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Abstract

This paper describes recent mathematical progress explaining the phenomenon of
spinodal decomposition in metal alloys as modeled by the Cahn-Hilliard equation.
We discuss work on the early stages of this decomposition due to Maier-Paape,
Wanner (25, 26], results on later stages due to Sander, Wanner [28, 29], as well as
applications to multi-component alloys due to Maier-Paape, Stoth, Wanner [24].

1 Introduction

Spinodal decomposition is an intriguing phenomenon in the study of metal alloys
[8,.20, 22]: If a homogeneous high-temperature mixture of two metallic components is
rapidly quenched to a certain lower temperature, then a sudden phase separation sets in.
The mixture quickly becomes inhomogeneous and forms a characteristic but non-periodic
structure.

In order to describe this phase separation process (as well as other phenomena) Cahn
and Hilliard [6, 9] proposed the fourth-order parabolic partial differential equation

u = —A(e?Au+ f(u)) in Q,
du  dAu 1)
‘5-1; = -51/— =0 on 60

for the concentration u of one of the metals as a function of space and time, where u
is affine scaled to be between —1 and 1. (Since the total concentration is always 1, the
concentration of the other metal is then uniquely determined as well.)

The domain Q C R* is bounded with appropriately smooth boundary, n € {1,2,3},
and the function — f is the derivative of a double-well potential F, the standard example
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Figure 1: Spinodal decomposition in two dimensions for ¢ = 0.02. Color represents
concentration, with black corresponding to all one metal, white to all the other metal,
and gray a mixture of the two metals.

being the cubic function flu) =u—d ¢is a small positive parameter modeling interac-
tion length. The Cahn-Hilliard equation is mass-conserving, i.e., the total concentration
_ fn udz remains constant along any solution «. Moreover, it is an Hy '(Q)-gradient system
with respect to the van der Waals free energy functional

E,[u] :=/n (%2 | Vul? + F(u)) dr ,

where F is the double-well potential mentioned above, see Fife [18].
Every constant function @, = pisa stationary solution of (1). Spinodal decomposition
corresponds to this equilibrium being unstable. This occurs in the (usually connected)
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set of all 4 € R such that f'(u) > 0, known as the spinodal interval. Thus any orbit origi-
nating near i, is likely to be driven away from this equilibrium. Explaining precisely how
this happens lies at the heart of explaining the phenomenon of spinodal decomposition.
A two-dimensional simulation of this process is pictured in F igure 1.

There have been many papers in the physics literature dealing with spinodal decom-
position and how it is modeled by the Cahn-Hilliard equation. We refer the reader to
Cahn (7, 8}, Hilliard [20], Langer (22], Elder, Desai [12], Elder, Rogers, Desai (13], and
Hyde et al. [21], just to name a few. Also, there exist numerous papers on numerical sim-
ulations of the Cahn-Hilliard equation, see for example Elliott, French (15], Eliott [14],
Copetti, Elliot (11}, Copetti [10], and Bai et al. 1, 2J.

This survey paper describes the mathematical treatment of spinodal decomposition
contained in several of our recent papers. We have used a dynamical approach, taking the
point of view that in order to understand spinodal decomposition, one must consider the
behavior of the nonlinear solutions by comparison to linear behavior on a dominating sub-
space. Section 2 of this survey describes the linearization of the Cahn-Hilliard equation,
and how Maier-Paape and Wanner [25] used this to understand the size of spinodal pat-
terns. Since € models a small materials dependent effect on the atomic level, one considers
asymptotic results as ¢ tends to zero. Building on the linear results, Section 3 describes
the early decomposition process of (1) due to Maier-Paape, Wanner (25, 26]. The goal
is to find a starting radius r. and an ending radius R, of a physically relevant size so
that one can explain the occurrence of spinodal decomposition for most solutions starting
within distance r, from the equilibrium, until they reach distance R.. These results are
an improvement on the one-dimensional results of Grant [19]; Section 3 compares the two
results. Sander and Wanner [28, 29] further extended the explanation of the behavior of
solutions described in [26] to give a picture of the later stages of spinodal decomposition;
see Section 4. The final section of this survey reviews how these ideas can be applied to
Cahn-Hilliard systems, corresponding to alloys of more than two metals. Maier-Paape,
Stoth, and Wanner [24] adapted the early stage decomposition to the system case. Eyre,
Maier-Paape, Sander, and Wanner intend to extend the later stages results to the systems
case as well. We also indicate how these results apply to related equations. Note that
throughout the paper, we have removed as many technical details as possible; please refer
to the papers listed in the references to see the full statements of the results.

2 Linear results and wavelength estimate

Linearizing (1) at %, = u gives the linear equation

w = Awv = —A(EAv+ flluw) in Q,
v _ 9Av (2)
b—l; = —81—1— =0 on N s

where A, is considered as an operator on the subspace X of L?(Q) consisting of functions
with total mass zero. Let 0 < &, < &, < ... -+ +00 and 94,49, . .. denote the eigenvalues
and eigenfunctions of the operator —A on the same domain subject to Neumann boundary
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Figure 2: Eigenvalues of the linearization A..

conditions. Then the 1; are eigenfunctions of (2), with corresponding eigenvalues
hig = mi(f'(w) - €*%;), ieN.

By reordering the numbers ;\,-,E we obtain the spectrum of A., which consists of the
eigenvalues A, . > Ay, > ... = —o00. This spectrum is bounded above by

max . J(1)?
)‘s&x'= 4e2

and the largest eigenvalue A;, of A, is proportional to A™**, see Figure 2. Moreover,
the eigenfunctions form a complete L?(Q2)-orthogonal set in X. The strongest unstable
directions correspond to x; & f'(u)/(2¢2). Most solutions of (2) originating near zero will
be driven away in these unstable directions, as Cahn pointed out in [7]. As a result, we
define the dominating subspace Y as

Y =span {we : Jue > 70 AP ®)

for some vy < 1 close to one. Note however that the unstable spectrum of the linearization
is not the full story for the nonlinear equation, as one would expect extremely large
nonlinear effects due to a Laplacian applied to a cubic term.

Most solutions of the linearized equation will remain close to Y, i.e., their geometry
resembles the geometry of functions in Y (cf. [25, Section 2]). Maier-Paape and Wanner
also proved that these functions exhibit a common wavelength which is of the order of ¢,
see [25, Section 4]. Specifically, at fixed time ¢, the level set {u(z,t) = 0} divides Q2 into
a set where u is positive, and a set where u is negative. These two sets are called nodal
domains. The following theorem describes the width of the nodal domains, explaining
why these domains are typically thin:

Theorem 2.1 Let ¢ € Y be arbitrary, and let 7, € € denote a “typical” point. If
G C Q denotes the nodal domain of ¢ containing zo, then for any ball contained in G
with radius r and center zo we haver < C - €.
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3 Early stages of the decomposition

Nonlinear analysis of the Cahn-Hilliard equation uses the information gained from the lin-
earization, combined with the fact that the Cahn-Hilliard equation generates a nonlinear
semiflow on the H?(Q)-functions of fixed mass satisfying the boundary conditions. H 2(Q)
is the Hilbert space of functions with two weak derivatives in L*(). Since this is the
mathematically relevant space, unless otherwise specified all distances are with respect
to the H?(Q)-norm. Grant {19] described spinodal decomposition for one-dimensional
domains €, showing that for generic small ¢, most solutions of (1) starting in a suffi-
ciently small neighborhood U, of size r, of @, = i closely follow a strongly unstable
one-dimensional manifold for a long time. This unstable manifold is tangent to the eigen-
function ¢, of the largest eigenvalue A; ., which is simple for generic values of . Grant
also proved that the two branches of the strongly unstable manifold converge to periodic
equilibrium points of (1), whose period is proportional to ¢ as & — 0 and whose L>(()-
norm is bounded away from zero. Thus most nearby orbits undergo phase separation with
the characteristic wavelength «.

Unfortunately, for higher-dimensional domains Grant’s approach predicts evolution of
most orbits towards regular patterns which are not observed in practice. Maier-Paape and
Wanner (25, 26] pointed out that this discrepancy is due to the fact that r. in Grant’s result
is of the order exp(~c/e?). Since £ models interaction length, an effect which occurs on
the atomic level, it is extremely small. Thus, the behavior of solutions described by Grant
cannot be observed in the physical system. To address this, Maier-Paape and Wanner
proposed a different approach for explaining spinodal decomposition, which applies to two-
and three-dimensional domains ) as well. They also consider solutions of (1) starting in
a ball U, of radius r. of the homogeneous equilibrium %, = 4. This time however, the
size r, of U, is proportional to £3m,

More precisely, inside a ball W, of radius R,, where R, is proportional to e4m? there
is a finite-dimensional inertial manifold N;, with dimension proportional to £~ 9™ which
exponentially attracts all orbits in W,. As a result, to understand the behavior of solutions
within W, one only needs to consider the behavior of solutions within A;. Maier-Paape
and Wanner [26] show that starting inside an even smaller ball U of radius 7. < R, around
i,, where 7, is also proportional to e%™® gne can reduce the dimension of the problem
even further; the behavior of solutions in U: is dominated by a manifold M, C N, in the
sense that most solutions starting in U, leave W, close to M,. The dimension of M, is
proportional to ~4™ % vet considerably smaller than the dimension of N.. Furthermore
M, is close to the dominating linear subspace Y} introduced in Section 2. See Figure 3.

To prove these results, one first looks at abstract semilinear parabolic equations of the

form
uy = Au + F(u) (4)

with stationary state 4, generating semiflows in fractional power spaces. Assuming the
existence of certain spectral gaps for the linear part A, whose size is suitably related to a
small global Lipschitz constant of the nonlinear part F, results on invariant manifolds and
foliations are used to establish the existence of a “power law,” which states that solutions
of (4) leaving a given neighborhood of @, far away from a strongly unstable manifold must
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Figure 3: The early stages of decomposition.

lie outside a parabolically-shaped graph (the shaded region in Figure 3). In combination
with some technical estimates, this implies the dominating effects of a strongly unstable
manifold on solutions originating sufficiently close to ,.

The fact that most solutions of (1) originating in U, exit W, close to Y fully explains
spinodal decomposition inside W,.. Moreover, in the previous section we showed that
solutions within J}, as well as nearby, exhibit the same spinodal decomposition patterns
which are observed in experiments.

Although the above approach predicts the correct patterns observed in spinodal de-
composition, the result is still not optimal. R, is proportional to e¥™? « 1. In practice
however, the predicted patterns are observed until the maximum norm of the solution is
of order one.

4 Later stages of the decomposition

Motivated by the existence of a dominating linear subspace, Sander and Wanner [28] did
numerical simulations to compare a solution v of the linear Cahn-Hilliard equation (2)
such that v(z,0) = u,(z), and solution u of the nonlinear Cahn-Hilliard equation (1)
satisfying the same initial condition: u(z,0) = u,(z). Simulations in one space dimension
indicate that the relative distance |}u —v|]g2(q)/||v(| 42() between the nonlinear solution u
and the linear solution v remains bounded by some small ¢-independent threshold, as long
as the H2(Q)-norm of the nonlinear solution is approximately bounded by Ce~2. Figure 4
shows the maximal norm of u such that the relative distance remains below 0.5% as a
function of ¢, given in both the H?()- and L°°(2)-norms (100 simulations for each ¢).

The insight given by this numerics led to the following theorem from Sander and
Wanner [29}:
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Figure 4: Dependence of the maximal radius R (vertical axis) on & (horizontal axis) with
respect to a norm equivalent to the H2(§2)-norm (left) and the L*(Q)-norm (right) for
the domain Q = (0, 1), and relative error 0.5%. Figure from [28].

Theorem 4.1 Consider the Cahn-Hilliard equation (1) in dimension 1, 2, or & with
f(u) = u—ud and g = 0. Let ¢ > 0 be arbitrarily small, but fived. Let u, denote an
initial condition polynomial in ¢ close to G = p, and which is sufficiently close to the
dominating subspace Y. Finally, let u and v be the solutions to (1) and (2), respectively,
starting at u,. Then as long as

l[ul®) ey < C - e7HrermOM iy e, o (5)

we have
lu(®) = v(®)l|m2q) < . 2-dimy2
v (&)l xr3a)
In other words, u remains extremely close to v until lu()m2q) ezceeds the threshold
given in (5).

Note that the radius of the starting domain can be chosen to be polynomial in &, and
thus physically visible, and that the threshold given in (5) grows as ¢ — 0.

The proof of this theorem comes from restricting attention to functions near the dom-
inating linear subspace. That is, choose a dominating subspace Y} as in (3). Let Y- be
the orthogonal complement of the dominating space, spanned by the eigenfunctions not
contained in Y. Functions “near” Y& are those lying in an unstable cone of VI of small
opening 6. That is,

G={u=u"+u"eVroy : el < 6 Jlut|lgay} -

On this unstable cone, it is possible to find a precise upper bound in terms of & on the
nonlinearity. Combining this with an application of Gronwall’s Lemma, one can restrict
the growth rate of the relative distance between u and v. Furthermore, since the linear
solution v always remains in the cone, it is possible to find a lower bound on the norm
of u up to which the solution does not exit the cone. This gives the estimate for the exit
radius R as a function of €. Note that we do not need to use any spectral gap condition.
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This theorem furnishes an explanation for a mechanism underlying spinodal decom-
position. Namely, if a solution of the nonlinear Cahn-Hilliard equation starts near the
dominating subspace sufficiently close to the homogeneous equilibrium @, = p, it will
follow the corresponding solution of the linearized equation for a long time. Thus, the
patterns observed during spinodal decomposition are precisely the patterns generated
by the linearized evolution. This is unexpected; as mentioned before, the nature of the
equation throughout most of the space is highly nonlinear.

Theorem 4.1 considers only initial conditions u, lying in a small cone Cs centered
around Y. Fortunately, due to Section 3 this is exactly the region where most solutions
originating near @, = y end up automatically. Thus, combining the results of Maier-Paape
and Wanner [25, 26] with Theorem 4.1 immediately gives the following theorem:

Theorem 4.2 Consider (1) for f(u) =u —u® and p = 0, and let ¢ > 0 be arbitrary, but
fized. If we randomly choose an initial condition u, satisfying

ol |2y < C - €%,

where k > 0 depends on ¢ end dim ), then with high probability, the solution u of (1)
originating at u, will closely follow the solution of the linearized equation as long as

lu(®)llmzey < C-e7HHeramals, (6)

In other words, with high probability, solutions behave almost linearly for a long time
for small €.

The results of this section can easily be generalized to other nonlinearities f. In fact,
better values for the radii given in (5) and (6) can be obtained in this way. Consider
for example the case f,(u) = u — u'*?, where o > 1. The corresponding double-well
potentials F, are given by F,(u) = u®*°/(2 + o) — u?/2. Notice that for ¢ — co these
potentials approach the non-smooth free energy which has been discussed by Blowey and
Elliott (4, 5]. For 4 = 0 and a nonlinearity of this form, the radius in (6) can be replaced
by C. E(—2+dimn/2)-(1—1/a)+9 .

A similar statement is valid for the radius given in (5). Thus, by choosing a suitable
double-well potential F,, we can get as close to the order 6~+4m%/2 as we wish.

These results for binary alloys still leave a number of open avenues of study. For exam-
ple, Theorem 4.2 does not give the exponent ~2 seen in the one-dimensional simulations,
but it is conjectured that rather than using a cone, if we were to make a more careful
choice of functions “near” Y., the threshold to which nearly linear behavior dominates
would be closer to the numerically computed exponent. Further, the numerical results
displayed in Figure 4 indicate that there should be a statement similar to Theorem 4.1
linking the region of almost linear behavior to the L*(Q)-norm.

5 Future directions

So far, all results discussed are for alloys with two metals. Experimental evidence shows
that spinodal decomposition can also be observed for multi-component alloys. That is, a
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homogeneous mixture of N > 3 components, when rapidly quenched, can separate into
phases with a characteristic wavelength. In this situation, the phases are not regions of
concentration of one metal; each is a mixture of the components. To model this, Morral
and Cahn [27] introduced the system

% = —A(EzAui+fi(u1,...,uN)) in Q,
(7)
Bu,» 6Au, _
5’; = —all_ =0 on 00 ,
for i = 1,...,N. Since the total concentration is one, we always have the additional

constraint that .
Z’U.,'(.’II, t) =1 )
i=1

i.e., the values of the vector u = (u1,...,un) describing the composition of the alloy are
contained in the so-called Gibbs simpler G defined by

N
g::{UERN : ZU,‘ZI,U.,'ZO,Z'=1,...,IV} .

=1

Generalizing the previous situation, the standard nonlinearity f = (fi,--., fn) is essen-
tially the negative derivative of an N-well potential F, the standard example being

N

F(ul,..,,uN)=U-Zu,~uj+}:u,-lnu,~. (8)

i<j i=1

See Eyre [16, 17] for numerical simulations and a linear analysis of spinodal decomposition
for (7) with the above nonlinearity.

The spectrum of the linearized system at a spatially homogeneous equilibrium 4, € ¢
is a close analogue to the scalar case (1). Namely, eigenfunctions are of the form W - Y
fork=1,...,N-1and i€ N, where the ¥; are (scalar-valued) eigenfunctions of A,
and the Wy are eigenvectors for a constant matrix B within the linearization of (7) with
corresponding eigenvalues 8; > ... > fGy_;. The resulting eigenvalues of the linearization
of (7) are of the form )
Aige = ki - (B — €%k;) .
Thus, each eigenvector corresponds to a curve of eigenvalues as in Figure 2, all curves
being bounded by some ™, Furthermore, the homogeneous equilibrium i, € G is
unstable if 8; > 0. For the nonlinearity given in (8) and N = 3 this occurs if 1, is contained
in the shaded regions shown in Figure 5. The corners e; of the triangle correspond to the
three pure states of the material.

Maier-Paape, Stoth, Wanner [24] showed that using an analogous dominating sub-
space Y7 as in the scalar case, i.e.,

Y} := span {u')'k Wi Mige > o - /\;mx}
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Figure 5: Directions of the dominating subspaces Y;.

for some g < 1 close to one, the results on the early stages of spinodal decomposition also
apply to the system case. Notice that if Y denotes an appropriate dominating subspace
of the binary case as introduced in (3), then we have

Y: C 'lﬁly: 2] ...@'U_).N_ly: .

Thus, each component of a function in Y has patterns as in the binary case and satisfies a
wavelength estimate as in Theorem 2.1. This time however, two different phenomena can
be observed during the spinodal decomposition process, depending on the homogeneous
initial concentration i, € G.

First, it is possible that the eigenvalue curves corresponding to several 8;’s have the
same magnitude. In this case, solutions starting near the equilibrium decompose in such a
way that the local concentrations of the alloy are driven away from %, in many directions.
This is made precise in the following theorem.

Theorem 5.1 Let By = B = ... = B > fie1 > ... > Bn_1 denote the eigenvalues
of B for the linearization of the multi-component Cahn-Hilliard system (7) at the unstable
homogeneous equilibrium @,. Then on a neighborhood of @, with size proportional to edim%
as € = 0, the subspace Y} dominates the behavior of all solutions of (7) originating
near 4,. Moreover, the space Y} is contained in W, Y @ ... ® w,.Y,*.

If on the other hand 8, 3> (3, one observes a strong mutual coupling of the components.
That is, since the dominating subspace is unidirectional, one observes a linear relationship
in the mixtures of the components. By virtue of being a separation into two states in
opposite directions along a line, this situation is called pseudo-binary. Note however
that the two states of separation are not pure concentrations of two of the N metals.
More precisely, we have the following result concerning the structure of the dominating
subspace Y, which is responsible for the occurrence of pseudo-binary decomposition.

Theorem 5.2 Suppose the eigenvalues of B satisfy by > 5 > ... > Bnv_y. Thenon a
neighborhood of the unstable homogeneous equilibrium %, with size proportional to e4m9
the subspace Y} C 4,Y;* is dominant. Thus, all components of the elements of Y! are
constant multiples of each other. Punctions of this form are called pseudo-binary.
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Figure 5 illustrates the two cases described in Theorems 5.1 and 5.2 for ternary alloys,
Le., for N = 3, and the potential F defined in (8), as a function of the parameter o. As
mentioned above, the shaded regions of each Gibbs triangle G are the regions for which
the equilibria are unstable, and thus exhibit spinodal decomposition. In (a) and (b), all
equilibria cause pseudo-binary decomposition. The lines marked denote the direction of
the linear separation for fixed mass being the dots marked. In (c), spinodal decomposition
for equilibria in the darker region is not pseudo-binary. Instead, the solutions move away
from the equilibrium in all directions, and there is no obvious ordered separation; this is
the behavior described in Theorem 5.1.

Together with David Eyre we are currently working to generalize the later stage results
to the multi-component system as well. Other extensions of these results are to the Cahn-
Hilliard lattice system with discretized spatial lattice, as in Maier-Paape, Moore, Van
Vleck [23], and to the stochastic Cahn-Hilliard-Cook model, see Blomker, Maier-Paape,
Wanner (3]. Cahn-Hilliard-type convolution equations also show promise.

In addition to furnishing an explanation for the Cahn-Hilliard equation, the methods
apply quite well to a number of related equations and models. Specifically, reaction-
diffusion systems arising in biological applications with similar spectral properties appear
to show similar signs of being driven into an unexpectedly linear regime near equilibrium,
despite strong nonmlinearities. Sander and Wanner are currently working towards such
results.
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