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A B S T R A C T

In this paper, we distinguish between four categories of dynamics for quasiperiodically-forced
(QPF) circle maps: resonant and incommensurate regular dynamics, and strongly and weakly
chaotic dynamics, using the weighted Birkhoff average (WBA). Regular orbits can be classified
by their rotation vectors, and these can be rapidly computed to machine precision using the
WBA. These orbits can be resonant or incommensurate and we distinguish between these by
computing their ‘‘resonance order,’’ allowing us to quickly identify and observe the geometric
properties of a large set of Arnold tongues. When the dynamics is chaotic the WBA converges
slowly. Orbits that are not regular can be strongly chaotic, when they have a positive Lyapunov
exponent, or weakly chaotic when the maximal Lyapunov exponent is not positive. The latter
correspond to the strange nonchaotic attractors (SNA) that have been observed in QPF circle
maps beginning with models introduced by Ding, Grebogi, and Ott. The WBA provides an
efficient new technique to find SNAs, and allows us to accurately compute the proportions
of each of the four orbit types as a function of map parameters.

. Introduction

In this paper we numerically classify four types of dynamics for quasiperiodically-forced (QPF) circle maps. These distinctions
llow us to observe patterns in the dynamics for QPF systems as the parameters are changed. The main method we use is the weighted
irkhoff average (WBA), which is an efficient and accurate way to compute Birkhoff (time) averages of a function on phase space.
he WBA also allows us to distinguish between regular and chaotic orbits for QPF circle maps. When an orbit is regular, the WBA
or the rotation vector converges rapidly and provides a high precision estimate for this vector. This can be used to distinguish
etween resonant and incommensurate regular orbits and compute an orbit’s rotation vector.

In particular, the WBA can be used to distinguish between orbits that are ‘‘weakly’’, as opposed to ‘‘strongly’’ chaotic. The
ormer correspond to strange nonchaotic attractors (SNA), i.e., geometrically ‘‘strange’’ attractors that have nonpositive Lyapunov
xponents [1–4]. In the classic examples [5,6], SNAs exhibit sensitive dependence on initial conditions but not exponential
ivergence [7]. We refer to such dynamics as weak chaos, as opposed to strong chaos, where the orbit has at least one positive
yapunov exponent. It was previously shown in [8] that the WBA identifies SNAs for the QPF damped pendulum model of [6], and
ere we use it to distinguish between weak and strong chaos for QPF circle maps. With this classification, we can much more easily
ompute the location and proportion of such orbits as the parameters vary.

Our paper proceeds as follows: we recall some of the theoretical background and previous results for torus maps in Section 2.
he numerical methods that we developed in [9,10] are recalled in Section 3: Section 3.1 explains how to use the WBA to compute
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rotation vectors and how it gives an efficient method to identify chaos. In Section 3.2 we recall the method of ‘‘resonance orders’’
o distinguish resonant (lower-dimensional) invariant tori from those that are nonresonant (full-dimensional). We apply these
echniques in Section 4 to classify the orbits of two-dimensional torus maps with a rigidly rotating second component. In Section 5

we show how the WBA and Lyapunov exponents can be used together to distinguish strongly chaotic orbits from those that are
weakly chaotic. In Section 6 we compute the proportions of the four categories of orbits — resonant, incommensurate, weakly
chaotic and strongly chaotic — as a function of the parameters of the map. We conclude in Section 7.

2. Quasiperiodically-forced circle maps: Background

We begin by recalling some of the theoretical background for torus maps, 𝑓 ∶ T𝑑 → T𝑑 . If 𝜋 ∶ R𝑑 → T𝑑 is the standard projection,
hen a map 𝐹 ∶ R𝑑 → R𝑑 is a lift of 𝑓 if

𝜋◦𝐹 = 𝑓◦𝜋 .
Here we take the periods of the torus to be one, so that 𝐹 (𝑥) mod 1 = 𝑓 (𝑥 mod 1). We will assume that 𝑓 is homotopic to the
identity; in this case 𝐹 (𝑥+𝑚) = 𝐹 (𝑥) +𝑚 for each 𝑚 ∈ Z𝑑 , i.e., the map has degree one. Note that any two lifts, say 𝐹1 and 𝐹2, differ
by an integer vector, 𝐹1(𝑥) = 𝐹2(𝑥) + 𝑚—indeed this must be true for any fixed 𝑥, but by continuity the same vector 𝑚 must work
for all 𝑥.

In general we can assume that a degree-one torus map has the form

𝑥′ = 𝑓 (𝑥) = 𝑥 +𝛺 + 𝑔(𝑥; 𝑎) mod 1, (1)

where 𝛺 ∈ T𝑑 , 𝑎 is a parameter vector, and 𝑔 is periodic, 𝑔(𝑥 + 𝑚; 𝑎) = 𝑔(𝑥; 𝑎) for any 𝑚 ∈ Z𝑑 and every 𝑎. The simplest case is
Arnold’s circle map, where 𝑑 = 1, and

𝑔(𝑥; 𝑎) = 𝑎
2𝜋

sin(2𝜋 𝑥).

The orbit of 𝑥 ∈ T𝑑 under (1) has (pointwise) rotation vector 𝜔 ∈ T𝑑 if the limit

𝜔(𝑥, 𝑓 ) = lim
𝑡→∞

𝐹 𝑡(𝑥) − 𝑥
𝑡

mod 1 (2)

exists. This is independent of the choice of lift; however, it can depend upon the initial point. When a circle map is a homeomorphism,
.g., |𝑔′(𝑥; 𝑎)| ≤ 1 for all 𝑥 ∈ T1, Poincaré proved that strict monotonicity implies that the limit (2) exists and is independent of 𝑥.
oreover, it was shown by Herman that the resulting rotation number 𝜔 is a nondecreasing function of 𝛺. When a circle map 𝑓 is

n increasing diffeomorphism, 𝑓 ′(𝑥) > 0, Denjoy showed that when 𝜔 is irrational the dynamics of 𝑓 is topologically conjugate to
a rigid rotation. More generally when (1) is a homeomorphism on T𝑑 , every orbit has the same rotation vector [5]. These results
can be found in textbooks such as [11,12].

Here, we will study quasiperiodically-forced (QPF) circle maps, where 𝑑 = 2 and the second component of the map (1) is a rigid
rotation in 𝑥2 (i.e., the second component of 𝑔, 𝑔2 = 0), so that the map is then a skew product:

𝑓 (𝑥1, 𝑥2) = (𝑥1 +𝛺1 + 𝑔1(𝑥1, 𝑥2), 𝑥2 +𝛺2) . (3)

We still allow the first component, 𝑔1, to be a general function of both variables 𝑥1 and 𝑥2. The result is QPF when the second
component of 𝛺 is irrational: 𝛺2 ∈ R⧵Q. Our motivation for considering this class of maps is that, though they are two-dimensional,
their dynamics is not as complex as the general, two-dimensional case. Nevertheless, QPF circle maps can exhibit both strong and
weak chaos, as we will discuss below.

In our calculations we will use the commonly studied extension of the Arnold map, where 𝑓 is of the form in (3) with

𝑔1(𝑥1, 𝑥2) = 1
2𝜋

(

𝑎1 sin(2𝜋 𝑥1) + 𝑎2 sin(2𝜋 𝑥2)
)

. (4)

The rotation vector (2) for these maps has the property that

𝜔2(𝑥, 𝑓 ) = 𝛺2 (5)

since the second component is trivial. We will fix 𝛺2 to be the inverse of the golden mean in Section 4, and investigate the
dependence of 𝜔1 on the three parameters 𝑎1, 𝑎2, and 𝛺1. For the simplest case 𝑎1 = 0, and

𝜔1 = lim
𝑡→∞

1
𝑡

(

𝑡𝛺1 +
𝑎2
2𝜋

𝑡−1
∑

𝑗=0
sin(2𝜋(𝑗 𝛺2 + 𝑥2(0)))

)

= 𝛺1, (6)

since the trigonometric terms average to zero. Thus for 𝑎1 = 0, 𝜔(𝑥, 𝑓 ) = 𝛺 for any 𝑎2 and any 𝑥.
Quasi-periodicially forced circle maps have been studied in [1,3,13–16], and many of the results are reviewed and extended

in [4]. Herman showed that whenever a skew product map on T2 is a homeomorphism, then every orbit has a rotation number that
depends continuously on 𝑓 and moreover that the limit (2) is independent of 𝑥 [5,14]. The case (3) with (4) is a homeomorphism

henever |𝑎1| ≤ 1, and in this case the graph {𝜔1(𝑥, 𝑓 ) ∶ 𝛺1 ∈ R} for fixed 𝑎1, 𝑎2, and 𝛺2, is monotone increasing [17].
Maps of the form (3) with (4) can have strange nonchaotic attractors (SNA), i.e., geometrically ‘‘strange’’ attractors that have

onpositive Lyapunov exponents. These attractors have been studied both theoretically and numerically in previous papers. One of
he first is [1], which indicated that for fixed 𝑎 , there are two curves in the (𝛺 , 𝑎 ) plane that bound the SNA regime, each of
2 1 1
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which is a graph over 𝑎1. Below the first curve the orbits are quasiperiodic or resonant, and above the second, the dynamics has
a positive Lyapunov exponent. In later studies the onset of SNAs has been attributed to the collision of a pair of stable/unstable
nvariant circles at a dense set of points [3,13,18]. The dynamics on an SNA can be thought of as an orbit that undergoes random
ransitions between remnants of the colliding circles [2]. In the paper [4] it is shown that when (𝑎1, 𝑎2) are sufficiently large, SNAs

correspond to uncountably many minimal invariant sets.
Using our method for distinguishing weakly chaotic orbits in Section 4, we will see that for each fixed (𝑎1, 𝑎2), the set of 𝛺1

values for which there is an SNA appears to be a Cantor set. As was seen in [1], the SNAs appear just below, and disappear just
bove, 𝑎1 = 1 (see e.g., Fig. 4). Our technique allows computing the SNAs over a wide parameter regime, and we will see that as

𝑎2 grows the proportion of orbits with SNAs increases (e.g. in Fig. 5 we fix 𝑎1 = 1.2 and allow 𝑎2 to vary). We will investigate SNAs
further in Section 5.

3. Computational methods

In this section, we recall several of our previously published computational tools that we will adapt to study QPF circle maps in
Section 4–5. In Section 3.1 we recall the weighted Birkhoff average (WBA), which was introduced in [19] and further developed
in [9,20–22]. It is well-known that even when a time-average exists, its convergence can be slow. The WBA accelerates the
convergence of such averages when the orbit is regular, allowing an efficient, and highly accurate calculation. More generally, the
difference between the convergence rates for regular and chaotic orbits of the WBA allows for a quick and accurate distinction
between these categories. In Section 3.2 we recall a technique for distinguishing between computed rotation vectors that are
umerically incommensurate and commensurate. We developed this method of ‘‘resonance orders’’ in [10] for three-dimensional,

volume preserving maps. We will use this in Section 4 to compute the analog of Arnold tongues. Finally, in Section 3.3, we compare
these methods to more conventional ones. In particular, we discuss the efficiency and accuracy of Lyapunov exponents and the 0–1
test as compared to WBA for distinguishing orbit types.

3.1. Weighted Birkhoff averages

We now give a brief review of the WBA introduced in [20], and how it can distinguish between regular and chaotic orbits [9,10].
Given a map 𝑓 ∶ 𝑀 → 𝑀 , recall that the time average of a function ℎ ∶ 𝑀 → R along an orbit of 𝑓 is simply

𝐵(ℎ)(𝑧) = lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0
ℎ◦𝑓 𝑡(𝑧), (7)

if this limit exists. Under the assumptions that 𝜇 is an 𝑓 -invariant probability measure (𝜇(𝐴) = 𝜇(𝑓−1(𝐴)) for any Borel subset 𝐴 of
), 𝜇 is ergodic, and ℎ ∈ 𝐿1(𝑀 ,R), then Birkhoff’s ergodic theorem implies that

𝐵(ℎ)(𝑧) = ⟨ℎ⟩ = ∫𝑀
ℎ 𝑑 𝜇

for 𝜇-almost every 𝑧. However, the convergence to this limit is at best as 1∕𝑇 [23] and can be arbitrarily slow [24].
To compute the average efficiently and accurately for a length-𝑇 segment of an orbit, we follow [20] and modify (7) using the

𝐶∞ weight function3

𝛹 (𝑠) ≡
⎧

⎪

⎨

⎪

⎩

exp
(

− 1
𝑠(1−𝑠)

)

𝑠 ∈ (0, 1)
0 𝑠 ≤ 0 or 𝑠 ≥ 1

.

This exponential bump function converges to zero with infinite smoothness at 0 and 1, i.e., 𝛹 (𝑘)(0) = 𝛹 (𝑘)(1) = 0 for derivatives of
ll orders, 𝑘 ∈ N. The finite-time weighted Birkhoff average (WBA) is then defined by

𝑊𝐵𝑇 (ℎ)(𝑧) ≡
1
𝑆

𝑇−1
∑

𝑡=0
𝛹
(

𝑡
𝑇

)

ℎ◦𝑓 𝑡(𝑧) , (8)

with the normalization constant

𝑆 ≡
𝑇−1
∑

𝑡=0
𝛹
(

𝑡
𝑇

)

. (9)

As shown in [20], (8) gives the same answer as 𝑇 → ∞ as (7); however, for regular orbits it can converge much more quickly.
In particular, if the orbit is conjugate to a rigid rotation with a Diophantine rotation vector 𝜔 and the map 𝑓 and function ℎ are
𝐶∞, then (8) converges faster than any power [21,26]:

|𝑊𝐵𝑇 (ℎ) − ⟨ℎ⟩| <
𝑐𝑘
𝑇 𝑘 , ∀𝑘 ∈ N.

This super-polynomial convergence, however, is not observed when the orbit is chaotic.

3 Optimal choices for 𝛹 have recently been explored by Ruth and Bindel using reduced rank extrapolation [25].
3 
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Indeed, in previous work on two-dimensional, area-preserving maps [9], we showed that the rate of convergence of the WBA
provides an efficient and accurate method to distinguish between chaotic and regular orbits (see Section 3.3). An estimate of the
error in the WBA for a given function ℎ and a given time 𝑇 is the effective number of digits of accuracy:

dig𝑇 = − log10 ||
|

𝑊𝐵𝑇 (ℎ)(𝑧) −𝑊𝐵𝑇 (ℎ)(𝑓𝑇 (𝑧))||
|

, (10)

i.e., comparing the result for the first 𝑇 iterates with that for the next 𝑇 iterates. In [9], we observed that for the 2D Chirikov standard
ap, dig𝑇 converges rapidly to machine precision for orbits that lie on invariant circles: double precision accuracy (dig𝑇 ∼ 14) for
ost orbits is obtained within 𝑇 ≈ 104 iterates. However, it converges slowly, or not at all for chaotic orbits. For example, when

there is a mixture of regular and chaotic orbits (e.g. at 𝑘 = 1.0), we computed a histogram of dig104 , [9, Fig. 3]. This shows two
peaks, a broader one around dig𝑇 = 2, corresponding to chaotic orbits and a narrower one around dig𝑇 = 14, that corresponds to
regular orbits. The latter peak has a small tail over the interval 6 < dig𝑇 < 13: for these orbits the average converges more slowly. We
found that such orbits typically lie near the boundary of narrow chaotic layers or are periodic with high period within lower-period
island chains.

In [10] we used the WBA to study two-tori in a 3D volume-preserving map. To achieve the same accuracy for higher-dimensional
nvariant sets, it is natural that one needs more iterates. Specifically, for double-precision computations we used 𝑇 = 106 [10, Fig

3] to get a dig𝑇 distribution with two well-separated, narrow peaks with only a small fraction of orbits in the range 6 < dig𝑇 < 10.
To obtain a criterion distinguishing chaotic and regular orbits, we choose a cutoff value for dig𝑇 , declaring that

dig𝑇 < 𝐷𝑇 ⇒ ‘‘chaotic’’ ; (11)

conversely, all orbits with dig𝑇 > 𝐷𝑇 are ‘‘nonchaotic’’. In [10] we chose the cutoff 𝐷106 = 11 for a 3D map where the tori can
be 1D or 2D. This cutoff is conservative in the sense that a chaotic orbit will not be identified as regular, but there is a possibility
that a regular orbit will be misidentified as chaotic. This choice has the benefit that the rotation vector of any orbit identified as
regular can be computed with high accuracy, and in that paper we were interested in studying the number theoretic properties of
the robust tori. For the current paper we use the less strict criterion

𝑇 = 106, 𝐷𝑇 = 9, (12)

which is still conservative in that chaotic orbits are quite unlikely to be identified as regular.
In addition to providing the distinction between regular and chaotic orbits, the WBA can be used to compute an accurate value

of the time average of a function ℎ of interest. In particular, we can compute the rotation vector (2) of an orbit for a torus map of
the form (1) using 𝑇 iterates by

𝜔𝑇 = 𝑊𝐵𝑇 (𝐹 (𝑥) − 𝑥) = 𝛺 +𝑊𝐵𝑇 (𝑔(𝑥; 𝑎)), (13)

with 𝑊𝐵 defined by (8). If 𝑇 is large enough and the rotation vector exists, we expect 𝜔𝑇 ≈ 𝜔(𝑥, 𝑓 ). For the quasiperiodic case, (5)
implies that we only need to compute the first component of (13).

3.2. Resonance orders

For a regular orbit of a map on T2, the frequency vector computed in (13) can be rational, commensurate, or incommensurate,
orresponding to periodic orbits, invariant circles or invariant tori, respectively. We now describe the method of resonance orders,
eveloped in [10], for distinguishing between these categories.

To estimate whether a computed vector is essentially rational we would ask that ||
|

𝜔 − 𝑝
𝑞
|

|

|

< 𝛿 for 𝑝 ∈ Z𝑑 , 𝑞 ∈ N; When 𝛿 is small,
this would correspond to finding a rational approximation of the vector 𝜔. For the case 𝑑 = 1, we developed in [9] a method, based
on the Farey tree, to compute the smallest denominator 𝑞 for a given precision 𝛿.

More generally, 𝜔 ∈ R𝑑 has a commensurability (or is resonant or mode-locked) if there is an 𝑚 ∈ Z𝑑 ⧵ {0} and an 𝑛 ∈ Z such that

𝜔 ∈ 𝑚,𝑛 =
{

𝛼 ∈ R𝑑 ∶ 𝑚 ⋅ 𝛼 = 𝑛
}

, (14)

i.e., it lies in the codimension-one, resonant plane 𝑚,𝑛. For 𝑑 = 2, the sets 𝑚,𝑛 are lines. We say that 𝜔 has resonance order 𝑀 if it
atisfies (14) and 𝑀 = ‖𝑚‖1 is the smallest length of such a (nonzero) vector 𝑚. Vectors that do not lie in any resonant plane 𝑚,𝑛,
or example, 𝜔 = (

√

2,
√

5), are incommensurate.
The rank of the resonance for a given 𝜔 is the number of independent commensurability vectors 𝑚; i.e., the dimension of the

module of resonance vectors. Note that 𝜔 is rational only if the rank is 𝑑; commensurabilities that have lower rank are partially
resonant, such as the rank-one vector 𝜔 = (3

√

2, 2
√

2 − 1), which lies in 𝑚,𝑛 for (𝑚1, 𝑚2, 𝑛) = (2,−3, 3) so that 𝑀 = 5.
A vector 𝜔 is then approximately commensurate if |𝑚 ⋅ 𝜔 − 𝑛| is small; in [10] we developed a method for detecting such

commensurabilities. We say that a vector 𝜔 is (𝑚, 𝑛)-resonant to precision 𝛿 if the resonant plane intersects a ball of radius 𝛿 about
𝜔:

𝑚,𝑛 ∩ 𝐵𝛿(𝜔) ≠ ∅. (15)

Using the Euclidean norm, the minimum distance between the plane (14) and the point 𝜔 is

𝛥 (𝜔) = min ‖𝛼 − 𝜔‖ =
|𝑚 ⋅ 𝜔 − 𝑛|

. (16)
𝑚,𝑛 𝛼∈𝑚.𝑛
2

‖𝑚‖2

4 
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Thus 𝜔 is (𝑚, 𝑛) resonant to precision 𝛿, whenever 𝛥𝑚,𝑛(𝜔) < 𝛿, and we call the value

𝑀(𝜔, 𝛿) = min{‖𝑚‖1 ∶ 𝛥𝑚,𝑛(𝜔) < 𝛿 , 𝑚 ∈ Z𝑑 ⧵ {0}, 𝑛 ∈ Z}, (17)

the resonance order of 𝜔.
To understand what resonance orders are ‘‘typical,’’ in [10] we computed the minimal resonance order (17) for a set of equi-

distributed, random 𝜔 ∈ [0, 1]2 as a function of the precision 𝛿. The resulting distribution of log(𝑀), seen in [10, Fig. 8], has a mean
nd standard deviation

⟨log10 𝑀(𝜔, 𝛿)⟩ = −0.334 log10(𝛿) − 0.091,
𝜎 = 0.171. (18)

We observed that the standard deviation seems to be essentially independent of 𝛿. This is also true for 𝑑 = 1, as we found in [9]. Our
computations inspired Chen and Haynes [27] and more recently Marklof [28,29] to find rigorous results for the resonance order
distributions.

Since the cutoff (12) gives rotation number calculations accurate to within 10−9, we choose 𝛿 = 10−9 for (17). For this case, (18)
implies that ⟨log10 𝑀⟩ = 2.915. The implication is that we declare a vector to be nonresonant if

256 ≤ 𝑀 ≤ 2673 ⇒ ‘‘nonresonant’’, (19)

corresponding to 2.407 < log10(𝑀) < 3.427, which is a range of approximately ±3𝜎 about the mean (18). To test this criterion we
selected 104 uniformly randomly distributed values in [0, 1]2, and found that 1.36% were incorrectly identified as resonant. Note
that the distribution of log-orders for random vectors is not symmetric around the mean; in particular, 𝑀 < 256 occurred 1.32% of
the time, and 𝑀 > 2673 occurred 0.04% of the time.

We can further categorize the resonant orbits (those that fail Criterion (19)) by the rank of the resonance. Rank-two resonant
orbits have frequencies on the intersection of a pair of different resonance lines, which implies that the components of 𝜔 are rational,
see e.g. [10, Fig 7]. For the QPF case we study here, 𝜔2 = 𝛺2 is irrational; therefore, all resonant orbits will have rank one.

3.3. Related computational methods

There are two standard methods for identifying chaos: a positive Lyapunov exponent [30] and Gottwald and Melbourne’s 0–1
est for chaos [31]. In [9] we showed our the computation of dig𝑇 in (10) gives a distinction that is as accurate but is more efficient

than either of these. In each case the WBA declares an orbit to be regular (a true positive) or chaotic (a true negative), almost
always, when either of the other two methods is used as the ‘‘truth’’.4 However the WBA is more efficient since the orbit length can
be reduced and one does not need to compute the linearization that is needed for the Lyapunov exponent or an auxiliary function
needed for the 0–1 test.

Alternative algorithms for computing rotation vectors and sets include [32] for circle maps, the set-based methods in [33] for
torus maps, and methods for numerical continuation of invariant tori [34]. The parameterization method can be used to explicitly
compute the conjugacy to rigid rotation [35], and the needed rotation vector can be efficiently computed using the WBA [36]. The
requency analysis method of Laskar [37,38] uses a Hann window to give a quadratically convergent Fourier amplitudes to compute

rotation vectors. In a series of papers, Villanueva and collaborators use Richardson extrapolation to estimate rotation numbers for
analytic circle diffeomorphisms [39–43]. Experimentally, this appears to give super-convergence for Diophantine irrationals, but
the convergence has not been rigorously shown. For a comparison of many of these methods to the WBA, see [21,44].

We know of no alternatives to the method of resonance orders for distinguishing between incommensurate and resonant orbits.
or example, as far as we know, there is no generalization of the Farey tree result used in [9] to compute (17) efficiently for 𝑑 = 1.5

Nevertheless, since there are finitely many 𝑚 ∈ Z𝑑 such that ‖𝑚‖1 ≤ 𝑀 , a brute force computation is of course possible for modest
values of 𝑀 ; we gave such an algorithm in [10].

4. Regular and chaotic orbits

In this section we study the map (3) with the force (4). We will think of 𝛺2 primarily as a ‘‘structural parameter,’’ fixing it to be

𝛺2 = 𝛾 ≡ 1
2 (
√

5 − 1) ≈ 0.618034, (20)

the inverse of the golden mean. It is computationally infeasible to perform a detailed parameter study to determine how the
dynamical behavior depends on all of the remaining parameters (𝛺1, 𝑎1, 𝑎2). In most cases, we will study the dependence upon
(𝛺1, 𝑎1) for fixed 𝑎2, but in several cases we will instead fix 𝑎1 and vary (𝛺1, 𝑎2).

4 Comparing WBA with Lyapunov in [9], gave a Hansen-Kuiper skill score 𝑇 𝑆 𝑆 = 0.997. Comparing WBA or Lyapunov with 0–1 we found 𝑇 𝑆 𝑆 = 0.91; this
s lower because the inefficiency of the 0–1 test required us to reduce 𝑇 to 1000.

5 The Kim-Ostlund tree can be used to get resonance relations [45]; however, it is not clear that this algorithm returns a minimal ‖𝑚‖.
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Fig. 1. Poincaré slices of regular orbits of the QPF circle map with 𝑎1 = 0.8 and 𝛺2 = 𝛾, for (a) 𝑎2 = 0.6, (b) 𝑎2 = 2.49 and (c) 𝑎2 = 5 (these are the first,
fourth, and eighth values in Fig. 8). The plot shows a grid of 200 values of 𝛺1 ∈ [0, 1], with the orbits colored as in Fig. 2 using the value of 𝜔1 computed
with 𝑇 = 106. Resonant orbits are plotted with larger dots. Each orbit is iterated 105 times to remove transients, and the next 1000 points on the Poincaré slice
|𝑥2| < 0.0005 are shown.

4.1. Regular orbits

Since the 𝑥2 dynamics of (3) with (4) is a rigid rotation and 𝜔2 = 𝛺2 = 𝛾 is irrational, each orbit {(𝑥1(𝑡), 𝑥2(𝑡)) ∶ 𝑡 ∈ N} is dense
on 𝑥2 ∈ [0, 1]. One way to visualize these dynamics is to take a Poincaré section, say at 𝑥2 = 0; however, since the orbit is discrete
we instead use a ‘‘Poincaré slice,’’ plotting points at a sequence of times 𝑡𝑗 for which |𝑥2(𝑡𝑗 )| < 0.0005, see Fig. 1. In this figure we
use the criterion (12) to select only the nonchaotic orbits, those for which the WBA has converged to at least nine digit accuracy,
dig𝑇 ≥ 9, after 𝑇 = 106 iterates. The vertical axis in the figure is the image

𝑥1(𝑡𝑗 + 1) = 𝑓1(𝑥1(𝑡𝑗 ), 𝑥2(𝑡𝑗 )) ≈ 𝑓1(𝑥1(𝑡𝑗 ), 0),

which, since 𝑥2 ≈ 0, is the Arnold function. Thus when 𝑎2 is sufficiently small the resulting figure can be viewed as a perturbation of
the one-dimensional Arnold map. Indeed, even when 𝑎2 = 0.6, as in panel (a), the resulting orbits resemble those that one would see
in Arnold’s map, and there are many regions with incommensurate frequency vectors (small dots), separated by resonant tongues,
regions where 𝑚 ⋅ 𝜔 = 𝑛 for some nonzero (𝑚, 𝑛) ∈ Z3 (large dots), recall (14). Note that a resonant tongue corresponds to the
existence of an attracting invariant circle on T2. When 𝑚1 ≠ 0 and 𝑚2 ≠ 0 these resonances have irrational 𝜔1:

𝜔1 =
𝑛
𝑚1

−
𝑚2
𝑚1

𝛾 ∈ R ⧵Q. (21)

Computing the resonance order and using criterion (19) for Fig. 1(a), where 𝑎2 = 0.6, we find 𝜔 is incommensurate for 26.7% of
the orbits, while it is resonant for 72.3% (the remaining 1% are chaotic and not shown here). By contrast, in panel Fig. 1(b) where
𝑎2 = 2.49, only 2% are incommensurate while 94.7% of the orbits are resonant (3.3% are chaotic). Finally for 𝑎2 = 5 in panel (c),
1.1% are incommensurate, while 96.8% are resonant (2.1% are chaotic).

The rotation number 𝜔1 for nonresonant and resonant orbits is shown as a function of (𝛺1, 𝑎1) in Fig. 2 for 𝑎2 = 0.6 (top panels)
and 𝑎2 = 1.0 (bottom panels). These use a grid of 1000 × 1000 evenly spaced values of (𝛺1, 𝑎1) ∈ [0, 1] × [0, 2], with 𝛺1 slightly
shifted away from rationals to avoid resonances at 𝑎1 = 0. Each orbit begins at the same randomly selected point (𝑥1(0), 𝑥2(0)) and
is initially iterated 104 times to remove transients. To compute both 𝜔𝑇 and dig𝑇 we use 𝑇 = 106. As noted by [1], the nonresonant
regions (left panels) as a function of (𝛺1, 𝑎1), look similar to the circle map case when 𝑎2 is small; however, the proportion of the
nonresonant orbits appears to fall essentially to zero for a value of 𝑎1 smaller than 1, unlike the Arnold case (more details are given
in Section 6, below).

The parameters with resonant orbits are shown in Fig. 2(b) and (d) for the same values of 𝑎2. These are analogous to the tongues
or mode-locking regions of the Arnold map; for example, the 𝜔1 =

0
1 (red), 1

1 (red) and 1
2 (cyan) tongues are prominent. However,

rank-one resonances with 𝑚2 ≠ 0 (21) create additional tongues. Perhaps the most prominent new mode-locking regions are those
with (𝑚1, 𝑚2, 𝑛) = (1, 1, 1), so that 𝜔1 = 1 − 𝛾 ≈ 0.382 (green) and with (𝑚1, 𝑚2, 𝑛) = (1,−1, 0) so that 𝜔1 = 𝛾 ≈ 0.618 (blue). Like the
Arnold tongues, these have cusps when 𝑎1 = 0 at 𝛺1 = 𝜔1 and broaden as 𝑎1 increases. However, unlike the Arnold map, these
resonant regions do not monotonically increase in width when 𝑎1 exceeds 1. These ‘‘leaf shaped’’ tongues were observed in [18].

An alternative view of the tongues is seen in Fig. 3, which shows the resonant regions for fixed 𝑎1 = 1.2 on a 2000 × 2000 grid
of (𝛺1, 𝑎2) ∈ [0, 1] × [0, 20]. The larger tongues in the figure are labeled by the computed resonance vector (𝑚1, 𝑚2, 𝑛). Note that we
can accurately compute these regions since, by (12), we find 𝜔1 with precision at least 10−9. Feudel et al. [18] observed that for
𝑎1 = 1 fixed, the widths of the tongues oscillate and narrow over intervals for 𝑎2 ∈ [0, 2𝜋]; this is referred to as pinching. In Fig. 3,
some of the resonance tongues appear to pinch off completely, forming a sequence of ‘‘bubbles’’ or ‘‘isolas’’. However, in general
pinching does not require the width to become zero.

By contrast with our technique, Osinga et al. [3] computed the tongues using bifurcation curves, concentrating on the case 𝜔1 = 0,
i.e., (𝑚1, 𝑚2, 𝑛) = (1, 0, 0). For example, in [3, Fig. 2] they observe that when 𝑎1 = 0.8 the first pinching occurs for 4.1 < 𝑎2 < 4.8;
this corresponds to a region of bistability for several invariant circles. This pinching is reproduced in Fig. 3 for a similar range of
𝑎 , with 𝑎 = 1.2. Osinga et al. note that the formation of the pinches is associated with bifurcations in which a pair of invariant
2 1
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Fig. 2. Nonresonant (panels (a) and (c)) and resonant (panels (b) and (c)) orbits for the QPF circle map (4) as a function of (𝑎1 , 𝛺1) for 𝑎2 = 0.6 (top panels)
and 𝑎2 = 1 (bottom panels), with 𝛺2 = 𝛾 (20). These orbits are distinguished using (12) and (19). The orbits are colored using 𝜔1 as shown in the color bars.
Black indicates no orbits of the given type.

circles collide at a dense set of points but the collision is not smooth. There can be multiple attracting orbits within a tongue and
these can give rise to SNAs, see Section 5.

Glendinning et al. [46] show that the width of the (1, 0, 0) resonance region is asymptotically |𝐽0(𝑎2∕(2 sin(𝜋 𝛾)))|, for 𝑎2 ≫ 1 and
𝑎1 ≪ 1. Here 𝐽0 is the Bessel function; thus its zeros determine the pinching points in 𝑎2, and the width approaches zero as (𝑎−1∕22 )
for large coupling. This formula predicts the first pinch at 𝑎2 = 4.48. A similar result for (𝑚1, 𝑚2, 𝑛) = (1,−𝑘, 0), involves the Bessel
function 𝐽𝑘 instead of 𝐽0, reflecting the zero width of these tongues at 𝑎2 = 0. The actual bifurcations do not always pinch; they
can have two or more folds bounding small regions of multi-stability—[3] shows that these correspond to saddle–node/pitchfork
bifurcations of multiple circles.

Our computations are consistent with these previous results. For example, for 𝑎1 = 0.8 (not shown), we observe that the (1, 0, 0)
tongue first pinches at 𝑎2 = 4.51, though it does not pinch off completely. This tongue corresponds to the red region in Fig. 3. For
this case 𝑎1 = 1.2, and the first pinch point occurs at 𝑎2 = 4.40 and the second at 9.63. Note that our computations extend the
previous results to larger values of 𝑎2, and we observe that the boundary of the tongue is not smooth as the Bessel function form
would suggest: it has a number of cusps, most prominently for 𝑎2 ≈ 8.5. Indeed, most of the tongues in Fig. 3 have non-smooth
boundaries for larger 𝑎2. For the (2, 0, 1) tongue we observe pinch points at (𝑎1, 𝑎2) = (0.8, 2.04), (0.8, 3.96), and (1.2, 1.64). The (3, 0, 1)
tongue is significantly thinner for both 𝑎1 values and is not labeled in Fig. 3; when 𝑎1 = 1.2, its first pinch point occurs at 𝑎2 = 0.66.

Most of the tongues considered previously correspond to the special case of (𝑚1, 0, 1) resonances. However, as we see in Fig. 3,
these are not the most prominent: they are only present for small 𝑎2 and appear to disappear entirely as 𝑎2 grows. We also observe
that 𝑚2 ≠ 0 resonances are most prominent when 𝑎1 = 0.8 (not shown). These additional tongues also often have shapes quite
different from the (1, 0, 0) tongue. For example, the (1,−7,−4) tongue appears to increase in thickness with each oscillation, and
7 
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Fig. 3. Resonant regions for the QPF circle map (4) for 𝑎1 = 1.2. The larger regions are labeled by (𝑚1 , 𝑚2 , 𝑛), Each resonance is colored by 𝜔1 and black regions
correspond to either chaotic or incommensurate orbits.

therefore would not be well modeled by a Bessel function. The (2, 0, 1) tongue does not have any apparent oscillation, but instead
has a monotonically decreasing width as 𝑎2 increases.

4.2. Chaos

Orbits identified as chaotic by the criterion (12) are shown in Figs. 4–5. Instead of using 𝜔1 for the color scheme — as we did
in the previous figures — the colors in this figure indicate the Lyapunov exponent. For the nonlinearity (4) this is particularly easy
to compute since the Jacobian of (3) is upper triangular:

𝐷 𝑓 =
(

1 + 𝑎1 cos(2𝜋 𝑥1) 𝑎2 cos(2𝜋 𝑥2)
0 1

)

.

Since the lower right entry is 1, one of the multipliers is 1, and this implies that one of the Lyapunov exponents is zero. The other
is simply the time average

𝜆 = lim
𝑡→∞

1
𝑡

𝑡−1
∑

𝑗=0
ln |1 + 𝑎1 cos(2𝜋 𝑥1(𝑗))| , (22)

if this limit exists. Since (22) is the time average of a scalar function on phase space, we can also easily compute it using (8):

𝜆𝑇 = 𝑊𝐵𝑇 (ln |1 + 𝑎1 cos(2𝜋 𝑥1)|) . (23)

The average (23) was previously used in [21] to show that both Lyapunov exponents are zero for nonchaotic, nonresonant orbits
of a torus map.

Of course, a weighted average like (23) should not be expected to improve convergence for orbits that are chaotic; however,
when the orbit is periodic or quasiperiodic, we expect that 𝜆𝑇 should converge more rapidly than (22). Indeed our tests show that
this is the case when 𝜆 ≤ 0. For example, using a 500 × 500 portion of the grid in (𝛺1, 𝑎1), we find that when 𝑎2 = 0.6 approximately
70% have 𝜆𝑇 ≤ 0 for 𝑇 = 106. For these regular cases, if we instead use a much smaller number of iterates, 𝑇 = 800, we found the
mean error ⟨dig𝑇 ⟩ = 3.6 for (22), while ⟨dig𝑇 ⟩ = 7.9 for (23). This more rapid convergence of (23) persists as 𝑇 is increased.

Note that if |𝑎1| > 1 the function being averaged in (23) is not smooth, and since the weighted average relies on smoothness for
improving convergence, we would not expect (23) to be helpful. Moreover, the only case for which the weighted average has been
proven to be super-convergent is for orbits conjugate to a rigid quasiperiodic rotation [47]: there are no such orbits when |𝑎1| > 1.
Nevertheless the less accurate computations of the Lyapunov exponent still do indicate that 𝜆 > 0 for many orbits as 𝑎 grows
𝑇 1
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Fig. 4. Chaotic orbits of the QPF circle map (4) for a 1000 × 1000 grid in the (𝛺1 , 𝑎1) plane for (a) 𝑎2 = 0.6 and (b) 𝑎2 = 1. The color bar corresponds to
𝜆𝑇 (23). Parameters with 𝜆𝑇 ≤ 0 are gray; they correspond to weak chaos, or strange nonchaotic attractors. Parameters with nonchaotic orbits are colored dark
blue, and strongly chaotic orbits have colors that vary with 𝜆𝑇 .

Fig. 5. Quasiperiodically-forced circle map (4) for 𝑎1 = 1.2 for a 1000 × 1000 grid in (𝛺1 , 𝑎2) showing orbits with sensitive dependence using Criterion (11),
colored by Lyapunov exponent (23). The grayscale indicates strange nonchaotic attractors. Blue indicates nonchaotic parameters, most of which correspond to
the resonance regions in Fig. 3.

in Fig. 4. There are also orbits in these panels that are chaotic according to (11), but for which 𝜆𝑇 ≤ 0—they are shown in gray
in Figs. 4–5; that is, these gray points are points for which WBA chaos, a measure of sensitive dependence on initial conditions,
disagrees with Lyapunov exponent chaos, a measure of local stretching of the linearization. We discuss this further in the next
section.
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Fig. 6. (a) A phase portrait of a weakly chaotic orbit for (4) with (𝑎1 , 𝑎2) = (0.93493, 1) and 𝛺1 = 0.5526. (b) The mean value of dig𝑇 as a function of
𝑇 ∈ [0, 1000] for (4) with 𝑎1 ∈ [0, 2], 𝑎2 = 1 and 𝛺1 ∈ [0, 1]. The orbits are separated into four types: strongly chaotic orbits have the smallest ⟨dig𝑇 ⟩ (red),
followed by weakly chaotic orbits (black), nonresonant (blue), and finally resonant orbits (green). Out of the 106 orbits sampled, 4213 were identified as weakly
chaotic. For comparison we randomly selected 4213 orbits of each of the other types.

5. Weak chaos

It was first observed in [1] that there is a range around 𝑎1 = 1 for which QPF circle maps can exhibit strange nonchaotic attractors
(SNAs), defined as attractors that are geometrically strange, but which have 𝜆 ≤ 0. While this is a compelling idea, it was noted
in [2] that: ‘‘The nature of this definition makes it impossible to prove strangeness based solely on a computer simulation.’’

Instead, of this definition of SNAs, we use the notion of ‘‘weak chaos’’: sensitive dependence on initial conditions that does not
correspond to an exponential instability. Thus we identify SNAs as invariant sets for which the WBA converges slowly—hence are
not regular—but for which the Lyapunov exponent is not positive—hence are not strongly chaotic. In particular, the criterion (11)
combined with negative Lyapunov exponent serves as our new criterion for weak chaos/SNA:

dig𝑇 < 𝐷𝑇 and 𝜆𝑇 ≤ 0 ⇒ ‘‘weakly chaotic’’. (24)

Alternatively when 𝜆𝑇 > 0 we refer to the orbit as having ‘‘strong chaos’’, or — more simply — as chaotic. The criterion (24) gives
an efficient way to distinguish between these classes of orbits, and agrees with the results of [7] that showed that some cases of
SNAs do correspond to weak chaos.

As mentioned in the previous section, the gray points in Fig. 4 are points with weak chaos. Panel (a) of this figure is more
detailed than but in agreement with Fig. 1 of [1]. Panel (b) shows that weak chaos appears for a larger range of 𝑎1 for 𝑎2 = 1.
In both cases, for fixed 𝑎1 in a range around 1, the zone of weak chaos appears to be a Cantor set-like region. In order to get a
more complete understanding of the scope of weak chaos, in Fig. 5 we fix 𝑎1 = 1.2, and allow 𝑎2 to vary between 0 and 20. This
figure shows that as 𝑎2 grows large, there are no visible regions of strong chaos, but a significant positive measure portion of the
parameter space exhibits weak chaos.

An example is shown in Fig. 6(a); this is an orbit of (3) with (4) that has dig𝑇 = 8.4 < 𝐷𝑇 and 𝜆𝑇 = −0.0648 < 0 so, using (12),
it satisfies (24) for 𝑇 = 106. Visually, the phase portrait shows the expected geometric ‘‘strangeness’’. Since we use the convergence
rate of the WBA to detect chaos and not the geometry of the orbit, our criterion (24) differs significantly from previously used
methods to identify SNAs.

For the example in Fig. 6(a), |𝑎1| < 1 so the rotation number does exist and is independent of initial condition; however, as
was emphasized in [14] the convergence of (2) can be slower than 𝑇 −1 for such weakly chaotic orbits. Stark et al. constructed
an algorithm that is guaranteed to converge as 𝑇 −1 by averaging over initial conditions. To compute this, they use a discrete
approximation to the integral on a grid 𝑥2(0) = 𝑖

𝑁 , 𝑖 = 0,… , 𝑁 , to obtain

𝜔𝑆 𝑡𝑎𝑟𝑘 = 1
𝑁 𝑇

𝑁−1
∑

𝑖=0

(

𝑓𝑇 (𝑥1,
𝑖
𝑁 ) − (𝑥1, 𝑖

𝑁 )
)

. (25)

For example, when (𝑎1, 𝑎2) = (0.8, 6𝜋), and 𝛺1 = 0.01, the map has an SNA according to [13]. Using 𝑁 = 103 and 𝑇 = 105, in
(25), [14] computed

𝜔𝑆 𝑡𝑎𝑟𝑘
1 = 0.0173598 .

When we use (13) to compute 𝜔𝑇 with 𝑇 = 106 we obtain the same value to the quoted accuracy, and find dig𝑇 = 6.4, which is
consistent with six digits accuracy. For this case, 𝜆𝑇 = −0.2646098, so by Criterion (24) this orbit is indeed weakly chaotic. This
example, and others that we have tried, show that the WBA can give the same accuracy as (25) with a factor of 50 fewer iterates!
10 
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Fig. 7. The proportion of strongly chaotic (red), weakly chaotic (black), resonant (green), and incommensurate (blue) orbits for (3) with (4) as a function of
𝑎1. (a) 𝑎2 = 0.6 and (b) 𝑎2 = 1.

We show in Fig. 6(b) that there are distinct differences in the number of digits, dig𝑇 , for the four categories of orbits: resonant,
incommensurate, weakly chaotic, and strongly chaotic. Here we selected orbits from the data in Fig. 2 and Fig. 4 with 𝑎2 = 1. Of the
106 orbits, 4213 were identified as weakly chaotic using (24). The black curve in the figure shows the average ⟨dig𝑇 ⟩ for these orbits
s a function of 𝑇 . For a fairer comparison, we randomly selected the same number of orbits of the other three types. Note that for
ach 𝑇 in Fig. 6(b), ⟨dig𝑇 ⟩ is ordered monotonically by type; it is largest for the resonant orbits, smaller for the incommensurate
ase, smaller for weak chaos and finally smallest for strong chaos. In particular, 𝜔𝑇 for the resonant orbits nearly reaches double

precision accuracy (at least in the mean) even for 𝑇 = 1000. In addition, the rate of increase of dig𝑇 with 𝑇 is also ordered in the
same way by type; however, the distinction in rates between the weakly and strongly chaotic orbits is less pronounced. Nevertheless,
ven though these distinctions are clear for the average ⟨dig𝑇 ⟩, this method does not give a reliable classification: the values of dig𝑇

for individual orbits can vary significantly.

6. Orbit-type statistics

The proportions of orbits of each of the four types — strongly chaotic (red), weakly chaotic (black), resonant (green) and
incommensurate (blue) — are shown in Fig. 7. This figure uses the data in Figs. 2 and 4, summed over 𝛺1, as a function of 𝑎1
for two fixed values of 𝑎2.

Note that the curves for the incommensurate orbits (blue) should begin at 1 when 𝑎1 = 0 according to (6); however, our method
nderestimates this fraction by about 1.5%, declaring that orbits with orders outside the interval (19) are resonant. Some cutoff is

inevitable, of course, since we cannot compute with infinite precision; moreover, a given precision 𝛿 results on average in a smaller
esonance order in higher dimensions: compare the factor of 1

3 in (18) with the factor 1
2 for the 1D case in [9]. The incommensurate

raction in Fig. 7 drops nearly to zero with a shape similar to the power law behavior seen for a circle map [48,49], but in contrast
o the 1D case, it becomes nearly zero at a value 𝑎1 < 1. The onset of weak chaos (black curves) is just below this point. Of course,
hen 𝑎1 > 1, there are no incommensurate orbits, and our method falsely identifies very few.

The fraction of resonant orbits (green) no longer has the cusp at 𝑎1 = 1 that is seen for a circle map [49], and it now decreases
more substantially when 𝑎1 > 1. This, of course could be anticipated from the right panels of Fig. 2, since the widths of some of the
resonant tongues decrease for 𝑎1 > 1.

The onset of weakly chaotic orbits (black) occurs near 𝑎1 = 0.74 for 𝑎2 = 0.6, and it has a peak of about 10% for 𝑎1 ∈ (1.05, 1.15).
For panel (b), where 𝑎2 = 1, the onset is near 𝑎1 = 0.66, and the peak proportion has the same height but is broader. In both cases
he weakly chaotic proportion is nonzero up to 𝑎1 ≈ 1.7.

The chaotic fraction in Fig. 7 (red) is nonzero for 𝑎1 > 1 and grows to about 40% when 𝑎1 = 2, which is larger than that found
for a circle map [49]. In panel (a), the chaotic fraction appears to reach a peak and then decrease as it does for the circle map. We
onjecture that the same would be true in panel (b), but that the peak occurs for 𝑎1 > 2.

Fig. 8(a) gives an overview of how the chaotic fraction varies with all three parameters, 𝑎1, 𝑎2, and 𝛺1. In this figure,
parameters exhibiting strong chaos are red and those with weak chaos are black. The remaining white regions contain resonant
and incommensurate orbits. This data is shown for eight values of 𝑎2 ∈ [0.6, 5] (vertical axis) as a function of (𝛺1, 𝑎1) ∈ [0, 1] × [0.6, 2]
(horizontal axes). This three-dimensional view of the data extends the views in Fig. 2 and Fig. 4, which fix 𝑎2 and plot (𝛺1, 𝑎1), and
Fig. 3 and Fig. 5, which fix 𝑎1 and plot (𝛺1, 𝑎2).

A striking feature of Fig. 8(a) is the change in the relative proportions of strong and weak chaos as the parameters vary. Recall
that Fig. 5 — essentially a vertical slice of Fig. 8(a) for 𝑎 = 1.2 — showed that when 𝑎 ≳ 8 the proportion of weak chaos increases
1 2
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Fig. 8. Types of orbits for a grid of eight 𝑎2 ∈ [0.6, 5] as a function of (𝑎1 , 𝛺1) for (3) with (4). (a) Parameter regions with strongly (red) and weakly (black)
chaotic orbits. The range 𝑎1 ∈ (0.6, 2) is shown since the chaotic fractions are negligible for smaller 𝑎1 values. (b) Proportion of the four orbit types as a function
of 𝑎1 for each of the eight 𝑎2 values of panel (a) using the color scheme of Fig. 7. The thickness of the eight curves increases with 𝑎2.

significantly, especially near 𝛺1 ≈ 0.5. This large fraction is echoed in Fig. 8(a) for other values of 𝑎1 as well. Alternatively, slices
of Fig. 8(a) for constant 𝑎2 were seen in Fig. 4. These slices, for 𝑎2 = 0.6 and 1, indicate that for smaller 𝑎2, weak chaos is primarily
confined to a small region near 𝑎1 = 1 and to small Cantor set-like intervals in 𝛺1. Fig. 8(a) makes it clear that this structure near
𝑎1 = 1 persists as 𝑎2 grows, though the thickness of the weakly chaotic intervals increases with 𝑎2.

The proportion of the four orbit types as a function of 𝑎1 is shown in Fig. 8(b) for each of the eight values of 𝑎2 from panel
(a). For panel (b), increasing thickness of the curves is used to indicate increasing values of 𝑎2. These curves summarize the trends
from panel (a). For each 𝑎2, the fraction of incommensurate orbits (blue curves) is underestimated when 𝑎1 = 0 by about 1.5%, just
as we noted for Fig. 7. As 𝑎1 grows this fraction decreases (nearly) monotonically for each 𝑎2. Recall from Fig. 2(a)–(c), that the
incommensurate orbits seem to disappear just below 𝑎1 = 1. This is also reflected in Fig. 8(b) for each curve: the incommensurate
fraction drops rapidly, nearly — but not quite — reaching zero for 𝑎1 ∈ (0.65, 0.95), and the value at which this occurs decreases
monotonically with 𝑎2. After a further slower decrease with 𝑎1, these fractions necessarily hit zero when 𝑎1 = 1, where the map
loses invertibility. Recall that the similar curves for circle maps have a universal power law form [48]. There appears to be no such
universal law for these QPF maps.

The value of 𝑎1 at which the incommensurate fraction nearly reaches zero in Fig. 8(b) is close to the point at which weakly
chaotic orbits (black curves) first appear. For 𝑎1 > 1, the fraction of weak chaos increases as 𝑎2 increases. Note also that the fraction
of weak chaos for each fixed 𝑎2 reaches a peak as 𝑎1 grows, and decays thereafter. This peak reaches 60% for (𝑎1, 𝑎2) ≈ (1.75, 5).
The chaotic fraction (red curves) also grows with 𝑎1, but for the larger values of 𝑎2, this fraction is below that of the weakly chaotic
orbits.

The increasing chaotic fraction is at the expense of the resonant orbits (green curves): each of these peaks near 𝑎1 = 1 and
decreases roughly monotonically thereafter. As 𝑎2 grows, resonant fraction appears to decrease, this is also seen in Fig. 8(a) for
largest values, 𝑎1 = 2 and 𝑎2 = 5. Indeed, the resonant proportion in panel (b) for the largest 𝑎2 = 5, (the thickest green curve)
reaches nearly zero as 𝑎1 nears 2. This agrees with the shrinking tongue widths seen in Fig. 2(b) and (d).

7. Conclusions

In this paper, we used efficient, high-precision numerical techniques to characterize the dynamics of a quasiperiodically-forced
(QPF) extension of the Arnold circle map. We used the weighted Birkhoff average (WBA) (8) to distinguish between chaotic and
regular orbits by defining a threshold for the precision, dig𝑇 (10), after a fixed number of iterates 𝑇 . An advantage of the WBA is
that it can rapidly compute the rotation vector, as well as the time average of other phase space functions [9,10], to near machine
precision when the orbit is regular: it is super-convergent when the orbit is smoothly conjugate to a rigid rotation with Diophantine
vector [47]. We observed that the computations are even more rapidly convergent when the rotation vector is resonant, recall
Fig. 6(b).

Given an accurate value for rotation vector 𝜔𝑇 (13), we determined if the vector is nearly resonant by finding the smallest order
of an integer resonance plane within a distance 𝛿. Since we know the precision of the rotation vector is at least 10−9 we chose
this value for 𝛿. This allowed us to characterize regular orbits as incommensurate (nonresonant) or rank-one (resonant). We used a
similar, but more efficient method — based on the Farey tree — for a scalar frequency in [9]. We hope that an efficient algorithm
to compute (17) for higher dimensional cases can be found. Meanwhile, we used a brute force method, following our previous work
12 
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on volume-preserving maps [10]. The (𝑚1, 𝑚2, 𝑛) resonances correspond to the generalization of Arnold tongues to the QPF case,
recall Fig. 3.

Using these methods, we were able to efficiently classify the trajectories of QPF circle maps into four categories: resonant,
incommensurate, weakly chaotic, and strongly chaotic, and — as in Figs. 7–8 — showed how their proportions vary with the
trength of the nonlinearity. With this ability to characterize the behavior of orbits for a large parameter region, we have been

able to compute generalized Arnold tongues for larger parameter ranges and higher-order resonances than before. We observed in
Fig. 3 that the pinching of these as a function of the coupling parameter, 𝑎2, which has been previously reported for low-order
esonances, also occurs at higher orders as well as for nonzero 𝑚2. We could observe a wider variety of types of pinching than had
een seen previously, including cases with no oscillations, and cases where the oscillating tongues increase in width rather than
ecay in width.

Using our modified definition of strange nonchaotic attractors (SNAs) as orbits that are actually ‘‘weakly chaotic’’, we showed in
Fig. 5 that a relatively large parameter region exhibits SNAs as the coupling, 𝑎2, becomes large. The variation in the weakly chaotic
fraction as a function of the nonlinear amplitude, 𝑎1 shown in Fig. 8 indicates that such orbits can become the majority for larger
oupling.

There are a number of future questions that remain, a couple of which we have considered elsewhere. In this paper, we have
shown that the WBA can also be used to improve the accuracy of Lyapunov exponents over the simplest averaging method (22)—
though this does not give the super-convergence seen for Diophantine rotations. We investigate the computation of Lyapunov
exponents in more detail in [50]. Furthermore, this study of QPF circle maps is only a first step towards understanding full two-
imensional torus maps. We have considered the application of these methods to these maps in [49]. There are other areas which

we could address in the future. For example, we have used WBA to study tongues and weak chaos, whereas others have used
continuation methods to study the bifurcations leading to such behavior. An interesting follow-up would be to combine these two
methods in order to get both a global picture of behavior, as well as a more thorough understanding of the underlying dynamics
that lead to the classes of orbits that we observe.

CRediT authorship contribution statement

J.D. Meiss: Writing – review & editing, Writing – original draft, Software, Methodology, Investigation, Formal analysis,
Conceptualization. E. Sander: Writing – review & editing, Writing – original draft, Software, Methodology, Investigation, Formal
nalysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: James D. Meiss reports financial support was provided by Simons Foundation under Award 601972. Evelyn Sander reports
financial support was provided by Simons Foundation under Award 636383. They declare that they have no known competing
financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] Ding M, Grebogi C, Ott E. Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic. Phys Rev
1989;39A(5):2593–8. http://dx.doi.org/10.1103/physreva.39.2593.

[2] Sturman R. Scaling of intermittent behaviour of a strange nonchaotic attractor. Phys Lett A 1999;259:355–65. http://dx.doi.org/10.1016/S0375-9601(99)
00463-6.

[3] Osinga H, Wiersig J, Glendinning P, Feudel U. Multistability in the quasiperiodically forced circle map. Int J Bifurcation Chaos 2001;11(12):3085–105.
http://dx.doi.org/10.1142/S0218127401004029.

[4] Glendinning P, Jäger TH, Stark J. Strangely dispersed minimal sets in the quasiperiodically forced Arnold circle map. Nonlinearity 2009;22:835–54.
http://dx.doi.org/10.1088/0951-7715/22/4/008.

[5] Herman MR. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractére local d’un théoréme d’Arnold et de
Moser sur le tore de dimension 2. Comment Math Helv 1983;58:453–502. http://dx.doi.org/10.1007/BF02564647.

[6] Grebogi C, Ott E, Pelikan S, Yorke JA. Strange attractors that are not chaotic. Phys D 1984;13:261–8. http://dx.doi.org/10.1016/0167-2789(84)90282-3.
[7] Glendinning P, Jäger TH, Keller G. How chaotic are strange non-chaotic attractors? Nonlinearity 2006;19:2005–22. http://dx.doi.org/10.1088/0951-

7715/19/9/001.
[8] Duignan N, Meiss JD. Distinguishing between regular and chaotic orbits of flows by the weighted Birkhoff average. Phys D 2023;449(July):133749.

http://dx.doi.org/10.1016/j.physd.2023.133749.
[9] Sander E, Meiss JD. Birkhoff averages and rotational invariant circles for area-preserving maps. Phys D 2020;411:132569. http://dx.doi.org/10.1016/j.

physd.2020.132569.
[10] Meiss JD, Sander E. Birkhoff averages and the breakdown of invariant tori in volume-preserving maps. Phys D 2021;428(15):133048. http://dx.doi.org/

10.1016/j.physd.2021.133048.
[11] Katok AB, Hasselblatt B. Introduction to the modern theory of dynamical systems. In: Encyclopedia of mathematics and its applications, vol. 54, Cambridge:

Cambridge University Press; 1999.
13 

http://dx.doi.org/10.1103/physreva.39.2593
http://dx.doi.org/10.1016/S0375-9601(99)00463-6
http://dx.doi.org/10.1016/S0375-9601(99)00463-6
http://dx.doi.org/10.1016/S0375-9601(99)00463-6
http://dx.doi.org/10.1142/S0218127401004029
http://dx.doi.org/10.1088/0951-7715/22/4/008
http://dx.doi.org/10.1007/BF02564647
http://dx.doi.org/10.1016/0167-2789(84)90282-3
http://dx.doi.org/10.1088/0951-7715/19/9/001
http://dx.doi.org/10.1088/0951-7715/19/9/001
http://dx.doi.org/10.1088/0951-7715/19/9/001
http://dx.doi.org/10.1016/j.physd.2023.133749
http://dx.doi.org/10.1016/j.physd.2020.132569
http://dx.doi.org/10.1016/j.physd.2020.132569
http://dx.doi.org/10.1016/j.physd.2020.132569
http://dx.doi.org/10.1016/j.physd.2021.133048
http://dx.doi.org/10.1016/j.physd.2021.133048
http://dx.doi.org/10.1016/j.physd.2021.133048
http://refhub.elsevier.com/S1007-5704(24)00747-0/sb11
http://refhub.elsevier.com/S1007-5704(24)00747-0/sb11
http://refhub.elsevier.com/S1007-5704(24)00747-0/sb11


J.D. Meiss and E. Sander Communications in Nonlinear Science and Numerical Simulation 142 (2025) 108562 
[12] Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. In: Appl. math. sci., vol. 42, New York:
Springer-Verlag; 2002, http://dx.doi.org/10.1007/978-1-4612-1140-2.

[13] Feudel U, Kurths I, Pikovsky A. Strange non-chaotic attractor in a quasiperiodically forced circle map. Phys D 1995;88:176–86. http://dx.doi.org/10.1016/
0167-2789(95)00205-I.

[14] Stark J, Feudel U, Glendinning P, Pikovsky A. Rotation numbers for quasiperiodically forced monotone circle maps. Dyn Syst 2002;17:1–28. http:
//dx.doi.org/10.1080/14689360110073641.

[15] Kim JW, Kim SY, Hunt B, Ott E. Fractal properties of robust strange nonchaotic attractors in maps of two or more dimensions. Phys Rev E
2003;67(3):036211. http://dx.doi.org/10.1103/PhysRevE.67.036211.

[16] Jäger TH, Stark J. Towards a classification for quasiperiodically forced circle homeomorphisms. J Lond Math Soc 2006;73(2):727–44. http://dx.doi.org/
10.1112/S0024610706022782.

[17] Bjerklöv K, Jäger TH. Rotation numbers for quasiperiodically forced circle maps—Mode-locking vs string monotonicity. J Amer Math Soc 2009;22:353–62,
https://www.jstor.org/stable/40587236.

[18] Feudel U, Grebogi C, Ott E. Phase-locking in quasiperiodically forced systems. Phys Rep 1997;290:11–25. http://dx.doi.org/10.1016/S0370-1573(97)00055-
0.

[19] Das S, Dock CB, Saiki Y, Salgado-Flores M, Sander E, Wu J, Yorke JA. Measuring quasiperiodicity. Euro Phys Lett 2016;114:40005. http://dx.doi.org/10.
1209/0295-5075/114/40005.

[20] Das S, Saiki Y, Sander E, Yorke JA. Quasiperiodicity: Rotation numbers. In: Skiadas C, editor. Foundations of chaos revisited: from Poincaré to recent
advancement. Understanding complex systems, Springer; 2016, p. 103–18. http://dx.doi.org/10.1007/978-3-319-29701-9_7.

[21] Das S, Saiki Y, Sander E, Yorke JA. Quantitative quasiperiodicity. Nonlinearity 2017;30(11):4111. http://dx.doi.org/10.1088/1361-6544/aa84c2.
[22] Das S, Saiki Y, Sander E, Yorke JA. Solving the babylonian problem of quasiperiodic rotation rates. Discrete Contin Dyn Syst 2019;12(8):2279–305.

http://dx.doi.org/10.3934/dcdss.2019145.
[23] Kachurovskii AG. The rate of convergence in ergodic theorems. Russian Math Surveys 1996;51(4):653. http://dx.doi.org/10.1070/

RM1996v051n04ABEH002964.
[24] Krengel U. On the speed of convergence in the ergodic theorem. Monatshefte Math 1978;86:3–6. http://dx.doi.org/10.1007/BF01300052.
[25] Ruth M, Bindel D. Finding Birkhoff averages via adaptive filtering. Chaos 2024;34(12):123109, http://dx.doi.org/10.1063/5.0215396.
[26] Tong Z, Li Y. Exponential convergence of the weighted Birkhoff average. J Math Pures Appl 2024;188:470–92. http://dx.doi.org/10.1016/j.matpur.2024.

06.003.
[27] Chen HY, Haynes AL. Expected value of the smallest denominator in a random interval of fixed radius. Int J Number Theory 2023. http://dx.doi.org/10.

1142/S1793042123500689.
[28] Marklof J. The log moments of smallest denominators. Zenodo 2024;24(June):1–13. http://dx.doi.org/10.5281/zenodo.12167470.
[29] Marklof J. Smallest denominators. Bull Lond Math Soc 2024;56(6):1920–38, https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.13034.
[30] Szezech JD, Lopes SR, Viana RL. Finite-time Lyapunov spectrum for chaotic orbits of non-integrable Hamiltonian systems. Phys Lett A

2005;335(5–6):394–401. http://dx.doi.org/10.1016/j.physleta.2004.12.058.
[31] Gottwald GA, Melbourne I. On the implementation of the 0–1 test for chaos. SIAM J Appl Dyn Syst 2009;8(1):129–45. http://dx.doi.org/10.1137/

080718851.
[32] Alseda L, Borros-Cullell S. An algorithm to compute rotation intervals of circle maps. Commun Nonlinear Sci Numer Simulat 2021;102:105915.

http://dx.doi.org/10.1016/j.cnsns.2021.105915.
[33] Polotzek K, Padberg-Gehle K, Jäger TH. Set-oriented numerical computation of rotation sets. J Comput Dyn 2017;4(1–2):119–41. http://dx.doi.org/10.

3934/jcd.2017004.
[34] Sanchez J, Net M, Simo C. Computation of invariant tori by Newton–Krylov methods in large-scale dissipative systems. Phys D 2010;239(3):123–33.

http://dx.doi.org/10.1016/j.physd.2009.10.012.
[35] Haro A, Canadell M, Figueras JL, Josep AL, Mondelo M. The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective

Computations. Springer International; 2016, http://dx.doi.org/10.1007/978-3-319-29662-3.
[36] Blessing D, James JDM. Weighted Birkhoff averages and the parameterization method. SIAM J. Dyn. Syst. 2024;23(3):1766–804, http://dx.doi.org/10.

1137/23M1579546.
[37] Laskar J. Frequency analysis for multi-dimensional systems. Global dynamics and diffusion. Phys D 1993;67:257–83. http://dx.doi.org/10.1016/0167-

2789(93)90210-R.
[38] Laskar J. Frequency map analysis and particle accelerators. In: Proceedings of the 2003 IEEE particle accelerator conference (pac 03). IEEE; 2003, p.

378–82. http://dx.doi.org/10.1109/PAC.2003.1288929.
[39] Seara TM, Villanueva J. On the numerical computation of Diophantine rotation numbers of analytic circle maps. Phys D 2006;217(2):107–20. http:

//dx.doi.org/10.1016/J.Physd.2006.03.013.
[40] Luque A, Villanueva J. Computation of derivatives of the rotation number for parametric families of circle diffeomorphisms. Phys D 2008;237(20):25992615.

http://dx.doi.org/10.1016/j.physd.2008.03.047.
[41] Seara TM, Villanueva J. Numerical computation of the asymptotic size of the rotation domain for the Arnold family. Phys D 2009;238(2):197–208.

http://dx.doi.org/10.1016/J.Physd.2008.09.002.
[42] Luque A, Villanueva J. Quasi-periodic frequency analysis using averaging-extrapolation methods. SIAM J Dyn Syst 2014;13(1):1–46. http://dx.doi.org/10.

1137/130920113.
[43] Villanueva J. A new averaging-extrapolation method for quasi-periodic frequency refinement. Phys D 2022;438:133344. http://dx.doi.org/10.1016/j.physd.

2022.133344.
[44] Bazzani A, Giovannozzi M, Montanari CE, Turchetti G. Performance analysis of indicators of chaos for nonlinear dynamical systems. Phys Rev E

2023;107(6):064209. http://dx.doi.org/10.1103/PhysRevE.107.064209.
[45] Ashwin P, Guaschi J, Phelps JM. Rotation sets and phase-locking in an electronic three oscillator system. Phys D 1993;66(3–4):392–411. http:

//dx.doi.org/10.1016/0167-2789(93)90075-C.
[46] Glendinning P, Feudel U, Pikovsky AS, Stark J. The structure of mode-locked regions in quasi-periodically forced circle maps. Phys D 2000;140:227–43.

http://dx.doi.org/10.1016/S0167-2789(99)00235-3.
[47] Das S, Yorke JA. Super convergence of ergodic averages for quasiperiodic orbits. Nonlinearity 2018;31(2):491–501. http://dx.doi.org/10.1088/1361-

6544/aa99a0.
[48] Ecke RE, Farmer JD, Umberger DK. Scaling of the Arnold tongues. Nonlinearity 1989;2:175–96. http://dx.doi.org/10.1088/0951-7715/2/2/001.
[49] Sander E, Meiss JD. Proportions of incommensurate, resonant, and chaotic orbits for torus maps. 2024, submitted for publication, https://arxiv.org/abs/

2407.12039.
[50] Sander E, Meiss JD. Computing Lyapunov exponents using weighted Birkhoff averages. 2024, submitted for publication, https://arxiv.org/abs/2409.08496.
14 

http://dx.doi.org/10.1007/978-1-4612-1140-2
http://dx.doi.org/10.1016/0167-2789(95)00205-I
http://dx.doi.org/10.1016/0167-2789(95)00205-I
http://dx.doi.org/10.1016/0167-2789(95)00205-I
http://dx.doi.org/10.1080/14689360110073641
http://dx.doi.org/10.1080/14689360110073641
http://dx.doi.org/10.1080/14689360110073641
http://dx.doi.org/10.1103/PhysRevE.67.036211
http://dx.doi.org/10.1112/S0024610706022782
http://dx.doi.org/10.1112/S0024610706022782
http://dx.doi.org/10.1112/S0024610706022782
https://www.jstor.org/stable/40587236
http://dx.doi.org/10.1016/S0370-1573(97)00055-0
http://dx.doi.org/10.1016/S0370-1573(97)00055-0
http://dx.doi.org/10.1016/S0370-1573(97)00055-0
http://dx.doi.org/10.1209/0295-5075/114/40005
http://dx.doi.org/10.1209/0295-5075/114/40005
http://dx.doi.org/10.1209/0295-5075/114/40005
http://dx.doi.org/10.1007/978-3-319-29701-9_7
http://dx.doi.org/10.1088/1361-6544/aa84c2
http://dx.doi.org/10.3934/dcdss.2019145
http://dx.doi.org/10.1070/RM1996v051n04ABEH002964
http://dx.doi.org/10.1070/RM1996v051n04ABEH002964
http://dx.doi.org/10.1070/RM1996v051n04ABEH002964
http://dx.doi.org/10.1007/BF01300052
http://dx.doi.org/10.1063/5.0215396
http://dx.doi.org/10.1016/j.matpur.2024.06.003
http://dx.doi.org/10.1016/j.matpur.2024.06.003
http://dx.doi.org/10.1016/j.matpur.2024.06.003
http://dx.doi.org/10.1142/S1793042123500689
http://dx.doi.org/10.1142/S1793042123500689
http://dx.doi.org/10.1142/S1793042123500689
http://dx.doi.org/10.5281/zenodo.12167470
https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.13034
http://dx.doi.org/10.1016/j.physleta.2004.12.058
http://dx.doi.org/10.1137/080718851
http://dx.doi.org/10.1137/080718851
http://dx.doi.org/10.1137/080718851
http://dx.doi.org/10.1016/j.cnsns.2021.105915
http://dx.doi.org/10.3934/jcd.2017004
http://dx.doi.org/10.3934/jcd.2017004
http://dx.doi.org/10.3934/jcd.2017004
http://dx.doi.org/10.1016/j.physd.2009.10.012
http://dx.doi.org/10.1007/978-3-319-29662-3
http://dx.doi.org/10.1137/23M1579546
http://dx.doi.org/10.1137/23M1579546
http://dx.doi.org/10.1137/23M1579546
http://dx.doi.org/10.1016/0167-2789(93)90210-R
http://dx.doi.org/10.1016/0167-2789(93)90210-R
http://dx.doi.org/10.1016/0167-2789(93)90210-R
http://dx.doi.org/10.1109/PAC.2003.1288929
http://dx.doi.org/10.1016/J.Physd.2006.03.013
http://dx.doi.org/10.1016/J.Physd.2006.03.013
http://dx.doi.org/10.1016/J.Physd.2006.03.013
http://dx.doi.org/10.1016/j.physd.2008.03.047
http://dx.doi.org/10.1016/J.Physd.2008.09.002
http://dx.doi.org/10.1137/130920113
http://dx.doi.org/10.1137/130920113
http://dx.doi.org/10.1137/130920113
http://dx.doi.org/10.1016/j.physd.2022.133344
http://dx.doi.org/10.1016/j.physd.2022.133344
http://dx.doi.org/10.1016/j.physd.2022.133344
http://dx.doi.org/10.1103/PhysRevE.107.064209
http://dx.doi.org/10.1016/0167-2789(93)90075-C
http://dx.doi.org/10.1016/0167-2789(93)90075-C
http://dx.doi.org/10.1016/0167-2789(93)90075-C
http://dx.doi.org/10.1016/S0167-2789(99)00235-3
http://dx.doi.org/10.1088/1361-6544/aa99a0
http://dx.doi.org/10.1088/1361-6544/aa99a0
http://dx.doi.org/10.1088/1361-6544/aa99a0
http://dx.doi.org/10.1088/0951-7715/2/2/001
https://arxiv.org/abs/2407.12039
https://arxiv.org/abs/2407.12039
https://arxiv.org/abs/2407.12039
https://arxiv.org/abs/2409.08496

	Resonance and weak chaos in quasiperiodically-forced circle maps
	Introduction
	Quasiperiodically-Forced Circle Maps: Background
	Computational Methods
	Weighted Birkhoff Averages
	Resonance Orders
	Related computational methods

	Regular and Chaotic Orbits
	Regular Orbits
	Chaos

	Weak Chaos
	Orbit-Type Statistics
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


