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A new proof of the stable manifold theorem
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Abstract. We give a new proof of the stable manilold theorem for hyperbolic fixed points of
smooth maps. This proal shows that the lacal stable and unstable manifolds are projections of a
relation oblained as a limit of the graphs of the iterates of the map. The same proof generalizes
to the setting of stable and unstable manifolds for smooth relations.
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1. Introduction

The stable manifold theorem states that for a smooth map, near a hyperbolic
fixed point, the stable manifold, points whose forward orbit converges to the fixed
point, and the unstable manifold, points with backward orbit converging to the
fixed point, are both smooth manifolds. This paper presents a new proof of the
stable manifold thearem. The theorem is proved in the context of hyperbolic fixed
points of “smooth relations” [1], [4], a generalization which includes as special
cases hyperbolic fixed points of both invertible (3], [5] and noninvertible {6] maps.
However, this is not merely a generalization of the standard theorem. The new
approach restores to the noninvertible case the symmetry between the stable and
unstable manifolds as is seen in the diffeomorphism case. In addition, it provides a
new geometric way of looking at the local stable and unstable manifolds of a map;
namely, they are both projections of an object one can think of as the “infinite
iterate” of the graph of the map.

The key to this new proof is that rather than looking at stable and unstable
manifolds as subsets of the state space, we view them as projections of a simooth
manifold in higher dimensions arising from the graph of the original map. More
precisely, near a hyperbolic fixed point, the graph of a map and the graphs of its
iterates can be expressed in an appropriate coordinate system as graphs of smooth
contractions. The limit of these contractions exists and is smooth. The graph of
this limit projects to the stable and unstable manifolds.
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The derivative of a smoath map on R™ at a hyperbolic fixed point has no
eigenvalues on the unit circle. Thus locally, in coordinates given by the stable and
unstable directions X and Y, a map can be expressed as follows:

z:r) _ (A:r:-i-.'h(:n,y) (1)
Y By + ga(r.y)

where & and y are vectors in X and ¥, A and B matrices with 4| < 1, |B™'| < 1,
and g1 and g are Lipschits with small Lipschitz constant.

By the Implicit Function Theorem, we can locally change to a skewed coor-
dinate systcm such that in these new coordinates, we have a local contraction.

Namely, we can write:
) Ar + iz, y") (2)
y /) A\BTY + ga(zy)

g1 and @y are again Lipschitz with small Lipschitz constant.

The proof presented here capitalizes on the fact that the map and all its iterates
are local contractions when written in this skewed coordinate system. Before
presenting the proof, we illustrate the ideas with some simple examples.

2. Some simple examples

1. Consider the graph of the following linear diffeomorphismn f on 22 with hyper-
bolic fixed point (0, 0):

(;‘:)z(g g) (j) for ()<a<1<b.. (3)

Since the z-axis and the y-axis are respectively the one-dimensional stable and
unstable directions, we choose them to be the directions X and ¥ respectively in
the skewed coordinates. Call the new function resulting from writing f in skewed
coordinates ¢;. It is written as follows:

z' a 0 x
('y)z(ﬂ %) (v) - @
The &' iterate of the original map is
T (1"" ] £
(y:):(o bt (zf) )

Writing the k' iterate in skewed coordinates, gives the following function ¢p.
Note that ¢y is found by looking at f* and not by iterating ¢,
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(=)= (5 ) () (©)

Consider the limit of the ¢;; it exists and is equal to the map which is identically
zero; explicitly, limyg o0 ¢ is the following map in skewed coordinates on B”:

(2)=(60) () 7

Notice that this limit mwap in the skewed coordinate system does not correspond
to a function in the original coordinates. However, we can gain information about
the stable and unstable manifolds from its graph. Namely, the projection of the
graph to the zy-plane is the r-axis, the stable manifold. The projection of the
graph to the z'y’-planc is y'-axis, the unstable manifold.

2. The trick in Example 1 still works if the linear map is noninvertible; i.e. if
a = {. The map becomes:

(Z):(b[;) for 1<b (8)

which can still be expressed in the same skewed coordinates as before:

(£)-(2)

The limit of the ¢, the k' iterate written in skewoed coordinates, is the same as
before. Indeed, the stable and unstable manifolds are once again the z-axis and
y-axis respectively.

3. i we allow the stretching term & in Example 1 to increase without bound,
the graph of the map converges to {(u,0,au,v): (u,0) € R?}. This is no longer
the graph of a function but is only a relation;

Definition 1. (Relation) A relation on a space Z is a subset of Z x Z. Viewing
this in terms of iteration, an iterate of z under relation F is a point z' such that
{z,2") € F. Notice that iterates of a poinl are not necessarily unique; nor do
iterates necessarily exist.

The relation in this example is a two-dimensional plane which is a subset of
R?* with second coordinate always equal to 0. A point (z,v) € R? has no iterates
unless y = 0. A point (z,0) has as iteratcs every point of the form (az,y'), ' € R.
Thus the origin is still a *fixed” point under iteration. Since points on the z-axis
have k** iterates of the form (a*z,0), which converge to the origin, the z-axis is
in {and in fact equal to) the stable manifold. Likewise, every point on the y-axis
is an iterate of the origin. Thus the y-axis is contained in {and in fact equal to)
the unstable manifold.
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Figure 1. Projections af the graph of ¢ resulting from the map in Example 4: Domain and
range are [—.3,.3] x [-.3,.3], a = .7, b = 143 ¢ = 1. Top left is the zy-plane, top right the
2’y -plane, bottom left the xy'-plane, bottom right the z'y-plane.

We van also use the technigque in Examples 1 and 2 to see this; although there
is no longer a map, limit of b increasing without bound corresponds Lo b = oc;

i.e. % = (. Thus although our example is no longer a map, it is the graph of a

function in skewed coordinates:
z’ ar
(7)- (%) (1)

In this case, as in Examples 1 and 2, the limit of the iterates as expressed in skewed
coordinates exists and is equal to the zero function. Again the projections of the
graph of this zero function are the stable and unstable manifolds.

4. Here is a contrived quadratic example to illustrate the same idca in a
nonlincar case. Note that the map f on R? has a hyperbolic fixed point (0,0):

& axr _
(y’)_(b(y+cm2))’ for 0<a<l<b (11)

Sinece the axes are again the stable and unstabice directions, we choose the axes for
the skewed coordinate directions as before. The map represented in the skewed
coordinate system gives the following function ¢;:

(3;’> - (}‘,y’nfcwz)' (12)
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Figure 2. Same¢ projections as Figure 1, this time of ¢20, the skewed function of the twentieth
iterate of f. This is very close to the limit case. Although three of the projections look like
curves, they are actually projections of a surface. See Figure 3.

Figure 1 shows the graph of ¢ with domain [~.3,.3] x [-.3,.3]. By the fact
that ¢ is a contraction, this figure is the same as the graph of f with both domain
and range restricted to [-.3,.3] x [-.3,.3]. Since the graph of a map from R? to
R? is in R*, the figure consists of projections of the graph to coordinate plancs.
The projections have the following relationship to the maps f and ¢;: f maps the
region in the zy-planc to the region in the #'y’-plane. ¢; maps the region in the
xy’-plane to the region in the x'y-plane.

The k*M iterate f* is:

k 2
) _ az , _<
(yk) = (bk’[y +f 11155 ):52)) , where pu= % {13)
Represented in skewed coordinates, it gives the following function ¢g:
T ot a*
) = b there p= —. 14
) R ) B

Figure 2 shows the graph of ¢gp for the same domain and counstants as in
Figure 1. Again, f** maps the region in the zy-plane to the region in the z'y'-
plane; ¢y maps the region in the zy'-plane to the region in the «'y-plane.

The limit limp._,00 @5 exists. It is given by:
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Figurc 3. The graph of ¢ shown in Figure 2 after it has Leen rotated slightly in i*. Same
projections as hefore. This figure illustrates that although threc of the four projections in Figure 2
appear to be curves, the graph is actually a surface in R4,

()= (=) o

As in the previous examples, the projections of the limit map to the zy- and
#'y'-plancs are respectively the local stable and unstable manifolds for f.

Since the convergence to the limit function is exponentially fast, the graph of
¢s0 in Figure 2 is visually indistinguishable from the graph of limg_, .o ¢x. This
is why three of the projections appear to be curves. However, the graphs of both
é20 and the limit function are two-dimensional surfaces in R*. To emphasize this
point, Figure 3 shows projections of the same surface after it has been rotated in
R (2]

We now show that the result from the above examples generalizes to a certain
class of relations. In Section 3 we give basic definitions for the dynamics of relations
and state the stable manifold theorem in this general setting. In Section 4, we
outline the proof of the stable manifold theorem. Finally, in Section 5 we give the
full details of the proof outlined in the previous section.

3. Basic definitions

In the previous section, relations on Z were defined as subsets of Z x Z and were



Vol. 47 (1996) A new proof of the stable manifold theorem 503

viewed in terms of iteration. Herc are some definitions in this context. We denote
# having an iterate z’ under relation f by 2 Jy 2.

Definition 2. {Fixed Point) Given a relation f on set Z, z € Z is a fixed point
of fif (z,z) € f.

Definition 3. (Composition for Relations) Given relations g and h onset Z, hog
is the rclation given by

{{z.2"): 32 € Z,(2,2y €g and (2,2") € h}. (16)

Notation: If I is an interval of integers and z, € Z for all & € I is a sequence
of points in Z, then we denote

(ziaz‘i+ls"'1zj)1 itl= [?’?.ﬂ
{zt brer = (- 21, 24), if I=(—o0,j] . (17}
(z,-,zi.,_l,...), ifI:[i,DO)

Definition 4. (Orbits for Relations) Given relation f on space Z, an orbit through
z is a sequence {zi}rer such that z = z; for some ¢ € I, and (24,2k1) € f
whenever b, k+1 ¢ I. If { = [i,c0) then {z;] is called an infinite forward orbit.
If I == (—c0,i] then {zx} is called an infinite backward orbit.

Definition 5. (Stable and Unstable Manifolds) For a relation f on metric space
Z with fixed point z,, the stable and unstable manifolds W*{z,) and W"(z,) are
defined by:

W(z,) = {z € Z : there exists an infinite forward orbit {zz} through 2 such
that z; — 2, as k — oo}

W™{(z,) = {2z € Z : there exists an infinite backward orbit {z} through = such
that z, — 2, as k —+ —oc}.

Definition 6. (C” Relations) Il f is a relation on a smooth manifold Z, then f
is C7 when it is a C" embedded submanifold of Z x Z.

Definition 7. (Linear Relations) I f is a relation in a vector space Z, then f is
a linear relation if it is a lincar subspace of Z x Z.

Definition 8. (Hyperbolic Linear Relations) If f is an n-dimenstonal linear re-
lation on an n-dimensional vector space 7, then f is hyperbolic when therc is a
splitting Z = £7 x E* such thail under this splitting, f is of the form

z

Williie E* 4 € E* (18)

f

Y
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where ¢ and b are matrices, and {al, |[b] < 1.

Note that the graph of any hyperbolic linear map is a hyperbolic linear relation.
See Example 1 for the case of a saddle in 2.

Definition 9. (C" Hyperbolic Relations) A (" relation f on a smooth manifold
Z has a hyperbolic fixed point z, when T, 1 f, its tangent plane at (z,, z,), is a
hyperbolic linear relation.

Note that the graph of a map with hyperbolic fixed point 2, is a relation which
kas hyperbolic fixed point z,.
We can now statc the main theorem of the paper.

Theorem 1. (Stable Manifold Theorem for Relations) If f is a €7 relation on
R™, and f has hyperbolic fized point z,, then near z,, W?3(z,) and W"(z,) are
graphs of C7 functions.

4. Outline of the proof of the main theorem

The following definitions and lemmas outline the proof of the main theorem. The
proofs of the lemmas are in the next section.

First note that for a relation f on R™ with a €7 hyperbolic fixed polnt z,,
f 15 locally the graph of a function f. More precisely, for any p and £ < r,
there is a neighborhood of z, such that for some splitting R™ = E* x E* on this
neighborhood, f is the graph of function f, which is of the following form:

2()- (it ee) ®

where z € E*, 3" € E¥ o and b matrices, faf, || < 1, and g, and g, functions
which have all derivatives of order < k Lipschitz with Lipschitz constant .

Motivated by this local expression of a hyperbolic refation as the graph of a
function, we consider some definitions for relations on Euclidean space Z which
are graphs of functions with certain propertics for some coordinate system. Wo
call these functions “associated” functions and call the coordinates “skewed” coor-
dinates, represented by X and V', where Z = X x Y, and X and Y are Euclideau.
Note that not every relation is the graph of such an associated function: these def-
initions are specifically intended for working with relations with hyperbolic fixed
points. Also notice that the skewed coordinate system is not unique in any of the
definitions below. However, once we choose a coordinate system, if there is an
associated function in the coordinate system, then it is unique.
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Notation: In all that follows, a relation is represented by a letter, and an
associated function for this relation by the same letter underlined.

Definition 10. (Lipschitz Relations) A relatiou f is Lipschitz of order A, or f €
Lipy, when there is an associated function / € Lipa such that (z,y) |i>(r.r:’, Yy e

flay') = (&' y).

Lemma 2. Suppose o relution f in Lipx, A < 1 has an wssoctated Lipschilz
function f described in the above definition. Then the relation f is C7 exactly
when the associaled function [ is C7. :

The proof of the above lemma follows from the implicit function theorem. It is
tacitly assumed in the following lemma, which states that the composition of two
Lipschitz and C relations gives another Lipschitz and C7 relation.

Lemma 3. Leta < 1 andr > 0. If ¢, 1 relotions in Lip, and C" on Z = X xY,
with essociated funclions in the same skewed coordinales, then I' o g € Lip, and
C" s well.

Given relation f, for a relation ¢, define G by G(¢) = fo ¢ o f. The follow-
ing lemma says that for f with a hyperbolic fixed point and certain ¢, G is a
contraction.

Lemma 4. Let f satisfy the hypotheses of Theorem | and o <1. For a suitobly
small neighborhood of the fized point, assume ¢ is Lip, with associated function
in the same skewed coordinates as f. Note that {¢} lies in the Bunach space of
Lip, relations in a fized skewed coordinate system with the norm being the sup
norm on the associated functions. Then G is a contraction in the sup norm on
the associated functions.

Since (7 is a contraction in the space of Lip, relations, G has a unique fixed
point which is also in the space of Lip, relations, and any such relation converges
to this fixed point. In fact we can choose a neighborhood £ such that f is an
appropriate Lipschitz relation in the domain of ¢;. Thus on this neighborhooed,
the fixed point is equal to limg .o f5. Call this fixed point relation h and its
associated function h. The above lemma guarantces that b is Lipschitz on €. In
fact, h is also C7 on (1, a4 is restated below.

Lemma 5. Assume f € C7 satisfying the hypotheses in Theorem 1, and 1 o
neighborhood of z, such thet on Q) the fired point relation is Lipschitz and equal to

limg—eo . Then h is C7 on §2.

Definition 11. (w-limit relation) Given the relation f on compact metric space
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fu = ngIUkznfka

where f* is the composition of & copics of f.

The following lemma states that the relation h defined above is equal to the
w-limit relation:

Lemma 6. f« = h.

The next two lemmas state that w-limit relation is local.lljr the cross product of
the stable and unstable manifolds.

Lemma 7. For a relation [ satisfying the hypotheses of Theorem 1, there is a
neighborhood of the fired point such that if w ¢ W*{(z,) and v € W*{z,), then
(v, 2,) and (z,,v) are contained in f~.

In fact, a stronger statement holds; the following lemma states that f relates
every point in W?(z,) to every point of W*(z,).

Lemma 8. For o relation f salisfying the hypotheses of Theorem 1, there is a
neighborhood of the fived point such that u € W¥(z,) and v € Wh(2,) & (u,v) €

1o

Proof of Theorem {. By Lemma 8, the stable an unstable manifolds are projections
of f¥. Preciscly, f* = W%(z,) x W¥(z,). By Lemma 7, this set equals {u :
(1,2} € f*} »{v: (20,v) € f*}. By Lemma 6, A = f; by Lemmas 5 and 2, h
has an associated ¢ function k. In terms of the splitting, denote z, = (Za: Yo)-
Wex W = {(z,y) s Alz, 1) = (2o, 1)} % {{z,0) : Rlzg, w) = {2,¥.)}. Thus both
W# and W* are locally the graphs of €™ functions. O

5. Proofs of lemmas

Proof of Lemma 3. The proof is an application of the € and Lipschitz implicit
function theorems. Since it is less common than the C7 implicit function theorem,
we state the Lipschitz version here.

Theorem 9. (Lipschitz implicit function theorem) If X and ¥ are metric snaces,
and F: X xY = X is o conlinuous mapping I* € Lipx, A < 1, then there exists
Junction g: Y — X, g € Lipy such that
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F(r,y) =z &z =gy).
Proceeding with the proof of Lemina 3, we need to show that if g, ' € Lip, and

C7, then there exists a Lip, and C" function I' o g such that (z,y,2",y") €T og
exactly when I o g(z,y") = (z”,y). Define a function F: Z x Zx Z - Z x Z hy

B,y &), (z,9") = (L' "), g(=,9). (20)

Sinee F is Lip, and has no unit norm eigenvalues, by the implicit function theorern,
there exists a Lip, and C7 function m : Z — Z = Z such that F(z", ¢, 2’ v, z.v") =
(2", ¢, 2", y) exactly when m(z,y") = (2", ¥',2',y). Thus (m,,my) =10o0g. O

Proef of Lemma 4. This proof is a scries of estimates. The key to the estimates is
that f and the domain of G are Lipschitz,

Assume that f is as in the theorem, and we have picked a neighborhood
and splitting so that equation 19 holds and g, .4, are Lip, functions. Let A =
max({fal, |b]) + 1. Assume we have chosen a ‘-;IHdH enongh neighborhood that
A4 ap < 1.

(Note that f € Lipy.)

For a relation 4 with associated function ¥, let ||.|| denote the sup norm, and
let 4 = (101, 42) be the components of the associated function.

We want to show that for any rclations ¢, € Lip,, there is some uniform
constant § < 1 such that |G(¢)) — G()|| < 6||g» ~ ¢ll. This is cquivalent to
showing that sup,_¢ m—p (@3, 2", y"") — (§0,8". 9" < 8ll¢ — ¢, where
(4,2, y'") € G(¢), and (£, 0, 8", 9") € G(4).

I (@, y, 2™, " € G(), and (&, 1, £ ™) € G(v), then there exist «’,y', 2", 3",
&.on' £ 5" such that

(@, y) Sy e (e y™)

(x.y) it
(&) B(E,0") (e ™). (21)

(&.m)

l_'-h _'I;h-.

The following inequalities hold:

_|$|'H _ EH.’I — ‘U’.'I:H + El(mn’yur) . aiH _ gl (é—”jnh’l)l (22)
< M — '], since y" =9

and

" — &' = o (2", y") — 9 (£ ") (23)
< amax(lz’ - £, p" —7"]) + 16— ¢ll, since ¢,¢ € Lipg
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Similarly,
=" — &' < ply" — ') (24)
[yu _ nni < u|:1:‘” _ gul (25)
" = n'| < amax(|a’ =&, |y —0"]) + llg — ¥l (26)
by —n| < Aly' — 7| (27)

If we let A = max(|z" — £"|, |¥' — #'|), then from the above equations, we have

A<aph+lo—vll, so (28)
1
A< — .
il
Thus for § = - « 1, which is guaranteed by our original assumption,

1—aye

(#,2™,9") = (69.8" ") < ¥

SOy ¢ - ol 2
Proof of Lemma 5. To show that h € C7 when f € C7, we first show that there is
a neighborhoad of the fixed point of f such that the limit relation of f restricted
to this neighborhood is €. To do this, we usc the fiber contraction theorem [3]
to show that the map G is a C! contraction when f is C1.  is locally a C7
contraction when f € C” by an induction argument. In order to show that A is
a (7 relation on the original neighborhood, the relationship between A and the
limit relation on a smaller neighborhood bears [urther comment. To this end, we
prove that h is equal to the limit relation on the smaller neighborhood compaosed
with finitely many C” subsets of f. Therefore h is C7 on the entire original
neighborhood. We use the following definitions and lemmas; the central proof
follows their statements and proofs.

The following is a definition of a derivative relation of a smooth relation.

Definition 12. (Tangent Relation) Given a smooth relation T on I?P, the tangent
relation TT on #2227 is the tangent bundle of T,

If a relation has an associated function, then its tangent relation has an asso-
ciated function, as described in the following lemma.

Lemma 10. For g smooth relation T’ on B = X x Y uith associated function T,
IT s the graph of (I, DL). In other words, (x,y,2',y',&,n,&.7') € TT ezactly
when (z,y,2",¥") € T and DC{z, ¥ )&, 7)Y = (£, n).

Proof. This is due to the fact that a graph of a smooth function has tangent bundle
equal to the graph of the derivative of the function. O
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Lemma 11. {Derivatives and composition) Assume that I' and g are smooth re-
lations with associoted functions, and (z,y,.x",y") € I'og. Then locelly there
exist ¥’ and y' such that the graph of D(U o g)ey ) equal to graph (DL(m,’y,,))
o graph {Dg(x,y’})' In terms of tangent relufions, locally TToTg=T(T o g).

Proof of Lemma 11, In the proof of Lemma 3, we showed that lecally there are a
unique z’ and y’ which are functions of (z,y") such that

() S, i) S (2" ") (29)

We know that ' = Ty(g, (z,y"),y"). For the coordinate system R™ = E* x
E*, write the derivative matrices in the form Dg = (Dlgl ngl). Implicit

D 1 22 DQ 22
differentiation gives

Dy’ =(1- D1L2D2gl)_l(D1£2Dlgl, DoLy) (30)

where all derivatives are evaluated at (x,y,2",¥', z".4"). It is now possible to
write the derivative of T o ¢ explicitly. Comparing this derivative to the function
associated with graph DL gy graph Dg(m ) shows that they are equal. O

Lemma 12. Let o < 1, g and I' both be Lip, C7 relations on the compact set V;
assume that in the coordinates V = V) x Vi, there is a contraction g associoted
with . Also assume thal for Uy C Vi and Uz C Vo, g : Ui x ¥y — V and

g:VixUs = V. Let T be a relation on V. Then goT oyg is Lip, and C7 on
br'l x L‘vg.

Proof of Lemma 12. Define the function F : V x ¥V x V xl/ =+ VxV xV

as F((=",9), (", y"), (@, "), (=, y"")) = (9", y"), L{z", 4"}, g(x.y')). Proceed
using the implicit function theorem as in the proof of Lemma 3. O

The final lernma is the fiber contraction thecrem due to Hirsch and Pugh. Its
proof can be found in [3].

Lemma 13. (Fiber contractions) Let ¥ be o map on a space X with attroctive
fized point p. For cach z € X, let Y, be a map on metric space Y such that
Oz, y) = (¥(x), Y. (y)) is continvouns on X x Y. For fized A <1 and each x, let
cach T, € Lipy. Then there is an attracting fized point (p.q) for ©.

Finally, the following definition makes the notation more convenient:

Definition 13. ((C7,¢) and (Lip", ¢) Small Relations) A relation is (C7, €) small
if there is some associated function which is (C",€) small; in other words, there
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is an associated function which is €7, and all its derivatives of order < r are
Lip.. A relation is {(Lip", €) small if it is (", €) small and the +** derivative of the
associated function is Lip..

Using these lemmas, the proof proceeds as follows: Let f be a €7 relation on
I with hyperbolic fixed point at z,, as in Theorem 1. Let §) be a neighborhood
of the fixed point such that lim; . f% = A, as described in the discussion after
the statement of Lemma 4. Let g and A be as in the proof of Lemma 4, and let
2o = (Zo, Yo} in terms of the splitting.

First we show (7 is a €' contraction when f is ¢ (r = 1). Since Tf is
not necessarily Lipschits, we cannot just apply Lemma 4 on the tangent bundle.
However, as in the diffeomorphism case, we can still prove the result using the
{iber contraction theorem.

Let ¢ be a Lipy rclation on R** such that ¢ = (p, L), p a relation on K",
and L{z,y',.) linear. Consider the map TG : ¢ — TfopoTf. We verify
the conditions for the fiber contraction theorem for TGh m TG has attractive fixed
point . Near (%o, yo), D f (2, 4') is close to D f(x,, yo) in linear norm. Thus we can
use estimates similar to those in the proof of Lemma 4 on w3 T'G on a neighborhood
of (25,%.,0,0). On such a neighborhood, for fixed p and varying L, m 7' is Lip,
in the sup norm. By the fiber contraction theorem, T'G is a contraction in the sup
norm on relations ¢ above. Thus TG is a contraction when ¢ — T'p, where pis a
(Lip", u) small relation on B™. Therefore ¢ is a €' contraction on (Lip!, p) small
relations.

For the case r > 1, proceed by induction. Assume that for all relations g €
C™' on with hyperbolic fixed point on £7, and for p (Lip™™', 1) small, that
p—gepogisa ! contraction. Choose § C7, hyperbolic. By our assumption,
Tp— TgoTpe'gis aC" ! contraction when g (Lip”, s¢) small relations. Therefore
p—rgepogisa C7 contraction.

We have so far shown that for f € €7, there is an e such that on a ball of
radius € of the fixed point, & is a contraction in the C" sup norm on {Lip", u)
small relations. The limit relation on this small ball is thus C7. We now use the
simoothness of the limit relation on the small balls to show that the relation A is
C7 on all of 2.

Choose r. Denote the ball of radius ¢ of the fixed poiut by B! x B2, Let T be
the 7 fixed point of & restricted to this ¢ ball. Note that I' C b, since it can be
described as the limit of iteration of the relation f|g1, pe.

For A described in the proof of Lemma 4, if |(z, ) — (4, yo)| < £, then |f(z, ¥}
(zo,90)| < e Thus f:Bi x B — B¢ x B¢ and [ : B} x Bi - By x B}. Thus
by Lemma 12, f o T o f is Lipy and C7 when restricted to the set Bli_ X B;

This new relation is also a subset of k since if f C f  and T' C I, then
fol C flol”. Weknow that T C h. Thus felofC fohof=h.

Now iterate this process of composing with f and restricting to a neighborhaod;
eventualty we have a Lipy, C” relation on 2. Since this rclation is contained in #
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and both are associated with functions on £2, the relations must be equal. Thus &
is C7 om (L. 0

Proof of Lemma 6. Assume that we have a neighborhood and splitting as in f

equation 19. We show that there is a sequence in F* converging to a limit point

(z,y, z,w) exactly when there is a sequence k; such that lim; o, f%(z,w) = (2,).
First we show that h C f“; from the definition, T

f = {uup, — u for some vy, € fH}. {31)

By Lemma 4, f = fo fo f+— f°++ ... maps to k in the sup norm on the
associated functions. Thus for all {x,w) and odd &, f_’“(a:,w) hag a limnit, and
the limit is equal to A{x,w). Thus uy = (m,ﬁz(a:,w),ﬁl (z,w),w} shows that
hC f>.

Conversely, to show that f¥ C h, suppese 7 = (z,y,2,w) € f*, and ug, =
(Zk,, Yhs s Zke» Wi, ) 18 the sequence in f* guaranteed by equation 31 such that |ug, —
7| = 0. Define vy, = (:r,i;“ (x,w),i’f‘(a:,m),w). Then

| — vk, [ — vy |+ e, — g, |- (32)

The first term on the right goes to zero by construction. In addition, since f is in
Lipy, the second term is less than or equal to the first term. Therefore it goes to
zero as well. Thus n € h. O

Proof of Lemma 7. Follows from Lemma 8. a

Proof of Lemma 8. Assume that we have a neighborhood and splitting described in
equation 19 and that in terms of the splitting, the fixed point is denoted by (., yo).
Assume (z,y) € Wo(x,,v,) and (z,w) € W¥(2,,¥,). In the proof that follows,
we look at the forward k-iterates of a neighborhood of {z,¥%) and the backward
k-iterates of a neighborhood of (z,w). For large &, near the fixed point, a portion
of the forward iterates form a Lipschitz “vertical” curve, and a portion of the back-
ward iterates form a Lipschitz “horizontal” curve. The two curves are near each
other, and thus intersect, implying the existence of a point near (z,y) with a 2&-
iterate near (z,w). More preeisely, we use this idea to show that for any €, £ there
exists k > K and a point (s,t,u,v) € f* such that dist{(z,y,z,w), (s,%,u,v)) < ¢
and thus (z,vy,z,w) € f¥.

Let € be given. We know that there cxist sequences (xg, ¥ ), and (2, wi) both
converging to the fixed point, (z,y, <k, w) € f* and (2, wp,z,w) € f*. For a
small &, let k be large enough that distance from (zg,yx) to {zx,ws) is less than
3.

Now look at an ¢ ball of g in Y. For the point (z,7%'), where »’ is in the ¢
ball, we have the point (z,7,&,%'} € f*. The sct of points (£, 7') form the graph
of a Lipschitz function from ¥ to X near (zg,y¢), cach peint of which is related
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to a point near {x,%) by f*. Similarly, there is a graph of a Lipschitz function
from X to Y near {z,wg), and a point near (z, w) is related to cach of the points
in this graph. DBut if é is small enough, these Lipschitz graphs must intersect.
Thus there is a point (s,t,u,2) € f2* within ¢ of (z,y,2,w). We conclude that
(z,9,z,uw) € f.

Conversely, assume (z,y, z,w) € f*. Therefore for any & > (0, there are points
near (2,y) with k forward iterates. Using compactness, we show that (x,y) has
an infinite forward orbit. Using the fact that f € Lipy, we show that the forward
orbit must converge to the fixed point, and thus (z,¥) € W% (2,,1.). Likewise,
(z,w) € W¥(ms, o). _

Let B,(x,y) be the closed € ball of {«,y), and define the set

SHx,y) = {{&n) € Be(z,y) : (£ 1) has a k" iterate}

S¥(x,y) is nonempty, by the assumption on (z,y). It is compact, since f is closed,
which implies f* closed [4] and thus compact. Thus N.S*(xx,) is nonempty, since
it is the intersection of non-empty nested compact sets. It is equal to {(z,¥)},
since this is the only point it could contain. Therefore (z,y} has a k' iterate
{zi,yx) for every k. Thus there exists an infinite forward orbit starting at {x,y).
By compactness, there exists a limit point {z',w'). Thus (z;,y;,2',w") € f for
the same 2/, w' for all j.

Since {xj,y;,2",w') € f¢ for all j, if (zx,yz) and (z;,y;) are in this forward
orbit, then |y; — ye| < A2y — &k

Since f* is Lipy for every k|ux, 1 — x| < Amax(|wr—1 — 2|, |yeer — wl) <
Amax{|zr_1 — 2e|, AT — 2x[). Thus |21 — 3| < Alzg_1 ~ zx|. This Cauchy
sequence implies that zp converges to a unique z,. Likewise, g converges to
a unique w,. This means that (zg, Ve, Trrl Yer1) —* (2o, W, 2o, Wo). Since f
is closed and {zp, vr, Tpae1, ve1) € F, (24,0, 20,1) € f as well. The unique
fixed point of f is (x,,v,). Therefore (xy,yr) converges to (zs,%,). Therefore
(x.y) € W9 (xs,¥,). Similarly, (z,w) € W¥(z,, o) a
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