on
the branch are no longer symmetric elements. If instead we define a new symmetry
operator via

(S1u) (x) = −u(1− x) for u ∈ X or u ∈ Y ,

then the pitchfork bifurcation points are again symmetric elements. The corre-
sponding solutions for the first and third branch are shown in the left column of
Figure 4 along with their associated kernel functions. Since the kernel function in
the upper left panel is antisymmetric with respect to this new symmetry, this is a
symmetry-breaking bifurcation point which can be treated using Theorem 2.12, but
with respect to the new symmetry. In contrast, the solution and kernel function of
the third branch solution in the lower left panel are both symmetric with respect to
the new symmetry. This implies that our symmetry-breaking pitchfork bifurcation
result no longer applies. In fact, this bifurcation is not a Z2-symmetry-breaking bi-
furcation, but rather a symmetry-breaking bifurcation with a different equivariance
group. Thus a different approach is needed to treat this bifurcation, and we will
address this in a future paper.

3. Rigorous verification of bifurcations. As already mentioned in Section 2.4,
Proposition 2.15 enables us to study saddle-node and pitchfork bifurcation points
via Theorem 2.10 and Theorem 2.12, respectively. In particular, by Theorem 2.10,
proving existence of a non-degenerate isolated zero of (12) implies the existence
of a saddle-node bifurcation, and by Theorem 2.12, proving existence of a non-
degenerate isolated zero of (17) implies the existence of a pitchfork bifurcation.

In this section, we use the tools of rigorous computing (e.g. see [33]) to verify
existence of bifurcations in the diblock copolymer equation. In order to do so, we
begin by presenting the equivalent of (11) in the space of Fourier coefficients. We
note that the reformulation of a function space problem in terms of an infinite se-
ries is standard as both a numerical and analytical technique, but it also has a long
history as a method of computer-assisted proof, such as for example in Lanford’s
proof of the Feigenbaum conjectures [18]. Note that while our general results in
previous sections establish conclusions in the the more general case of Hölder con-
tinuity, since we are considering the space of Fourier coefficients, our results in this
section have much more additional regularity than just Hölder continuity. Namely,
we are able to rigorously establish real analytic bifurcating solutions.

Consider the steady states diblock copolymer equation (20) with f(u) = u− u3.
Our results apply for all values of µ, but in order for the mass constraint to allow
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for both symmetric and asymmetric solutions, in our numerics, we fix µ = 0. That
is

F (λ, u) = −
(
uxx + λ(u− u3)

)
xx
− λσu = 0.

Plugging the cosine Fourier expansion

u(x) =
∑
k∈Z

ake
ikπx = 2

∑
k≥1

ak cos(kπx), (ak ∈ R, a−k = ak, a0 = 0) (26)

in F (λ, u) = 0 leads to
∑
k∈Z

gke
ikπx = 0, with

gk(λ, a, σ)
def
= µk(λ, σ)ak − λk2π2(a3)k, (27)

where

µk = µk(λ, σ)
def
= −k4π4 + λk2π2 − λσ, (28)

and

(a3)k
def
=

∑
k1+k2+k3=k

ki∈Z\{0}

a|k1|a|k2|a|k3|.

The relations ak ∈ R, a0 = 0 and a−k = ak imply the new relations gk ∈ R, g−k = gk
and g0 = 0. Hence, we only need to solve gk = 0 for k ≥ 1. Set g

def
= (gk)k≥1.

Now consider the kernel equation associated to the steady states diblock copoly-
mer equation:

DuF (λ, u)[v] = −
(
vxx + λ(v − 3u2v)

)
xx
− λσv = 0.

Plugging the cosine Fourier expansion of v

v(x) =
∑
k∈Z

bke
ikπx = 2

∑
k≥1

bk cos(kπx), (bk ∈ R, b−k = bk, b0 = 0), (29)

in DuF (λ, u)[v] = 0 leads to
∑
k∈Z

hke
ikπx = 0, with

hk(λ, a, b, σ)
def
= µk(λ, σ)bk − 3λk2π2(a2b)k, (30)

where

(a2b)k
def
=

∑
k1+k2+k3=k

ki∈Z\{0}

a|k1|a|k2|b|k3|.

As above, the relations hk ∈ R, h−k = hk and h0 = 0 implies that we only need to
solve hk = 0 for k ≥ 1.

Let a
def
= (ak)k≥1, b

def
= (bk)k≥1, g

def
= (gk)k≥1 and h

def
= (hk)k≥1.

Recall the definition of the extended operator F given in (11). We re-order the
entries and consider

F(λ, u, v) =

 `(v)− 1
F (λ, u)

DuF (λ, u)[v]


where `(v) = 1 fixes the phase of the eigenvector v. Denote the vector of unknowns
by

x = (λ, a, b).
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Moving to Fourier space, and recalling (27) and (30), the functional equation
F(λ, u, v) = 0 becomes, for a fixed parameter value σ ∈ R,

f(x, σ)
def
=

 η(b)
g(λ, a, σ)
h(λ, a, b, σ)

 , (31)

where

η(b)
def
=

1

b̄k0

bk0
− 1, (32)

where the condition η(b) = 0 implies that we fix the k0-th component of the eigen-
vector to be equal to a fixed value b̄k0 , as η(b) = 0 is equivalent to bk0 = b̄k0 The

corresponding element ` in the dual space is `(b) =
(

1
b̄k0

)
ek0 ·b, where (ek0)j = δk0,j .

The Banach space on which we study the zeroes of f defined in (31) is

X def
= R× `1ν × `1ν , (33)

endowed with the norm

‖x‖X def
= max

{
1

δ
|λ|, ‖a‖1,ν , ‖b‖1,ν

}
, (34)

where δ > 0 is a weight and where

`1ν
def
= {c = {ck}k≥1 : ‖c‖1,ν <∞} , (35)

is equipped with a “weighted ell one norm”

‖c‖1,ν def
= 2

∑
k≥1

|ck|νk =
∑

k∈Z\{0}
|c|k||ν|k|, (36)

for some fixed weight ν ≥ 1.
We solve the problem f(x) = 0 using the field of rigorous numerics (e.g. see

[33]). This requires recalling some basic tools from functional analysis. Since all
the results of the section are classical and can be found for instance in [16], we omit
the proofs.

3.1. Functional-analytic background. We note that `1ν defined in (35) is a Ba-
nach space and moreover has the property of being a Banach algebra under discrete
convolution defined as

a ∗ b =


∑

k1,k2∈Z\{0}
k1+k2=k

a|k1|b|k2|


k≥1

, a = {ak}k≥1, b = {bk}k≥1 ∈ `1ν .

More explicitly, we have the following.

Lemma 3.1. If ν ≥ 1 and a, b ∈ `1ν , then a ∗ b ∈ `1ν and

‖a ∗ b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν . (37)

For a sequence of real numbers c = {cn}∞n=1 define the ν−1-weighted supremum
norm

‖c‖∞,ν−1
def
=

1

2
sup
n≥1
|cn|

(
1

ν

)n
, (38)

and let

`∞ν−1

def
=
{
c = {cn}∞n=1 : ‖c‖∞,ν−1 <∞

}
.
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From the definition of the norm in (38), it follows that given c ∈ `∞ν−1 ,

|cn| ≤ 2νn‖c‖∞,ν−1 , ∀ n ≥ 1. (39)

Then, given a ∈ `1ν and c ∈ `∞ν−1 , we conclude by (39) that∣∣∣∣∣∣
∑
k≥1

ckak

∣∣∣∣∣∣ ≤
∑
k≥1

|ck||ak| ≤ ‖c‖∞,ν−1

2
∑
k≥1

|ak|νk
 = ‖c‖∞,ν−1‖a‖1,ν . (40)

This bound is used to estimate linear operators of the following type. Denote by
B(V,W ) the space of bounded linear operators acting between a Banach space V
and a Banach space W , and denote ‖ · ‖B(V,W ) the operator norm.

Corollary 3.2. Let M (m) = {Mk,n}k,n=1,...,m−1 be an (m − 1) × (m − 1) matrix,
{µn}∞n=m be a sequence of numbers with

|µn| ≤ |µm|,
for all n ≥ m, and M : `1ν → `1ν be the linear operator defined by

Mb =


M (m) 0

µm
0 µm+1

. . .




b(m)

bm
bm+1

...

 .
Here b(m) = (b1, . . . , bm−1)T ∈ Rm−1. Then M ∈ B(`1ν , `

1
ν) is a bounded linear

operator and
‖M‖B(`1ν ,`

1
ν) = max(K, |µm|), (41)

where

K
def
= max

1≤n≤m−1

1

νn

m−1∑
k=1

|Mk,n|νk. (42)

Lemma 3.3. Given ν ≥ 1, k ≥ 1 and a ∈ `1ν , the function lka : `1ν → R defined by

lka(h)
def
= (a ∗ h)k =

∑
k1+k2=k

k1,k2∈Z\{0}

a|k1|h|k2|

with h ∈ `1ν , is a bounded linear functional, and

‖lka‖ = sup
‖h‖1,ν≤1

∣∣lka(h)
∣∣ ≤ 1

2
sup
j≥1

(a|k+j| + a|k−j|)

νj
. (43)

Fix a truncation mode to be m. Given h ∈ `1ν , set

h(m) def
= (h1, . . . , hm−1, 0, 0, . . .) ∈ `1ν

h(I) def
= h− h(m) ∈ `1ν .

Corollary 3.4. Let N ∈ N and let ᾱ = (ᾱ1, . . . , ᾱN , 0, 0, . . .) ∈ `1ν . Suppose that

1 ≤ k < m and define l̂kᾱ ∈ (`1ν)∗ by

l̂kᾱ(h)
def
= (ᾱ ∗ h(I))k =

∑
k1+k2=k

k1,k2∈Z\{0}

ᾱ|k1|h
(I)
|k2|.

Then, for all h ∈ `1ν such that ‖h‖1,ν ≤ 1,∣∣∣l̂kᾱ(h)
∣∣∣ ≤ Ψk(ᾱ)

def
= max

(
max

m≤j≤N−k
|ᾱk+j |
νj

, max
m≤j≤k+N

|ᾱ|k−j||
νj

)
. (44)
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3.2. The general rigorous computational method. We now present a general
method to prove existence and compute global smooth solution curves of the equa-
tion f(x, σ) = 0 in the Banach space X as defined in (33). The method is based on
the radii polynomial approach, first introduced in [11]. The version of the approach
we use here is a direct application of the work [7] and is strongly influenced by the
rigorous branch following method of [34]. The idea is to compute a set of numerical
approximations {x̄0, . . . , x̄j} of f(x, σ) = 0 at the parameter values {σ0, . . . , σj} by
considering a finite dimensional projection, to use the approximations to construct
a global continuous curve of piecewise linear interpolations between the x̄i’s and to
apply the uniform contraction theorem on tubes centered at each segment to con-
clude about the existence of a unique smooth solution curve of f = 0 nearby the
piecewise linear curve of approximations.

3.2.1. Construction of a Piecewise Linear Curve of Approximations. To construct a
piecewise linear curve of approximations of f(x, σ) = 0, we consider a finite dimen-
sional projection f (m) of f whose dimension depends on m. Given c = (ck)k≥1 ∈ `1ν
denote by c(m) = (c1, . . . , cm−1) ∈ Rm−1 a finite part of c of size m − 1. Denote
x(m) = (λ, a(m), b(m)) ∈ R2m−1. In the remaining of the section, (·)(m) denotes
considering this finite dimensional projection. Reversely, when we have some finite
dimensional vector x(m), x denotes the infinite vector obtained by completing x(m)

with zeros.
Consider a finite dimensional projection f (m) of (31) given by

f (m)(x(m), σ) =

 η(x(m))

g(m)(x(m), σ)
h(m)(x(m), σ)

 , (45)

where g(m)(x(m), σ) ∈ Rm−1 (resp. h(m)) corresponds to the finite part of g (resp.
h) of size m − 1. We have that f (m) : R2m−1 × R → R2m−1. Assume that us-
ing a standard parameter continuation (i.e. a predictor-corrector algorithm based
on Newton’s method) in σ, we compute a set {x̄0, . . . , x̄j} of approximations at
the parameter values {σ0, . . . , σj} respectively that defines a piecewise linear ap-
proximation curve (see Figure 5). The next step is to show existence of a unique
smooth solution curve C of f = 0 nearby the piecewise linear curve of approxima-
tions, as portrayed in Figure 5. This task is twofold. First, one shows the existence
of a unique portion of solution curve C(i) in a small tube centered at the segment
{(1 − s)x̄i + sx̄i+1 | s ∈ [0, 1]}. This is done in Theorem 3.5. Second, one shows
that

C def
=

j−1⋃
i=0

C(i)

is a global continuous solution curve of f(x, σ) = 0.

3.2.2. Uniform Contraction and the Radii Polynomial Approach. Let us define what
is required to prove existence of some portion of curve C(i). Without loss of gen-
erality, let us introduce the idea to prove the existence of C(0) that is the piece of
curve close to the segment [x̄0, x̄1]. For any s in [0, 1], we set

x̄s
def
= (1− s)x̄0 + sx̄1 = x̄0 + s∆x̄, where ∆x̄

def
= x̄1 − x̄0 (46)

σs
def
= (1− s)σ0 + sσ1 = σ0 + s∆σ, where ∆σ

def
= σ1 − σ0. (47)
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Figure 5. Piecewise linear curve approximation (in black) constructed
using parameter continuation and existence of a global solution curve C
of f = 0 (in blue) nearby the approximations

Then we define, still for s in [0, 1], the Newton-like operator

Ts(x)
def
= x−Af(x, σs), (48)

where A is an injective linear operator approximating the inverse of Df(x̄0, σ0).
Denote x̄0 = (λ̄0, ā0, b̄0). In the sequel, we use the notation x = (x1, x2, x3) with
x1 = λ, x2 = a and x3 = b. To obtain the operator A, assume that

• the Jacobian matrix Df (m)(x̄0, σ0) has been computed;
• an approximate inverse A(m) of Df (m)(x̄0, σ0) has been computed;
• A(m) is injective. In practice, showing that ‖I − A(m)Df (m)(x̄0, σ0)‖ < 1 is

sufficient to prove that A(m) is injective.

Denote A(m) block-wise as

A(m) =

 A
(m)
11 A

(m)
12 A

(m)
13

A
(m)
21 A

(m)
22 A

(m)
23

A
(m)
31 A

(m)
32 A

(m)
33

 ∈ R(2m−1)×(2m−1), (49)

with A
(m)
11 ∈ R, A

(m)
1j ∈ R1×(m−1) for j = 2, 3, A

(m)
i1 ∈ R(m−1)×1 for i = 2, 3

and A
(m)
ij ∈ R(m−1)×(m−1) for 2 ≤ i, j ≤ 3. The operator A which acts as an

approximate inverse for

Df(x̄0, σ0) =

 ∂λη(x̄0) Daη(x̄0) Dbη(x̄0)
∂λg(x̄0, σ0) Dag(x̄0, σ0) Dbg(x̄0, σ0)
∂λh(x̄0, σ0) Dah(x̄0, σ0) Dbh(x̄0, σ0)


is given block-wise by

A =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 , (50)
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where

• A11 = A
(m)
11 ∈ R;

• A1j ∈ B
(
`1ν ,R

)
for 2 ≤ j ≤ 3: for xj ∈ `1ν , A1jxj = A

(m)
1j x

(m)
j ∈ R;

• Ai1 ∈ `1ν for 2 ≤ i ≤ 3: for x1 ∈ R, Ai1x1 = (A
(m)
i1 x1, 0∞) ∈ `1ν ;

• Aij ∈ B
(
`1ν , `

1
ν

)
for 2 ≤ i, j ≤ 3: for xj ∈ `1ν ,

(Aijxj)k =

 (A
(m)
ij x

(m)
j )k, k = 1, . . . ,m− 1,

δi,j
1

µk(λ̄0, σ0)
(xj)k, k ≥ m,

where δi,j equals 1 if i = j and 0 otherwise.

Combining the above, A is a linear operator which acts on x = (x1, x2, x3) ∈ X
component-wise as

(Ax)i =

3∑
j=1

Aijxj ,

with (Ax)1 ∈ R and (Ax)i ∈ `1ν , for i = 2, 3.
Moreover, define the linear operator

A† =

 0 0 A†13

A†21 A†22 0

A†31 A†32 A†33

 ,
which acts on c = (c1, c2, c3) component-wise as

(A†c)1 = A†13c3
def
= Dbη(x̄0)c3

(A†c)2 =

3∑
j=1

A†2jcj
def
= ∂λg

(m)(x̄0, σ0)c1 +A†22c2

(A†c)3 =

3∑
j=1

A†3jcj
def
= ∂λh

(m)(x̄0, σ0)c1 +A†32c2 +A†33c3

where for i, j = 2, 3, A†i,jcj is defined component-wise by(
A†22c2

)
k

=

{ (
Dag

(m)(x̄0, σ0)c
(m)
2

)
k
, 1 ≤ k < m

µk(λ̄0, σ0)(c2)k, k ≥ m(
A†32c2

)
k

=

{ (
Dah

(m)(x̄0, σ0)c
(m)
2

)
k
, 1 ≤ k < m

0, k ≥ m(
A†33c3

)
k

=

{ (
Dbh

(m)(x̄0, σ0)c
(m)
3

)
k
, 1 ≤ k < m

µk(λ̄0, σ0)(c3)k, k ≥ m.

The operator A† acts as an approximation for Dxf(x̄0, σ0), and is used in the
radii polynomial approach, which we now present. A more detailed proof can be
found for instance in [19, 20].

Theorem 3.5 (Radii Polynomial Approach). Recall the definitions of f , x̄s,
σs and A, given respectively in (31), (46), (47) and (50). Let Y0, Z0, Z1, Z2 ≥ 0 be
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bounds satisfying

‖Af(x̄s, σs)‖X ≤ Y0, ∀ s ∈ [0, 1] (51)

‖I −AA†‖B(X,X) ≤ Z0 (52)

‖A[Dxf(x̄0, σ0)−A†]‖B(X,X) ≤ Z1 (53)

‖A[Dxf(x̄s + b, σs)−Dxf(x̄0, σ0)]‖B(X,X) ≤ Z2(r), ∀ b ∈ Br(0) and ∀ s ∈ [0, 1].
(54)

Define the radii polynomial

p(r)
def
= Z2(r)r + (Z1 + Z0 − 1)r + Y0. (55)

If there exists r0 > 0 such that
p(r0) < 0,

then there exists a C∞ function

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

such that
f(x̃(s), σs) = 0, ∀ s ∈ [0, 1].

Furthermore, these are the only solutions in the tube
⋃
s∈[0,1]Br0(x̄s).

Proof. The idea is to prove that for every s ∈ [0, 1], the operator Ts defined in (48)
satisfies first that Ts : Br0(x̄s) → Br0(x̄s) and then that Ts is a contraction. For
each s ∈ [0, 1], the contraction mapping theorem implies the existence of a unique
x̃(s) ∈ Br0(x̄s) such that f(x̃(s), σs) = 0. The fact that the function x̃(s) is C∞

follows from an application of the uniform contraction principle on the mapping

T̃ :

{
[0, 1]×Br(0) −→ Br(0)

(s, w) 7−→ T̃ (s, w)
def
= w −Af(w + x̄s, σs).

3.3. The radii polynomial for saddle-node bifurcations. Recall that by con-
sidering a Galerkin projection f (m) : R2m−1 × R → R2m−1, one computed two so-
lutions x̄0 = (λ̄0, ā0, b̄0) at σ0 and x̄1 = (λ̄1, ā1, b̄1) at σ1 such that f (m)(x̄0, σ0) ≈ 0
and f (m)(x̄1, σ1) ≈ 0. Denote

∆x̄ = x̄1 − x̄0 = (λ̄1 − λ̄0, ā1 − ā0, b̄1 − b̄0) = (∆λ̄,∆ā,∆b̄) and ∆σ = σ1 − σ0.

In order to apply the radii polynomial approach (Theorem 3.5) to the problem
(31), we compute the bounds Y0, Z0, Z1 and Z2(r) satisfying (51), (52), (53) and
(54), respectively.

3.3.1. The bound Y0. Recall that the bound Y0 satisfies the inequality (51). Denote
ξs = (λ̄s, ās, b̄s, σs) and ξ = (λ, a, b, σ). Since ξs = ξ0+s(ξ1−ξ0), then using Taylor’s
theorem

Af(x̄s, σs) = Af(ξs) = Af(ξ0) + sADξf(ξ0)(ξ1 − ξ0) +R(ξs),

where f(ξ0) = f(x̄0, σ0), Dξf(ξ0)(ξ1 − ξ0) = Dxf(x̄0, σ0)∆x̄+ ∂f
∂σ (x̄0, σ0)∆σ, and

‖R(ξs)‖X ≤ sup
s,t∈[0,1]

‖s
2

2
AD2

ξf(ξt)(ξ1 − ξ0, ξ1 − ξ0)‖X

=
1

2
sup
t∈[0,1]

‖AD2
ξf(ξt)(ξ1 − ξ0, ξ1 − ξ0)‖X
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Recalling (46), (47), ξ1− ξ0 = (λ̄1, ā1, b̄1, σ1)− (λ̄0, ā0, b̄0, σ0) = (x̄1− x̄0, σ1−σ0) =
(∆x̄,∆σ). Note that

D2
ξf(ξt)(ξ1 − ξ0, ξ1 − ξ0) =

 0
D2
ξg(ξt)(ξ1 − ξ0, ξ1 − ξ0)

D2
ξh(ξt)(ξ1 − ξ0, ξ1 − ξ0)

 , (56)

where(
D2
ξg(ξt)(ξ1 − ξ0, ξ1 − ξ0)

)
k

= −2∆λ̄∆σ(āt)k + 2(k2π2∆λ̄−∆λ̄σt −∆σλ̄t)(∆ā)k

− 6k2π2
(
∆λ̄(ā2

t∆ā)k + λ̄t(∆ā
2āt)k

)(
D2
ξh(ξt)(ξ1 − ξ0, ξ1 − ξ0)

)
k

= −2∆λ̄∆σ(b̄t)k + 2(k2π2∆λ̄−∆λ̄σt −∆σλ̄t)(∆b̄)k

− 6k2π2
(
∆λ̄(ā2

t∆b̄)k + λ̄t(∆ā
2b̄t)k

)
− 12k2π2

(
∆λ̄(ātb̄t∆ā)k + λ̄t(āt∆ā∆b̄)k

)
.

Using interval arithmetic, one can easily compute bounds Y
(0)
0 , Y

(1)
0 and Y

(2)
0 such

that

‖Af(ξ0)‖X ≤ Y (0)
0

‖ADξf(ξ0)(ξ1 − ξ0)‖X ≤ Y (1)
0

1

2
sup
t∈[0,1]

‖AD2
ξf(ξt)(ξ1 − ξ0, ξ1 − ξ0)‖X ≤ Y (2)

0

and finally set

Y0
def
= Y

(0)
0 + Y

(1)
0 + Y

(2)
0 . (57)

3.3.2. The bound Z0. Let B
def
= I −AA†, which we express as

B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 .
Setting

Z0
def
= max

|B11|+
1

δ

3∑
j=2

‖B1j‖∞,ν−1 , max
i=2,3

δ‖Bi1‖1,ν +

3∑
j=2

‖Bij‖B(`1ν ,`
1
ν)


(58)

satisfies the bound (52).

3.3.3. The bound Z1. Given h = (h1, h2, h3) ∈ B1(0) ⊂ X let

z = z(h)
def
= [Dxf(x̄0, σ0)−A†]h,

which we denote as z = (z1, z2, z3). Note that z1 = 0 and that

(z2)k =

 −3λ̄0k
2π2

(
ā2

0h
(I)
2

)
k
, 1 ≤ k < m

−3λ̄0k
2π2

(
ā2

0h2

)
k
− k2π2

(
ā3

0

)
k
h1, k ≥ m

(59)

(z3)k =

 −3λ̄0k
2π2

(
ā2

0h
(I)
3

)
k
− 6λ̄0k

2π2
(
ā0b̄0h

(I)
2

)
k
, 1 ≤ k < m

−3λ̄0k
2π2

(
ā2

0h3

)
k
− 6λ̄0k

2π2
(
ā0b̄0h2

)
k
− 3k2π2

(
ā2

0b̄0
)
k
h1, k ≥ m .

(60)
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Using Corollary 3.4, we get that for 1 ≤ k < m,

|(z2)k| ≤ (ẑ2)k
def
= 3|λ̄0|k2π2Ψk(|ā0|2)

|(z3)k| ≤ (ẑ3)k
def
= 3|λ̄0|k2π2

(
Ψk(|ā0|2) + 2Ψk(|ā0b̄0|2)

)
.

The following elementary result is useful to bound the tail quantities involved in z2

and z3.

Lemma 3.6. Let γ1 ≥ 0 and assume that the projection dimension m satisfies

m >

√
λ̄0

π
. (61)

Then, for all k ≥ m, ∣∣∣∣ γ1k
2π2

µk(λ̄0, σ0)

∣∣∣∣ ≤ γ1

m2π2 − λ̄0
. (62)

Proof. Since m >

√
λ̄0

π , for all k ≥ m, |µk(λ̄0, σ0)| = k4π4 − λ̄0k
2π2 + λ̄0σ0 > 0.

Then,∣∣∣∣ γ1k
2π2

µk(λ̄0, σ0)

∣∣∣∣ =
γ1k

2π2

k4π4 − λ̄0k2π2 + λ̄0σ0
=

γ1

k2π2 − λ̄0 + λ̄0σ0

k2π2

≤ γ1

m2π2 − λ̄0
.

Combining Corollary 3.4 with Lemma 3.6, and under the assumption (61), we
get that for any h ∈ B1(0) ⊂ X,

1

δ
|A1,2z2(h)| ≤ ζ1,2 def

=
1

δ

∣∣∣A(m)
1,2

∣∣∣ · ẑ(m)
2 and

1

δ
|A1,3z3(h)| ≤ ζ1,3 def

=
1

δ

∣∣∣A(m)
1,3

∣∣∣ · ẑ(m)
3

and for i = 2, 3,

‖Ai,2z2(h)‖1,ν ≤ ζi,2
def
= 2

m−1∑
k=1

∣∣∣((A
(m)
i,2 )ẑ

(m)
2

)
k

∣∣∣ νk
+ δi,2

(‖ā0‖1,ν)
2

m2π2 − λ̄0

(
3|λ̄0|+ δ‖ā0‖1,ν

)
‖Ai,3z3(h)‖1,ν ≤ ζi,3

def
= 2

m−1∑
k=1

∣∣∣((A
(m)
i,3 )ẑ

(m)
3

)
k

∣∣∣ νk + δi,3
3‖ā0‖1,ν
m2π2 − λ̄0

(
|λ̄0|‖ā0‖1,ν

+2|λ̄0|‖b̄0‖1,ν + δ‖ā0‖1,ν‖b̄0‖1,ν
)
.

Using the previous bounds, we conclude that

‖A[Dxf(x̄0, σ0)−A†]‖B(X,X) = sup
h∈B1(0)

‖A[Dxf(x̄0, σ0)−A†]h‖X

= sup
h∈B1(0)

‖Az(h)‖X

≤ sup
h∈B1(0)

max

1

δ

∣∣∣∣∣∣
3∑
j=2

A1,jzj(h)

∣∣∣∣∣∣ ,
∥∥∥∥∥∥

3∑
j=2

A2,jzj(h)

∥∥∥∥∥∥
1,ν

,

∥∥∥∥∥∥
3∑
j=2

A3,jzj(h)

∥∥∥∥∥∥
1,ν


≤ Z1

def
= max

i=1,2,3
(ζi,2 + ζi,3) , (63)
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3.3.4. The bound Z2. Recall that we look for a bound Z2 satisfying (54). Fix
b ∈ Br(0) and s ∈ [0, 1]. Applying the Mean Value Inequality three times yields

‖A[Dxf(x̄s + b, σs)−Dxf(x̄0, σ0)]‖B(X,X)

≤ ‖A[Dxf(x̄s + b, σs)−Dxf(x̄s, σs)]‖B(X,X)

+ ‖A[Dxf(x̄s, σs)−Dxf(x̄0, σs)]‖B(X,X)

+ ‖A[Dxf(x̄0, σs)−Dxf(x̄0, σ0)]‖B(X,X)

≤ sup
w∈Br(x̄s)
u,v∈B1(0)

s∈[0,1]

‖AD2
xf(w, σs)(u, v)‖Xr + sup

s,t∈[0,1]
u,v∈B1(0)

‖AD2
xf(x̄t, σs)(u, v)‖X‖x̄1 − x̄0‖X

+ sup
t∈[0,1]
v∈B1(0)

‖ADx,σf(x̄0, σt)v‖X|σ1 − σ0|.

Define Λ the (unbounded) diagonal operator

(Λa)k = k2π2ak. (64)

Given u = (λu, au, bu), v = (λv, av, bv), w = (λw, aw, bw) ∈ X, a straightforward
computation yields that D2

xf(w, σs)(u, v) ∈ X satisfies(
D2
xf(w, σs)(u, v)

)
1

= 0(
D2
xf(w, σs)(u, v)

)
2

= D2
xg(w, σs)(u, v)

= (Λ− σsI)(λuav + λvau)

− 3Λ
(
λu(aw)2av + λv(aw)2au + 2λwawauav

)(
D2
xf(w, σs)(u, v)

)
3

= D2
xh(w, σs)(u, v)

= (Λ− σsI)(λubv + λvbu)

− 3Λ
(
λu(2awavbw + (aw)2bv) + λv(2awaubw + (aw)2bu)

)
− 6Λλw (auavbw + auawbv + awavbu) .

Hence, for i = 1, 2, 3, and given u, v ∈ B1(0) and any w = (λw, aw, bw) ∈ X,∥∥Ai,2D2
xg(w, σs)(u, v)

∥∥(i) ≤ α̂i,2(w)
def
= 2δα

(1)
i,2 + 6α

(2)
i,2 ‖aw‖1,ν (δ‖aw‖1,ν + |λw|)∥∥Ai,3D2

xh(w, σs)(u, v)
∥∥(i) ≤ α̂i,3(w)

def
= 2δα

(1)
i,3 + 3α

(2)
i,3

(
4δ‖aw‖1,ν‖bw‖1,ν

+ 2δ‖aw‖21,ν + 2|λw|(‖bw‖1,ν + 2‖aw‖1,ν)
)

where ‖·‖(1)
= | · | and ‖·‖(i) = ‖ · ‖1,ν for i, j = 2, 3, and where

α
(1)
1,j

def
= sup

s∈[0,1]

‖A1,j(Λ− σsI)‖∞,ν−1 , α
(2)
1,j

def
= ‖A1,jΛ‖∞,ν−1

α
(1)
i,j

def
= sup

s∈[0,1]

‖Ai,j(Λ− σsI)‖B(`1ν ,`
1
ν) , α

(2)
i,j

def
= ‖Ai,jΛ‖B(`1ν ,`

1
ν) ,

so that

‖AD2
xf(w, σs)(u, v)‖X ≤ max

i=1,2,3
(α̂i,2(w) + α̂i,3(w)) .

To compute the bounds α
(k)
i,j (i, j = 2, 3, k = 1, 2), we use formula (41). For α

(1)
i,j we

use interval arithmetic and replace σs by the interval [σ0, σ1], and rigorously obtain
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the bound. Moreover,

(Dx,σf(x̄0, σt)v)1 = 0

(Dx,σf(x̄0, σt)v)2 = Dx,σg(x̄0, σt)v = −λvā0 − λ̄0a
v

(Dx,σf(x̄0, σt)v)3 = Dx,σh(x̄0, σt)v = −λv b̄0 − λ̄0b
v.

Hence, for i = 1, 2, 3,

‖Ai,2Dx,σg(x̄0, σt)v‖(i) ≤ β̂i,2 def
= βi,2

(
‖ā0‖1,ν + |λ̄0|

)
‖Ai,3Dx,σh(x̄0, σt)v‖(i) ≤ β̂i,3 def

= βi,3
(
‖b̄0‖1,ν + |λ̄0|

)
,

where

β1,j
def
= ‖A1,j‖∞,ν−1 and βi,j

def
= ‖Ai,j‖B(`1ν ,`

1
ν) for j = 2, 3.

Define

â
def
= sup

s∈[0,1]

‖ās‖1,ν , b̂
def
= sup

s∈[0,1]

‖b̄s‖1,ν , λ̂
def
= sup

s∈[0,1]

|λ̄s|

and assuming that r ≤ r∗, we can conclude that

sup
w∈Br(x̄s)
u,v∈B1(0)

s∈[0,1]

‖AD2
xf(w, σs)(u, v)‖X ≤ sup

w∈Br(x̄s)

max
i=1,2,3

(α̂i,2(w) + α̂i,3(w))

≤ Z(2)
2

def
= max

(
1

δ
Z

(2)
2,1 , Z

(2)
2,2 , Z

(2)
2,3

)
,

where

Z
(2)
2,i

def
= 2δα

(1)
i,2 + 6α

(2)
i,2 (â+ r∗)(δâ+ λ̂+ 2δr∗) + 2δα

(1)
i,3

+ 3α
(2)
i,3

(
4δ(â+ r∗)(b̂+ r∗) + 2δ(â+ r∗)

2 + 2(λ̂+ δr∗)(2â+ b̂+ 3r∗)
)
.

Moreover,

sup
s,t∈[0,1]
u,v∈B1(0)

‖AD2
xf(x̄t, σs)(u, v)‖X‖x̄1 − x̄0‖X

≤ Z(1)
2

def
= max

(
1

δ
Z

(1)
2,1 , Z

(1)
2,2 , Z

(1)
2,3

)
‖x̄1 − x̄0‖X,

where

Z
(1)
2,i

def
= 2δα

(1)
i,2 + 6α

(2)
i,2 â(δâ+ λ̂) + 2δα

(1)
i,3 + 3α

(2)
i,3

(
4δâb̂+ 2δâ2 + 2λ̂(2â+ b̂)

)
.

Setting

Z
(0)
2

def
= max

(
1

δ

(
β̂1,2 + β̂1,3

)
, β̂2,2 + β̂2,3 , β̂3,2 + β̂3,3

)
|σ1 − σ0|,

we let
Z2(r)

def
= Z

(2)
2 r + Z

(1)
2 + Z

(0)
2 , (65)

which is by construction a bound satisfying (54).
Combining (57), (58), (63) and (65) leads to the radii polynomial

p(r)
def
= Z2(r)r − (1− Z0 − Z1)r + Y0 (66)

= Z
(2)
2 r2 − (1− Z0 − Z1 − Z(1)

2 − Z(0)
2 )r + Y0.

Recall that the radii polynomial approach consists of applying Theorem 3.5, that
is to find a radius r0 > 0 such that the radii polynomial (66) satisfies p(r0) < 0.
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This implies the existence of a C∞ function x̃ : [0, 1] → ⋃
s∈[0,1]Br0(x̄s) such that

f(x̃(s), σs) = 0, for all s ∈ [0, 1]. Using the radii polynomial (66), we present in
Section 3.5.1 computer-assisted proofs providing existence of three smooth global
branches of saddle-node bifurcations in the (σ, λ) parameter space.

3.4. The radii polynomial for pitchfork bifurcations. We consider two sym-
metries S1, S2 given by

(S1u)(y)
def
= −u(1− y) and (S2u)(y)

def
= u(1− y) (67)

and for i = 1, 2, define

X(i)
s = {u ∈ X : Siu = u} and X(i)

a = {v ∈ X : Siv = −v} .
The corresponding Banach spaces in Fourier space are given by

X(1)
s =

{
a = (ak)k≥1 ∈ `1ν : a2j = 0, for all j ≥ 1

}
X(1)
a =

{
b = (bk)k≥1 ∈ `1ν : b2j−1 = 0, for all j ≥ 1

}
and

X(2)
s =

{
a = (ak)k≥1 ∈ `1ν : a2j−1 = 0, for all j ≥ 1

}
X(2)
a =

{
b = (bk)k≥1 ∈ `1ν : b2j = 0, for all j ≥ 1

}
.

Given i ∈ {1, 2}, define the Banach space

X(i) = R×X(i)
s × `1ν

endowed, given a weight δ > 0, with the weighed norm

‖x‖X(i) = max

(
1

δ
|λ|, ‖a‖(i)1,ν , ‖b‖1,ν

)
, (68)

where

‖a‖(i)1,ν = 2
∑
k≥1

|ak|νk =


2
∑
j≥1

|a2j−1|ν2j−1, i = 1

2
∑
j≥1

|a2j |ν2j , i = 2.

Recall that for k ≥ 1,

µk(λ)
def
= −k4π4 + λk2π2 − λσ

and recalling from (27) and from (30),

gk(λ, a) = µk(λ)ak − λk2π2(a3)k

hk(λ, a, b) = µk(λ)bk − 3λk2π2(a2b)k.

Let x = (λ, a, b) ∈ R×X(i)
s × `1ν , then define fr by

fr(x) =

 η(b)
g(λ, a)
h(λ, a, b)

 , (69)

where η(b) = 1
b̄k0

bk0 − 1, that is η(b) = 0 implies that the k0-th component of the

eigenvector b equals the fixed value b̄k0 .
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Given a ∈ X(1)
s , that is a = (ak)k≥1 such that a2j = 0 for all j ≥ 1, then

g2j(λ, a) = µ2j(λ)a2j − λ(2j)2π2(a3)2j

= µ2j(λ)a2j − λ(2j)2π2
∑

k1+k2+k3=2j

ki∈Z\{0}

a|k1|a|k2|a|k3| = 0,

since for any (k1, k2, k3) ∈ (Z \ {0})3, the relation k1 + k2 + k3 = 2j implies that
there must be i ∈ {1, 2, 3} such that ki is even, and so a|ki| = 0.

Similarly, given a ∈ X(2)
s , that is a = (ak)k≥1 such that a2j−1 = 0 for all j ≥ 1,

then

g2j−1(λ, a) = µ2j−1(λ)a2j−1 − λ(2j − 1)2π2(a3)2j−1

= µ2j−1(λ)a2j−1 − λ(2j − 1)2π2
∑

k1+k2+k3=2j−1

ki∈Z\{0}

a|k1|a|k2|a|k3| = 0,

since for any (k1, k2, k3) ∈ (Z \ {0})3, the relation k1 +k2 +k3 = 2j− 1 implies that
there must be i ∈ {1, 2, 3} such that ki is odd, and so a|ki| = 0.

To verify rigorously a pitchfork bifurcation, we use the general approach of Sec-
tion 3.2, as in the case of saddle-node bifurcations. All estimates are similar as in
the case of saddle-node bifurcations, expect that in this case we consider the norm
‖ ·‖X(i) given in (68), where the index i depends on the symmetry of the bifurcation.
This implies that all expansions are the same, but the norms are replaced by (68).
Using these new expansions, we define the equivalent radii polynomial

p(r) = Z
(2)
2 r2 − (1− Z0 − Z1 − Z(1)

2 − Z(0)
2 )r + Y0, (70)

which is the same as the one defined in (66), except that the bounds Z0, Z1, Z
(0)
2 , Z

(1)
2

and Z
(2)
2 defining it are slightly different, as they come from a different problem.

3.5. Results. In this section, we are finally ready to state our results, which consist
of a set of three validated branches of saddle-node bifurcations and three validated
branches of symmetry-breaking pitchfork bifurcations. As mentioned in the intro-
duction, each of these cases were found numerically in [17], where it was observed
numerically that there was a common scaling law for different bifurcation branches.
The choice of bifurcation points was made in a somewhat arbitrary way as secondary
bifurcation point for small λ that still satisfied the conditions of our theorem. We
emphasize that the validation of these branches of bifurcations serves two purposes:
first, they illustrate our general functional analytic methods, methods which can
easily be adapted to other equations. Second, for the diblock copolymer equation,
this is a first step towards our eventual goal of validating the scalings of branches
that we have observed in the previous paper. We state each of these results as a
theorem, which is presented along with an associated table giving the detailed infor-
mation on the Fourier coefficients found for each solution. The tables are presented
for completeness and preciseness, but we do not expect that a reader would find the
data particularly illuminating unless it was being used as a basis for future work.

For all the computer-assisted proofs, the weight δ in the definition the norm of
the Banach spaces is fixed to be equal to the numerical value λ̄0. This choice of
weight δ is used to compensate for the fact that the variable λ sometimes is several
orders of magnitude larger than the ‖a‖1,ν and ‖b‖1,ν . All proofs are performed
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using MATLAB codes available at [21] and use the interval arithmetic package
INTLAB [30].

3.5.1. Saddle-Node Bifurcation Points. We begin by presenting three sample theo-
rems of existence of saddle-node bifurcations at the fixed parameter value σ = 6,
which we proved using the radii polynomial (66) and Theorem 3.5. Note that the
direction of the bifurcation (i.e. the sign of % in Proposition 2.11) was not important
for our purposes, so we did not compute it. In order to do so, we would have to
validate the sign of the involved reals, which would not be hard, but would involve
a norm bound for the involved derivatives.

Theorem 3.7. At σ0 = 6, the nonlinear diblock-copolymer equation (1) under-

goes a saddle-node bifurcation at a point (λ̃0, ũ0), where λ̃0 ∈ λ̄0 ± r[−1, 1] with
λ̄0 = 262.9276507797089 and r = 1.1 × 10−10. The point ũ0 is given by ũ0(y) =
2
∑
k≥1 ãk cos(kπy), with ‖ã−ā‖1,ν ≤ r, where the Fourier coefficients of ā are given

in Table 9. Moreover, ‖ũ0−ū0‖C0 ≤ 1.1×10−10, where ū0(y) = 2
∑
k≥1 āk cos(kπy).

The saddle-node bifurcation point of Theorem 3.7 is portrayed in Figure 3.

Proof. Fix ν = 1.01 and m = 48. The Fourier coefficients associated to the nu-
merical approximation x̄0 ∈ R2m−1 = R95 are given in the MATLAB datafile
pt0 sn.mat. The MATLAB script script proof sn pt0.m computes the coef-
ficients of the radii polynomials and verifies that for r = 1.1 × 10−10, the radii
polynomial satisfies defined in (55) p(r) < 0. Therefore by Theorem 3.5, there ex-

ists a unique x̃ = (λ̃0, ã, b̃) ∈ Br(x̄0) ⊂ X such that f(x̃) = 0 where f is given in (31).

The solution x̃ corresponds to an isolated non-degenerate zero (λ̃0, ũ0, ṽ0) solving
the equation F(λ, u, v) = (0, 0, 0). By Proposition 2.15, Theorem 2.10 and Propo-

sition 2.9, it follows that (1) undergoes a saddle-node bifurcation at (λ̃0, ũ0).

Theorem 3.8. At σ0 = 6, the nonlinear diblock-copolymer equation (1) under-

goes a saddle-node bifurcation at a point (λ̃0, ũ0), where λ̃0 ∈ λ̄0 ± r[−1, 1] with
λ̄0 = 681.3850215638124 and r = 6.2 × 10−13. The point ũ0 is given by ũ0(y) =
2
∑
k≥1 ãk cos(kπy), with ‖ã−ā‖1,ν ≤ r, where the Fourier coefficients of ā are given

in Table 10. Moreover, ‖ũ0−ū0‖C0 ≤ 6.2×10−13, where ū0(y) = 2
∑
k≥1 āk cos(kπy).

The saddle-node bifurcation point of Theorem 3.8 is portrayed in the left part of
Figure 6.

Proof. The proof is similar to the proof of Theorem 3.7. In this case ν = 1.01, m =
89, and the MATLAB script script proof sn pt1.m computes the coefficients of
the radii polynomials with interval arithmetic and the Fourier coefficients associated
to the numerical approximation x̄0 ∈ R2m−1 = R177 are given in the MATLAB
datafile pt1 sn.mat.

Theorem 3.9. At σ0 = 6, the nonlinear diblock-copolymer equation (1) under-

goes a saddle-node bifurcation at a point (λ̃0, ũ0), where λ̃0 ∈ λ̄0 ± r[−1, 1] with
λ̄0 = 1343.284789160779 and r = 1.1 × 10−12. The point ũ0 is given by ũ0(y) =
2
∑
k≥1 ãk cos(kπy), with ‖ã − ā‖1,ν ≤ r. Moreover, ‖ũ0 − ū0‖C0 ≤ 1.1 × 10−12,

where ū0(y) = 2
∑
k≥1 āk cos(kπy).

The saddle-node bifurcation point of Theorem 3.9 is portrayed in the right part
of Figure 6.
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Figure 6. Equilibrium solutions u0 (in blue) of the diblock copoly-
mer equation for σ0 = 6, together with their associated kernel func-
tions (in red). On left λ0 ≈ 681.4, on right λ0 ≈ 1343.3. These
two distinct stationary solutions are both saddle-node bifurcation
points. The equilibrium on the left (respectively right) is rigorously
proved in Theorem 3.8 (respectively Theorem 3.9).

Proof. The proof is similar to the proof of Theorem 3.7. In this case ν = 1.01, m =
121, and the MATLAB script script proof sn pt2.m computes the coefficients of
the radii polynomials with interval arithmetic and the Fourier coefficients associated
to the numerical approximation x̄0 ∈ R2m−1 = R241 are given in the MATLAB
datafile pt2 sn.mat.

Using the radii polynomial approach, we proved the following three results.

Theorem 3.10. There is a branch of saddle-node bifurcations parameterized by
the parameter σ ∈ [4.6762, 8.8812]. The global branch contains the point of The-
orem 3.7 and is a C∞ function of the parameter σ. The continuous range of
parameter λ of the saddle-node bifurcations over the branch contains the interval
λ ∈ [98.72, 1808.99].

The branch of saddle-node bifurcations proven in Theorem 3.10 is portrayed in
red in Figure 7.

Theorem 3.11. There is a branch of saddle-node bifurcations parameterized by
the parameter σ ∈ [4.8634, 9.4444]. The global branch contains the point of The-
orem 3.8 and is a C∞ function of the parameter σ. The continuous range of
parameter λ of the saddle-node bifurcations over the branch contains the interval
λ ∈ [259.18, 2264.67].

The branch of saddle-node bifurcations proven in Theorem 3.11 is portrayed in
green in Figure 7.

Theorem 3.12. There is a branch of saddle-node bifurcations parameterized by
the parameter σ ∈ [5.2595, 9.5322]. The global branch contains the point of The-
orem 3.9 and is a C∞ function of the parameter σ. The continuous range of
parameter λ of the saddle-node bifurcations over the branch contains the interval
λ ∈ [508.539, 2360.55].

The branch of saddle-node bifurcations proven in Theorem 3.12 is portrayed in
blue in Figure 7.



42 JEAN-PHILIPPE LESSARD, EVELYN SANDER AND THOMAS WANNER

σ
5 6 7 8 9

λ

500

1000

1500

2000

Figure 7. Three global C∞ branches of saddle-node bifurcation
points of the diblock copolymer equation. The red (respectively
green, blue) branch is proven in Theorem 3.10 (respectively Theo-
rem 3.11, Theorem 3.12).

3.5.2. Pitchfork Bifurcation Points. We begin by presenting three theorems of exis-
tence of pitchfork bifurcations at the fixed parameter value σ = 6, which we proved
using the radii polynomial (70) together with Theorem 3.5.

Theorem 3.13. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes

a pitchfork bifurcation at a point (λ̃0, ũ0), breaking the symmetry S1 defined in (67),

where λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 142.0626439889047 and r = 2.37 × 10−11.
The point ũ0 is given by the expansion ũ0(y) = 2

∑
j≥1 ã2j−1 cos((2j − 1)πy) with

‖ã− ā‖1,ν ≤ r, where the Fourier coefficients of ā are given in Table 11. Moreover,
‖ũ0 − ū0‖C0 ≤ 2.37× 10−11, where ū0(y) = 2

∑
j≥1 ā2j−1 cos((2j − 1)πy).

The bifurcation point of Theorem 3.13 is portrayed in the top left plot of Figure 4.

Proof. Fix ν = 1.01 and m = 46. The Fourier coefficients associated to the nu-
merical approximation x̄0 ∈ R3m/2 = R69 are given in the MATLAB datafile
pt 032.mat. The MATLAB script proof thm1 pitchfork.m computes the coef-
ficients of the radii polynomials and verifies that for r = 2.37 × 10−11, the radii
polynomial satisfies defined in (55) p(r) < 0. Therefore by Theorem 3.5, there ex-

ists a unique x̃ = (λ̃0, ã, b̃) ∈ Br(x̄0) ⊂ X(1) such that fr(x̃) = 0 where fr is given

in (69). The solution x̃ corresponds to an isolated non-degenerate zero (λ̃0, ũ0, ϕ̃0)
solving the equation Fr(λ, u, ϕ) = (0, 0, 0). By Proposition 2.15, Theorem 2.12 and

Proposition 2.11, it follows that (1) undergoes a pitchfork bifurcation at (λ̃0, ũ0).

Theorem 3.14. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes

a pitchfork bifurcation at a point (λ̃0, ũ0), breaking the symmetry S2 defined in (67),

where λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 53.58536646961630 and r = 3.28 × 10−13. The
point ũ0 is given by the expansion ũ0(y) = 2

∑
j≥1 ã2j cos(2jπy) with ‖ã− ā‖1,ν ≤ r,

where the Fourier coefficients of ā are given in Table 12. Moreover, ‖ũ0 − ū0‖C0 ≤
3.28× 10−13, where ū0(y) = 2

∑
j≥1 ā2j cos(2jπy).
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The bifurcation point of Theorem 3.14 is portrayed in the top right plot of Fig-
ure 4.

Proof. The proof is similar to the proof of Theorem 3.13. In this case ν = 1.1, m =
29, and the MATLAB script proof thm2 pitchfork.m computes the coefficients of
the radii polynomials with interval arithmetic and the Fourier coefficients associated
to the numerical approximation x̄0 ∈ R3(m−1)/2 = R43 are given in the MATLAB
datafile pt 105.mat.

Theorem 3.15. At σ0 = 6, the nonlinear diblock-copolymer equation (1) undergoes

a pitchfork bifurcation at a point (λ̃0, ũ0), breaking the symmetry S2 defined in (67),

where λ̃0 ∈ λ̄0 ± r[−1, 1] with λ̄0 = 203.0932198783432 and r = 1.88 × 10−12. The
point ũ0 is given by the expansion ũ0(y) = 2

∑
j≥1 ã2j cos(2jπy) with ‖ã− ā‖1,ν ≤ r,

where the Fourier coefficients of ā are given in Table 13. Moreover, ‖ũ0 − ū0‖C0 ≤
1.88× 10−12, where ū0(y) = 2

∑
j≥1 ā2j cos(2jπy).

The bifurcation point of Theorem 3.15 is portrayed in the bottom right plot of
Figure 4.

Proof. The proof is similar to the proof of Theorem 3.13. In this case ν = 1.01, m =
57, and the MATLAB script proof thm3 pitchfork.m computes the coefficients of
the radii polynomials with interval arithmetic and the Fourier coefficients associated
to the numerical approximation x̄0 ∈ R3(m−1)/2 = R85 are given in the MATLAB
datafile pt 174.mat.

In the last three theorems, we have established the existence of pitchfork bifurca-
tion points. The next three theorems establish that each of these points lies within
a branch in the two-parameter λ− σ-plane.

Theorem 3.16. There is a branch of pitchfork bifurcations (breaking the symme-
try S1) parameterized by the parameter σ ∈ [4.98384, 7.8852]. The global branch
contains the point of Theorem 3.13 and is a C∞ function of the parameter σ. The
continuous range of parameter λ of the pitchfork bifurcations over the branch con-
tains the interval λ ∈ [49.5782, 456].

The branch of pitchfork bifurcations of Theorem 3.16 is portrayed in red in
Figure 8.

Theorem 3.17. There is a branch of pitchfork bifurcations (breaking the symmetry
S2) parameterized by the parameter σ ∈ [0.04618, 7.813]. The global branch contains
the point of Theorem 3.14 and is a C∞ function of the parameter σ. The continuous
range of parameter λ of the pitchfork bifurcations over the branch contains the
interval λ ∈ [49.497, 210.735].

The branch of pitchfork bifurcations of Theorem 3.17 is portrayed in green in
Figure 8.

Theorem 3.18. There is a branch of pitchfork bifurcations (breaking the symme-
try S2) parameterized by the parameter σ ∈ [0.8353, 9.28807]. The global branch
contains the point of Theorem 3.15 and is a C∞ function of the parameter σ. The
continuous range of parameter λ of the pitchfork bifurcations over the branch con-
tains the interval λ ∈ [167.791, 415.757].

The branch of pitchfork bifurcations of Theorem 3.18 is portrayed in blue in
Figure 8.
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Figure 8. (Left) Global C∞ branches of pitchfork bifurcations
points of the nonlinear diblock-copolymer equation (1). The red
(respectively green, blue) branch is proven in Theorem 3.16 (re-
spectively Theorem 3.17, Theorem 3.18). (Right) Zoom-in of the
branches.

k āk
1 3.425518079006526 × 10−01

3 −1.974141656767766 × 10−01

5 3.282914954203388 × 10−02

7 −2.113767170849276 × 10−02

9 6.009282870770884 × 10−03

11 −2.511019989454085 × 10−03

13 9.094914470604478 × 10−04

15 −3.384556275954580 × 10−04

17 1.276639504135262 × 10−04

19 −4.725661956005324 × 10−05

21 1.774095811379435 × 10−05

23 −6.609023152112926 × 10−06

25 2.470638409851695 × 10−06

27 −9.226037848187633 × 10−07

29 3.445645075514765 × 10−07

31 −1.287116825741538 × 10−07

33 4.807038316262538 × 10−08

35 −1.795559964584755 × 10−08

37 6.706444497377878 × 10−09

39 −2.504938910570366 × 10−09

41 9.356049310264420 × 10−10

43 −3.494257722696195 × 10−10

45 1.304418365890033 × 10−10

47 −4.874587773792928 × 10−11

≥48 0

Figure 9. The cosine Fourier coefficients of the saddle-node bi-
furcation point from Theorem 3.7. We show āk for k ≥ 1. Note
that all even coefficients are 0.
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k āk
1 −3.322748897308590 × 10−01

3 5.964807310189380 × 10−02

5 1.098656423542226 × 10−01

7 −7.147163509374215 × 10−02

9 4.621259346913079 × 10−02

11 −1.499847066658469 × 10−02

13 2.771825017383096 × 10−03

15 1.361700989591935 × 10−03

17 −1.209183257116878 × 10−03

19 4.001695298106526 × 10−04

21 1.012053583674478 × 10−04

23 −2.188388273353959 × 10−04

25 1.583392405367557 × 10−04

27 −7.312323758516202 × 10−05

29 1.946946540531770 × 10−05

31 1.490247191381953 × 10−06

33 −4.856412723117526 × 10−06

35 2.675779467405178 × 10−06

37 −4.983777798680973 × 10−07

39 −4.341948283537669 × 10−07

41 5.122942462431431 × 10−07

43 −3.029210231609401 × 10−07

45 1.114997949387757 × 10−07

47 −1.399986292600402 × 10−08

49 −1.413350705303663 × 10−08

51 1.234615338731550 × 10−08

53 −4.811188646022121 × 10−09

55 7.635825922534573 × 10−11

57 1.346542437697546 × 10−09

59 −1.114761302006941 × 10−09

61 5.360571766016584 × 10−10

63 −1.403428779571979 × 10−10

65 −1.984767195915526 × 10−11

67 4.496258857946458 × 10−11

69 −2.598922926741918 × 10−11

71 6.827356566319794 × 10−12

73 2.040570417154504 × 10−12

75 −3.518846286971038 × 10−12

77 2.242152802281248 × 10−12

79 −8.494640661551343 × 10−13

81 1.000445609992326 × 10−13

83 1.237989407717937 × 10−13

85 −1.097953126715571 × 10−13

87 4.696530654231161 × 10−14

≥88 0

Figure 10. The cosine Fourier coefficients of the saddle-node bi-
furcation point from Theorem 3.8. We show āk for k ≥ 1. Note
that all even coefficients are 0.
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k āk
1 3.543753443245022 × 10−01

3 −1.006781087499776 × 10−01

5 1.774717239183692 × 10−02

7 −4.253838897909598 × 10−03

9 9.487830638572718 × 10−04

11 −2.154147796091226 × 10−04

13 4.890289353907032 × 10−05

15 −1.110225418059996 × 10−05

17 2.521609074712272 × 10−06

19 −5.727445161875873 × 10−07

21 1.300994133620561 × 10−07

23 −2.955313733270058 × 10−08

25 6.713369627113701 × 10−09

27 −1.525046630395195 × 10−09

29 3.464409773915803 × 10−10

31 −7.870055534981058 × 10−11

33 1.787837280778145 × 10−11

35 −4.061433389832354 × 10−12

37 9.226383862676367 × 10−13

39 −2.095966548542377 × 10−13

41 4.761431600794773 × 10−14

43 −1.081662061453402 × 10−14

45 2.457248823477995 × 10−15

≥46 0

Figure 11. The cosine Fourier coefficients of the pitchfork bifur-
cation point from Theorem 3.13. We show āk for k ≥ 1. Note that
all even coefficients are 0.

k āk
2 1.932032148778461 × 10−01

6 −1.228415125053532 × 10−03

10 7.745221377996015 × 10−06

14 −4.899802649253310 × 10−08

18 3.101012396194486 × 10−10

22 −1.962774847496414 × 10−12

26 1.242372383052349 × 10−14

≥27 0

Figure 12. The cosine Fourier coefficients of the pitchfork bifur-
cation point from Theorem 3.14. We show āk for k ≥ 2. Note that
all other coefficients are 0.

k āk
4 2.491592573155594 × 10−01

12 −2.427167305846578 × 10−03

20 2.379666082383739 × 10−05

28 −2.334882400787356 × 10−07

36 2.291173981628420 × 10−09

44 −2.248336688870471 × 10−11

52 2.206286704017840 × 10−13

≥53 0

Figure 13. The cosine Fourier coefficients of the pitchfork bifur-
cation point from Theorem 3.15. We show āk for k ≥ 2. Note that
all other coefficients are 0.
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