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a b s t r a c t

Block copolymers play an important role in materials sciences and have found widespread
use in many applications. From a mathematical perspective, they are governed by a
nonlinear fourth-order partial differential equation which is a suitable gradient of the
Ohta–Kawasaki energy. While the equilibrium states associated with this equation are of
central importance for the description of the dynamics of block copolymers, their math-
ematical study remains challenging. In the current paper, we develop computer-assisted
proof methods which can be used to study equilibrium solutions in block copolymers
consisting of more than two monomer chains, with a focus on triblock copolymers.
This is achieved by establishing a computer-assisted proof technique for bounding the
norm of the inverses of certain fourth-order elliptic operators, in combination with an
application of a constructive version of the implicit function theorem. While these results
are only applied to the triblock copolymer case, the obtained norm estimates can also
be directly used in other contexts such as the rigorous verification of bifurcation points,
or pseudo-arclength continuation in fourth-order parabolic problems.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Block copolymers are materials formed from a number of different polymer molecules which are connected together in
olymer chains. By combining monomers with different physical properties, one can create materials with completely new
roperties. For example, thermoplastic elastomers are a type of diblock copolymer, which combine rubbery monomers,
uch as polybutadiene or polyisoprene, with glassy hard monomers, such as polystyrene. Based on these two competing
roperties, one obtains a compound material that can be molded at high temperatures, but behaves as a rubber at
ow temperatures. Such block copolymers are used in a number of commercial applications, such as in sealants, gasket
aterials, hotmelt adhesives, rubber bands, toy products, shoe soles, and even in road paving and roofing applications.
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From a physical perspective, the study of diblock copolymers, which consist of exactly two different monomers, was
nitiated by Ohta and Kawasaki [1]. They proposed a free energy functional for the description of such systems, which
xtends the standard van der Waals free energy functional [2] by a nonlocal term. This addition models the competition
etween both long-range and short-range forces in the material, and it causes microphase separation, which in turn results
n pattern formation on a mesoscopic scale. The observed pattern morphology is extremely rich, and one can observe
omplicated microstructure such as gyroids, perforated layers, and more. See for example [3] and the references therein.
Mathematical studies of diblock copolymers have focused on dynamical aspects of these materials. As already

eveloped in [1], one can associate gradient dynamics with the Ohta–Kawasaki energy functional, which leads to a
ourth-order nonlinear parabolic partial differential equation. Being dissipative, this equation has a global attractor, and
ts structure is responsible for the long-term dynamics of the model [4,5]. Of particular interest is the set of equilibrium
tates of the diblock copolymer model. While the numerous local and global energy minimizers of the Ohta–Kawasaki
nergy describe potential long-term limits, even the saddles of the energy play an important role in the selection of
pecific stable states [6–10]. There have been a number of studies which proved the existence of equilibrium solutions of
ertain types, see for example [4,11–14] and the references therein. More recently, computer-assisted proofs have been
sed to obtain mathematically rigorous results concerning the equilibrium structure, see for example [15–19].
With the present paper, we start a study of equilibrium solutions for block copolymers consisting of more than two

onomers. For the sake of specificity, we focus on the case of triblock copolymers, which were first discussed in [20], and
hose rich variety of steady state microstructures has been illustrated in [21,22]. Such systems have only recently become
he subject of mathematical studies, see for example [23,24]. For the present paper, we study the triblock copolymer
ystem given by

∂u1

∂t
= −∆

(
ε2∆u1 + f1(u1, u2)

)
− σ (u1 − µ1) ,

∂u2

∂t
= −∆

(
ε2∆u2 + f2(u1, u2)

)
− σ (u2 − µ2) ,

u1 + u2 + u3 = 1.

(1)

n this system, the functions u1, u2, u3 : Ω → R describe the three monomer components. More precisely, values
etween 0 and 1 of ui(t, x) indicate that at time t and location x ∈ Ω the ith monomer has concentration ui(t, x).
ince the above model is of phase-field type, the function values of the ui may not actually lie between 0 and 1, but
hey generally stay close to this interval, and we interpret negative values or values larger than one as being equal to
oncentrations of 0 or 1 in the physical system, respectively. This is similar to the phase variables considered for example
n the Allen–Cahn or Cahn–Hilliard models, up to an affine transformation. The above system of equations has to be
atisfied in a bounded domain Ω ⊂ Rd for d = 1, 2, 3, where for the purposes of this paper we restrict ourselves to
he unit cube Ω = (0, 1)d. In addition, we consider (1) subject to homogeneous Neumann boundary conditions for all ui
nd ∆ui, the small parameter ε > 0 models interaction length, and σ ≥ 0 represents the polymer length scale, just
s in the diblock copolymer case [16]. If we further define µ3 = 1 − µ1 − µ2, then the three constants µi have to be
onnegative, and they represent the total mass of the three involved monomers in the sense that

1
|Ω|

∫
Ω

ui(t, x) dx = µi for all t ≥ 0 and i = 1, 2, 3. (2)

Finally, the functions f1 and f2 are suitable nonlinearities which are derived from the gradient of a triple-well potential
and which will be described in more detail in our model derivation in the next section.

Our approach for establishing the existence of equilibrium solutions of the triblock copolymer system (1) subject to
the mass constraints in (2) is based on the constructive implicit function theorem introduced in [25], combined with the
rigorous Sobolev estimates of [26] and extends the approach used in [16] for the diblock copolymer case. More precisely,
we use spectral approximations based on cosine series to find an approximate solution, and then have to establish the
following three estimates:

• First of all, one has to determine the residual of the approximate solution, which in view of our use of a spectral
approximation combined with polynomial nonlinearities, amounts to little more than evaluating a finite sum in
interval arithmetic.

• Next, one needs local Lipschitz bounds on the Fréchet derivative of (1) at the approximate solution, which can easily
be obtained using the above-mentioned Sobolev embedding results.

• The last and most difficult step is to obtain a rigorous bound on the operator norm of the inverse of the Fréchet
derivative of (1) at the approximate solution. While in principle this will be accomplished as in [16], the specifics
must be adapted to the current situation. This step is definitely the most elaborate part of the proof.

Once the above three tasks have been completed, one obtains computer-assisted proofs for small solution branches of
equilibrium solutions of (1), similar to [25, Theorem 5] and [16, Section 5].

The above approach has a couple of shortcomings. In particular, the direct use of the constructive implicit function
theorem only provides small branch segments, as the theorem in its original form is not aligned to the actual tangent
direction of the branch; see the discussion in [25]. Additionally, in order to follow a branch through a saddle–node
2



P. Rizzi, E. Sander and T. Wanner Communications in Nonlinear Science and Numerical Simulation 115 (2022) 106789

r
a
o
l
t

bifurcation or to directly verify of the existence of certain bifurcation points requires applying the constructive implicit
function theorem to a suitable extended system. See for example [9,25,27,28]. In all of these cases, one has to study
different extensions of the system (1). In its current form, for each of these applications the elaborate third step above
has to be redone.

One of the main contributions of the current paper is the development of a flexible general framework such that this
eassembly for each application is not necessary. Namely, we derive the norm estimate on the inverse operator right
way for a sufficiently large class of linear systems, such that we can easily reuse already calculated results for a variety
f different extended systems. More precisely, the central part of this paper is devoted to obtaining such estimates for
inear operators L acting on m ∈ N0 scalar parameters η1, . . . , ηm and on n ∈ N functions vk :Ω → R in such a way that
he first m components of L are given by the scalars

m∑
i=1

αkiηi +

n∑
j=1

lkj(vj) for k = 1, . . . ,m , (3)

and the next n components of L are given by the functions

− βk∆
2vk −

m∑
i=1

bkiηi −∆

n∑
j=1

ckjvj −
n∑

j=1

γkjvj for k = 1, . . . , n. (4)

In these formulas, the variables αki, βk > 0, and γkj refer to real constants, while bki and ckj denote suitably smooth
real-valued functions defined on Ω , and lkj denotes a bounded linear functional on the ambient space for vj with Riesz
representative in a suitable finite dimensional subspace.

At first glance, the generality of the linear operators defined in (3) and (4) might seem exaggerated, given that the
main application of this paper is the establishment of certain triblock copolymer microstructures. In fact, however, the
above generality allows for a number of direct applications:

• An immediate application is the study of pitchfork bifurcation points in the diblock copolymer model which are
induced by symmetry-breaking based on a cyclic group action [28]. While these results answer an open question
posed in [9], the latter paper was based on the radii polynomial approach, and one would have to adapt the estimates
for every group order to obtain a computer-assisted proof. The estimates of the present paper apply directly and
without change.

• We can extend the initial study of triblock copolymers in this paper to a more systematic study of their bifurcation
diagrams using rigorous pseudo-arclength continuation, and thereby shed some light on the creation of bubble
assemblies [24].

• The norm bound estimate can be used to obtain rigorous results on double and quadruple bubbles in multi-
component metallic alloys, as modeled by Cahn–Morral systems [29]. So far, only numerical results have been
obtained in [30].

• More generally, our construction opens the door to a more detailed study of the bifurcation structure of the
celebrated Cahn–Hilliard model on higher-dimensional domains [31,32], including pseudo-arclength continuation,
bifurcation point verification, and continuation of bifurcation points in a two-parameter setting.

The above list is not meant to be exhaustive, but rather to justify the extra effort which is necessary to study the linear
operator defined in (3) and (4). For the sake of keeping the current paper from becoming too long, we will address these
applications in future work.

The remainder of the paper is organized as follows. Section 2 is devoted to our preliminary study of triblock copolymers.
In addition to deriving the model and describing its basic stability as a function of the mass vector, we also describe how
a constructive version of the implicit function theorem can be used to obtain computer-assisted proofs for small branches
of equilibrium solutions. The section closes with the presentation of specific computer-assisted proofs of a variety of
observed microstructures. Section 3 introduces the functional-analytic framework for our computer-assisted equilibrium
validation. In addition to recalling definitions and results from [16,26], we also derive the Lipschitz estimates which are
necessary for the application of the constructive implicit function theorem. The remaining ingredient for the validation
of the triblock copolymer stationary states is the derivation of the inverse norm bound, which is the subject of Section 4.
Finally, Section 5 contains conclusions and future applications.

2. Validated triblock copolymer equilibria

Before diving into the more technical parts of the paper, we demonstrate how these results can be applied in the
context of triblock copolymers. More precisely, in the present section we rigorously validate equilibria for the triblock
copolymer model, by establishing intriguing patterns for a variety of different mass vectors. To our knowledge, this is the
first computer-assisted result in this context.

To accomplish this, Section 2.1 briefly describes the derivation of the model from its energy functional, which is
followed in Section 2.2 by a discussion of the stability of the homogeneous steady state and the creation of nontrivial
3
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steady states via bifurcations from the homogeneous one. We then present the framework for our computer-assisted
equilibrium validation in Section 2.3, which is based on a constructive version of the implicit function theorem. Finally,
Section 2.4 contains sample computer-assisted existence proofs for equilibrium solutions, which are all based on the
functional-analytic framework described in Section 3 and the main inverse norm bound derived in Section 4.

2.1. Derivation of the triblock copolymer model

The dynamics of triblock copolymers are dictated by their associated free energy as introduced in [20], which is given by

Eε,σ [u] =

∫
Ω

(
ε2

2

3∑
i=1

|∇ui|
2
+ F (u) +

σ

2

3∑
i=1

⏐⏐(−∆)−1/2(ui − µi)
⏐⏐2) dx , (5)

here u = (u1, u2, u3) :Ω → R3 denotes a material state which satisfies u1 + u2 + u3 = 1 throughout Ω , and F is the
riple-well potential given by

F (u) = F (u1, u2, u3) =

3∑
i=1

g(ui) with g(s) =
27s2(1 − s)2

4
. (6)

his energy functional has global minima at the three points (1, 0, 0), (0, 1, 0), and (0, 0, 1), which correspond to the three
pure monomers. From this energy functional, one can derive several different gradient-like evolution equations if the func-
tion u also shows t-dependence. While the recent study [24] considered a standard L2(Ω)-gradient, which results in a non-
local second-order evolution equation, we follow the standard procedure which in the two-component case leads to the
Ohta–Kawasaki model. That is, we use the H−1(Ω)-gradient instead. This results in a local fourth-order partial differential
equation, which exhibits a structure similar to the classical Cahn–Hilliard, Cahn–Morral, or Ohta–Kawasaki models.

In order to arrive at an evolution equation for the first two components u1 and u2 only, which respects the conservation
of mass identity u1 + u2 + u3 = 1 throughout Ω , we follow the procedure outlined in [29,33,34] for the Cahn–Morral
case. For this, define the vector-valued function u := (u1, u2, u3) :Ω → R3 and let µ = (µ1, µ2, µ3) be the vector of total
asses of the three involved monomers, as defined in (2). In fact, we assume that the latter mass vector lies in the Gibbs

riangle G defined as

G :=

{
µ ∈ R3

:

3∑
i=1

µi = 1 and µi ≥ 0 for i = 1, 2, 3

}
.

y computing the H−1(Ω)-gradient of (5) as in [29,33,34], one can then associate the gradient dynamics given by
∂u
∂t

= −∆
(
ε2∆u + f̄ (u)

)
− σ (u − µ) in Ω ,

∂u
∂ν

=
∂∆u
∂ν

= 0 on ∂Ω ,

(7)

where ν denotes the unit outward normal vector to the boundary ∂Ω . We would like to point out that while at first glance
this equation appears to be exactly the diblock copolymer model, it is in fact a system of equations for the vector-valued
function u, i.e., for all t ≥ 0 and arbitrary x ∈ Ω we have u(t, x) ∈ R3. The nonlinearity f̄ :R3

→ R3 is given by

f̄ (u) = −P∇F (u) , where Pv = v −
v · e
|e|2

e and e = (1, 1, 1) .

his form of the nonlinearity ensures that the right-hand side of (7) is pointwise orthogonal to the vector e, and therefore
he evolution of this partial differential equation leaves the affine space u1 + u2 + u3 = 1 pointwise invariant. One can
herefore consider the first two equations of the evolution equation (7) only, where we replace u3 by 1 − u1 − u2. Thus,
e finally obtain the equation stated in (1), where the nonlinearities f1 and f2 are given by

f1(u1, u2) = f̄1(u1, u2, 1 − u1 − u2) =
−2g ′(u1) + g ′(u2) + g ′(1 − u1 − u2)

3
,

f2(u1, u2) = f̄2(u1, u2, 1 − u1 − u2) =
g ′(u1) − 2g ′(u2) + g ′(1 − u1 − u2)

3
,

where g was defined in (6).
In the present paper, we will study the set of equilibrium states of the system (1), i.e., we set the right-hand sides in

the partial differential equations equal to zero, which in turn gives the fourth-order elliptic nonlinear system

−∆
(
ε2∆u1 + f1(u1, u2)

)
− σ (u1 − µ1) = 0 ,

1
|Ω|

∫
Ω

u1 dx = µ1 ,

−∆
(
ε2∆u2 + f2(u1, u2)

)
− σ (u2 − µ2) = 0 ,

1
|Ω|

∫
Ω

u2 dx = µ2 ,

(8)

subject to homogeneous Neumann boundary conditions for u and ∆u , for i = 1, 2.
i i

4
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2.2. Stability of the homogeneous steady state

One can easily see that the equilibrium problem (8) for the triblock copolymer equation has the spatially constant
olution (µ1, µ2), whenever we have µ = (µ1, µ2, µ3) ∈ G. Thus, one can hope to find nontrivial equilibria through
path-following from this homogeneous steady state as the parameter ε is varied. Since one can easily see that for large
values of ε the homogeneous state is stable (see also the discussion below), we need to focus on mass vectors for which
this steady state becomes unstable as ε decreases.

More generally, suppose now that u1, u2 :Ω → R denotes a solution of the system (8), i.e., the functions u1, u2, and
3 = 1 − u1 − u2 are an equilibrium for the triblock copolymer equation (1). In order to understand the stability of this
teady state one has to consider the linearization given by

∂v1

∂t
= −∆

(
ε2∆v1 −

2
3
g ′′(u1)v1 +

1
3
g ′′(u2)v2 −

1
3
g ′′(u3)(v1 + v2)

)
− σv1 ,

∂v2

∂t
= −∆

(
ε2∆v2 +

1
3
g ′′(u1)v1 −

2
3
g ′′(u2)v2 −

1
3
g ′′(u3)(v1 + v2)

)
− σv2 ,

(9)

r, more precisely, the spectrum of the linear elliptic operator induced by its right-hand side. For the homogeneous case
his linearization simplifies to the linear partial differential equation

∂

∂t

(
v1
v2

)
= −∆

(
ε2∆

(
v1
v2

)
+ M

(
v1
v2

))
− σ

(
v1
v2

)
, (10)

here the matrix M ∈ R2×2 is defined as

M =
1
3

(
−2g ′′(µ1) g ′′(µ2)
g ′′(µ1) −2g ′′(µ2)

)
−

1
3
g ′′(1 − µ1 − µ2)

(
1 1
1 1

)
. (11)

his linearization is considered subject to homogeneous Neumann boundary conditions as before, and in addition, with
he homogeneous integral constraints

∫
Ω
v1 dx =

∫
Ω
v2 dx = 0. Its stability is the subject of the next lemma.

Lemma 2.1 (Stability of the Homogeneous State). Let µ ∈ G denote an arbitrary mass vector in the Gibbs triangle, and
consider the linearization of the triblock copolymer model (1) at this homogeneous state, as given in (10) and (11) above. Then
the matrix M is diagonalizable, i.e., we can find two eigenvalues ν1, ν2 ∈ R and eigenvectors p1, p2 ∈ R2 such that

Mp1 = ν1p1 and Mp2 = ν2p2 , as well as ν1 ≥ ν2. (12)

Furthermore, if the eigenvalues of the negative Laplacian subject to homogeneous Neumann boundary conditions and zero mass
constraint on Ω are given by 0 < κ1 ≤ κ2 ≤ . . . → ∞, and the associated eigenfunctions ϕk satisfy

−∆ϕk = κkϕk on Ω and
∂ϕk

∂ν
= 0 on ∂Ω , (13)

hen the following hold:

(a) For every j = 1, 2 and k ∈ N the vector pjϕk of functions is an eigenfunction of the right-hand side of (10) with associated
eigenvalue

λj,k = κk
(
νj − ε2κk

)
− σ . (14)

Furthermore, the spectrum of the operator given by the right-hand side of (10) consists precisely of these eigenvalues λj,k
for j = 1, 2 and k ∈ N.

(b) If the inequality ν2 ≤ ν1 ≤ 0 holds, then the homogeneous equilibrium µ of (1) is stable for all values ε > 0. On the
other hand, if we have ν1 > 0, then the homogeneous state is unstable for all sufficiently small ε > 0.

Proof. It is elementary to show that if we write µ3 = 1 − µ1 − µ2, then the characteristic polynomial of the matrix M
has the discriminant

2
9

((
g ′′(µ1) − g ′′(µ2)

)2
+
(
g ′′(µ2) − g ′′(µ3)

)2
+
(
g ′′(µ3) − g ′′(µ1)

)2)
≥ 0 ,

hich is clearly nonnegative. Thus, the matrix M always has two real eigenvalues and associated real eigenvectors,
.e., we can assume that (12) is satisfied. But then one easily obtains that the pair of functions ψ = pjϕk satisfies the
identity −∆(ε2∆ψ + Mψ) = λj,kψ , by applying (13) component-wise, in combination with (12). In addition, note that
according to our construction the eigenfunctions {ϕk}k∈N form a complete orthogonal set in the Hilbert space X = {w ∈

L2(Ω) :
∫
Ω
w dx = 0}. Thus, the function pairs pjϕk for j = 1, 2 and k ∈ N form a complete orthogonal set in X × X , which

immediately establishes (a). Finally, the statements in (b) follow easily from the formula in (14) and the fact that κk > 0
for all k ∈ N. This completes the proof of the lemma. □
5
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Fig. 1. Stability regions for the homogeneous steady state of the triblock copolymer model (1) in the Gibbs triangle G. For total mass vectors in the
yellow regions the homogeneous state is stable, if the vector lies in either the light or dark blue areas, then the state is unstable for sufficiently
small ε > 0. The dark blue region corresponds to ν1 ≥ ν2 > 0, while the light blue region is for ν1 > 0 ≥ ν2 in (12). The five red dots indicate mass
vectors at which we validated nontrivial solutions, and the associated mass values are listed in the table. Figs. 3 and 5–7 have µ values in the dark
blue region, whereas Figs. 2 and 4 have values of µ in the light blue region.

Fig. 2. Sample numerically computed bifurcation diagrams for the triblock copolymer equilibrium solutions on the one-dimensional domain
Ω = (0, 1). The parameters σ = 6.0 and on left µ = (0.5, 0.4, 0.1) and right µ = (0.4, 0.2, 0.4) are held fixed, while λ = 1/ε2 is permitted
o vary. The color coding represents the index of the equilibrium branch, with black, red, blue, green, and magenta corresponding to index 0, 1, 2,
, and 4, respectively. Since µ3 ≈ 0 in the left image, the diagram is qualitatively very similar to the one of the diblock copolymer equation shown
n [8,9]. For the right image, since µ3 ≫ 0, the diagram looks very different.

The stability of the homogeneous steady state µ = (µ1, µ2, µ3) ∈ G is illustrated in Fig. 1. In this figure, yellow regions
orrespond to ν2 ≤ ν1 ≤ 0, i.e., in those regions the homogeneous state µ is stable for all ε > 0. On the other hand, the
ight blue region corresponds to the inequality ν1 > 0 ≥ ν2, while the dark blue region is for ν1 ≥ ν2 > 0. In both of
hese regions, the homogeneous state µ is unstable for all sufficiently small ε > 0, and one can hope to observe sudden
hase separation in solutions of the triblock copolymer model originating nearby.
To explain this last comment in more detail, we introduce an abbreviation which will be used throughout the remainder

f the paper. As mentioned in the previous paragraph, the stability of the homogeneous state in the blue regions of Fig. 1
hanges for small enough values of ε, and in fact it is the limit ε → 0 which leads to interesting nonhomogeneous
tationary states. Uncovering these states will be accomplished by continuation techniques, and it is therefore more
onvenient to instead introduce the new parameter

λ =
1
ε2

which is then studied in the limit λ → ∞. One can easily see that if we divide both sides of the linearized problem (9)
y ε2 and rescale time, the spectrum of the right-hand side for small λ ≈ 0 is a small perturbation of the spectrum of
he stable bi-Laplacian operator −∆2. Now consider a homogeneous mass vector µ in one of the blue regions in Fig. 1.
hen the stability of the associated homogeneous state has to change as λ increases, and standard results from bifurcation
heory imply the appearance of nontrivial equilibrium solutions. This can be seen in Figs. 2 and 3, which contain sample
umerically computed bifurcation diagrams for a few different mass vectors in the blue regions. The diagrams in Fig. 2 are
6
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Fig. 3. Sample numerically computed triblock copolymer bifurcation diagrams for the two-dimensional domain Ω = (0, 1)2 . In both figures, we have
chosen σ = 6.0 and λ = 1/ε2 varies. The left diagram is for mass vector µ = (0.3, 0.2, 0.5), while the right panel is for the vector µ = (0.4, 0.2, 0.4).
hese diagrams are not a complete set of all equilibrium solutions, but they give a sense of the vast array of possible solutions one can find.

or the triblock copolymer model on the one-dimensional domain Ω = (0, 1), while the ones in Fig. 3 are for Ω = (0, 1)2.
otice that all of these diagrams indicate the appearance of a multitude of nontrivial stationary states. Moreover, while
heir number seems manageable in the one-dimensional situation, this is no longer the case in space dimension two. In the
emainder of this paper, we show how these numerically computed equilibrium solutions can be established rigorously.

.3. Computer-assisted equilibrium validation

Our rigorous equilibrium validation is a significant extension of the constructive implicit function theorem approach
hich was first introduced in [19,25], and which was further refined in [16]. In the present subsection, we demonstrate
ow it can be adapted to the situation of the triblock copolymer model. Our goal is to prove the existence of stationary
tates for the triblock copolymer model on the domain Ω = (0, 1)d, where for the purposes of this paper we focus on
= 1, 2. Such equilibrium solutions satisfy the nonlinear elliptic system (8), which for our approach has to be slightly

eformulated. Due to the involved mass constraints, we introduce the transformations

u1 = µ1 + w1 and u2 = µ2 + w2 .

urthermore, as mentioned already at the end of the last subsection, rather than visualizing bifurcation diagrams in the
− (w1, w2)-coordinate system and the small limit ε → 0, which would imply that the equilibrium branches of interest
ecome arbitrarily close together, we instead use the large continuation parameter λ = 1/ε2. Thus instead of (8) we
onsider the transformed system

−∆ (∆w1 + λf1(µ1 + w1, µ2 + w2))− λσw1 = 0 ,
∫
Ω

w1 dx = 0 ,

−∆ (∆w2 + λf2(µ1 + w1, µ2 + w2))− λσw2 = 0 ,
∫
Ω

w2 dx = 0.
(15)

he underlying basic function spaces are the following Sobolev spaces, where the subscript n indicates Neumann boundary
onditions.

H̄2
n (Ω) =

{
w ∈ H2(Ω) :

∫
Ω

w dx = 0 ,
∂w

∂ν
= 0 on ∂Ω

}
and H̄−2

n (Ω) = H̄2
n (Ω)∗. (16)

hen the equilibrium system (15) can be written as the nonlinear zero finding problem

F(λ,w) = 0 for F : R × X → Y (17)

ith

X = H̄2
n (Ω) × H̄2

n (Ω) and Y = H̄−2
n (Ω) × H̄−2

n (Ω) , (18)

s well as
F(λ, (w1, w2)) = −∆(∆w + λf (µ+ w)) − λσw

= (−∆ (∆w1 + λf1(µ1 + w1, µ2 + w2))− λσw1, (19)

−∆ (∆w2 + λf2(µ1 + w1, µ2 + w2))− λσw2) .

7
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This system is solved using the constructive implicit function theorem presented in [25], which is based on similar results
in [19,35]. We state this theorem below. For its application, one needs to establish the following four assumptions:

H1) Assume that we have found a numerical approximation (λ∗, w∗) ∈ R×X of a solution of the system (17). Then one
needs to find an explicit constant ϱ > 0 such thatF(λ∗, w∗)


Y ≤ ϱ .

H2) Assume that the Fréchet derivative DwF(λ∗, w∗) ∈ L(X ,Y) is invertible, and that its inverse DwF(λ∗, w∗)−1
: Y → X

is bounded and satisfies the estimateDwF(λ∗, w∗)−1

L(Y,X ) ≤ K ,

for some explicit constant K > 0, where ∥ · ∥L(Y,X ) denotes the operator norm in L(Y,X ).
H3) There exist constants L1, L2, ℓw > 0 and ℓλ ≥ 0 such that for all pairs (λ,w) ∈ R × X with ∥w − w∗

∥X ≤ ℓw and
|λ− λ∗

| ≤ ℓλ we haveDwF(λ,w) − DwF(λ∗, w∗)

L(X ,Y) ≤ L1

w − w∗

X + L2

⏐⏐λ− λ∗
⏐⏐ .

H4) There exist constants L3, L4 > 0 such that for all λ ∈ R with |λ− λ∗
| ≤ ℓλ one hasDλF(λ,w∗)


Y ≤ L3 + L4

⏐⏐λ− λ∗
⏐⏐ ,

where ℓλ is the constant from (H3).

The constructive implicit function theorem from [25] then takes the following form.

Theorem 2.2 (Constructive Implicit Function Theorem). Let X and Y denote the Hilbert spaces defined in (18), and let F :

R×X → Y be defined as in (19). Furthermore, suppose that the pair (λ∗, w∗) ∈ R×X satisfies hypotheses (H1) through (H4).
Finally, suppose that

4K 2ϱL1 < 1 and 2Kϱ < ℓw. (20)

hen there exist pairs of constants (δλ, δw) with 0 ≤ δλ ≤ ℓλ and 0 < δw ≤ ℓw , as well as

2KL1δw + 2KL2δλ ≤ 1 and 2Kϱ + 2KL3δλ + 2KL4δ2λ ≤ δw , (21)

nd for each such pair the following holds. For every λ ∈ R with |λ− λ∗
| ≤ δλ there exists a uniquely determined

lement w(λ) ∈ X with ∥w(λ) − w∗
∥X ≤ δw such that F(λ,w(λ)) = 0. In other words, if we define

BX
δw

=
{
w ∈ X :

w − w∗

X ≤ δw

}
and BR

δλ
=
{
λ ∈ R :

⏐⏐λ− λ∗
⏐⏐ ≤ δλ

}
,

hen all solutions of the nonlinear problem F(λ,w) = 0 in the set BR
δλ

× BX
δw

lie on the graph of the function λ ↦→ w(λ). In
addition, the function λ ↦→ w(λ) is infinitely-many times Fréchet differentiable.

The above theorem is used for all of the results given in the next Section 2.4. The following is a summary of how we
approach each of the hypotheses (H1)–(H4).

• The numerical approximation of a potential equilibrium state is found using AUTO [36] in the form of a finite Fourier
cosine sum, as described in more detail in Section 3.1.

• The residual bound ϱ in (H1) is computed using the specific norms we use on Y . This is accomplished by evaluating
a suitable sum which depends on the Fourier coefficients in this representation using the interval arithmetic package
Intlab [37], and makes use of the equivalent Sobolev norms which will be described in Section 3.1 below.

• The inverse norm bound in (H2) is established in Section 4. This estimate is derived in the broad context of (3) and
(4) given in Section 1, which contains the triblock copolymer model linearization as a special case. It relies heavily
on the framework developed in Sections 3.1, 3.2, and 3.3.

• The Lipschitz estimates given in (H3) and (H4) that are required in the specific case of the triblock copolymer
equation are derived in Section 3.4.

The details of these more technical steps of the paper are contained in Sections 3 and 4. First, however, we present some
sample results.

2.4. Rigorously verified microstructures

In this section, we illustrate the methods of this paper by rigorously validating equilibrium solutions for the triblock
copolymer equation for fixed values of ε, σ , and µ. In particular, Figs. 4, 5, 6, and 7 show numerically computed
approximations of solutions. As mentioned before, in these figures, instead of using the parameter ε, we give the results
for fixed λ = 1/ε2. From the numerics alone, we cannot guarantee that a qualitatively similar solution exists near the
8
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Table 1
Solution validation information for the one-dimensional solutions depicted in Fig. 4. For all solutions, σ = 6. Note that
the values of K and Li are computed at higher precision than reported here. They are only given here for illustration
of how we establish the two δ values.
Label µ λ N K (L1, L2, L3) δα δx

4a (0.5, 0.5, 0.0) 50 216 19.256 (2.79, 1.45, 0.24) 9.3759e−04 8.8156e−03
4b (0.5, 0.5, 0.0) 50 242 21.802 (2.71, 1.33, 0.24) 7.7418e−04 8.0867e−03
4c (0.5, 0.5, 0.1) 50 219 19.595 (2.99, 1.49, 0.26) 8.1679e−04 8.3619e−03
4d (0.5, 0.4, 0.1) 50 245 21.617 (2.76, 1.40, 0.25) 7.3311e−04 8.0180e−03

computed solution, or if this solution is isolated. However in each case, and using the methods established in the paper, we
have rigorously established that for the given parameters there exists a true solution to the triblock copolymer equation
within a known fixed distance of the depicted solution, and we specify the distance in each case. Furthermore, we have
also validated isolation of the solution. That is, the true solution is unique within a fixed radius ball around the computed
solution, which is also explicitly specified in each case.

To implement the verification outlined at the end of the previous section without a parameter search, one must make
tradeoff. Specifically, when applying Theorem 4.1, one must find an integer N ∈ N and τ > 0 such that a relation of the

form
1
N2

√
A(N)2 + B2 ≤ τ < 1 (22)

olds, where A(N) and B are constants, and A(N) depends on N . The inverse norm bound is then determined by dividing
by 1 − τ . This division leads to a tradeoff in the number of basis functions per spatial dimension (N) and the desired
sharpness of the norm bound. In practice, we usually target τ ≈ 0.75 as this prevents unnecessary inflation of the final
bound while remaining computationally feasible. In order to achieve these τ values, we must find an N such that (22)
holds. This is difficult to do a priori since A(N) depends on the choice of N through a numerical computation. Thus, we
make the following simplifying assumptions for an initial estimate of N:

1. A(N) is bounded above as N increases.
2. B dominates A(N) so that

√
A(N)2 + B2 ≈ B.

The latter assumption provides a simple estimation for N that would result in validation:
B
τ

≤ N2.

We emphasize this approach simply avoids a computationally intense search for N . Once N is chosen, the value of A(N) can
e computed directly as in Theorem 4.1, and (22) can be verified. We take this simplified approach because the specific
orms of A(N) and B in Theorem 4.1 satisfy the assumptions, and it provides a more computationally feasible value of N
n general. In one dimension, this is not an issue, as the calculation is very quick, a few seconds with Intlab 12 and Matlab
020b on a Mac mini using an Intel processor with 3.2 GHz and 32 GB memory, under MacOS Monterey. However, for the
wo-dimensional case, this becomes a larger issue, since the calculation of K for λ = 10 takes around 20 s, and for λ = 20
t takes 3–5 min. For λmuch larger, the required N results in a full matrix that is too big to keep in memory. We note that
hese large N values slow our implementation significantly because we use full matrices at every step. However, a vast
ajority of the entries in these matrices are small in magnitude. For example, in the cases we considered, the observed
ercentage of matrix entries below 10−16 in magnitude is about 97%–98% in one dimension, and in two dimensions, this
ecomes over 99%. Thus one could assuredly speed up the implementation significantly by using sparse approximations.
e leave this to a future effort.
We now describe the selection of example equilibria for which we have rigorously verified stationary solutions. Fig. 4

hows a set of equilibria which have been computed for the µ values (0.5, 0.5, 0) and (0.5, 0.4, 0.1), located in the light
blue region for the case of the one-dimensional domain Ω = (0, 1). In this case, we consider the parameter λ = 50.
For all of the shown equilibrium solutions, we consider the parameter value σ = 6. Notice that for µ3 = 0 the triblock
copolymer equation reduces to the diblock copolymer model. Therefore, these solutions are respectively equal to and
close to cases previously studied in the case of two monomer blocks. In fact, even for µ3 = 0.1 the triblock copolymer
model behaves similarly to the two-component case, and Fig. 2 illustrates this in the left image by showing the bifurcation
diagram for the second µ value above in one space dimension. Note that the diagram bears a striking resemblance to the
bifurcation diagram for the diblock copolymer equation, see [8,9]. To emphasize that this similarity is based on µ rather
than the one spatial dimension, the right image of the figure shows a bifurcation diagram for one space dimension such
that µ = (0.4, 0.2, 0.4), i.e. all three components of µ are far from zero. The diagram is a significant departure from the
diblock copolymer case.

We now turn to the case of the two-dimensional square domain Ω = (0, 1)2. Figs. 5–7 depict equilibria for the
triblock copolymer system for the three values of µ in the dark blue region of Fig. 1. Since all three components of µ are
significantly nonzero, these cases are quite different from the diblock copolymer case. In order to depict these solutions,
9
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Fig. 4. Sample validated triblock copolymer equilibrium solutions on the one-dimensional domain Ω = (0, 1). In all figures, we have chosen σ = 6
nd λ = 50. The top row (left to right: a, b) is for µ = (0.5, 0.5, 0.0), while the bottom row (c,d) has µ = (0.5, 0.4, 0.1). In all plots, the solutions u1 ,
2 , and u3 are shown in blue, red, and green, respectively. The validation parameters are listed in Table 1.

Table 2
Solution validation information for the two-dimensional solutions depicted in Figs. 5 and 6. For all solutions, σ = 6.
As with the one-dimensional case, the values of K and Li are not stated at the full precision that we computed.
Label µ λ N K (L1, L2, L3) δα δx

5a (0.3, 0.2, 0.5) 10 46 968.48 (1.06, 1.54, 0.308) 8.5889e−07 4.9838e−04
5b (0.3, 0.2, 0.5) 20 86 7898.2 (1.98, 2.01, 0.296) 5.6899e−09 3.1894e−05
5c (0.3, 0.2, 0.5) 20 98 434.29 (1.95, 1.43, 0.294) 2.3028e−06 5.8787e−04
6a (0.35, 0.33, 0.32) 10 48 401.17 (0.974, 1.55, 0.277) 6.7908e−06 1.3841e−03
6b (0.35, 0.33, 0.32) 20 99 572.03 (2.17, 1.85, 0.296) 1.2801e−06 4.1691e−04
6c (0.35, 0.33, 0.32) 20 97 674.44 (2.04, 1.85, 0.285) 9.9216e−07 3.7167e−04
7a (0.4, 0.2, 0.4) 10 40 238.08 (0.731, 0.82, 0.248) 3.2873e−05 3.3207e−03
7b (0.4, 0.2, 0.4) 20 94 361.27 (2.06, 1.80, 0.298) 3.1087e−06 6.6886e−04
7c (0.4, 0.2, 0.4) 20 80 117.59 (1.84, 1.50, 0.280) 3.4630e−05 2.2780e−03

we have used the pointwise values of the three components (u1, u2, u3), each of which are basically values between 0
nd 1, as the RGB values of the resulting image. Therefore, a region which is primarily red corresponds to a region
rimarily consisting of the first monomer, a green region mostly of the second monomer, and a blue region consisting of
he third monomer. In between the almost pure red, green, and blue regions, there are narrow transition layers which
sually appear as gray or brown. These contain a mixture of multiple monomers. In fact mixed regions do not only occur
n transition layers. For example, in Fig. 7a, there are two large regions of green and purple, where the purple region
orresponds to a mixed monomer layer.
Our primary focus in this paper is on establishing the framework necessary for rigorous computation of equilibria, and

hus we do not try to give an exhaustive set of connected branches of stationary states. First of all, for each value of µ, there
re an enormous number of equilibrium solutions for each λ and σ value, as shown in Fig. 3. In this and all other bifurcation
10
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Fig. 5. Sample validated triblock copolymer equilibrium solutions on the two-dimensional domain Ω = (0, 1)2 and for the parameters σ = 6,
µ = (0.3, 0.2, 0.5), as well as (left to right) (a) λ = 10 and (b, c) λ = 20. The validation parameters are listed in Table 2.

Fig. 6. Sample validated triblock copolymer equilibrium solutions on the two-dimensional domain Ω = (0, 1)2 , where σ = 6, µ = (0.35, 0.33, 0.32),
nd (a) λ = 10 and (b, c) λ = 20. The validation parameters are listed in Table 2.

Fig. 7. Sample validated triblock copolymer equilibrium solutions on the two-dimensional domain Ω = (0, 1)2 , where σ = 6, µ = (0.4, 0.2, 0.4),
nd (a) λ = 10 and (b, c) λ = 20. The validation parameters are listed in Table 2.

iagrams, we have fixed σ = 6, but for nearby σ values, the complexity of the figure is consistently large. Therefore it is
ot realistically tractable to create an exhaustive set of all equilibria. Second, in order to validate branches of solutions, we
ould need to combine the methods of this paper with the validated pseudo-arclength continuation methods established

n [27]. This will also involve new development, since in the context of that paper, they were only applied in a finite-
imensional case. The latter paper creates the first steps, via a more flexible method of estimation. Rather than trying to
o everything at once, a systematic study combining these techniques will be the topic of a forthcoming paper.
11
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3. Functional-analytic framework and basic estimates

In this section, we describe the functional-analytic framework for establishing stationary states of the triblock
opolymer model using the constructive implicit function theorem from Section 2.3. We will present the underlying spaces
nd norms, and recall necessary auxiliary results and estimates. The results of the present section reduce the equilibrium
erification problem to the derivation of the Fréchet derivative inverse operator norm bound, which is the central result
f this paper and will be established in the next section.
More precisely, we begin by discussing the necessary function spaces in Section 3.1, which form the foundation for

ur spectral approach based on Fourier cosine series. The following Section 3.2 recalls a number of rigorous Sobolev
mbedding results that originated in [38], and results which allow us to replace the standard Sobolev norms with more
omputationally appropriate ones. Section 3.3 is devoted to the required finite-dimensional approximation spaces and
ssociated projection operators, which are used in our computer-assisted proofs. Finally, in Section 3.4 we derive the
ecessary Lipschitz estimates for the Fréchet derivatives of the underlying nonlinear operator. Once that is accomplished,
he only missing piece of the puzzle is then the norm bound for the inverse, and this is left for Section 4 of the paper.

.1. Fourier cosine series expansions and Sobolev spaces

As mentioned in the last section, the functional-analytic backdrop for our equilibrium validation are the spaces H̄2
n (Ω)

nd H̄−2
n (Ω) introduced in (16). These spaces are considered on the unit cube Ω = (0, 1)d in dimension d = 1, 2, 3, and

they incorporate both the zero mass constraint and the homogeneous Neumann boundary conditions. Important for our
spectral approach is the fact that Fourier cosine series forms a complete orthogonal set in both spaces. To describe this in
more detail, define the constants c0 = 1 and cℓ =

√
2 for ℓ ∈ N. Furthermore, we will make use of multi-indices k ∈ Nd

0
of the form k = (k1, . . . , kd) and let

ck = ck1 · . . . · ckd .

If one then defines

ϕk(x) = ck
d∏

i=1

cos(kiπxi) for all x = (x1, . . . , xd) ∈ Ω , (23)

then the family {ϕk}k∈Nd
0
is a complete orthonormal basis for the space L2(Ω). Thus, any measurable and square-integrable

unction u : Ω → R can be written in terms of its Fourier cosine series

u(x) =

∑
k∈Nd

0

αkϕk(x) , (24)

here the real numbers αk ∈ R are the Fourier cosine coefficients of u, and we have

∥u∥L2 =

⎛⎜⎝∑
k∈Nd

0

α2
k

⎞⎟⎠
1/2

,

here ∥ · ∥L2 denotes the standard L2(Ω)-norm on the above domain Ω . To simplify notation, we further introduce the
bbreviations

|k| =
(
k21 + · · · + k2d

)1/2
and |k|∞ = max(k1, . . . , kd)

o distinguish between the Euclidean and maximum norms of multi-indices.
Recall that each function ϕk is an eigenfunction of the negative Laplacian subject to homogeneous Neumann boundary

onditions. The corresponding eigenvalue is given by κk, and is defined via the equations

−∆ϕk = κkϕk with κk = π2 (k21 + k22 + · · · + k2d
)

= π2
|k|2. (25)

otice also that every function ϕk satisfies the identity ∂(∆ϕk)/∂ν = −κk∂ϕk/∂ν = 0, i.e., any finite Fourier cosine series
s above automatically satisfies both imposed boundary conditions of the triblock copolymer equation (1).
It will be useful to think of our basic function spaces in terms of the Fourier cosine series representation in (24). Thus,

or ℓ ∈ N we consider the space

Hℓ
=

⎧⎪⎨⎪⎩u =

∑
k∈Nd

0

αkϕk : ∥u∥Hℓ < ∞

⎫⎪⎬⎪⎭ with ∥u∥2
Hℓ =

∑
k∈Nd

0

(
1 + κℓk

)
α2
k ,

here the latter identity is equivalent to

∥u∥2
= ∥u∥2

+
(−∆)ℓ/2u

2 ,
Hℓ L2 L2

12
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and the fractional Laplacian for odd ℓ is defined using the spectral definition. One can show that the above spaces are
subspaces of the standard Sobolev spaces Hk(Ω) = W k,2(Ω), which were discussed in [39]. In addition, notice that for
ufficiently large ℓ, their definition automatically incorporates the boundary conditions of (1). For example, we have
0

= L2(Ω) and H1
= H1(Ω), as well as

H2
=

{
u ∈ H2(Ω) :

∂u
∂ν

= 0
}

and H4
=

{
u ∈ H4(Ω) :

∂u
∂ν

=
∂∆u
∂ν

= 0
}
,

where the boundary conditions in the last two equations are considered in the sense of the trace operator. See [16] for
more details on these identities.

While the spaces Hℓ incorporate the boundary conditions of (1), in the last section we reformulated the triblock
copolymer model so that both solution components satisfy the integral constraint

∫
Ω
u dx = 0, since the case of nonzero

mass average has been absorbed into the placement of the parameters µ1 and µ2. This mass constraint can be incorporated
by considering suitable subspaces of Hℓ. To this end, consider an arbitrary integer ℓ ∈ Z and define the space

Hℓ
=

⎧⎪⎨⎪⎩u =

∑
k∈Nd

0, |k|>0

αkϕk : ∥u∥Hℓ < ∞

⎫⎪⎬⎪⎭ with ∥u∥2
Hℓ =

∑
k∈Nd

0, |k|>0

κℓkα
2
k . (26)

We would like to point out that in these reduced spaces, we use a simpler norm than the one used in Hℓ. For ℓ = 0 this
definition reduces to the subspace of L2(Ω) of all functions with average zero, equipped with its standard norm, while for
ℓ > 0 we have Hℓ

⊂ Hℓ and the new norm is equivalent to the original norm on Hℓ. Moreover, note that in the case of a
negative integer ℓ < 0 the series in (24) is interpreted formally, i.e., the element u ∈ Hℓ is identified with the sequence
of its Fourier cosine coefficients. One can verify that in this case u acts as a bounded linear functional on H−ℓ. In fact, for
all ℓ < 0 the space Hℓ can be considered as a subspace of the negative exponent Sobolev space Hℓ(Ω) = W ℓ,2(Ω), see
again [39]. Finally, for every ℓ ∈ Z the space Hℓ is a Hilbert space with inner product

(u, v)Hℓ =

∑
k∈Nd

0, |k|>0

κℓkαkβk , (27)

here

u =

∑
k∈Nd

0, |k|>0

αkϕk ∈ Hℓ and v =

∑
k∈Nd

0, |k|>0

βkϕk ∈ Hℓ
.

Being separable Hilbert spaces, the spaces Hℓ do have complete orthonormal sets. The most important one for us is the
one given via rescalings of the functions ϕk, which is identified in the following lemma. Its straightforward proof is left
to the reader.

Lemma 3.1 (Complete Orthonormal Set in Hℓ). For every ℓ ∈ Z a complete orthonormal set in the Hilbert space Hℓ is given
y the family

{
κ

−ℓ/2
k ϕk(x)

}
k∈Nd

0, |k|>0
.

The above spaces are the foundation for our functional-analytic setting. Notice that using these spaces, we can
quivalently reformulate the equilibrium system (15), as written in (17) and (19), using the space notation in (18). It
s clear from our above discussion that we have

X = H2
× H2 and Y = H−2

× H−2
, (28)

here on these product spaces we use the norms

∥(w1, w2)∥2
X = ∥w1∥

2
H2 + ∥w2∥

2
H2 and ∥(w1, w2)∥2

Y = ∥w1∥
2
H−2 + ∥w2∥

2
H−2 . (29)

otice that the nonlinear problem F(λ,w) = 0 is now formulated weakly, and in particular, the second boundary
condition ∂(∆wi)/∂ν = 0 for i = 1, 2 is no longer explicitly stated in this weak formulation. Note, however, that the first
boundary conditions ∂wi/∂ν = 0 have been incorporated into the space X . Furthermore, the fact that the functions f1
nd f2 in (19) are both of class C2 is sufficient to guarantee that the function F : R×X → Y is well-defined and Fréchet
ifferentiable, since we only consider domains up to dimension three.

.2. Constructive Sobolev embeddings and norm bounds

We now turn our attention to a number of auxiliary results which relate the norms of the spaces from the last
ubsections to each other, as well as to other norms. Needless to say, all of these results need to be explicit with concrete
ounds, since they will be used in a constructive computer-assisted proof setting. We begin by recalling two classical
esults concerning Sobolev spaces — namely the Sobolev embedding theorem and the Banach algebra estimate in the
13
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Table 3
The table contains the explicit values for the constants introduced in Lemma 3.2,
depending on the domain dimension d. They were derived using rigorous computational
techniques in [16,38].
Dimension d 1 2 3

Sobolev embedding constant Cm 1.010947 1.030255 1.081202
Sobolev embedding constant Cm 0.149072 0.248740 0.411972
Banach algebra constant Cb 1.471443 1.488231 1.554916

Sobolev space of order two. These results relate the norms on the function spaces H2 and H2 to each other, as well as to
he classical infinity norm. As a side result, we obtain that all functions in H2 are in fact continuous functions on Ω , and
hat H2 is closed under multiplication. These results are essential for the results of the next section.

emma 3.2 (Sobolev Embeddings and Banach Algebra Estimates). Consider the Hilbert spaces H2 and H2 from the last
subsection, which are defined over the unit cube Ω = (0, 1)d for dimensions d = 1, 2, 3. Then the following statements
hold:

(a) Sobolev embedding: For all u ∈ H2 and arbitrary ū ∈ H2 the estimates

∥u∥∞ ≤ Cm ∥u∥H2 and ∥ū∥∞ ≤ Cm ∥ū∥H2

are satisfied, where the constants Cm and Cm can be found in Table 3, and ∥ · ∥∞ denotes the supremum norm in L∞(Ω).
In particular, these estimates show that every function in H2 is almost everywhere equal to a continuous function on Ω .

(b) Banach algebra estimate: For all u, v ∈ H2 we have

∥uv∥H2 ≤ Cb ∥u∥H2∥v∥H2 ,

where the constant Cb can be found in Table 3. In other words, the Sobolev space H2 is closed under multiplication.
(c) Explicit norm equivalence: For all ū ∈ H2 we have

∥ū∥H2 ≤ ∥ū∥H2 ≤ Ce∥ū∥H2 with Ce =

√
1 + π4

π2 .

The proofs for the first inequality in (a) and the inequality in (b) can be found in [38]. The remaining statements
ere established in [16]. Many of these estimates were themselves obtained via computer-assisted proofs, see again the
entioned references.
Our next and final result of this subsection discusses the relation between the spaces Hℓ for varying values of the

ifferentiation order ℓ, i.e., we discuss the so-called scale of these spaces. More precisely, it shows that, on the one hand,
ue to our norm choices the Laplacian acts as an isometry between spaces of appropriate differentiation orders. On the
ther hand, it provides explicit embedding constants from spaces with larger differentiation order to ones with smaller
rder. The proof of the following lemma can be found in [16].

emma 3.3 (Sobolev Scale Properties). Consider the Hilbert spaces Hℓ for ℓ ∈ Z from the last subsection, which are defined
over the unit cube Ω = (0, 1)d for d = 1, 2, 3. Then the following statements hold:

(a) Laplacian isometry: For every integer ℓ ∈ Z the Laplacian operator ∆ is an isometry from Hℓ to Hℓ−2, i.e., for all u ∈ Hℓ

the identities

∥∆−1u∥Hℓ+2 = ∥u∥Hℓ = ∥∆u∥Hℓ−2

are satisfied.
(b) Scale embeddings: For all u ∈ Hm and all ℓ ≤ m we have the estimate

∥u∥Hℓ ≤
1

πm−ℓ
∥u∥Hm .

Furthermore, note that in the special case ℓ = 0 ≤ m we have ∥u∥H0 = ∥u∥L2 .

.3. Spectral projection operators

We now turn our attention to the finite-dimensional approximation spaces that will be used in our computer-assisted
xistence proofs for equilibrium solutions of (1). These turn out to simply be generated by truncated cosine series, and
his is briefly recalled in the present subsection via suitable projection operators.
14
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For this, let N ∈ N denote a positive integer, and consider u ∈ Hℓ for ℓ ∈ N0, or alternatively u ∈ Hℓ for ℓ ∈ Z, of the
form u =

∑
k∈Nd

0
αkϕk, where in the latter case α0 = 0. Then as in [16] we define the projection

PNu =

∑
k∈Nd

0, |k|∞<N

αkϕk . (30)

In this definition we use the ∞-norm of the multi-index k, since this simplifies the implementation aspects of our method.
The so-defined operator PN is a bounded linear operator on Hℓ with induced operator norm equal to 1, and it leaves the
space Hℓ invariant if ℓ ∈ Z. Moreover, one can easily show that for any N ∈ N we have

dim PNHℓ
= Nd and dim PNH

ℓ
= Nd

− 1 . (31)

otice also that for all ℓ ∈ N0 the identity (I − P1)Hℓ
= Hℓ holds. Since this is an especially useful operator, we introduce

the abbreviation

P = I − P1 . (32)

t was shown in [16] that this operator P satisfies the identity(
Pu, v

)
L2 = (u, v)L2 for all u ∈ H0 and v ∈ H0

. (33)

o close this subsection, we present a norm bound for the infinite Fourier cosine series part that is discarded by the
rojection PN in terms of a higher-regularity norm. More precisely, we have the following result, whose proof can again
e found in [16].

emma 3.4 (Projection Tail Estimates). Consider two integers ℓ ≤ m and let u ∈ Hm be arbitrary. Then the projection
ail (I − PN )u satisfies the estimate

∥(I − PN )u∥Hℓ ≤
1

πm−ℓNm−ℓ
∥(I − PN )u∥Hm ≤

1
πm−ℓNm−ℓ

∥u∥Hm .

3.4. Lipschitz bounds for the Fréchet derivatives

To close this section, we now turn our attention to the Lipschitz bounds which are required in hypotheses (H3) and (H4)
of the constructive implicit function theorem. The basic idea for their derivation is the same as in [16], and it makes use
of the explicit form of the Fréchet derivatives of F with respect to w and λ, combined with a suitable version of the mean
value theorem and our estimates from Section 3.2. In this way, we obtain the following result.

Lemma 3.5 (Lipschitz Bounds for the Fréchet Derivatives of F). Consider the nonlinear triblock copolymer operator F :

×X → Y defined in (19), between the spaces introduced in (18). Then both Hypotheses (H3) and (H4) are satisfied with the
explicit constants

L1 =
23/2Cm(|λ∗

| + ℓλ)f
(2)
max

π2 , L2 =
f (1)∗

π2 +
σ

π4 ,

L3 =
2f (1)max

π2 +
σ

π4 , and L4 = 0 ,
(34)

here the values f (2)max, f
(1)
max, and f (1)∗ are defined in (35) and (36) below, and the value of Cm can be found in Table 3.

roof. In the following, we recall that the µi are constants representing the total mass of the ith monomer and that wi
re defined as ui −µi (i.e., the zero-mass component of ui) to reformulate (8) as (15). For brevity, we use the abbreviation
+w = (µ1+w1, µ2+w2), and we denote the Jacobian matrix of f = (f1, f2) at a point z ∈ R2 by Df (z) = (∇f1(z),∇f2(z))t .
ecall that the Fréchet derivative of the nonlinear operator F is then explicitly given by

DwF(λ,w)[w̃] = −∆(∆w̃ + λDf (µ+ w)w̃) − λσw̃

= (−∆ (∆w̃1 + λ∇f1(µ+ w) · w̃)− λσw̃1 ,

−∆ (∆w̃2 + λ∇f2(µ+ w) · w̃)− λσw̃2) .

n the following proof, we will make frequent use of the results from the last three subsections. For a pair of functions
= (w1, w2) in either X or Y defined in (28), we use the respective norms given in (29). In addition, and parallel to these

efinitions, we define the norms ∥ · ∥Z by ∥w∥
2
Z = ∥w1∥

2
H0 + ∥w2∥

2
H0 , and the norm ∥ · ∥I by ∥w∥

2
I = ∥w1∥

2
∞

+ ∥w2∥
2
∞
.

inally, if w∗ denotes the solution approximation from the constructive implicit function theorem, then we define the set
= {z ∈ R2

: ∥z∥ ≤ ∥w∗
∥I + Cmℓw}, the constants

f (1)max = max
i,j=1,2

⏐⏐⏐⏐ ∂ fi∂z (z + µ)
⏐⏐⏐⏐ and f (2)max = max

i,j,k=1,2

⏐⏐⏐⏐ ∂2fi∂z ∂z
(z + µ)

⏐⏐⏐⏐ , (35)

z∈R j z∈R k j

15
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as well as finally the constant

f (1)
∗

= max
i,j=1,2

 ∂ fi∂zj (w∗
+ µ)


∞

. (36)

onsider now any two scalar norms ∥ · ∥s1 , ∥ · ∥s2 and two vector norms ∥ · ∥S1 , ∥ · ∥S2 which are related by the identity
(w1, w2)∥2

Si
= ∥w1∥

2
si + ∥w2∥

2
si . Assume further that for every scalar function u such that the si norms are well-defined

one has the estimate ∥u∥s1 ≤ C∥u∥s2 for some constant C > 0. Then the corresponding estimate is satisfied with
unchanged C also in the vector-valued case, i.e., one has ∥w∥S1 ≤ C∥w∥S2 . Therefore, we can use the norm bounds
relating the spaces H−2, H2, H0, and C(Ω) given in Lemmas 3.2 and 3.3 to establish norm bounds relating the spaces X ,
, Z = H0

×H0, and I = C(Ω)×C(Ω), respectively. In particular, Lemmas 3.2(a) and 3.3(a),(b) imply the four statements

∥w∥I ≤ Cm∥w∥X and ∥∆w∥Y = ∥w∥Z , as well as (37)
∥w∥Z ≤ π−2

∥w∥X and ∥w∥Y ≤ π−4
∥w∥X . (38)

In preparation for the verification of the actual Lipschitz estimate of the theorem, we consider a smooth function
h : Rm

→ Rm, and let Dh(z) denote the Jacobian matrix of h at z ∈ Rm. Moreover, consider two points z, ẑ ∈ Rm, let
y ∈ Rm, and let D denote the line segment between z and ẑ. Then the mean value theorem applied to the kth component
of h yields⏐⏐hk(z) − hk(ẑ)

⏐⏐ ≤ max
c∈D

∥∇hk(c)∥2 ∥z − ẑ∥2 ≤
√
m max

j=1,...,m
c∈D

⏐⏐⏐⏐∂hk

∂zj
(c)
⏐⏐⏐⏐ ∥z − ẑ∥2 ,

nd thus

∥h(z) − h(ẑ)∥2 ≤ m max
j,k=1,...,m

c∈D

⏐⏐⏐⏐∂hk

∂zj
(c)
⏐⏐⏐⏐ ∥z − ẑ∥2. (39)

n addition, we have(Dh(z) − Dh(ẑ))y
2
2 =

m∑
k=1

(
(∇hk(z) − ∇hk(ẑ))y

)2
.

Notice that⏐⏐(∇hk(z) − ∇hk(ẑ))y
⏐⏐ ≤

∇hk(z) − ∇hk(ẑ)

2 ∥y∥2 ,

as well as⏐⏐⏐⏐∂hk

∂zj
(z) −

∂hk

∂zj
(ẑ)
⏐⏐⏐⏐ ≤

√
m max

i=1,...,m
c∈D

⏐⏐⏐⏐ ∂2hk

∂zi∂zj
(c)
⏐⏐⏐⏐ ∥z − ẑ∥2 ,

and therefore

∥∇hk(z) − ∇hk(ẑ)∥2 ≤ m max
i,j=1,...,m

c∈D

⏐⏐⏐⏐ ∂2hk

∂zi∂zj
(c)
⏐⏐⏐⏐ ∥z − ẑ∥2 .

This finally implies

(Dh(z) − Dh(ẑ))y

2 ≤ m

(
m∑

k=1

max
i,j=1,...,m

c∈D

⏐⏐⏐⏐ ∂2hk

∂zi∂zj
(c)
⏐⏐⏐⏐2
)1/2

∥z − ẑ∥2∥y∥2

≤ m3/2 max
i,j,k=1,...,m

c∈D

⏐⏐⏐⏐ ∂2hk

∂zi∂zj
(c)
⏐⏐⏐⏐ ∥z − ẑ∥2∥y∥2 .

(40)

Note that the above computations are similar in spirit to the ones found in [27].
After these preparations, we finally turn our attention to the Lipschitz estimates of the theorem. From the explicit form

of the Fréchet derivative DwF one obtains

DwF(λ,w)w̃ − DwF(λ∗, w∗)w̃

Y

=
−∆ (λDf (µ+ w)w̃ − λ∗Df (µ+ w∗)w̃

)
−
(
λ− λ∗

)
σw̃


Y

≤
⏐⏐λ− λ∗

⏐⏐ (∥∆ (Df (µ+ w)w̃)∥Y + σ∥w̃∥Y
)

+
⏐⏐λ∗
⏐⏐ ∥∆ ((Df (µ+ w) − Df (µ+ w∗)

)
w̃
)
∥Y .
16
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Then the second statement in (37), together with the observation that the components of Df (µ+w)w̃ do not necessarily
ave total mass 0, yields

∥∆ (Df (µ+ w)w̃)∥Y ≤ ∥Df (µ+ w)w̃∥Z

≤
(Df (µ+ w) − Df (µ+ w∗))w̃


Z +

Df (µ+ w∗)w̃

Z .

et ξ (x) ∈ R2 be a point on the line segment between the vectors w(x) and w∗(x). Then one can bound ∥ξ∥I via

∥ξ∥I ≤ ∥w∗
∥I + ∥w − w∗

∥I ≤ ∥w∗
∥I + Cm∥w − w∗

∥X ≤ ∥w∗
∥I + Cmℓw .

e would like to point out that this last inequality implies that for the region R used in the definitions of both f (1)max
nd f (2)max one therefore obtains ξ (x) ∈ R. Together with (37), (38), and (40) this furnishes(Df (w + µ) − Df (w∗

+ µ))w̃

Z ≤ 23/2f (2)max∥w − w∗

∥I∥w̃∥Z

≤
23/2Cmf

(2)
max

π2 ∥w − w∗
∥X∥w̃∥X .

Additionally, we haveDf (µ+ w∗)w̃

Z ≤ max

i,j=1,2
x∈Ω

 ∂ fi∂zj (µ+ w∗(x))


∞

∥w̃∥Z ≤ f (1)
∗

∥w̃∥Z ≤
f (1)∗

π2 ∥w̃∥X .

ombining the above statements along with the statements in (38), we further see that

DwF(λ,w)w̃ − DwF(λ∗, w∗)w̃∥Y

≤

(
f (1)∗

π2 +
σ

π4

)
|λ− λ∗

| ∥w̃∥X +

(
23/2Cm(|λ∗

| + ℓλ)f
(2)
max

π2

)w − w∗

X ∥w̃∥X ,

hich immediately establishes the values of L1 and L2 in hypothesis (H3). As for the condition in (H4), we recall that

DλF(λ,w) = −∆(f (µ+ w)) − σw ,

nd using the estimate in (39) one further obtains

∥DλF(λ,w) − DλF(λ∗, w∗)∥Y ≤
∆(f (µ+ w) − f (µ+ w∗))


Y + σ∥w − w∗

∥Y

≤
f (µ+ w) − f (µ+ w∗)


Z +

σ

π4 ∥w − w∗
∥X

≤

(
2f (1)max

π2 +
σ

π4

)
∥w − w∗

∥X .

his finally establishes the values for L3 and L4, and completes the proof of Lemma 3.5. □

. Inverse norm bound for fourth-order elliptic operators

This section is devoted to establishing an inverse bound for the operator L defined in (3) and (4). This bound can
e used in various applications to obtain hypothesis (H2), which is required for Theorem 2.2, the constructive implicit
unction theorem. More precisely, our goal in the following is to derive a constant K such thatL−1


L(Y,X) ≤ K ,

.e., we need to find a bound on the operator norm of the inverse of the linear operator L. We divide the derivation of this
stimate into four parts. In Section 4.1 we give an outline of our approach, introduce necessary definitions and auxiliary
esults, and present the main result of this section. This result will be verified in the following three sections. First, we
iscuss the finite-dimensional projection of L in Section 4.2. Using this finite-dimensional operator, we then construct an
pproximate inverse in Section 4.3, before everything is assembled to provide the desired estimate in the final Section 4.4.
n contrast to the discussion of Section 2.3, we use a formulation where the main space X is a product space of m scalar
constraints and n subspaces of H2, namely X = Rm

×
∏n

i=1 Ui. As mentioned in the introduction, this is in preparation of
future applications of this theory, which go well beyond the triblock copolymer model.

4.1. General outline and auxiliary results

For every i = 1, . . . , n, let Ui ⊂ H2 be a closed subspace and let Ji denote an infinite index set consisting of multi-
ndices such that {ϕk : k ∈ Ji} forms a complete orthogonal set of Ui, where the considered basis functions ϕk were
introduced in (23). We emphasize that U is not necessarily all of H2, but it is critical to have a complete orthogonal
i

17
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set for each Ui which consists of a subset of the basis functions in (23). We may now form a complete orthogonal set for
X = Rm

×
∏n

i=1 Ui by using the standard basis
{
ej
}m
j=1 for Rm and {ϕk : k ∈ Ji} for every i = 1, . . . , n as

BJ =

{
ej × 0(

H2
)n
}

j=1...m

⋃ {
0
Rm×

(
H2

)i−1 × ϕk × 0(
H2

)n−i

}
i=1...n, k∈Ji

(41)

here J = {J1,J2, . . . ,Jn}. For convenience of notation in the subsequent discussion, for every element x ∈ X we
bbreviate the operator defined in (3) and (4) by L : X → Y where

X = Rm
×

n∏
i=1

Ui and Y = Rm
×

n∏
i=1

Vi (42)

ith the assumption that Vi ⊂ H−2 also has the complete orthogonal set {ϕk : k ∈ Ji}. This is the most general form of
he operator L, and standard results imply that L is a bounded linear operator L ∈ L(X,Y).

As mentioned earlier, the constructive implicit function theorem crucially relies on being able to find a bound K such
hat ∥L−1

∥L(Y,X) ≤ K . Our goal is to accomplish this by using a finite-dimensional approximation for L, since that can
e analyzed via rigorous computational means. Our finite-dimensional approximation for L is given as follows. For fixed
∈ N define the finite-dimensional spaces

XN = PNX and YN = PNY ,

where the projection operator given in (30) is applied componentwise on the functional components of X,Y, i.e., on each
Ui individually, and acts as the identity on the scalar components. We then define LN : XN → YN by

LN = PNL|XN . (43)

et KN be a bound on the inverse of the finite-dimensional operator LN , i.e., suppose that we have established the estimate

L−1
N


L(YN ,XN ) ≤ KN , (44)

here the spaces XN and YN are equipped with the norms of X and Y, respectively. We will discuss further details on
ppropriate coordinate systems and the actual computation of both LN and KN in Section 4.2. Nevertheless, after these
reparations we are able to state our main result for this section.

heorem 4.1 (Inverse Estimate for Fourth-Order Operators). Consider the spaces X and Y defined in (42), as well as the
ounded linear operator L ∈ L(X,Y) acting on m ∈ N0 scalar parameters η1, . . . , ηm and on n ∈ N functions vk :Ω → R in
uch a way that the first m components of L are given by the scalars

m∑
i=1

αkiηi +

n∑
j=1

lkj(vj) for k = 1, . . . ,m , (45)

nd the next n components of L are given by the functions

− βk∆
2vk −

m∑
i=1

bkiηi −∆

n∑
j=1

ckjvj −
n∑

j=1

γkjvj for k = 1, . . . , n. (46)

n these formulas, the variables αki ∈ R, βk > 0, and γkj ∈ R are real constants, while bki ∈ H0, and ckj ∈ H2. Moreover, the lkj
denote bounded linear functionals with Riesz representative in the spaces PNUj, i.e., there exist functions akj ∈ PNUj such that
one has the identities ℓkj(vj) = (akj, vj)H2 .

Let KN be a constant satisfying (44), and define CT = (minj=1,...,n βj)−1 > 0. Furthermore, define the constants A and B by

A :=
KN

√
n

π2N2

(
n∑

k=1

max
1≤j≤n

∥ckj∥2
∞

)1/2

,

B :=
CT

√
2max{m, n}
π2N2

(
n∑

k=1

max
1≤i≤m
1≤j≤n

{
∥bki∥H0 ,

(
CbCe∥ckj∥H2 +

|γkj|

π2

)}2
)1/2

,

nd assume there exists a constant τ > 0 and an integer N ∈ N such that√
A2 + B2 ≤ τ < 1. (47)

hen the operator L in (42) satisfiesL−1
 ≤

max(KN , CT )
. (48)
L(Y,X) 1 − τ

18
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At first glance it might seem strange that the constants αkj and the functions akj do not enter either the condition
in (47) or the estimate in (48). This, however, is not true, as they determine the constant KN from (44).

Before we begin to prove this main theorem, we state a necessary result which is based on a Neumann series argument
to derive bounds on the operator norm of an inverse of an operator. This is a standard functional-analytic technique, which
we state here for the reader’s convenience. A proof can be found in [25, Lemma 4].

Proposition 4.2 (Neumann Series Inverse Estimate). Let A ∈ L(X,Y) be an arbitrary bounded linear operator between two
Banach spaces, and let S ∈ L(Y,X) be one-to-one. Assume that there exist positive constants ϱ1 and ϱ2 such that

∥I − SA∥L(X,X) ≤ ϱ1 < 1 and ∥S∥L(Y,X) ≤ ϱ2 .

Then A is one-to-one and onto, and

∥A−1
∥L(Y,X) ≤

ϱ2

1 − ϱ1
.

n subsequent discussions, we will refer to S as an approximate inverse.

We are now ready to proceed with the proof of the main result of the section, Theorem 4.1. Our goal is to prove that L
s one-to-one, onto, and has an inverse whose operator norm is bounded by the value

K =
max(KN , CT )

1 − τ
.

he complete proof of the above is spread across the remaining subsections, with the following structure of the key
efinitions and auxiliary results:

• Section 4.2, Lemma 4.3 provides a computable upper bound for
L−1

N

.
• Section 4.3, Definition 4.5 gives a construction of the approximate inverse S.
• Section 4.3, Lemma 4.6 shows that we can take ϱ2 = max(KN , CT ).
• Section 4.4, Lemma 4.8 provides a formula for ϱ1.

nce all of these results have been established, the proof of Theorem 4.1 is complete.

.2. Finite-dimensional projections of the linearization

In this section, we consider LN , the finite-dimensional projection of the operator L, which was introduced in (43).
he linear map LN is tractable using rigorous computational methods, since calculating a finite-dimensional inverse is
omething that can be done using numerical linear algebra. To derive LN in more detail, we recall the definitions of the
ollowing projection spaces, all of which are Hilbert spaces:

X = Rm
×
∏n

i=1 Ui , XN = PNX , X∞ = (I − PN )X ,

Y = Rm
×
∏n

i=1 Vi , YN = PNY , Y∞ = (I − PN )Y ,

here the projection operator PN is applied componentwise on the functional components of the spaces X and Y, i.e., on
ach Ui individually, and acts as the identity on the scalar components. Recall that in (43) we defined LN : XN → YN via
N = PNL|XN .
In order to work with this finite-dimensional operator in a straightforward computational manner, we need to find

ts matrix representation. If we define (Ji)N to be the subset of all multi-indices k ∈ Ji such that 0 < |k|∞ < N and
N = {(J1)N , (J2)N , . . . , (Jn)N}, then both XN and YN have the basis BJN and one obtains the matrix representation B via
he definition

B =

⎛⎜⎜⎜⎜⎝
B00 B01 . . . B0n

B10 B11
. . .

...
...

. . .
. . . B(n−1)n

Bn0 . . . Bn(n−1) Bnn

⎞⎟⎟⎟⎟⎠ , (49)

here the matrices Bi,j are as follows. Denote the element x ∈ X in the form x = (η, v), where η = (η1, η2, . . . , ηm) ∈ Rm

nd v = (v1, v2, . . . , vn) ∈
∏n

i=1 Ui. Then the basis elements of BJN are given by (eℓ, 0) for 1 ≤ ℓ ≤ m and (0,Φik) for
∈ (Ji)N and 1 ≤ i ≤ n, where Φik is defined as the n-dimensional vector with ϕk in the i-th component and 0 elsewhere.

n addition, we consider the Hilbert space Z = Rm
× (L2(Ω))n and recall that for t1, t2 ∈ Rm and w1, w2 ∈

∏n
i=1 Ui the

nner product on Z is defined via

((t1, w1), (t2, w2))Z = (t1, t2)Rm +

n∑
((w1)i, (w2)i)L2(Ω) .
i=1
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Then the above matrices Bij are defined via the identities

(B00)kℓ = (L[(eℓ, 0)], (ek, 0))Z , k = 1, . . . ,m , ℓ = 1, . . . ,m ,

(Bi0)kℓ = (L[(eℓ, 0)], (0,Φik))Z , k ∈ (Ji)N , ℓ = 1, . . . ,m ,

(B0j)kℓ = (L[(0,Φjℓ)], (ek, 0))Z , k = 1, . . . ,m , ℓ ∈ (Jj)N ,
(Bij)kℓ = (L[(0,Φjℓ)], (0,Φik))Z , k ∈ (Ji)N , ℓ ∈ (Jj)N ,

here i, j = 1, . . . , n. To conclude the abstract definition, we emphasize that

B00 ∈ Rm×m , B0j ∈ Rm×#(Jj)N ,

Bi0 ∈ R#(Ji)N×m , Bij ∈ R#(Ji)N×#(Jj)N ,

here #S denotes the number of elements in the set S.
Now that we have properly defined the involved function spaces and the procedure to construct the matrix represen-

ation B of LN , we can use (45) and (46) to obtain an explicit representation of L acting on x = (η, v) ∈ X. As mentioned
n the formulation of Theorem 4.1, using the Riesz Representation theorem one can write each functional ℓkj(vj) in (45)
s the inner product (akj, vj)H2 . This substitution yields the explicit form

Lx =

( [∑m
i=1 αkiηi +

∑n
j=1(akj, vj)H2

]m
k=1[

−βk∆
2vk −

∑m
i=1 bkiηi −∆

∑n
j=1 ckjvj −

∑n
j=1 γkjvj

]n
k=1

)
, (50)

which in turn leads to the following explicit forms for the components of B:

(B00)kℓ = αkℓ , (51a)

(Bi0)kℓ = −(biℓ, ϕk)L2(Ω) , (51b)

(B0j)kℓ = (akj, ϕℓ)H2 , (51c)

(Bij)kℓ = (−δijβi∆
2ϕℓ −∆cijϕℓ − γijϕℓ, ϕk)L2(Ω)

= (−δijβiκ
2
ℓϕℓ + κkcijϕℓ − γijϕℓ, ϕk)L2(Ω)

= −δijδkℓβiκ
2
ℓ − γijδkℓ + (κkcijϕℓ, ϕk)L2(Ω) , (51d)

where we use (−∆cijϕℓ, ϕk)L2(Ω) = (cijϕℓ,−∆ϕk)L2(Ω) = (cijϕℓ, κkϕk)L2(Ω), as well as (25).
The matrix representation B characterizes LN on the algebraic level in the following sense. If we consider an element

xN ∈ XN , then one can introduce the representations

xN =

∑
b∈BJN

ξbb and LNxN =

∑
b∈BJN

ζbb ,

where the coefficients satisfy both ξb ∈ R and ζb ∈ R, and the basis elements b are taken from the set

BJN =

{
ej × 0(

H2
)n
}

j=1...m

⋃ {
0
Rm×

(
H2

)i−1 × ϕk × 0(
H2

)n−i

}
i=1...n, k∈(Ji)N

.

f we collect the numbers ξb and ζb in vectors ξ and ζ in the straightforward way, then one immediately obtains the
atrix–vector identity

ζ = Bξ .

his natural algebraic representation has one slight drawback that still needs to be addressed. We would like to use the
egular Euclidean norm on real vector spaces, as well as the induced matrix norm, to study the L(XN ,YN )-norm of LN . For
ur computer-assisted proof, we are therefore interested in a scaled version of B which gives a computable KN , and this
caled matrix is the subject of the following Lemma.

emma 4.3 (Computable KN ). Let B be defined as in (49), Di = diag ({κk : k ∈ (Ji)N}), and let Im be the m × m identity
atrix. Assemble D as the block diagonal matrix

D =

⎛⎜⎜⎜⎜⎜⎝
Im 0 0 . . . 0
0 D1 0 . . . 0

0 0 D2
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 Dn

⎞⎟⎟⎟⎟⎟⎠ ,

nd define B̃ = D−1BD−1. Then KN in (44) can be taken as ∥B̃−1
∥2. In other words, using this formula, we can use interval

rithmetic to establish a rigorous upper bound on the norm of this finite-dimensional inverse.
20
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Proof. To begin with, we recall Lemma 3.1 which shows that, for each i = 1, . . . , n, the collection {κ−1
k ϕk(x)} with k ∈ (Ji)N

as above is an orthonormal basis in PNUi ⊂ H2, and {κkϕk(x)} is an orthonormal basis in YN ⊂ Y, where the eigenvalues κk
are defined in (25). Thus, we need to use the modified representations

xN =

∑
b̃∈B̃JN

ξ̃b̃b̃ and LNxN =

∑
b̂∈B̂JN

ζ̃b̂b̂

where we use the alternative basis sets (note the κ±1
k factors)

B̃JN =

{
ej × 0(

H2
)n
}

j=1...m

⋃ {
0
Rm×

(
H2

)i−1 × κ−1
k ϕk × 0(

H2
)n−i

}
i=1...n, k∈(Ji)N

,

B̂JN =

{
ej × 0(

H2
)n
}

j=1...m

⋃ {
0
Rm×

(
H2

)i−1 × κkϕk × 0(
H2

)n−i

}
i=1...n, k∈(Ji)N

.

In order to pass back and forth between these two representations we use the block diagonal matrix D.
One can see that on the level of vectors we have

ξ = D−1ξ̃ and ζ = Dζ̃ , and therefore ζ̃ = D−1BD−1ξ̃ .

In view of Lemma 3.1 one then obtains

∥LN∥L(XN ,YN ) = ∥B̃∥2 with B̃ = D−1BD−1 ,

where ∥ · ∥2 denotes the regular induced 2-norm of a matrix. Moreover, one can verify that we also have the identityL−1
N


L(YN ,XN ) =

B̃−1

2

(52)

hich completes the proof. □

emark 4.4. Since D is a diagonal matrix we can construct B̃ directly via the formulas

(B̃00)kℓ = αkℓ , (53a)

(B̃i0)kℓ = −
(biℓ, ϕk)L2(Ω)

κk
, (53b)

(B̃0j)kℓ =
(akj, ϕℓ)H2

κℓ
, (53c)

(B̃ij)kℓ = −δijδkℓβi −
1
κ2
k
δkℓγij +

1
κℓ

(
cijϕℓ, ϕk

)
L2(Ω) . (53d)

.3. Construction of an approximate inverse

The crucial part in the derivation of our norm bound for the inverse of L is the application of Proposition 4.2. For this, we
eed to construct an approximate inverse of this operator. Since this construction must be explicit, we will approach it in
wo steps. The first has already been accomplished in the last section, where we considered a finite-dimensional projection
f L, which can be inverted numerically. In this section, we complement this finite-dimensional part with a consideration
f the infinite-dimensional complementary space. For this, we refer the reader again to the definition of the matrix
epresentation B in (49) and (51). Since the finite-dimensional approximation is constructed using the projections PN
hich make use of the low-wavenumber basis functions, one would expect that as N → ∞ this representation leads

to increasingly better approximations of the operator L. Note in particular that every entry
(
Bij
)
kℓ in (51d) is the sum of

three terms, where the first one and the last one depend on the Laplacian eigenvalues from (25). One can easily see that
among these three terms the first one dominates as ℓ → ∞, and thus also as N → ∞. Based on this observation, we
now describe how to use the inverse of the first term on the infinite tail in order to complement the inverse of LN .

To describe this procedure in more detail, consider an arbitrary element y ∈ Y. We decompose this element into its
inite-dimensional part and infinite tail in the form

y =

∑
b∈BI

ζbb = yN + y∞ ∈ YN ⊕ Y∞ ,

here we define

Y = P Y and Y = I − P Y .
N N ∞ ( N)
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Using this representation we also have

y∞ =

n∑
j=1

∑
k∈Jj\(Jj)N

ζjkΦjk

which enables the following definition.

Definition 4.5 (Approximate Inverse Operator). Let yN , y∞ be as above. We define the operator T : Y∞ → X∞ as

Ty∞ = T
n∑

j=1

∑
k∈Jj\(Jj)N

ζjkΦjk = −

n∑
j=1

∑
k∈Jj\(Jj)N

ζjk

βjκ
2
k
Φjk ,

nd the operator S : Y → X as

Sy = L−1
N yN + Ty∞. (54)

One can readily see that the operator T = S|Y∞
is one-to-one and onto, and the operator S is the candidate approximate

nverse of L ∈ L(X,Y).
To close this section, we now derive a bound on the operator norm of S, since this will be needed in the application

f Proposition 4.2.

emma 4.6 (Computable ϱ2). Consider the two operators S, T as defined in Definition 4.5, assume that βj > 0 for j = 1, . . . , n,
nd define the constant CT = (minj=1,...,n βj)−1 > 0 as in Theorem 4.1. Then we have the two inequalities

∥T∥L(Y∞,X∞) ≤ CT and ∥S∥L(Y,X) ≤ max(KN , CT ) ,

where KN was introduced in (44). Moreover, this implies that we may take ϱ2 = max(KN , CT ) in Proposition 4.2.

Proof. To begin with, we let y∞ ∈ Y∞ be arbitrary and show that ∥Ty∞∥X ≤ CT∥y∞∥Y. This follows readily from βj > 0,
Lemma 3.1, and (27), as well as the identities

∥Ty∞∥
2
X =


n∑

j=1

∑
k∈Jj\(Jj)N

ζjk

βjκ
2
k
Φjk


2

H2

=

n∑
j=1

∑
k∈Jj\(Jj)N

ζ 2jkκ
2
k

(βjκ
2
k )2

≤ C2
T

n∑
j=1

∑
k∈Jj\(Jj)N

κ−2
k ζ 2jk

= C2
T


n∑

j=1

∑
k∈Jj\(Jj)N

ζjkΦjk


2

H−2

= C2
T ∥y∞∥

2
Y .

This estimate in turn implies for all y = yN + y∞ ∈ YN ⊕ Y∞ the inequality

∥Sy∥2
X = ∥L−1

N yN∥
2
X + ∥Ty∞∥

2
X

≤ ∥L−1
N ∥

2
L(YN ,XN )  

≤K2
N

∥yN∥
2
Y + C2

T ∥y∞∥
2
Y ≤ max(KN , CT )2∥y∥2

Y ,

where we used the definition of KN from (44). This completes the proof of the lemma. □

In other words, the operator norm of the approximate inverse S can be bounded in terms of the inverse bound for
the finite-dimensional projection given in Lemma 4.3. Furthermore, it follows directly from the definition of S that this
perator is one-to-one, as long as LN is — and the latter can be established using interval arithmetic. We conclude by
emarking that, in many cases, the constant CT can be taken as 1 through proper scaling of the diffusion coefficients in
he model formulation.

.4. Assembling the final inverse estimate

In the last section we addressed two crucial aspects of Proposition 4.2. On the one hand, we provided an explicit
onstruction for the approximate inverse S ∈ L(Y,X) of L defined in (42). On the other hand, we derived an upper bound
n the operator norm of S, which can be computed using the finite-dimensional projection LN of L. This in turn provides
he constant ϱ2 in Proposition 4.2. In this final subsection, we focus on the constant ϱ1, i.e., we derive an upper bound on
he norm ∥I − SL∥L(X,X), and show how this bound can be made smaller than one. Altogether, this will complete the proof
f the estimate for the constant K which bounds the operator norm of L−1. As a first step, we present in the following
emma a decomposition of L in terms of L and T that will help handle the infinite tail estimates.
N

22



P. Rizzi, E. Sander and T. Wanner Communications in Nonlinear Science and Numerical Simulation 115 (2022) 106789

P
(

w

P

L

P
w

a
t

Lemma 4.7. Let L ∈ L(X,Y) be as in (50), and let S ∈ L(Y,X), T ∈ L(Y∞,X∞) be as in Definition 4.5. Further, let
N be as defined in (30) and LN ∈ L(XN ,YN ) be as in (43). Then, using the additive representation x = xN + x∞ =

η, PNv) + (0, (I − PN )v) ∈ XN ⊕ X∞, we have the identity

Lx = (LNxN + Mx∞) +
(
T−1x∞ − Nx

)
, (55)

here we define M,N by

Mx∞ =

⎛⎝⎡⎣ n∑
j=1

(akj, (I − PN )vj)H2

⎤⎦m

k=1

,

⎡⎣−PN∆
n∑

j=1

ckj(I − PN )vj

⎤⎦n

k=1

⎞⎠ , (56)

Nx =

⎛⎝0,

⎡⎣(I − PN )

⎛⎝ m∑
i=1

ηibki +∆

n∑
j=1

ckjvj +
n∑

j=1

γkjvj

⎞⎠⎤⎦n

k=1

⎞⎠ . (57)

roof. Notice that LNxN and Mx∞ are in the finite-dimensional space YN , while T−1x∞ and Nx are in Y∞. With this
in mind, we detail the derivation of (55) as follows. We first note that ∆ and PN commute. Then the explicit form of
NxN = PNLxN is:

LNxN =

( [∑m
i=1 αkiηi +

∑n
j=1(akj, PNvj)H2

]m
k=1[

−βk∆
2PNvk −

∑m
i=1 ηiPNbki − PN∆

∑n
j=1 ckjPNvj −

∑n
j=1 γkjPNvj

]n
k=1

)
.

Next, we consider the difference Lx − LNxN . The first m components are given by the scalars
n∑

j=1

(akj, (I − PN )vj)H2 for k = 1, . . . ,m ,

and we compute the next n components term by term for clarity. The terms involving bki and γkj are straightforward since
N is linear. The term involving ∆2 is also straightforward since ∆ℓ commutes with PN . This leaves the term involving ckj,
hich we can decompose using PN as follows:

−∆

n∑
j=1

ckjvj = − PN∆
n∑

j=1

ckjPNvj − PN∆
n∑

j=1

ckj(I − PN )vj

− (I − PN )∆
n∑

j=1

ckjPNvj − (I − PN )∆
n∑

j=1

ckj(I − PN )vj.

This immediately implies that

−∆

n∑
j=1

ckjvj + PN∆
n∑

j=1

ckjPNvj = −PN∆
n∑

j=1

ckj(I − PN )vj − (I − PN )∆
n∑

j=1

ckjvj ,

and therefore that last n components of the difference Lx − LNxN are given explicitly by

−PN∆
n∑

j=1

ckj(I − PN )vj  
(Mx∞)k

(T−1x∞)k  
−βk∆

2(I − PN )vk

−

m∑
i=1

ηi(I − PN )bki − (I − PN )∆
n∑

j=1

ckjvj −
n∑

j=1

γkj(I − PN )vj  
−(Nx)k

for k = 1, . . . , n. Thus we have shown Lx − LNxN = Mx∞ + T−1x∞ − Nx and completed the proof. □

We now use the above representation (55) of the operator L which is split along the subspaces YN and Y∞ to derive
an expression for the infinite tail I − SL ∈ L(X,X). More precisely, we have

(I − SL)x = TNx − L−1
N Mx∞ , (58)

nd this will be verified in detail below. Notice that in this representation, the first term lies in the complement X∞, while
he second term is contained in the finite-dimensional space X . The identity in (58) follows from the definition of S in
N
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Definition 4.5 and

SLx = L−1
N LNxN + L−1

N Mx∞ + T
(
T−1x∞ − Nx

)
= xN + x∞ + L−1

N Mx∞ − TNx
= x + L−1

N Mx∞ − TNx.

After these preparations, we can now show that the operator norm of I − SL can be expected to be small for sufficiently
large N . This will provide an estimate for the constant ϱ1 in Proposition 4.2, and conclude the proof of Theorem 4.1.
However, we pause here to remind the reader that, in principle, the Riesz representative akj could be a general element
f H2. As mentioned in the introduction, we restrict ourselves to the case where akj is an element of the finite-dimensional
pace PNUj ⊂ Uj, which implies that the first m components of Mx∞ are in fact identically 0.

Lemma 4.8 (Computable ϱ1). Let T be as in Definition 4.5, N be as in (57), and bki, ckj, γkj be as in Theorem 4.1. Suppose
further that, just as in Theorem 4.1, the Riesz representative akj of ℓkj lies in PNUj. Define CT = (minj=1,...,n βj)−1 > 0 as in
Theorem 4.1, KN as in Lemma 4.3, and finally A and B by

A :=
KN

√
n

π2N2

(
n∑

k=1

max
1≤j≤n

∥ckj∥2
∞

)1/2

,

B :=
CT

√
2max{m, n}
π2N2

(
n∑

k=1

max
1≤i≤m
1≤j≤n

{
∥bki∥H0 ,

(
CbCe∥ckj∥H2 +

|γkj|

π2

)}2
)1/2

.

Then,
L−1

N Mx∞


X ≤ A∥x∞∥X, ∥TNx∞∥X ≤ B∥x∥X, and ∥I − SL∥L(X,X) ≤

√
A2 + B2. Furthermore, as long as there exists a τ

uch that
√
A2 + B2 ≤ τ < 1, we can take ϱ1 = τ in Proposition 4.2.

Proof. For brevity in the verification, we define

Mk := max
1≤j≤n

∥ckj∥2
∞
,

Nk := max
1≤i≤m
1≤j≤n

{
∥bki∥H0 ,

(
CbCe∥ckj∥H2 +

|γkj|

π2

)}2

,

nd verify the estimates as follows. First, since ∥L−1
N ∥L(YN ,XN ) ≤ KN , we must find a bound of the form

∥Mx∞∥YN ≤ CM∥x∞∥X .

y the definition of M, and since akj ∈ PNUj, we have

∥Mx∞∥
2
YN =

n∑
k=1

−PN∆
n∑

j=1

ckj(I − PN )vj


2

H−2

.

ince PN is an orthogonal projection and ∆ is an isometry, see Lemma 3.3(a), we have the upper bound

∥Mx∞∥
2
YN ≤

n∑
k=1


n∑

j=1

ckj(I − PN )vj


2

H0

≤

n∑
k=1

⎛⎝ n∑
j=1

ckj(I − PN )vj

H0

⎞⎠2

.

emma 3.4 then yields

∥Mx∞∥
2
YN ≤

n∑
k=1

⎛⎝ n∑
j=1

1
π2N2

ckj∞

(I − PN )vj

H2

⎞⎠2

,

nd factoring out the maximum coefficients gives

∥Mx∞∥
2
YN ≤

(
1

π4N4

n∑
k=1

max
1≤j≤n

ckj2∞
)⎛⎝ n∑

j=1

(I − PN )vj

H2

⎞⎠2

.

inally, the Cauchy–Schwarz inequality yields

∥Mx∞∥
2
YN ≤

(
n

π4N4

n∑
max
1≤j≤n

ckj2∞
)

n∑(I − PN )vj
2
H2 ,
k=1 j=1
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which is precisely

∥Mx∞∥
2
YN ≤

n
π4N4

(
n∑

k=1

Mk

)
∥x∞∥

2
X = C2

M ∥x∞∥
2
X .

Therefore, we can take A := KNCM.
Second, since ∥T∥L(Y∞,X∞) ≤ CT , we must find a bound of the form

∥Nx∥Y ≤ CN ∥x∥X.

By the definition of N , we have

∥Nx∥2
Y =

n∑
k=1

(I − PN )

⎛⎝ m∑
i=1

ηibki +∆

n∑
j=1

ckjvj +
n∑

j=1

γkjvj

⎞⎠
2

H−2

.

We can then split the H−2-norm term with the triangle inequality and use Lemmas 3.2(c), 3.3(a), and 3.4 to obtain the
upper bound

∥Nx∥2
Y ≤

n∑
k=1

⎛⎝ m∑
i=1

|ηi| ∥bki∥H0

π2N2 +

n∑
j=1

∥ckjvj∥H2

π2N2 +

n∑
j=1

|γkj|
vjH2

π4N4

⎞⎠2

.

ow, for the middle term involving ckj, we use Lemma 3.2(b),(c) to obtain the upper bound

∥Nx∥2
Y ≤

n∑
k=1

⎛⎝ m∑
i=1

|ηi| ∥bki∥H0

π2N2 +

n∑
j=1

[
CbCe∥ckj∥H2∥vj∥H2

π2N2 +
|γkj|

vjH2

π4N4

]⎞⎠2

.

oting that N−4
≤ N−2 and applying the Cauchy–Schwarz inequality we find the upper bound

∥Nx∥2
Y ≤

2
π4N4

n∑
k=1

⎛⎜⎝[ m∑
i=1

|ηi| ∥bki∥H0

]2

+

⎡⎣ n∑
j=1

(
CbCe∥ckj∥H2 +

|γkj|

π2

)vjH2

⎤⎦2
⎞⎟⎠ .

Since we are aiming for a bound in terms of ∥x∥X, we factor out the maximum coefficients of |ηi| and ∥vj∥H2 , respectively,
nd can replace the right-hand side in the above bound by

2
π4N4

n∑
k=1

⎛⎜⎝[max
1≤i≤m

∥bki∥H0

m∑
i=1

|ηi|

]2

+

⎡⎣max
1≤j≤n

(
CbCe∥ckj∥H2 +

|γkj|

π2

) n∑
j=1

vjH2

⎤⎦2
⎞⎟⎠ .

ote that the innermost sums are now independent of k, and we can repeat the previous step and apply the Cauchy–
chwarz inequality again to obtain the new bound

∥Nx∥2
Y ≤

2
π4N4

(
n∑

k=1

Nk

)⎡⎣m
m∑
i=1

|ηi|
2
+ n

n∑
j=1

vj2H2

⎤⎦ ,

from which ∥Nx∥Y ≤ CN ∥x∥X follows easily with

CN :=

√
2max{m, n}
π2N2

(
n∑

k=1

Nk

)1/2

.

This concludes the proof of the second bound with B := CTCN . The bound for ∥I − SL∥ is a direct result of the bound
erived here and Eq. (58). □

We also know from Lemma 4.6 that ∥S∥L(Y,X) ≤ max(KN , CT ). Therefore, we can directly apply Proposition 4.2 with the
onstants ϱ1 =

√
A2 + B2 ≤ τ < 1 and ϱ2 = max(KN , CT ), and this immediately implies that the operator L is one-to-one,

onto, and the norm of its inverse operator is bounded viaL−1

L(Y,X) ≤

ϱ2

1 − ϱ1
=

max(KN , CT )
1 − τ

.

This completes the proof of Theorem 4.1.
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5. Conclusions and future applications

In this paper, we have developed a framework for establishing a rigorous bound for the operator norm of the inverse
f a general type of linear fourth-order elliptic operator that occurs in a large class of systems, such as for example in
he context of materials science applications. We have then applied this framework to the triblock copolymer model, a
hree monomer version of the Ohta–Kawasaki equation. In particular, we have validated a series of equilibrium solutions
n spatial dimensions one and two.

The strength of the constructions developed here are their flexibility. For example, with only minor modifications to
he parameters, we have been able to use the same construction to validate pitchfork bifurcation points for the diblock
opolymer equation [28]. Additionally, with relatively little additional effort, we will be able to use the same method
or rigorous pseudo-arclength continuation methods for phase field materials models such as the Cahn–Hilliard, the
ahn–Morral, or the classical Ohta–Kawasaki systems. While we anticipate that there are still issues that will need to
e addressed, such as incorporating preconditioning and sparseness into our construction, the generality of our approach
eans that as we address such considerations, one will not have to revisit them again for each separate system and
ynamical question.

RediT authorship contribution statement

Peter Rizzi: Conceptualization, Methodology, Formal analysis, Writing – original draft, Writing – review & editing,
Software, Visualization. Evelyn Sander: Conceptualization, Methodology, Formal analysis, Writing – original draft, Writing
– review & editing, Software, Visualization. Thomas Wanner: Conceptualization, Methodology, Formal analysis, Writing
– original draft, Writing – review & editing, Software, Visualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

The code will be posted on the publications web site of the third author math.gmu.edu/~wanner/.

Acknowledgments

The research of E.S. and T.W. was partially supported by the Simons Foundation, USA under Awards 636383 and
581334, respectively. We are thankful for the careful and useful comments of the anonymous referees.

References

[1] Ohta T, Kawasaki K. Equilibrium morphology of block copolymer melts. Macromolecules 1986;19:2621–32.
[2] van der Waals JD. The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation in density. Verh Konink Akad

Wetensch Amsterdam 1893;1:1–56.
[3] Bates FS, Fredrickson GH. Block copolymers–designer soft materials. Phys Today 1999;52:32–9.
[4] Nishiura Y. Far-from-Equilibrium Dynamics. Translations of Mathematical Monographs, vol. 209, Providence, RI: American Mathematical Society;

2002.
[5] Teramoto T, Nishiura Y. Morphological characterization of the diblock copolymer problem with topological computation. Jpn J Ind Appl Math

2010;27(2):175–90.
[6] Choksi R, Peletier MA, Williams JF. On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal

Cahn-Hilliard functional. SIAM J Appl Math 2009;69(6):1712–38.
[7] Cyranka J, Wanner T. Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model. SIAM J Appl Dyn Syst

2018;17(1):694–731.
[8] Johnson I, Sander E, Wanner T. Branch interactions and long-term dynamics for the diblock copolymer model in one dimension. Discrete Contin

Dyn Syst Ser A 2013;33(8):3671–705.
[9] Lessard J-P, Sander E, Wanner T. Rigorous continuation of bifurcation points in the diblock copolymer equation. J Comput Dyn

2017;4(1–2):71–118.
[10] Wanner T. Topological analysis of the diblock copolymer equation. In: Nishiura Y, Kotani M, editors. Mathematical challenges in a new phase

of materials science. Springer Proceedings in Mathematics & Statistics, vol. 166, Springer-Verlag; 2016, p. 27–51.
[11] Ren X, Wei J. On energy minimizers of the diblock copolymer problem. Interfaces Free Bound 2003;5(2):193–238.
[12] Ren X, Wei J. Droplet solutions in the diblock copolymer problem with skewed monomer composition. Calc Var Partial Differential Equations

2006;25(3):333–59.
[13] Ren X, Wei J. Existence and stability of spherically layered solutions of the diblock copolymer equation. SIAM J Appl Math 2006;66(3):1080–99.
[14] Ren X, Wei J. Many droplet pattern in the cylindrical phase of diblock copolymer morphology. Rev Math Phys 2007;19(8):879–921.
[15] Cai S, Watanabe Y. A computer-assisted method for the diblock copolymer model. Z Angew Math Mech 2019;99(7). e201800125, 14.
[16] Sander E, Wanner T. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete Contin Dyn Syst Ser B
2021;26(1):603–32.

26

https://math.gmu.edu/~wanner/
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb1
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb2
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb2
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb2
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb3
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb4
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb4
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb4
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb5
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb5
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb5
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb6
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb6
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb6
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb7
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb7
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb7
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb8
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb8
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb8
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb9
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb9
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb9
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb10
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb10
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb10
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb11
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb12
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb12
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb12
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb13
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb14
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb15
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb16
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb16
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb16


P. Rizzi, E. Sander and T. Wanner Communications in Nonlinear Science and Numerical Simulation 115 (2022) 106789
[17] van den Berg JB, Williams JF. Validation of the bifurcation diagram in the 2D Ohta-Kawasaki problem. Nonlinearity 2017;30(4):1584–638.
http://dx.doi.org/10.1088/1361-6544/aa60e8.

[18] van den Berg JB, Williams JF. Rigorously computing symmetric stationary states of the Ohta-Kawasaki problem in three dimensions. SIAM J
Math Anal 2019;51(1):131–58. http://dx.doi.org/10.1137/17M1155624.

[19] Wanner T. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete Contin Dyn Sys Ser A 2017;37(2):1075–107.
[20] Nakazawa H, Ohta T. Microphase separation of ABC-type triblock copolymers. Macromolecules 1993;26(20):5503–11.
[21] Bohbot-Raviv Y, Wang Z-G. Discovering new ordered phases of block copolymers. Phys Rev Lett 2000;85:3428–31.
[22] Zheng W, Wang Z-G. Morphology of ABC triblock copolymers. Macromolecules 1995;28(21):7215–23.
[23] Ren X, Wang C. A stationary core-shell assembly in a ternary inhibitory system. Discrete Contin Dyn Syst Ser A 2017;37(2):983–1012.
[24] Wang C, Ren X, Zhao Y. Bubble assemblies in ternary systems with long range interaction. 2017, arXiv:1712.00724.
[25] Sander E, Wanner T. Validated saddle-node bifurcations and applications to lattice dynamical systems. SIAM J Appl Dyn Syst

2016;15(3):1690–733.
[26] Wanner T. Computer-assisted bifurcation diagram validation and applications in materials science. Proc Symp Appl Math 2018;74:123–74.
[27] Kamimoto S, Kim HK, Sander E, Wanner T. A computer-assisted study of red coral population dynamics. Pure Appl Funct Anal 2022;7(4). In

press.
[28] Rizzi P, Sander E, Wanner T. Symmetry-induced pitchfork bifurcations in the diblock copolymer model. 2022, in preparation.
[29] Maier-Paape S, Stoth B, Wanner T. Spinodal decomposition for multi-component Cahn-Hilliard systems. J Stat Phys 2000;98(3–4):871–96.
[30] Desi JP, Edrees H, Price J, Sander E, Wanner T. The dynamics of nucleation in stochastic Cahn-Morral systems. SIAM J Appl Dyn Syst

2011;10(2):707–43.
[31] Maier-Paape S, Miller U, Mischaikow K, Wanner T. Rigorous numerics for the Cahn-Hilliard equation on the unit square. Rev Mat Complut

2008;21(2):351–426.
[32] Maier-Paape S, Mischaikow K, Wanner T. Structure of the attractor of the Cahn-Hilliard equation on a square. Int J Bifurcation Chaos

2007;17(4):1221–63.
[33] Elliott CM, Luckhaus S. A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. Preprint

195, Bonn: Sonderforschungsbereich 256; 1991.
[34] Eyre DJ. Cascades of spinodal decompositions in the ternary Cahn-Hilliard equations. In: Chen LQ, Fultz B, Cahn JW, Manning JR, Morral JE,

Simmons JA, editors. Mathematics of microstructure evolution. The Minerals, Metals & Materials Society; 1996, p. 367–78.
[35] Plum M. Computer-assisted proofs for semilinear elliptic boundary value problems. Jpn J Ind Appl Math 2009;26(2–3):419–42.
[36] Doedel E. AUTO: a program for the automatic bifurcation analysis of autonomous systems. In: Proceedings of the tenth manitoba conference

on numerical mathematics and computing, vol. I (Winnipeg, Man., 1980), vol. 30. 1981, p. 265–84,
[37] Rump SM. INTLAB - interval laboratory. In: Csendes T, editor. Developments in reliable computing. Dordrecht: Kluwer Academic Publishers;

1999, p. 77–104, http://www.ti3.tuhh.de/rump/.
[38] Wanner T. Validated bounds on embedding constants for Sobolev space Banach algebras. Math Methods Appl Sci 2018;41(18):9361–76.
[39] Adams RA, Fournier JJF. Sobolev spaces. Second ed.. Amsterdam: Elsevier/Academic Press; 2003.
27

http://dx.doi.org/10.1088/1361-6544/aa60e8
http://dx.doi.org/10.1137/17M1155624
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb19
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb20
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb21
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb22
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb23
http://arxiv.org/abs/1712.00724
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb25
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb25
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb25
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb26
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb27
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb27
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb27
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb28
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb29
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb30
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb30
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb30
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb31
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb31
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb31
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb32
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb32
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb32
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb33
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb33
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb33
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb34
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb34
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb34
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb35
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb36
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb36
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb36
http://www.ti3.tuhh.de/rump/
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb38
http://refhub.elsevier.com/S1007-5704(22)00305-7/sb39

	Equilibrium validation for triblock copolymers via inverse norm bounds for fourth-order elliptic operators
	Introduction
	Validated triblock copolymer equilibria
	Derivation of the triblock copolymer model
	Stability of the homogeneous steady state
	Computer-assisted equilibrium validation
	Rigorously verified microstructures

	Functional-analytic framework and basic estimates
	Fourier cosine series expansions and Sobolev spaces
	Constructive Sobolev embeddings and norm bounds
	Spectral projection operators
	Lipschitz bounds for the Frechet derivatives

	Inverse norm bound for fourth-order elliptic operators
	General outline and auxiliary results
	Finite-dimensional projections of the linearization
	Construction of an approximate inverse
	Assembling the final inverse estimate

	Conclusions and future applications
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


