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Abstract. The Ohta-Kawasaki model for diblock copolymers exhibits a rich

equilibrium bifurcation structure. Even on one-dimensional base domains the
bifurcation set is characterized by high levels of multi-stability and numerous

secondary bifurcation points. Many of these bifurcations are of pitchfork type.

In previous work, the authors showed that if pitchfork bifurcations are induced
by a simple Z2 symmetry-breaking, then computer-assisted proof techniques

can be used to rigorously validate them using extended systems. However,

many diblock copolymer pitchfork bifurcations cannot be treated in this way.
In the present paper, we show that in these more involved cases, a cyclic group

action is responsible for their existence, based on cyclic groups of even or-
der. We present theoretical results establishing such bifurcation points and

show that they can be characterized as nondegenerate solutions of a suitable

extended nonlinear system. Using the latter characterization, we also demon-
strate that computer-assisted proof techniques can be used to validate such

bifurcations. While the methods proposed in this paper are only applied to

the diblock copolymer model, we expect that they will also apply to other
parabolic partial differential equations.

1. Introduction. Symmetry-breaking pitchfork bifurcations are a common fea-
ture of nonlinear partial differential equation models as they vary with respect to
parameters. We focus here on pitchfork bifurcations of the one-dimensional Ohta–
Kawasaki model for the formation of diblock copolymers [18]. In a previous pa-
per [13], we developed a rigorous computer-assisted proof method for the validation
of symmetry-breaking pitchfork bifurcations in the case of Z2-symmetries that were
observed in [11]. These results were based on creating a validated version of the
numerical methods of Werner and Spence [30], by reformulating the existence of
the bifurcation point as the existence of a nondegenerate solution of an extended
nonlinear system.

However, there are cases of pitchfork bifurcations that we observed in [11, 13],
but were unable to validate using the above theoretical methods — as although
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Figure 1. Examples of odd solutions, shown in blue, with odd
eigenfunctions, depicted in red, which correspond to eigenvalue zero
at the bifurcation point, where odd is measured with respect to
the domain midpoint 1/2. The solutions u are n-layer solutions,
equivariant under the cyclic symmetry (2), where n is 3, 5, 5, 7 in
the top row, and 7, 9, 11 in the bottom row, respectively. Since
both the bifurcating solution and the eigenfunction are odd, the
solutions remain odd as they undergo a pitchfork bifurcation, but
bifurcation breaks the cyclic symmetry.
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Figure 2. Examples of even solutions, shown in blue, with even
eigenfunctions, depicted in red, which correspond to eigenvalue zero
at the bifurcation point, where even is measured with respect to the
domain midpoint 1/2. In each figure, the solutions u are n-layer
solutions, equivariant under the cyclic symmetry (2), where n is 4,
6, 6, and 8, respectively. Since both the bifurcating solution and
the eigenfunction are even, solutions remain even as they undergo
a pitchfork bifurcation, but the bifurcation breaks the cyclic sym-
metry.

a high degree of symmetry is broken at bifurcation, all local solutions remain in
the same Z2-symmetry class, i.e., solutions are all even or all odd with respect to
the center of the one-dimensional domain. In this paper, we adapt the techniques
used for the Z2-symmetry case in order to give theoretical underpinnings needed
for rigorous computational validation of symmetry-breaking bifurcations for more
general cyclic group symmetries, as shown in Figures 1 and 2 and described in more
detail below.
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The Ohta-Kawasaki equation is a model for diblock copolymers, materials formed
by two linear polymers (known as blocks) which contain different monomers. If the
blocks are thermodynamically incompatible, then the blocks try to separate after the
reaction. However, since they are covalently bonded, such a separation is impossible
on the macroscopic scale. This competition of long range and short range forces
causes microphase separation, resulting in pattern formation. The Ohta-Kawasaki
equation on a domain Ω ⊂ Rd is given by

wt = −∆(∆w + λf(w))− λσ(w − µ) in Ω ,

∂w

∂ν
=
∂(∆w)

∂ν
= 0 on ∂Ω ,

where ν denotes the unit outward normal on the boundary of Ω, corresponding
to homogeneous Neumann boundary conditions. The quantity w(t, x) is the local
density difference of the two monomer blocks. That is, if w(t, x) = −1, then at
time t and locally near the point x, the material consists entirely of block A. If
instead we have w(t, x) = 1, then the local average of the material consists entirely
of block B. For values −1 < w(t, x) < 1 the local material contains a mix of blocks
A and B. The parameter µ is the space average of w, meaning it is a measure of
the relative total proportion of the two polymers, which we tersely refer to as the
mass of the system. The equation obeys a mass conservation, implying that µ is
time-invariant. A large value of the parameter λ corresponds to a large short-range
repulsion, while a large value of the parameter σ corresponds to large long-range
elasticity forces. We refer the reader to [11] for a detailed description of how λ and σ
are defined. See also [26] for a description of the phase separation aspects of the
model. Finally, note that the second boundary condition is necessary since this is a
fourth order equation. In this paper, we focus on equilibrium solutions w = w(x).

For notational convenience, we reformulate our equation slightly. For a solution w
of the diblock copolymer equation, we define u = w − µ. Since the space average
of w is µ, the average of the shifted function u is zero. Therefore the equilibrium
equation becomes

−∆(∆u+ λf(u+ µ))− λσu = 0 in Ω ,

∂u

∂ν
=
∂(∆u)

∂ν
= 0 on ∂Ω , (1)∫

Ω

u dx = 0 .

We will consider this version of the equation for the rest of the paper, and restrict our
attention to the case of the one-dimensional domain Ω = (0, 1) with µ = 0, where
σ > 0 denotes a fixed constant, and the nonlinearity is chosen as f(u) = u − u3.
Note that while this particular form of the nonlinearity is not critical for our results,
the fact that the nonlinearity is odd plays a large role for the results of this paper.
We would like to point out, however, that this oddness condition was chosen purely
to simplify our presentation. One could in fact obtain similar results without it.

Figure 3 shows a numerically computed bifurcation diagram for (1) with σ = 6.
The bifurcation diagram is restricted to the primary equilibrium branches ema-
nating from the spatially homogeneous trivial solution, along with the secondary
bifurcation points shown as red dots. Secondary branches do emanate from each
of these branches, but they have been omitted for the sake of clarity. Some of the
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Figure 3. Partial bifurcation diagram for the one-dimensional
diblock copolymer equation for the parameter values µ = 0 and
σ = 6. In the left panel, each of the dots and crosses is a bifurca-
tion point. The red crosses correspond to the odd solutions with
odd eigenfunctions shown in Figure 1, while the green crosses corre-
spond to the even solutions with even eigenfunctions shown in Fig-
ure 2. In contrast, the cyan dots represent odd solutions with even
eigenfunctions, while the magenta dots correspond to even solutions
with odd eigenfunctions. These last two types are Z2-symmetry
breaking bifurcations points. Altogether, the colored points depict
all detected bifurcation points along primary branches. Originat-
ing at each bifurcation point, there are secondary branches which
are omitted for the sake of clarity. They are included, however, in
the right panel, which illustrates that the branches are connected
through multiple routes.

depicted bifurcation points are Z2-symmetry breaking, as covered in [13]. However,
in Figures 1 and 2 we show that for nine cases, there is no Z2-symmetry broken at
the pitchfork bifurcation. Instead, these bifurcation solutions are n-layer solutions
which are equivariant under the following cyclic symmetry.

Suppose that u denotes the solution at one of these bifurcation points, and let ϕ
denote the eigenfunction of the Fréchet derivative of (1) at u corresponding to the
eigenvalue 0, which we further assume to be simple. Furthermore, suppose that we
have extended the solution u from Ω = (0, 1) to all of R via successive even reflections
across the boundary. Then each such solution u satisfies the cyclic symmetry given
by

(Tnu) (x) = −u
(
x+

1

n

)
= u(x) for all x ∈ R , (2)

for some n ∈ N. In contrast, the eigenfunction ϕ does not display this type of
symmetry, in fact, it seems to have no special symmetry properties at all. We
will see later that the operator Tn is the generator of a cyclic group, but since
its natural functional-analytic domain interferes with our homogeneous Neumann
boundary conditions, we defer precise statements about the spaces on which Tn is
defined and the order of the generated cyclic group until the next section.

In this paper, we develop the theoretical foundation for a rigorous computer-
assisted proof method for showing that the functions shown in Figures 1 and 2 do
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indeed give rise to symmetry-breaking pitchfork bifurcations. This is accomplished
by first establishing a mathematical bifurcation result on pitchfork bifurcations
induced by a cyclic group action, and then equivalently reformulating it as a zero-
finding problem for a suitable extended nonlinear system, in the spirit of [13]. The
latter system can then in principle be solved using computer-assisted proofs based
on the constructive implicit function theorem introduced in [23, 27]. Although in
this paper we concentrate on the Ohta-Kawasaki equation, our methods can be
adapted to a much more general set of equations. In particular, our pitchfork
bifurcation result is quite general, in that along with technical assumptions, it only
relies on being able to divide the space into the direct sum of pairwise orthogonal
spaces which exhibit certain invariance properties. One of these spaces contains
the function at bifurcation, and another contains the eigenfunction spanning the
associated one-dimensional kernel of the operator. The result does not include the
specific form (2) of the symmetry in the statement, but in our application, these
pairwise orthogonal spaces come from symmetry considerations. Note that while
the solution-eigenfunction pairs shown in Figures 1 and 2 appear to be orthogonal

in the sense that
∫ 1

0
u(x)ϕ(x) dx = 0, there is no immediately obvious symmetry

which would force this identity. In fact, it will be shown later that despite the lack
of any obvious symmetry, each eigenfunction ϕ exhibits a more subtle one, which is
far from obvious and which is responsible for this orthogonality.

A number of papers have previously considered numerical computation of bifur-
cation diagrams for the Ohta-Kawasaki and Cahn-Hilliard equations, such as for
example [4, 8, 11, 14]. There are also several decades of results on computer valida-
tion for dynamical systems and differential equations solutions which combine fixed
point arguments and interval arithmetic, see for example [2, 9, 17, 19, 22, 31]. There
are several papers that have already considered rigorous validation of parameter-
dependent solutions for the Ohta-Kawasaki model [3, 24, 25], as well as in other
contexts [7, 12, 15]. However, this is the first study to look at computer-assisted
proofs of higher symmetry-breaking bifurcations for the Ohta-Kawasaki model.

The remainder of this paper is organized as follows. In Section 2 we describe the
symmetry spaces associated with the cyclic group action given by (2), discuss their
essential properties, and explain why the underlying symmetry group responsible
for the bifurcation is in fact Z2n. In Section 3, we state and prove the analyti-
cal Z2n-equivariant pitchfork bifurcation result. Furthermore, by reformulating the
problem as a zero-finding problem for an extended system, we also are able to es-
tablish computationally testable conditions. We would like to point out that while
the results of this section are formulated only for the specific situation considered
in this paper, the general approach should be applicable in much more generality.
This is described in more detail in the context of Remark 3.4, which collects the
essential assumptions that are necessary. In Section 4, we introduce the computa-
tional validation methods required, based on recent results from [20]. This paper is
primarily focused on the analysis of this new type of symmetry-breaking pitchfork
bifurcations, but for proof of concept, we end the paper with sample solution val-
idations of pitchfork bifurcation points from Figures 1 and 2. Nevertheless, a few
computational challenges remain, and we briefly address these as well as potential
solution attempts.

2. Cyclic equivariance of diblock copolymers. In this section we describe the
equivariance properties of the equilibrium diblock copolymer model with respect
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to the cyclic symmetry mentioned in the introduction. We start in Section 2.1
by presenting our basic functional-analytic setup. After briefly discussing the dif-
ficulties with using the cyclic symmetry defined in (2) directly in this framework,
Section 2.2 shows that these issues can be overcome by considering a detour through
larger function spaces. In combination with additional symmetries, one can then
in fact use the symmetry operator Tn to derive a suitable symmetry-induced de-
composition of the original spaces. We also present orthogonality and invariance
properties which are essential for our application. Finally, Section 2.3 establishes
necessary equivariance properties of the nonlinear diblock copolymer operator.

2.1. Basic functional-analytic setup. We begin by briefly presenting the frame-
work for our study of the diblock copolymer model, which had already been used
in our previous work [11, 13, 24, 27]. As mentioned in the introduction, we re-
strict consideration to equilibria for the Ohta-Kawasaki model given in (1) on the
one-dimensional domain Ω = (0, 1), and study only the zero mass case µ = 0. In
addition, the parameter σ is fixed and strictly positive, and we use the cubic odd
nonlinearity f(u) = u− u3. From a functional-analytic point of view, we can then
rearrange the system of three equations in such a way that the equilibrium solu-
tions are zeros of a single nonlinear operator F , while the boundary and integral
conditions are absorbed into the definition of the operator domain. In this way,
equilibria of the problem (1) correspond to solutions of the zero finding problem

F (λ, u) = −∆(∆u+ λf(u+ µ))− λσu = 0 , (3)

where we have F : R×X → Y with respect to the spaces

X =

{
u ∈ H2(Ω) :

∂u

∂ν
= 0 on ∂Ω, and

∫
Ω

u dx = 0

}
and Y = H−2(Ω) . (4)

These spaces are both Hilbert spaces, equipped for our purposes with the norms

∥u∥X = ∥∆u∥L2(Ω) and ∥u∥Y =
∥∥∆−1u

∥∥
L2(Ω)

,

where one can verify that the mapping ∆ : L2(Ω) ∩
{∫

Ω
u dx = 0

}
→ H−2(Ω) is an

isometry. Standard results imply that in this setting the operator F is a well-defined
smooth operator. Furthermore, since we assumed the identity µ = 0 and f is an
odd function, we also have F (λ,−u) = −F (λ, u) for all λ ∈ R and u ∈ X.

Of particular importance for the detection of bifurcation points is of course the
Fréchet derivative of F at a given equilibrium solution. Thus, in the following, we
consider a fixed parameter value λ0 ∈ R and a function u0 ∈ X, and we let L denote
the Fréchet derivative of F at the pair (λ0, u0) given by

L[v] = DuF (λ0, u0)[v] = −∆(∆v + λf ′(u0 + µ)v)− λσv . (5)

According to its definition, one has L = DuF (λ0, u0) ∈ L(X,Y ), where L(X,Y )
denotes the Banach space of all bounded linear operators from X to Y , equipped
with the operator norm ∥ · ∥L(X,Y ). With the range and null space of this linear
operator we associate the following orthogonal projections.

Definition 2.1 (Orthogonal projections P and Q associated with L). Let L be
the Fréchet derivative of the diblock copolymer operator as defined in (5). Then
we denote by Q : X → X the orthogonal projection of the domain X onto the null
space N(L), and we let P : Y → Y be the orthogonal projection of Y onto the
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orthogonal complement of the range R(L). In other words, we define the closed

subspaces X̃ ⊂ X and Ỹ ⊂ Y such that

X = N(L)⊕ X̃ and Y = Ỹ ⊕R(L) , where X̃ ⊥ N(L) and Ỹ ⊥ R(L) .

Thus, the projector P : Y → Y is characterized by R(P ) = Ỹ and N(P ) = R(L),

while the projection Q : X → X satisfies both R(Q) = N(L) and N(Q) = X̃.

These projection operators allow us to apply standard arguments based on the
Lyapunov-Schmidt reduction to establish pitchfork bifurcations induced by the ac-
tion of a cyclic group.

Finally, we impose the following two assumptions on the operator F and the
pair (λ0, u0), which are standard for the discussion of bifurcation points. The first
of these has been verified for the diblock copolymer operator in [13], and the second
one will be satisfied at all pitchfork bifurcation points shown in Figures 1 and 2.

Hypothesis 2.2 (Fredholm property). Assume that the operator F : R×X → Y
is nonlinear and sufficiently smooth, and suppose that the pair (λ0, u0) ∈ R×X is
a zero of the operator F , i.e., we assume that it satisfies the identity F (λ0, u0) = 0.
Furthermore, suppose that the Fréchet derivative L = DuF (λ0, u0) of F at (λ0, u0)
is a Fredholm operator of index zero.

Hypothesis 2.3 (One-dimensional kernel). Suppose that the above Fredholm Hy-
pothesis 2.2 is satisfied. In addition, assume that the Fréchet derivative L has a
one-dimensional null space. Since L is of index zero, this immediately implies that
its range has codimension one. Therefore, there exist two nonzero elements ϕ0 ∈ X
and ψ∗

0 ∈ Y ∗ such that both

N(L) = span(ϕ0) and R(L) = N(ψ∗
0)

are satisfied. Furthermore, these assumptions show that the projections P and Q
from Definition 2.1 both have rank one.

2.2. Space decompositions induced by cyclic symmetry. We now turn our
attention to studying the cyclic symmetry operator Tn defined in (2). As we men-
tioned in the introduction, all of the pitchfork bifurcation equilibria shown in Fig-
ures 1 and 2 are fixed points of this operator. Note that since the definition of Tn
includes a shifted argument, we had to extend the definition of the underlying func-
tions beyond the bounded domain Ω = (0, 1) by even reflections. More precisely,
consider for the moment an arbitrary function u ∈ X, where the space X was
defined in (4) above. In view of the imposed homogeneous Neumann boundary
conditions, we can extend the function u smoothly to a periodic function ũ on R,
by first defining

ũ(x) =

{
u(x) for 0 ≤ x ≤ 1 ,

u(2− x) for 1 < x < 2 ,

and then using the identity ũ(x + 2k) = ũ(x) for all x ∈ [0, 2] and k ∈ Z. In the
following, we will refer to u ∈ X and ũ : R → R as corresponding functions, or
equivalently, we will say that ũ is the extension of u.

With the notion of corresponding functions, it now makes sense to apply the sym-
metry operator Tn. One can immediately see that for the equilibrium-eigenfunction
pairs shown in Figures 1 and 2, the extension ũ of every solution u is indeed a fixed
point of the operator Tn, where n denotes the number of layers of u. On the other
hand, extensions ϕ̃ of the eigenfunctions ϕ are not fixed points of Tn.
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In view of these observations, it seems plausible to expect that standard ap-
proaches to studying symmetry-induced bifurcations should apply directly in our
situation, such as the ones described in [5, 10]. Notice, however, that for these
approaches to work one needs to study symmetry operators which are acting on
the space containing the equilibrium solutions — and in our case this is the Hilbert
space X. Yet, one can easily see that if ϕ is one of the eigenfunctions in Figures 1
or 2, then the function Tn(ϕ̃) no longer satisfies homogeneous Neumann boundary

conditions on Ω. In other words, the restriction of Tn(ϕ̃) to Ω is no longer an ele-
ment of X. In addition, even in situations where one can use abstract equivariant
bifurcation theory, one still has to verify the actual bifurcation type and the corre-
sponding nondegeneracy conditions in the specific underlying system, as explained
in detail in [16].

At first glance, this observation appears to doom the use of the symmetry oper-
ator Tn. Nevertheless, we will show in the remainder of this subsection that this is
far from the truth. In fact, we will be able to study Tn on a larger Hilbert space
which contains X, but on which the action of Tn is well-defined — and then use
the obtained insight to construct an appropriate space decomposition of X.

To introduce this larger space, we first return to the definition of the extended
function ũ : R → R corresponding to an element u ∈ X. Notice that accord-
ing to our construction this extension satisfies ũ(x + 2) = ũ(x) for all x ∈ R.
Thus, its restriction to (0, 2) automatically satisfies the periodic boundary condi-
tions ũ(0) = ũ(2) and ũ′(0) = ũ′(2) = 0. Furthermore, one can immediately see
that the symmetry operator Tn defined in (2) maps every 2-periodic function to
another 2-periodic function.

With this in mind, we introduce three spaces of 2-periodic functions, two of which
will extend our Hilbert spaces X and Y . More precisely, we consider

H2
per(R) =

{
v ∈ H2

loc(R) : v(x+ 2) = v(x) for x ∈ R ,

∫ 2

0

v dx = 0

}
,

L2
per(R) =

{
v ∈ L2

loc(R) : v(x+ 2) = v(x) for x ∈ R ,

∫ 2

0

v dx = 0

}
, (6)

H−2
per(R) = ∆L2

per(R),

where the space L2
loc(R) denotes the space of all measurable real-valued functions

on R which are square integrable on compact intervals, and H2
loc(R) ⊂ L2

loc(R) the
space of all twice weakly differentiable Sobolev functions whose first two derivatives
are in L2

loc(R) as well. All three of the above spaces are Hilbert spaces with respect
to the norms

∥v∥2 = ∥∆v∥L2(0,2) for v ∈ H2
per(R) ,

∥v∥0 = ∥v∥L2(0,2) for v ∈ L2
per(R) ,

∥v∥−2 = ∥∆−1v∥L2(0,2) for v ∈ H−2
per(R) ,

respectively. Since we have restricted ourselves to functions with mean zero, one
can verify that both mappings ∆ : H2

per(R) → L2
per(R) and ∆ : L2

per(R) → H−2
per(R)

are isometries.
Our interest in these spaces is two-fold. On the one hand, they are spaces of

periodic functions which in some sense contain our fundamental Hilbert spaces X
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and Y . To see this, note that for every function u ∈ X, its extension clearly
satisfies ũ ∈ H2

per(R). However, it is not true in general that the restriction of every
function in the latter space lies in X. Nevertheless, for any u ∈ X and k ∈ Z, the
construction of its corresponding function ũ implies

ũ(−x) = ũ(−x+ 2k︸ ︷︷ ︸
∈[0,2]

) = ũ(2− (−x+ 2k)) = ũ(x+ 2(1− k)) = ũ(x)

for all x ∈ R, i.e., the extension is an even function. Conversely, one can see that
every even function v ∈ H2

per(R) satisfies v(1+x) = v(−(1+x)) = v(2− (1+x)) =

v(1− x), i.e., it is also even with respect to x = 1. Since every function in H2
per(R)

is continuously differentiable in view of Sobolev’s embedding theorem [1], this in
turn implies that the restriction of any even function v ∈ H2

per(R) to Ω satisfies
homogeneous Neumann boundary conditions, and we have shown that in fact

X =
{
v|Ω : v ∈ H2

per(R) and v(x) = v(−x) for all x ∈ R
}
. (7)

Our second interest in the above spaces stems from the fact that they are invari-
ant under the symmetry operator defined in (2). More precisely, let W denote
either H2

per(R) or L2
per(R). Then we can clearly define an isometry Tn : W → W

via

Tn(v)(x) = −v
(
x+

1

n

)
.

In addition, for W = H−2
per(R) one can set Tn(v) = ∆Tn(∆

−1v). In other words,
the symmetry operator Tn is a well-defined action on these spaces.

As we stated above, we will use the operator Tn on the spaces of periodic func-
tions to ultimately introduce a decomposition of the spaces X and Y from the last
subsection. For this, however, we need to first study Tn on the former spaces. In the
following, we begin by considering the cases W = H2

per(R) and W = L2
per(R), since

in these cases the elements are actually functions that can be evaluated pointwise.
The Sobolev space with negative exponent will be treated subsequently.

It is immediately clear that the operator Tn :W →W has the property of being
cyclic of order 2n, and that it commutes with the Laplacian, i.e., we have both

T 2n
n = I and ∆Tn = Tn∆ .

The first property in particular implies that the minimal polynomial for Tn is given
by

m(t) = t2n − 1 = (tn − 1)(tn + 1) = (t− 1)︸ ︷︷ ︸
ma(t)

(tn−1 + tn−2 + · · ·+ 1)︸ ︷︷ ︸
mb(t)

(tn + 1)︸ ︷︷ ︸
mc(t)

.

In addition, one can easily verify that (tn + 1)/2− (tn − 1)/2 = 1 and that 1 is not
a root of either mb or mc. This in turn implies that the three polynomials ma, mb,
and mc are relatively prime, and therefore we have the decomposition

W = N(Tn − I) ⊕ N(Tn−1
n + Tn−2

n + · · ·+ I) ⊕ N(Tn
n + I)

= N(ma(Tn))︸ ︷︷ ︸
Wa

⊕ N(mb(Tn))︸ ︷︷ ︸
Wb

⊕ N(mc(Tn))︸ ︷︷ ︸
Wc

. (8)

Each of these three subspaces has additional important properties which are crucial
for our applications, and which will be studied in more detail below. For now, we
would like to point out that the space Wa consists of functions v which satisfy the
identity v(x+ 1/n) = −v(x) for all x ∈ R. Thus, by inspection, one would suspect
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that for the diblock copolymer equilibrium solutions u shown in Figures 1 and 2,
their respective corresponding functions ũ lie in Wa for W = H2

per(R), if n denotes
the number of layers of u. As we will see later, the respective eigenfunctions will
automatically be contained in one of the remaining two subspaces.

The decomposition of the spaceW into a direct sum of three subspaces lies at the
heart of our approach, and we will now show that this decomposition can be pulled
down to the subspace X. We have already seen in (7) that the space X occurs
naturally as a subspace of W = H2

per(R) if we additionally impose an evenness
constraint. As the following result shows, this latter constraint plays well with the
decomposition W =Wa ⊕Wb ⊕Wc.

Lemma 2.4 (Invariance under reflection). Let W = H2
per(R) or W = L2

per(R), and
suppose that u ∈ W is arbitrary. Furthermore, suppose that v ∈ W is defined via
v(x) = u(−x) for all x ∈ R. Then for every τ ∈ {a, b, c} one has the implication

u ∈Wτ =⇒ v ∈Wτ and u+ v ∈Wτ .

Proof. Notice first that we only have to establish the validity of v ∈ Wτ in the
above implication. According to its definition, the space Wτ is a linear subspace,
and therefore the inclusions u, v ∈Wτ immediately imply u+ v ∈Wτ as well.

Now let u and v be given as in the formulation of the lemma. Then the periodicity
of u implies v(x) = u(−x) = u(2− x), and this in turn yields

T k
nv(x) = (−1)kv

(
x+

k

n

)
= (−1)ku

(
2− x− k

n

)
(9)

for all x ∈ R and k ∈ N0. We now distinguish between the three cases τ ∈ {a, b, c}.
To begin with, let u ∈Wa. Then we have u(t) = Tnu(t) = −u(t+1/n), and this

readily implies u(t) = −u(t− 1/n). If one now substitutes t = 2− x, then (9) gives

Tnv(x) = −u
(
2− x− 1

n

)
= u(2− x) = u(−x) = v(x) ,

i.e., we also have v ∈Wa.
Consider now the case u ∈ Wb. Then the equation

∑n−1
k=0 T

k
nu(s) = 0 holds for

all s ∈ R. Therefore, if we set s = 2 − x − 1 + 1/n, then one obtains with (9) the
identity

n−1∑
k=0

T k
nv(x) =

n−1∑
k=0

(−1)ku

(
2− x− k

n

)

=

n−1∑
ℓ=0

(−1)n−1−ℓu

(
2− x− n− 1− ℓ

n

)

= (−1)n−1
n−1∑
ℓ=0

(−1)ℓu

(
s+

ℓ

n

)
= (−1)n−1

n−1∑
ℓ=0

T ℓ
nu(s) = 0 ,

where the second equality uses the index change ℓ = n − 1 − k, and for the third
one we note that (−1)ℓ = (−1)−ℓ. This shows that v ∈Wb.

Finally, let us assume that u ∈ Wc. Then −u(s) = Tn
n u(s) = (−1)nu(s + 1) for

all s ∈ R. Thus, if we set s = −x, then we obtain

Tn
n v(x) = (−1)nv (x+ 1) = (−1)nu (2− x− 1) = (−1)nu(−x+ 1)
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= −u(−x) = −v(x) ,

which in turn implies v ∈Wc. This completes the proof of the lemma.

Remark 2.5 (Dihedral group D2n action). While our main focus so far has been to
understand how the action of the cyclic group Z2n induced by Tn on W = H2

per(R)
or W = L2

per(R) can be used to find a suitable space decomposition, Lemma 2.4
illustrates another point. In addition to the action of Tn, our study also makes
crucial use of the reflection symmetry u(·) 7→ u(−·) on the space W . Thus, the
actual underlying symmetry group is the resulting dihedral group D2n acting onW .

The above result shows that the spaces in the decomposition of W are invariant
under the reflection x 7→ −x. This leads us immediately to the following result,
which further decomposes every Wτ into even and odd functions.

Lemma 2.6 (Even and odd decomposition). Let W = H2
per(R) or W = L2

per(R),
and define the subspaces W e = {u ∈ W : u is even} and W o = {u ∈ W : u is odd}
of W consisting of all even and odd functions, respectively. Then we have the
equality W =W e ⊕W o, as well as

Wτ = (Wτ ∩W e)⊕ (Wτ ∩W o) for all τ ∈ {a, b, c} .

Finally, functions in W e are even with respect to both x = 0 and with respect
to x = 1, while functions in W o are odd with respect to both of these x-values.

Proof. It is well-known that every function u defined on R can be written as the sum
of an even and an odd function in the form u = ue+uo, where the even and odd parts
are explicitly given by ue(x) = (u(x) + u(−x))/2 and uo(x) = (u(x) − u(−x))/2,
respectively. Thus, in view of Lemma 2.4 we have both ue ∈ Wτ and uo ∈ Wτ , as
long as u ∈ Wτ . Since only the zero function is both even and odd, this implies
the decompositions stated in the lemma. The statement concerning the evenness
of every u ∈ W e with respect to x = 1 has already been shown in the verification
of (7). Finally, for v ∈W o one obtains

v(1− x) = −v(x− 1) = −v(x− 1 + 2) = −v(1 + x) for all x ∈ R ,

and this completes the proof of the lemma.

As we already showed in (7), the space X defined in (4) can be considered as a
subspace of W = H2

per(R) in the sense that u ∈ X if and only if its extension ũ is

an even function in H2
per(R). Thus, the above lemma allows us to pull the space

decomposition defined in (8) down to the space X, by considering only the even
functions in the spaces Wa, Wb, and Wc. More precisely, we have the following
definition.

Definition 2.7 (Symmetry induced space decomposition of X). Let W = H2
per(R)

denote the space defined in (6), and let X be defined as in (4). Then we define
three subspaces of X by considering only the even corresponding functions in the
subspaces Wa, Wb, and Wc defined in (8) for some integer n ∈ N, i.e., we set

Xτ = {u ∈ X : ũ ∈Wτ} for all τ ∈ {a, b, c}

in view of (7). Notice that Lemma 2.6 immediately implies X = Xa ⊕Xb ⊕Xc.
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v ∈ Xa ⊕Xb v ∈ Xc

n even v even with respect to x = 1/2 v odd with respect to x = 1/2

n odd v odd with respect to x = 1/2 v even with respect to x = 1/2

Table 1. Additional symmetries of functions in the spaces Xa,
Xb, and Xc introduced in Definition 2.7. Depending on whether
the underlying integer n ∈ N is even or odd, functions in the spaces
Xa ⊕ Xb and Xc have an additional even or odd symmetry with
respect to the center point x = 1/2 of the domain Ω = (0, 1), as
listed in the above table.

With the above definition we have achieved our first goal, namely, the derivation
of a decomposition of our domain X that is in some sense induced by the sym-
metry Tn, and that allows us to discuss symmetry-breaking pitchfork bifurcations.
Based on our derivation, one would suspect that the pitchfork bifurcation equilibria
shown in Figures 1 or 2 are contained in the spaces Xa — and we still need to
understand why the spaces Xb and Xc are the correct spaces to include the eigen-
functions. We would like to emphasize one more time, however, that while in some
sense Xa is invariant under the symmetry Tn (via corresponding functions), this is
not true for the spaces Xb and Xc.

In addition to the symmetry properties discussed so far, the functions in the
spaces Xa, Xb, and Xc introduced in Definition 2.7 exhibit one more symmetry.
This is the subject of the following simple lemma.

Lemma 2.8 (Symmetry with respect to x = 1/2). Consider the spaces Xa, Xb,
and Xc introduced in Definition 2.7. Then functions in the direct sum Xa ⊕Xb are
even or odd with respect to the center point x = 1/2 of the domain Ω = (0, 1) if the
integer n ∈ N is even or odd, respectively. In addition, functions in Xc are odd or
even with respect to x = 1/2 if n is even or odd, respectively. This is summarized
in Table 1.

Proof. Consider first the case v ∈ Xa ⊕ Xb, and let ṽ denote its corresponding
function in W , which according to Definition 2.7 and (8) is contained in Wa ⊕
Wb = N(Tn

n − I). Thus, the extension ṽ satisfies the identity Tn
n ṽ = ṽ, and by

iterating the definition of Tn one can easily see that this is equivalent to the identity
(−1)nṽ(1+x) = ṽ(x) for all x ∈ R. If we then replace x by x−1/2, this immediately
implies

(−1)nṽ

(
1

2
+ x

)
= ṽ

(
x− 1

2

)
= ṽ

(
1

2
− x

)
for all x ∈ R ,

where for the second identity we use the fact that ṽ is even. This establishes the
first half of the lemma. By a completely analogous argument, using the fact that
for v ∈ Xc its extension satisfies ṽ ∈ Wc = N(Tn

n + I), one can easily verify the
second half as well. All that changes is the introduction of an additional negative
sign, which is responsible for the switch between even and odd in this case.

We would like to point out explicitly that, in view of the above lemma, for any
given integer n ∈ N either Xa ⊕Xb contains even functions with respect to x = 1/2
and Xc contains odd ones, or vice versa. We will see later that this fact is inherently
responsible for the Z2 symmetry-breaking results of [13]. As it turns out, the further
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decomposition into Xa and Xb allows us to treat the bifurcation points shown in
Figures 1 and 2.

As our final result concerning the decomposition of the space X we now show
that the spaces Xa, Xb, and Xc are pairwise orthogonal. In fact, the following
result implies that they are orthogonal with respect to a variety of possible inner
products on X.

Lemma 2.9 (Orthogonality of the X-decomposition). The spaces Xa, Xb, and Xc

introduced in Definition 2.7 are pairwise orthogonal with respect to the inner product

(∆u,∆v)L2(Ω) + β(∇u,∇v)L2(Ω) + γ(u, v)L2(Ω) for u, v ∈ X ,

for any choice of constants β ≥ 0 and γ ≥ 0.

Proof. Assume that the functions u and v are taken from two different spaces of Xa,
Xb, and Xc, and let ũ and ṽ denote their extensions in W .

We begin by showing that the standard L2(Ω)-inner product of u and v vanishes.
In view of Lemma 2.8, this is trivially satisfied if u ∈ Xa ∪Xb and v ∈ Xc, or vice
versa, since in these cases the product uv is always odd with respect to x = 1/2,

and therefore
∫ 1

0
u(x)v(x) dx = 0. Assume therefore that u ∈ Xa and v ∈ Xb. Then

one obtains∫ 1

0

u(x)v(x) dx =

n−1∑
k=0

∫ k+1
n

k
n

u(x)v(x)dx =

n−1∑
k=0

∫ 1
n

0

u

(
x+

k

n

)
v

(
x+

k

n

)
dx

=

n−1∑
k=0

∫ 1
n

0

(
(−1)ku

(
x+

k

n

))(
(−1)kv

(
x+

k

n

))
dx

=

n−1∑
k=0

∫ 1
n

0

(
T k
n ũ(x)

) (
T k
n ṽ(x)

)
dx =

n−1∑
k=0

∫ 1
n

0

ũ(x)T k
n ṽ(x) dx

=

∫ 1
n

0

u(x)

(
n−1∑
k=0

T k
n ṽ(x)

)
dx = 0 ,

where we used the facts that T k
n ũ = ũ and

∑n−1
k=0 T

k
n ṽ = 0.

The remaining two terms in the inner products defined in the formulation of
the lemma can be discussed similarly. The statement for the second derivative
term (∆u,∆v)L2(Ω) follows completely analogously, since the Laplacian ∆ commutes
with Tn and preserves any even or odd symmetry with respect to x = 1/2. Finally,
by using integration by parts and the boundary conditions imposed in X, one can
obtain (∇u,∇v)L2(Ω) = −(∆u, v)L2(Ω), and the result follows again as before.

With the above result we have completed the construction of a decomposition
of the Hilbert space X defined in (4), which serves as the domain of our nonlinear
diblock copolymer operator F : X → Y introduced in (3). We now turn our
attention to the image space Y .

Definition 2.10 (Symmetry induced space decomposition of Y ). Consider the
Hilbert space Y = H−2(Ω) for Ω = (0, 1) introduced in (4). Let u be any element
of Y . Then its inverse image ∆−1u with respect to the restricted Laplacian operator
∆ : L2(Ω) ∩

{∫
Ω
u dx = 0

}
→ H−2(Ω) has an extension û ∈ L2

per(R), given by the

formula û = ∆̃−1u. Furthermore, since the Laplacian is an isometry with respect
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to our chosen norms, we have with W = L2
per(R) the decomposition

L2
per(R) = Wa ⊕Wb ⊕Wc ,

where Wa, Wb, and Wc contained in L2
per(R) were defined in (8). The subspaces in

this decomposition are pairwise orthogonal. Thus, if we define

Yτ = {u ∈ Y : û ∈Wτ} for all τ ∈ {a, b, c}
then one can verify that Y = Ya ⊕ Yb ⊕ Yc, and that the involved subspaces are
pairwise orthogonal. In fact, one can also show that Yτ = ∆2Xτ for all τ ∈ {a, b, c}.
Finally, using our earlier definition of Tn : H−2

per(R) → H−2
per(R) via the identity

Tn(u) = ∆Tn(∆
−1u), one can verify that we have u ∈ Yτ if and only if one has the

equality mτ (Tn)[∆û] = 0. In the following, we will therefore call ∆û ∈ H−2
per(R) the

extension of u ∈ Y .

The above descriptions of the spaces X and Y , and of their respective decom-
positions, are tailor-made for the results discussed in the remainder of the paper.
Nevertheless, we close this subsection with an alternative description of these spaces,
which is based on cosine Fourier series.

Remark 2.11 (Cosine Fourier series representations). Consider an arbitrary func-
tion u ∈ X. Then it was shown in [24] that there exists a unique representation

u(x) =
∑
k∈N

ak cos(kπx) with ak ∈ R for k ∈ N , (10)

where the constant term k = 0 is omitted due to the zero mass constraint, and the
series converges with respect to our chosen norm on X.

As it turns out, each of the three subspaces Xa, Xb, and Xc have a simple de-
scription in terms of this series representation, since the basis functions are pairwise
orthogonal, and every one of these functions is contained in exactly one of these
spaces.

To begin with, consider the space Xa. For any function u ∈ Xa, if we denote its
extension again by ũ, one can easily see that in view of Tn(ũ) = ũ we have

u

(
1

2n
+ x

)
= ũ

(
− 1

2n
− x

)
= −ũ

(
− 1

2n
− x+

1

n

)
= −u

(
1

2n
− x

)
, (11)

for all x ∈ (0, 1/(2n)), i.e., the function u is odd with respect to x = 1/(2n)
on the subinterval (0, 1/n). This in turn implies that the average of u vanishes
over (0, 1/n), and since the functions cos(kπx/L) for L = 1/n and k ∈ N0 form a
complete orthogonal set in L2((0, 1/n)), one obtains that

u ∈ Xa if and only if u(x) =
∑
k∈nN

ak cos(kπx) =
∑
ℓ∈N

aℓn cos(ℓnπx) ,

since the basis functions cos(ℓnπx) for ℓ ∈ N clearly lie in Xa themselves. In other
words, the function u is contained in Xa if and only if its cosine Fourier series
contains only terms corresponding to wave numbers k which are multiples of n.

We now turn our attention to the spaces Xb and Xc. Due to Lemma 2.9, cosine
Fourier expansions of a function u in either of these spaces can only contain terms
for wave numbers which are not divisible by n. Furthermore, one can verify by
direct inspection that

Tn
n cos(kπx) = cos(kπx) if and only if n ≡ k mod 2 ,

Tn
n cos(kπx) = − cos(kπx) if and only if n ̸≡ k mod 2 .



680 PETER RIZZI, EVELYN SANDER AND THOMAS WANNER

This gives the characterizations

Even n: u ∈ Xb if and only if u(x) =
∑

k ̸∈nN , k even

ak cos(kπx) ,

u ∈ Xc if and only if u(x) =
∑

k ̸∈nN , k odd

ak cos(kπx) ,

Odd n: u ∈ Xb if and only if u(x) =
∑

k ̸∈nN , k odd

ak cos(kπx) ,

u ∈ Xc if and only if u(x) =
∑

k ̸∈nN , k even

ak cos(kπx) .

We would like to point out that these characterizations immediately imply the state-
ments of Table 1. Furthermore, the above characterizations remain valid without
change for the image space decomposition Y = Ya⊕Yb⊕Yc, as long as one considers
the cosine Fourier series in a formal sense and its convergence in the norm defined
in Y . For more details, we refer the reader to [24].

2.3. Equivariance properties of the nonlinear operator. We close this sec-
tion by establishing the equivariance properties of the nonlinear diblock copolymer
operator F : X → Y defined in (3) and (4), with a particular emphasis on how
this operator and its Fréchet derivative L defined in (5) interacts with the space
decompositions of X and Y from the last subsection. As mentioned in the intro-
duction, throughout this paper we consider the one-dimensional domain Ω = (0, 1),
the total mass µ = 0, and the odd nonlinearity f(u) = u − u3. We would like to
point out, however, that the results of this section remain valid for any smooth odd
function f : R → R, and are in fact formulated for that case.

Throughout this section, we consider mapping properties of operators between
the spaces Xτ and Yτ introduced in the last section. In order to keep the notation as
simple as possible, we will use the same letter for a function in Xτ and its extension
in H2

per(R), and similarly for elements in Yτ and their extensions in H−2
per(R). Thus,

we can consider the diblock copolymer operator F both as an operator between X
and Y , as well as an operator of the form F : H2

per(R) → H−2
per(R).

It has already been stated several times that our main focus is the verification of
a special kind of symmetry-breaking pitchfork bifurcation. Thus, the equilibrium
solutions on the bifurcating branch will exhibit different, and in fact fewer, symme-
try properties than the solutions on the primary steady state branch. This primary
branch is characterized by invariance with respect to the symmetry operator Tn
defined in (2), and the following first lemma shows that both F and its partial
derivative DλF respect this symmetry.

Lemma 2.12 (First equivariance properties). Let Ω = (0, 1), consider the total
mass µ = 0, and let f be a smooth and odd nonlinearity. Moreover, let F : X → Y
be defined as in (3) and (4). Then for every u ∈ Xa we have both F (λ, u) ∈ Ya and
the inclusion DλF (λ, u) ∈ Ya.

Proof. Let u ∈ Xa be arbitrary. Then its extension in H2
per(R) is even, and due to

the properties of the Laplacian and the Nemitski operator f the same is true for
both F (λ, u) and DλF (λ, u). Moreover, the oddness of f and Tnu = u imply

Tnf(u(x)) = −f(u(x+ 1/n)) = f(−u(x+ 1/n)) = f(u(x)) .
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In combination with Tn∆ = ∆Tn one therefore obtains TnF (λ, u) = F (λ, u), and
this in turn implies F (λ, u) ∈ Ya, see also Definition 2.10. The remaining inclusion
for DλF (λ, u) = −∆f(u)− σu can be verified analogously.

In view of this lemma, one can study the equilibrium problem F (λ, u) = 0 re-
stricted to the symmetry space Xa, and this will provide us with a primary solution
branch in Xa. The next two auxiliary results address how first- and second-order
partial derivatives of F interact with the various symmetry spaces. The resulting
inclusions are central for our bifurcation analysis.

Lemma 2.13 (Equivariance properties ofDuF andDλuF ). Let Ω = (0, 1), consider
the total mass µ = 0, and let f be a smooth and odd nonlinearity. Furthermore,
let F : X → Y be defined as in (3) and (4). Then for arbitrary λ ∈ R and u ∈ Xa,
and every τ ∈ {a, b, c} we have the inclusions

DuF (λ, u)[Xτ ] ⊂ Yτ and DλuF (λ, u)[Xτ ] ⊂ Yτ . (12)

In addition, we have

R(DuF (λ, u)) = DuF (λ, u)[Xa]⊕DuF (λ, u)[Xb]⊕DuF (λ, u)[Xc] , (13)

as well as both

DuF (λ, u)[Xτ ] = R(DuF (λ, u)) ∩ Yτ and P (Yτ ) ⊂ Yτ (14)

for all τ ∈ {a, b, c}, where P : Y → Y denotes the orthogonal projection which was
introduced in Definition 2.1.

Proof. Let λ ∈ R and u ∈ Xa be fixed, and consider an arbitrary v ∈ X. For
notational convenience in this proof, we introduce the abbreviation L = DuF (λ, u).
Since we assumed that f is an odd function, its derivative f ′ is even. This immedi-
ately implies

Tn (f
′(u(x))v(x)) = −f ′(u(x+ 1/n))v(x+ 1/n)

= f ′(−u(x))(−v(x+ 1/n)) = f ′(u(x))Tnv(x) .

Since the operator Tn also commutes with each of the other two terms in the explicit
representation (5) of DuF (λ, u)[v], one therefore obtains TnL[v] = L[Tnv]. This in
turn implies that the inclusion v ∈ Xτ readily implies DuF (λ, u)[v] ∈ Yτ , where
we again refer the reader to Definition 2.10. The statement for the second-order
partial derivative DλuF (λ, u)[v] = −∆(f ′(u)v)− σv can be established completely
analogously, and this completes the proof of (12).

The just-established (12) implies that the spaces L[Xa], L[Xb], and L[Xc] form
a direct sum, since Ya, Yb, and Yc do. We also have L[Xa]⊕L[Xb]⊕L[Xc] ⊂ R(L),
and the reverse inclusion follows from R(L) ∋ y = Lx = Lxa + Lxb + Lxc, if we
write x = xa + xb + xc ∈ Xa ⊕Xb ⊕Xc = X. This implies (13).

As for (14), let τ ∈ {a, b, c}. Then one obviously has L[Xτ ] ⊂ R(L) ∩ Yτ . To
verify the opposite inclusion, let y ∈ R(L) ∩ Yτ be arbitrary. Then y = Lx, and we
can again decompose x in the form x = xa+xb+xc ∈ Xa⊕Xb⊕Xc. But this in turn
yields the inclusion y = Lxa+Lxb+Lxc ∈ Ya⊕Yb⊕Yc, and y ∈ Yτ in combination
with the properties of direct sums immediately imply y = Lxτ ∈ L[Xτ ]. In order to
establish the inclusion statement regarding the orthogonal projection P , one just has
to note that every y ∈ Y can be written uniquely as y = ya+yb+yc ∈ Ya⊕Yb⊕Yc,
and that for τ ∈ {a, b, c} one further has yτ = yτ,1 + yτ,2, where yτ,1 ∈ L(Xτ )
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and yτ,2 is contained in the orthogonal complement of L(Xτ ) in Yτ , which might in
fact be trivial. Altogether, this gives the decomposition

y = ya,1 + ya,2 + yb,1 + yb,2 + yc,1 + yc,2

into pairwise orthogonal elements, and one can easily see that Py = ya,2 + yb,2 +
yc,2. From this, the last statement follows readily, and the proof of the lemma is
complete.

Lemma 2.14 (Equivariance properties of DuuF ). Let Ω = (0, 1), consider the total
mass µ = 0, and let f be a smooth odd nonlinearity. Furthermore, let F : X → Y be
defined as in (3) and (4). Then for all λ ∈ R and u ∈ Xa the following inclusions
are satisfied:

(i) DuuF (λ, u)[Xa, Xa] ⊂ Ya

(ii) DuuF (λ, u)[Xa ⊕Xb, Xa ⊕Xb] ⊂ Ya ⊕ Yb

(iii) DuuF (λ, u)[Xa, Xb] ⊂ Yb

(iv) DuuF (λ, u)[Xc, Xc] ⊂ Ya ⊕ Yb

(v) DuuF (λ, u)[Xa ⊕Xb, Xc] ⊂ Yc

(15)

Note that due to the symmetry of DuuF (λ, u), the order of the two arguments in (iii)
and (v) does not matter.

Proof. Recall that we have DuuF (λ, u)[v, w] = −∆(λf ′′(u)vw) for all v, w ∈ X,
and that due to the oddness of f the second derivative f ′′ is also an odd function.
Then for u ∈ Xa one obtains the identity

Tn (f
′′(u(x))v(x)w(x)) = −f ′′(u(x+ 1/n))v(x+ 1/n)w(x+ 1/n)

= f ′′(−u(x+ 1/n))(−v(x+ 1/n))(−w(x+ 1/n))

= f ′′(u(x))Tnv(x)Tnw(x) ,

which in turn readily implies TnDuuF (λ, u)[v, w] = DuuF (λ, u)[Tnv, Tnw]. With
this formula at hand one can now establish the claims.

Note that if v, w ∈ Xa, then we have both Tnv = v and Tnw = w, and the first
statement follows. Similarly, if v, w ∈ Xa ⊕Xb, then T

n
n v = v and Tn

nw = w, which
yields the second statement. In addition, if we assume v, w ∈ Xc, then T

n
n v = −v

and Tn
nw = −w, and from this one can obtain (iv).

We now turn our attention to (iii). If v ∈ Xa and w ∈ Xb, then for all k ∈ N one
obtains T k

nDuuF (λ, u)[v, w] = DuuF (λ, u)[T
k
nv, T

k
nw] = DuuF (λ, u)[v, T

k
nw]. But

this gives

n−1∑
k=0

T k
nDuuF (λ, u)[v, w] = DuuF (λ, u)

[
v,

n−1∑
k=0

T k
nw

]
= 0 ,

which in turn implies DuuF (λ, u)[v, w] ∈ Yb. This establishes (iii).
Finally, suppose that v ∈ Xa ⊕Xb and w ∈ Xc. Then T

n
n v = v and Tn

nw = −w,
and therefore Tn

nDuuF (λ, u)[v, w] = DuuF (λ, u)[T
n
n v, T

n
nw] = −DuuF (λ, u)[v, w],

which yields (v). This completes the proof of the lemma.

After these preparations we can now turn our attention to the main result of
this section. It shows that under our Hypotheses 2.2 and 2.3 the kernel function
at a potential bifurcation point has to be contained in one of the spaces Xa, Xb,
and Xc. In addition, we obtain easily testable conditions that establish the precise
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ϕ0 ∈ Xb ϕ0 ∈ Xc

n even ϕ0
(

1
2n

)
̸= 0, ϕ0(0) + ϕ0(1) ̸= 0 ϕ0(0)− ϕ0(1) ̸= 0

n odd ϕ0
(

1
2n

)
̸= 0, ϕ0(0)− ϕ0(1) ̸= 0 ϕ0(0) + ϕ0(1) ̸= 0

Table 2. Easily verifiable conditions which ensure whether the
kernel function ϕ0 is contained in Xb or in Xc. These conditions
change depending on whether n in the definition of the symmetry
operator Tn is even or odd. Since all of these conditions are simple
inequality checks for specific function values, they can readily be
rigorously validated using interval arithmetic.

space containing the kernel function. This will be essential for the bifurcation result
and its rigorous verification via extended systems in the next section.

Proposition 2.15 (Kernel function properties). Let Ω = (0, 1), consider the total
mass µ = 0, and let the function f be a smooth and odd nonlinearity. Furthermore,
let F : X → Y be defined as in (3) and (4), and suppose that Hypotheses 2.2 and 2.3
are satisfied, that is, we have both F (λ0, u0) = 0 and Lϕ0 = DuF (λ0, u0)[ϕ0] = 0,
and the null space of L is one-dimensional. In addition, we assume that the equi-
librium u0 is contained in the symmetry space Xa. Then the following statements
hold.

(a) The kernel function ϕ0 is automatically contained in either Xa, or Xb, or Xc.
(b) By verifying one of the conditions in the left or right columns of Table 2, one

can easily establish whether ϕ0 ∈ Xb or ϕ0 ∈ Xc is satisfied, respectively.
(c) If the kernel function satisfies ϕ0 /∈ Xa, then the linearization L : Xa → Ya is

bijective. In particular, we have L[Xa] = Ya in this case.

Proof. We begin by verifying (a). Since ϕ0 ∈ X, we can find ϕτ ∈ Xτ for τ = a, b, c
such that the identity ϕ0 = ϕa+ϕb+ϕc is satisfied. But then (12) implies L[ϕτ ] ∈ Yτ ,
i.e., we have 0 = L[ϕ0] = L[ϕa] + L[ϕb] + L[ϕc] ∈ Ya ⊕ Yb ⊕ Yc, and the properties
of direct sums therefore furnish L[ϕτ ] = 0 for all τ = a, b, c. Since ϕ0 ̸= 0, we
have to have ϕτ ̸= 0 for at least one τ ∈ {a, b, c}. Since the null space of L is
one-dimensional, one then has to have the equality ϕ0 = αϕτ ∈ Xτ for some α ̸= 0,
which establishes the claim.

Consider now the statement in (b) and suppose for the moment that the integer n
in the definition of Tn is even. Then in view of Lemma 2.8, see also Table 1, every
function in the direct sum Xa ⊕ Xb is even with respect to x = 1/2, while every
function in Xc is odd with respect to the center of the interval Ω. By taking the
contrapositive, if we know that the inequality ϕ0(0) + ϕ0(1) ̸= 0 is true, then ϕ0
cannot be odd with respect to x = 1/2, and therefore has to be in Xa or Xb.
Similarly, the inequality ϕ0(0)− ϕ0(1) ̸= 0 shows that ϕ0 is not even, and so it has
to be in Xc. The case of odd n can be treated similarly.

It remains to show that if we have the inclusion ϕ0 ∈ Xa ∪ Xb, as well as
ϕ0(1/(2n)) ̸= 0, then necessarily one has ϕ0 ∈ Xb. This, however, follows immedi-
ately from (11), where it was demonstrated that every function in Xa is odd with
respect to x = 1/(2n), and therefore has to vanish at 1/(2n). This completes the
proof of (b).
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Finally, we turn our attention to the statement in (c). Suppose therefore that ϕ0
is contained in either Xb or Xc. Since we assumed Tnu0 = u0, the function u0
satisfies homogeneous Neumann boundary conditions at both x = 0 and at x = 1/n.
Now let us denote the restriction of u0 to the interval Ωs = (0, 1/n). Then we still
have F (λ0, us) = 0 on this interval, with the same Neumann boundary conditions
that were considered for the original equation on Ω = (0, 1). Define the function
spacesXs and Ys as the spaces corresponding toX and Y , but consisting of functions
restricted to the smaller interval Ωs, which in the case of Xs satisfy homogeneous
Neumann boundary conditions on ∂Ωs. Finally, define Ls = DuF (λ0, us)|Xs

, i.e.,
via restriction to the interval (0, 1/n).

We begin by verifying L[Xs] = Ys. For this, assume that Ys \ Ls[Xs] ̸= ∅. Then
there exists a nontrivial element which is not in the range of Ls. Therefore, since also
the restricted operator is Fredholm with index 0 according to [13, Proposition 2.15],
there has to be a nontrivial null space element ϕs ∈ N(Ls). Recall that any function
in Xa is uniquely defined by its values on Ωs = (0, 1/n). Thus, since ϕs satisfies
homogeneous Neumann boundary conditions on Ωs, there is a corresponding unique
function ϕa ∈ Xa defined on Ω = (0, 1) and such that ϕa = ϕs on (0, 1/n). Moreover,
the fact that Lsϕs = 0 on Ωs immediately implies that Lϕa = 0 on Ω. Therefore,
the function ϕa ∈ Xa is contained in the null space N(L). However, this is a
contradiction, since we have assumed that N(L) is one-dimensional, and that it is
spanned by a function ϕ0 which is contained in either Xb or Xc. Thus we conclude
that L[Xa] = Ya. Since the above argument also directly implies N(Ls) = {0}, this
completes the proof of the proposition.

3. Cyclic equivariant pitchfork bifurcations. After the preparations of the
last section, we now show that the cyclic action of the symmetry operator Tn,
through its derived space decomposition X = Xa ⊕ Xb ⊕ Xc, does indeed give
rise to symmetry-breaking bifurcations. More precisely, we consider the scenarios
indicated in Table 3. In this table, we distinguish between the parity of the integer n
and the symmetry with respect to x = 1/2 of the kernel function ϕ0. This leads
to four different bifurcation scenarios, all of which break the Z2n-symmetry of the
equilibrium solution u0 ∈ Xa, based on whether one has ϕ0 ∈ Xb or ϕ0 ∈ Xc.
Recall that the latter two conditions can easily be verified using the tests listed
in Table 2. While all of these scenarios are covered by the theory developed in
the present paper, cases (b) and (c) could already be established using the results
of [13]. However, the cases (a) and (d) are new and do require our new approach,
and they cover all of the situations shown in Figures 1 and 2.

To develop this new approach, we proceed as follows. In Section 3.1 we use a
standard Lyapunov-Schmidt reduction based on our underlying space decomposi-
tion to provide a sufficient condition for the existence of a Z2n-symmetry breaking
pitchfork bifurcation. After that, Section 3.2 demonstrates that the assumptions
of this result can be verified using the existence of an isolated zero of a suitable
extended system. This reformulation of the existence result makes it amenable to
verification via computer-assisted proof techniques.

3.1. A sufficient condition for pitchfork bifurcation. We begin by concen-
trating on the derivation of a sufficient condition for the existence of a pitchfork
bifurcation which breaks the Z2n-symmetry. For this, we rely on the Lyapunov-
Schmidt reduction result in Proposition 3.1 below, which gives a general method
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ϕ0 even ϕ0 odd

n even (a) u0 even (b) u0 even
ϕ0 ∈ Xb ϕ0 ∈ Xc

n odd (c) u0 odd (d) u0 odd
ϕ0 ∈ Xc ϕ0 ∈ Xb

Table 3. Symmetry-breaking pitchfork bifurcation scenarios if the
equilibrium solution u0 satisfies u0 ∈ Xa, i.e., we have Tnu0 = u0.
Throughout the table, the labels even and odd refer to symmetries
with respect to the center point x = 1/2 of the domain Ω = (0, 1).
Notice that (b) and (c) are covered by our previous Z2-pitchfork
bifurcation theorem [13]. In contrast, the remaining two cases (a)
and (d) correspond to the new scenarios depicted in Figures 1 and 2,
respectively.

of reducing the bifurcation problem from an infinite-dimensional problem to a bi-
furcation problem on a one-dimensional subspace. Our formulation is completely
analogous to the one used in [13]. Thus, we refer the reader to this paper for
the full proof and merely provide a brief sketch below to keep the current paper
self-contained.

Proposition 3.1 (Lyapunov-Schmidt reduction). Let Ω = (0, 1), consider the total
mass µ = 0, and let the function f be a smooth and odd nonlinearity. Furthermore,
let F : X → Y be defined as in (3) and (4), and suppose that Hypotheses 2.2 and 2.3
are satisfied, i.e., we have both F (λ0, u0) = 0 and Lϕ0 = DuF (λ0, u0)[ϕ0] = 0, and
the null space of L is one-dimensional. Finally, let P and Q denote the orthogonal
projections from Definition 2.1.

Then there exist a neighborhood Λ0 of λ0, a neighborhood V0 of v0 = Qu0 ∈ N(L),

a smooth function W : Λ0 × V0 → X̃, as well as a smooth real-valued function b
which is defined in a neighborhood of the point (λ0, 0) ∈ R2 such that the following
hold:

(a) If (λ, α) is sufficiently close to the point (λ0, 0) ∈ R2 and satisfies b(λ, α) = 0,
then we have

F (λ, u) = 0 for u = v0 + αϕ0 +W (λ, v0 + αϕ0) .

(b) Conversely, if (λ, u) is close enough to (λ0, u0) and solves F (λ, u) = 0, then
for α defined via v0+αϕ0 = Qu we have b(λ, α) = 0 and u = Qu+W (λ,Qu).

In other words, the solution set of b(λ, α) = 0 in a neighborhood of (λ0, 0) ∈ R2 is
in one-to-one correspondence with the solution set of F (λ, u) = 0 in a neighborhood
of (λ0, u0).

Proof. Due to the properties of the projections P and Q, if we associate with every
element u ∈ X the two elements v = Qu and w = (I − Q)u, then we clearly have

the identity u = v + w ∈ N(L)⊕ X̃. Moreover, the nonlinear problem F (λ, u) = 0
is equivalent to the system

PF (λ, v + w) = 0 and G(λ, v, w) := (I − P )F (λ, v + w) = 0 . (16)

One can show that the function G : R×N(L)×X̃ → R(L) introduced in the second

equation has an invertible Fréchet derivative DwG(λ0, v0, u0 − v0) ∈ L(X̃, R(L)),
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and therefore the implicit function theorem implies that given (λ, v) near (λ0, v0),

there exists a unique w =W (λ, v) in X̃ such that G(λ, v,W (λ, v)) = 0. Since N(L)
is one-dimensional, each v ∈ N(L) has a unique representation of the form v0+αϕ0.
Given a nontrivial ψ∗

0 ∈ Y ∗ such that R(L) = N(ψ∗
0), the function b is then defined

as

b(λ, α) = ψ∗
0(PF (λ, v0 + αϕ0 +W (λ, v0 + αϕ0))) . (17)

The statements of the proposition now follow easily from the fact that the solutions
of the original problem F (λ, u) = 0 are in one-to-one correspondence with the
solutions of (16).

The above proposition is the standard version of the Lyapunov-Schmidt reduc-
tion, which does not account for any symmetry properties of the nonlinear opera-
tor F . Note, however, that we do require that the two projections P and Q are
orthogonal projections, and in that way the results from the last section allow us to
make a number of additional deductions as long as we assume that the equilibrium
solution u0 is contained in Xa, while the kernel function ϕ0 is contained in either Xb

or Xc. More precisely, we will soon see that the following hold:

• Since the spaces in the decomposition X = Xa⊕Xb⊕Xc are pairwise orthog-
onal, we automatically obtain Q[Xa] = {0}.

• In view of F (λ,Xa) ⊂ Ya and the assumption on ϕ0, there exists a unique
branch of equilibrium solutions through (λ0, u0) which is contained in Xa,
and the application of the projection Q transforms this branch into a trivial
solution branch in R×N(L).

• The construction of the bifurcation equation b(λ, α) = 0 in the above propo-
sition then readily implies that b(λ, 0) = 0 for all λ in a neighborhood of λ0.
In fact, since we also assumed the oddness of the nonlinearity f , we can even
make statements about the vanishing of certain derivatives of the function b.

These observations are explained in more detail in the following main result of this
subsection. It provides conditions under which the Z2n-equivariance of the last
section forces a symmetry-breaking pitchfork bifurcation. This result is similar in
spirit to [13, Proposition 2.11], as well as to the classical result [6].

Theorem 3.2 (Existence of Z2n-symmetry breaking pitchfork bifurcation). Let
Ω = (0, 1), consider the mass µ = 0, and let the function f be a smooth and odd
nonlinearity. Furthermore, let F : X → Y be defined as in (3) and (4), and suppose
that Hypotheses 2.2 and 2.3 are satisfied, i.e., we have both F (λ0, u0) = 0 and
Lϕ0 = DuF (λ0, u0)[ϕ0] = 0, and the null space of L is one-dimensional. Finally,
let P and Q denote the orthogonal projections from Definition 2.1. In addition,
suppose that u0 ∈ Xa and that ϕ0 ∈ Xτ for τ ∈ {b, c}. Then there exists a unique
function ξ0 ∈ Xa such that

Lξ0 + (I − P )DλF (λ0, u0) = 0 , (18)

and if we further suppose that the nondegeneracy condition

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0] /∈ R(L) (19)

is satisfied, then the point (λ0, u0) is a pitchfork bifurcation point for the nonlinear
operator F .

Proof. Consider the function G(λ, v, w) defined in (16), as well as b(λ, α) introduced
in (17). Furthermore, let v0 = Qu0 ∈ N(L) as in Proposition 3.1. Then u0 ∈ Xa,
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combined with the fact that ϕ0 ∈ Xτ for τ ̸= a, that Q : X → N(L) is an orthogonal
projection, and the orthogonality statement from Lemma 2.9, immediately yield
both v0 = 0 and N(L|Xa

) = {0}. Also, the definition of ψ∗
0 and [13, Table 1] yield

bα(λ0, 0) = ψ∗
0DuF (λ0, u0) = 0 .

The oddness of the nonlinearity f and µ = 0 further show that F (λ,−u) = −F (λ, u)
for arbitrary λ ∈ R and u ∈ X, and this in turn implies

G(λ,−v,−w) = (I − P )F (λ,−(v + w)) = −(I − P )F (λ, v + w) = −G(λ, v, w) .

Thus, the function w = −W (λ, v) ∈ X̃ solves the equation G(λ,−v, w) = 0, and
the uniqueness property of W established in Proposition 3.1 then gives −W (λ, v) =
W (λ,−v). One then obtains

−b(λ, α) = −ψ∗
0PF (λ, αϕ0 +W (λ, αϕ0))

= ψ∗
0PF (λ,−αϕ0 +W (λ,−αϕ0)) = b(λ,−α) ,

which implies the trivial solution b(λ, 0) = 0 for all λ ∈ R, as well as bαα(λ, 0) = 0.
If we now again apply Proposition 3.1, then the trivial solution of b gives rise

to the smooth solution curve λ 7→ W (λ, 0) ∈ X̃. In fact, one can show that this
solution branch lies in Xa, since in view of N(L|Xa

) = {0} we can apply the implicit
function theorem to the restriction F : R×Xa → Ya.

In order to establish the bifurcating branch which breaks the Xa-symmetry, we
define a function r in a neighborhood of (λ0, 0) by setting

r(λ, α) =


b(λ, α)

α
for α ̸= 0 ,

bα(λ, 0) for α = 0 .

One can easily show that r is smooth. Moreover, one can show as in [13, Proposi-
tion 2.11] that r has the expansion

r(λ0+ν, α) = νbλα(λ0, 0)+
ν2

2
bλλα(λ0, 0)+

αν

2
bλαα(λ0, 0)+

α2

6
bααα(λ0, 0)+R(ν, α)

with R(ν, α) = O(∥(ν, α)∥3). One clearly has r(λ0, 0) = bα(λ0, 0) = 0. Furthermore,
it was shown in [13, Proposition 2.11] that

rλ(λ0, 0) = bλα(λ0, 0) = ψ∗
0DλuF (λ0, u0)[ϕ0] + ψ∗

0DuuF (λ0, u0)[ϕ0, ξ0] ̸= 0 ,

with ξ0 as defined uniquely in (18). The implicit function theorem then yields a
smooth function α 7→ h(α) which is defined near α = 0, satisfies h(0) = λ0, and
such that in a neighborhood of (0, 0) one has

r(λ, α) = 0 if and only if λ = h(α) .

This establishes the second solution branch α 7→ αϕ0 + W (h(α), αϕ0). Finally,
one can follow the proof of [13, Proposition 2.11] verbatim to show that the two
solution curves together form an actual pitchfork bifurcation. This is accomplished
by deriving an explicit formula for h′(0) and showing that it vanishes, which then
completes the proof of the theorem.

We would like to point out that in the above theorem, we classify a bifurcation
as a pitchfork bifurcation if the bifurcating solution branch is tangential to the
space {λ0}×X. In order to actually get the parabolic shape of the bifurcating branch
that is usually associated with the pitchfork bifurcation, one needs to verify another
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Figure 4. Possible symmetry-breaking pitchfork bifurcation sce-
narios in Theorem 3.2. In the generic case, i.e., if the constant ρ
defined in (20) is nonzero, one observes a classic pitchfork bifurca-
tion — and the cases ρ > 0 and ρ < 0 are shown in the first and
second panels, respectively. However, in the case ρ = 0 one could
observe a situation depicted in the right-most panel.

non-degeneracy condition. To illustrate this, one can show that the function h
constructed in the above proof satisfies not only h(0) = λ0 and h′(0) = 0, but also
the identity h′′(0) = −ρ/3, where the constant ρ is given by

ρ =
ψ∗
0DuuuF (λ0, u0)[ϕ0, ϕ0, ϕ0] + 3ψ∗

0DuuF (λ0, u0)[ϕ0, ζ0]

ψ∗
0DλuF (λ0, u0)[ϕ0] + ψ∗

0DuuF (λ0, u0)[ϕ0, ξ0]
, (20)

and ζ0 ∈ Xa is defined by the equation

DuF (λ0, u0)[ζ0] + (I − P )DuuF (λ0, u0)[ϕ0, ϕ0] = 0 .

If the ratio ρ is positive, then the solutions on the parabolic branch exist for λ < λ0
close to the bifurcation point, if ρ is negative then they exist for λ > λ0. If, on the
other hand, one has ρ = 0, either half of the branch could lie on either side of λ0.
These cases are illustrated in Figure 4. For more details, we refer the reader to the
discussion in [13].

3.2. Pitchfork bifurcations via extended systems. With Theorem 3.2 we have
established an explicit sufficient condition for the existence of a pitchfork bifurcation
in the diblock copolymer model which is induced by the action of the Z2n-symmetry
given by the operator Tnu(x) = −u(x+ 1/n). As was pointed out in [13], however,
this condition is ill-suited if one would like to derive computer-assisted proofs for
the existence of curves of such bifurcation points in a two-parameter setting. More
useful in this situation is a reformulation of the existence result in terms of a zero
finding problem for an extended system — and this reformulation can be adapted
to our current setting.

To explain this in more detail, consider again the space decompositions X =
Xa ⊕ Xb ⊕ Xc and Y = Ya ⊕ Yb ⊕ Yc which were introduced in Definitions 2.7
and 2.10. In addition, consider a fixed element ℓ ∈ X∗ in the dual space of X. We
then introduce the following extended system for F , which is modeled after the one
we used in [13]:

Solve Fe(λ, u, v) = (0, 0, 0)

for Fe :

{
R×Xa ×X → R× Ya × Y

(λ, u, v) 7→ (ℓ(v)− 1, F (λ, u), DuF (λ, u)[v])

(21)
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The operator Fe is well-defined in view of Lemma 2.12. Furthermore, its Fréchet
derivative is an operator in L(R×Xa×X, R×Ya×Y ) which is explicitly given by

DFe(λ, u, v)[λ̃, ũ, ṽ] =
(
ℓ(ṽ) , λ̃DλF (λ, u) +DuF (λ, u)[ũ] , (22)

λ̃DλuF (λ, u)[v] +DuuF (λ, u)[v, ũ] +DuF (λ, u)[ṽ]
)
.

As the next main result of this section shows, the existence of a nondegenerate zero
of this extended system is equivalent to the sufficient condition for an Z2n-induced
symmetry-breaking pitchfork bifurcation given in Theorem 3.2.

Theorem 3.3 (Z2n-symmetry breaking pitchfork bifurcation via extended sys-
tems). As before, consider the domain Ω = (0, 1), the total mass µ = 0, and let
the function f be a smooth and odd nonlinearity. Furthermore, let F : X → Y be
defined as in (3) and (4). Then the following two statements hold.

(a) Suppose that all assumptions of Theorem 3.2 are satisfied, and let ℓ ∈ X∗

be such that ℓ(ϕ0) = 1. Then the Fréchet derivative DFe(λ0, u0, ϕ0) of the
mapping in (21) is invertible, i.e., the solution (λ0, u0, ϕ0) ∈ R×Xa ×Xτ of
the extended system

Fe(λ, u, ϕ) = (0, 0, 0) (23)

is an isolated non-degenerate zero.
(b) Conversely, if there exists an ℓ ∈ X∗ and a ϕ0 ∈ Xb∪Xc such that (λ0, u0, ϕ0)

is a zero of the map Fe, and if the Fréchet derivative DFe(λ0, u0, ϕ0) is invert-
ible, then the nonlinear operator F satisfies all assumptions of Theorem 3.2.

In other words, the diblock copolymer equilibrium problem defined earlier in (1)
undergoes a Z2n-symmetry breaking pitchfork bifurcation at the point (λ0, u0) in the
sense of Theorem 3.2, if and only if (λ0, u0, ϕ0) ∈ R×Xa ×Xτ is a non-degenerate
zero of (23) for τ ∈ {b, c}. Note, however, that for this we consider Fe as an
operator defined on R×Xa ×X, even though ϕ0 has to be contained in Xτ .

Proof. We begin by establishing the validity of (a). It is clear that the assumptions
of Theorem 3.2, in combination with ℓ(ϕ0) = 1, imply that (λ0, u0, ϕ0) ∈ R×Xa×Xτ

is a solution of (23), where τ ∈ {b, c}.
In order to verify that the Fréchet derivative DFe(λ0, u0, ϕ0) is one-to-one, sup-

pose there exists (λ̃, ũ, ṽ) ∈ R×Xa ×X such that

DFe(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, 0) . (24)

We show that this implies (λ̃, ũ, ṽ) = (0, 0, 0). Assume first that the inequality λ̃ ̸= 0
holds. Then in view of ϕ0 /∈ Xa and Proposition 2.15(c) we know that L(Xa) = Ya.
Lemma 2.12 and the definition of P imply DλF (λ0, u0) ∈ Ya = L(Xa) ⊂ R(L) ⊂
N(P ), which in turn gives the identity DλF (λ0, u0) = (I − P )DλF (λ0, u0). Now
the second component of (24), which can be made explicit via (22), can be rewritten
in the form

(I − P )DλF (λ0, u0) + L[ũ/λ̃] = 0 ,

and since ξ0 ∈ Xa is the unique solution of (18), this immediately furnishes ξ0 = ũ/λ̃.
The third component of (24) and (22) then gives

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0] = −DuF (λ0, u0)[ṽ/λ̃] = −L[ṽ/λ̃] ∈ R(L),

which contradicts our assumption (19), and we therefore obtain λ̃ = 0. The second
component of (24) and (22) implies L[ũ] = 0, and thus also ũ ∈ N(L) ∩Xa = {0},
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i.e., we necessarily have ũ = 0. Substituting both λ̃ = 0 and ũ = 0 into the
third component finally gives Lṽ = 0, as well as ṽ = αϕ0. Together with the first
component of (24) this further yields 0 = ℓ(αϕ0) = αℓ(ϕ0) = α, i.e., one has the
identity ṽ = 0. This completes the proof that DFe(λ0, u0, ϕ0) is one-to-one.

We now show that DFe(λ0, u0, ϕ0) is onto. For this, let (τ, y, z) ∈ R × Ya × Y
be arbitrary, but fixed. We need to explicitly construct an inverse image under
the Fréchet derivative. To this end, notice first that since y ∈ Ya = L(Xa) and
N(L) ∩ Xa = {0}, there exists a unique element ũ ∈ Xa such that L[ũ] = y. In
view of Hypothesis 2.3, the linear functional ψ∗

0 ∈ Y ∗ satisfies R(L) = N(ψ∗
0). Now

define

λ̃ =
ψ∗
0 (z −DuuF (λ0, u0)[ϕ0, ũ])

ψ∗
0 (DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0])

,

where the denominator of this ratio is nonzero due to (19). A simple algebraic
reformulation of this definition then leads to

ψ∗
0

(
λ̃DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ λ̃ξ0]− z

)
= 0 .

The choice of ψ∗
0 shows that the argument in the above equation has to be contained

in R(L), and since L[βϕ0] = 0 for any scalar β, there exists a ṽ ∈ X such that for
every β ∈ R the equation

λ̃DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ+ λ̃ξ0] + L[ṽ + βϕ0] = z (25)

is satisfied. Now (18), together with N(P ) = R(L) and DλF (λ0, u0) ∈ Ya ⊂ R(L)
give

λ̃DλF (λ0, u0) + L[ũ+ λ̃ξ0] = λ̃ ((I − P )DλF (λ0, u0) + L[ξ0]) + L[ũ] = y. (26)

Finally, notice that ξ0 ∈ Xa yields ũ + λ̃ξ0 ∈ Xa, and this in turn implies that for
all β ∈ R the identities in (25) and (26) establish the second and third components
of the desired equation

DFe(λ0, u0, ϕ0)[λ̃, ũ+ λ̃ξ0, ṽ + βϕ0] = (τ, y, z) .

It remains to choose β in such a way that the first component of the equation holds
as well. Since ℓ(ϕ0) = 1 by our earlier normalization, we need to solve the equation
τ = ℓ(ṽ + βϕ0) = ℓ(ṽ) + β, which is clearly satisfied in we let β = τ − ℓ(ṽ). This
shows that DFe(λ0, u0, ϕ0) is onto, and completes the proof of (a).

We now turn our attention to the verification of (b), i.e., we assume that there
exists an ℓ ∈ X∗ and a ϕ0 ∈ Xb ∪Xc such that (λ0, u0, ϕ0) is a zero of the map Fe,
and that the Fréchet derivative DFe(λ0, u0, ϕ0) ∈ L(R ×Xa ×X, R × Ya × Y ) is
invertible. We need to show that all the assumptions of Theorem 3.2 are satisfied.

We begin by establishing Hypotheses 2.2 and 2.3. In view of Fe(λ0, u0, ϕ0) = 0
and (21), one obtains F (λ0, u0) = 0, as well as L[ϕ0] = DuF (λ0, u0)[ϕ0] = 0. Fur-
thermore, due to ℓ(ϕ0) = 1 we have dimN(L) ≥ 1. On the other hand, since the
Fréchet derivative DFe(λ0, u0, ϕ0) is invertible, it can be shown as in [13, Proof
of Theorem 2.12] that we have in fact dimN(L) = 1. Since in this paper it was
also shown that L is a Fredholm operator with index zero, this establishes both
Hypotheses 2.2 and 2.3. In particular, it follows that P and Q as defined in Defi-
nition 2.1 have rank one. Notice also that all the assumptions of Proposition 2.15
have been established, and (c) of this result, in combination with ϕ0 ∈ Xb ∪ Xc,
then immediately implies L(Xa) = Ya.

In order to establish the remaining assumptions of Theorem 3.2, we first show
that the equation in (18) has a unique solution ξ0 ∈ Xa. We know that u0 ∈ Xa,
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and this yields the inclusion DλF (λ0, u0) ∈ Ya ⊂ R(L). Definition 2.1 implies the
equality N(P ) = R(L), and therefore

(I − P )DλF (λ0, u0) = DλF (λ0, u0) ∈ Ya

holds. This implies the existence of a ξ0 ∈ Xa with Lξ0 = −(I − P )DλF (λ0, u0) in
view of L(Xa) = Ya, i.e., equation (18) holds. Moreover, this solution ξ0 is uniquely

determined, because if ξ̂0 ∈ Xa were another solution, then

Lξ̂0 = −(I − P )DλF (λ0, u0) = Lξ0,

i.e., one has L(ξ̂0−ξ0) = 0. But this yields the inclusion ξ̂0−ξ0 ∈ N(L)∩Xa = {0}.
To conclude our proof, we only have to establish (19). For this, let z be any

element of the complement Y \R(L). Due to the assumptions of (b) there exists a

triple (λ̃, ũ, ṽ) ∈ R×Xa×X such that the identity DFe(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, z)
is satisfied. Let ξ0 again denote the unique solution to (18) from above. We assume

first that λ̃ = 0. Then the explicit form of the second component given in (22) yields

the identity 0 = λ̃DλF (λ0, u0) + Lũ = Lũ, which in turn furnishes the inclusion
ũ ∈ N(L) ∩ Xa = {0}, and thus ũ = 0. Therefore, another application of (22)
implies

z = λ̃DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ũ] + Lṽ = Lṽ ,

which contradicts z /∈ R(L). Thus, our assumption concerning λ̃ was wrong, and we

have to have the inequality λ̃ ̸= 0. But then (22) gives rise to 0 = λ̃DλF (λ0, u0)+Lũ,

and after division by λ̃ one obtains

DλF (λ0, u0) + L[ũ/λ̃] = 0 . (27)

Notice that we already established earlier that Ya = L(Xa) ⊂ R(L) = N(P ), as
well as DλF (λ0, u0) ∈ Ya ⊂ N(P ), and this immediately gives PDλF (λ0, u0) = 0.
In combination with (27) one then obtains

(I − P )DλF (λ0, u0) + L[ũ/λ̃] = 0 ,

and since ξ0 is the unique solution to this latter equation, we have to have ξ0 = ũ/λ̃.

Substituting this into the third component of DFe(λ0, u0, ϕ0)[λ̃, ũ, ṽ] = (0, 0, z), one
finally obtains after a few algebraic reformulations

DλuF (λ0, u0)[ϕ0] +DuuF (λ0, u0)[ϕ0, ξ0] = z/λ̃− Lṽ .

Clearly we have Lṽ ∈ R(L). Thus, if the right-hand side of this equation were
contained in R(L), then one would have to have z ∈ R(L), which contradicts our
original assumption. Therefore, the right-hand side cannot be an element of R(L),
and this establishes (19). This completes the proof of the theorem.

The above result is remarkable in the sense that even though we are considering a
completely different symmetry from the simple ones discussed in [13], we still obtain
essentially the same sufficient existence condition for a symmetry-breaking pitchfork
bifurcation via the extended system (21). All that changes is the restriction of the
second argument u to the new symmetry space. In fact, a closer inspection of our
results shows that the same approach should work in other situations as well, as
long as a few basic assumptions are satisfied. These are collected in the following
remark.
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Remark 3.4 (Required assumptions for the extended system approach). One can
easily verify that our main Theorems 3.2 and 3.3 remain valid, as long as the
following eight assumptions are satisfied:

• The underlying Hilbert spaces allow for decompositions X = Xa ⊕ Xb ⊕ Xc

and Y = Ya ⊕ Yb ⊕ Yc, where the involved spaces are pairwise orthogonal, see
Lemma 2.9.

• For every u0 ∈ Xa one obtains DλF (λ0, u0) ∈ Ya, as shown in Lemma 2.12.
• For u0 ∈ Xa and τ = a, b, c the inclusions LXτ ⊂ Yτ are satisfied, see

Lemma 2.13.
• For u0 ∈ Xa and τ = b, c one has DλuF (λ0, u0)[Xτ ] ⊂ Yτ , see Lemma 2.13.
• For u0 ∈ Xa and τ = b, c we have the inclusion DuuF (λ0, u0)[Xτ , Xa] ⊂ Yτ ,

as in Lemma 2.14.
• The orthogonal projector from Definition 2.1 satisfies P (Ya) ⊂ Ya, as described
in Lemma 2.13.

• The underlying nonlinear operator F is odd, i.e., F (λ,−u) = −F (λ, u).
• If the kernel function satisfies ϕ0 /∈ Xa, then L(Xa) = Ya, see Lemma 2.15.

4. Validation of symmetry-induced pitchfork bifurcations. In this section
we combine the theory developed in the earlier parts of the paper with a construc-
tive version of the implicit function theorem to establish the existence of branches
of pitchfork bifurcation points which are induced through the cyclic group action
defined in (2). For this, we recall a specific branch-validation version of the the
constructive implicit function theorem from [23] in Section 4.1, and also describe
in detail the system that has to be studied in this context. After that, Section 4.2
demonstrates how the assumptions of the branch validation result can be verified.
After briefly outlining our spectral approach to this, we show how our recent pa-
per [20] can be used to determine the necessary norm bound of the inverse of the
Fréchet derivative, and we also derive required Lipschitz estimates. Finally, Sec-
tion 4.3 presents some sample pitchfork curve continuations.

4.1. Establishing branches of pitchfork bifurcation points. In view of The-
orem 3.3 we can establish the existence of a specific pitchfork bifurcation point by
proving that the associated extended system (21) has an isolated zero. In our situ-
ation, this extended system involves three unknowns — the equilibrium solution u,
the kernel function v, and the parameter value λ. Note, however, that the diblock
copolymer model has an additional parameter σ, and it was shown in [11, 13] that
these bifurcation points combine to form curves parameterized by σ. In the present
section, we will explain how a constructive version of the implicit function theorem
can be used to rigorously verify these branches in the setting of cyclic symmetries.

For the purposes of this paper, we are interested in finding stationary solutions
of the diblock copolymer model which are in fact pitchfork bifurcation points. As
equilibrium solutions, they have to be zeros of the nonlinear operator

F (σ, λ, u) = −∆(∆u+ λf(u+ µ))− λσu , (28)

which is considered as an operator F : R × R × X → Y for the spaces defined
in (4), and where in contrast to our earlier usage we also explicitly indicate its
dependence on σ. Due to Theorem 3.3, such a zero is a pitchfork bifurcation point
at the parameter values σ if it is an isolated zero of the extended operator

F(σ, ·, ·, ·) :
{

R×Xa ×X → R× Ya × Y

(λ, u, v) 7→ (ℓ(v)− 1, F (σ, λ, u), DuF (σ, λ, u)[v])
, (29)
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where the spaces Xa and Ya were defined in Definitions 2.7 and 2.10, respectively.
Notice that we include the explicit dependence on the parameter σ, which is the
natural continuation parameter for curves of bifurcation points. In order to simplify
the notation going forward, we make use of the abbreviations

w = (λ, u, v) ∈ X = R×Xa ×X and Y = R× Ya × Y . (30)

In addition, for applying the generalization of the constructive implicit function
theorem from [23] which is taylor-made for branch validation, one needs to verify a
number of assumptions through rigorous computer-assisted means. More precisely,
one has to accomplish the following:

(H1) Find an approximate zero w∗ = (λ∗, u∗, v∗) ∈ X of F(σ∗, ·) : X → Y such
that for a real number ρ > 0 one has the residual estimate ∥F(σ∗, w∗)∥Y ≤ ρ.
This can be done by simply using interval arithmetic, based on a truncated
cosine Fourier series representation of the functions u∗ ∈ Xa and v∗ ∈ X, see
also Remark 2.11 and the discussion in the next section.

(H2) Find a bound K ≥ 0 such that ∥DwF(σ∗, w∗)−1∥L(Y,X ) ≤ K. This estimate
is by far the technically most involved one, but due to the specific form of F ,
we can directly quote a result from [20]. This will also be presented in the next
section, and the reader can find all the technical details in the cited paper.

(H3) Find Lipschitz bounds for the partial Fréchet derivatives DwF and DσF of
the extended operator F for all (σ,w) close to (σ∗, w∗) in the following sense.
There exist four Lipschitz constantsMk ≥ 0 for k = 1, . . . , 4, as well as dw > 0
and dσ > 0, such that for all pairs (σ,w) ∈ R×X with ∥w −w∗∥X ≤ dw and
|σ − σ∗| ≤ dσ one has

∥DwF(σ,w)−DwF(σ∗, w∗)∥L(X ,Y) ≤ M1 ∥w − w∗∥X +M2 |σ − σ∗| ,

∥DσF(σ, u)−DσF(σ∗, w∗)∥Y ≤ M3 ∥w − w∗∥X +M4 |σ − σ∗| ,
where ∥ ·∥L(X ,Y) denotes the operator norm in L(X ,Y), and as usual we iden-
tify Y with L(R,Y). These estimates are substantially more straightforward
than the previous step, and they will be established in the next section.

Under these assumptions, one can then establish the following theorem which guar-
antees branch segments of zeros of F parameterized by σ close to the approximate
solution (σ∗, w∗). This result is taken from [23, Theorem 5], and it is a simple con-
sequence of the constructive implicit function theorem in [23, Theorem 1]. In fact,
the theorem below reduces to the original constructive implicit function theorem in
the case w⊛ = 0.

Theorem 4.1 (Regular branch segment validation). Let X and Y be Banach spaces,
and suppose that the nonlinear parameter-dependent operator F : R×X → Y is both
Fréchet differentiable and satisfies (H3). Assume that (σ∗, w∗) ∈ R × X satisfies
the estimates (H1) and (H2) for some positive constants ρ and K, and let w⊛ ∈ X
be given with ∥∥DσF(σ∗, w∗) +DwF(σ∗, w∗)[w⊛]

∥∥
Y ≤ η (31)

for some constant η ≥ 0, which will indicate the slant of the box containing the
solution branch. Finally, assume that we have the estimates

4K2ρM1 < 1 and 2Kρ < dw . (32)

Then there exist pairs of constants (δσ, δw) which satisfy

0 < δσ ≤ dσ , 0 < δw ≤ dw , and δσ
∥∥w⊛

∥∥
X + δw ≤ dw , (33)
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as well as the two inequalities

2KM1δw + 2K
(
M1

∥∥w⊛
∥∥
X +M2

)
δσ ≤ 1 (34)

and

2Kρ+ 2Kηδσ + 2K
(
M1

∥∥w⊛
∥∥2
X + (M2 +M3)

∥∥w⊛
∥∥
X +M4

)
δ2σ ≤ δw , (35)

and for each pair the following holds. For every parameter σ ∈ R with |σ−σ∗| ≤ δσ
there exists a unique w(σ) ∈ X with ∥w(σ) − (w∗ + (σ − σ∗)w⊛)∥X ≤ δw, and for
which the nonlinear equation F(σ,w(σ)) = 0 holds. In other words, all solutions of
the nonlinear problem F(σ,w) = 0 in the slanted set{

(σ,w) ∈ R×X : |σ − σ∗| ≤ δσ and
∥∥w −

(
w∗ + (σ − σ∗)w⊛

)∥∥
X ≤ δw

}
lie on the branch σ 7→ w(σ). In addition, if the mapping F : R×X → Y is k-times
continuously Fréchet differentiable, then so is the solution function σ 7→ w(σ).

For an illustration of the above theorem we refer the reader to [28, Figure 7].
Note that for the application of this result, and of course also for the verification for
the assumptions (H2) and (H3), it is crucial to have the partial Fréchet derivatives
of F at hand. One can easily show that they are given by

DwF(σ,w)[w̃] =
(
ℓ(ṽ) , λ̃DλF (σ, λ, u) +DuF (σ, λ, u)[ũ] ,

λ̃DλuF (σ, λ, u)[v] +DuuF (σ, λ, u)[v, ũ]

+DuF (σ, λ, u)[ṽ]
)

(36)

=
(
ℓ(ṽ), λ̃(−∆f(u+ µ)− σu)−∆(∆ũ+ λf ′(u+ µ)ũ)− λσũ,

λ̃(−∆f ′(u+ µ)v − σv)−∆(λf ′′(u+ µ)vũ)

−∆(∆ṽ + λf ′(u+ µ)ṽ)− λσṽ
)
, (37)

where we write w = (λ, u, v) and w̃ = (λ̃, ũ, ṽ), as well as

DσF(σ,w) = (0, DσF (σ, λ, u), DσuF (σ, λ, u)[v]) = (0, −λu, −λv) . (38)

4.2. Verifying the assumptions for the computer-assisted proofs. We now
address the verification of assumptions (H1) through (H3) of Theorem 4.1. With
the exception of the last of these, all of them can be treated as in our previous
papers [20, 24, 29]. In view of this, we only provide a short descriptions and leave
the details to the cited references.

We begin our discussion by illustrating how (H1) can be established. It was
shown in Remark 2.11 that the crucial spaces Xa, Xb, and Xc have straightfor-
ward explicit Fourier cosine series representations. Thus, it is natural to find the
pitchfork bifurcation point approximation in the form of a truncated series. If we
denote the resulting discretization size by N ∈ N, then we consider the orthogonal
projection PN : X → X defined via

PNu(x) :=

N∑
k=1

ak cos(kπx) for every u(x) =

∞∑
k=1

ak cos(kπx) in X , (39)

see also (10). An analogous projection QN can also be defined on the image space Y .
Thus, one can project both the second and the third component of the extended
nonlinear operator F in (29) onto the spaces QNYa and QNY , respectively, and
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L DwF(σ∗, w∗) L DwF(σ∗, w∗)
Spaces U1 Xa Spaces V1 Ya

U2 X V2 Y

Arguments η1 λ̃ Coeff. α11 0
v1 ũ ℓ11 0
v2 ṽ ℓ12 ℓ

Coefficients β1 1 Coeff. β2 1
b11 ∆f(u∗ + µ) + σ∗u∗ b21 ∆f ′(u∗ + µ)v∗ + σ∗v∗

c11 λ∗f ′(u∗ + µ) c21 λ∗f ′′(u∗ + µ)v∗

c12 0 c22 λ∗f ′(u∗ + µ)
γ11 λ∗σ∗ γ21 0
γ12 0 γ22 λ∗σ∗

Table 4. Reformulating the Fréchet derivative DwF(σ∗, w∗)
as the linear elliptic operator L defined in equations (40), (41),
and (42). In our situation, we have p = 1 and q = 2, and the
spaces, arguments, and coefficients in the respective operator defi-
nitions correspond to each other as outlined in the table.

by only allowing arguments u∗ ∈ PNXa and v∗ ∈ PNX one then obtains a finite-
dimensional system which can be solved numerically for the solution approxima-
tion u∗ and the kernel function v∗, at the approximate parameter values λ∗. Notice
that the dimension of this system is given by 1+ ⌊N/n⌋+N , as long as N is larger
than n. By choosing appropriate Hilbert space norms on the spaces X and Y as
in [20, 24], one can then easily compute an upper bound ρ on the residual based on
the Fourier cosine sum representations of u∗ and v∗. In fact, for computational con-
venience we use the norms ∥u∥X = ∥∆u∥L2(0,1) and ∥u∥Y = ∥∆−1u∥L2(0,1), which
are equivalent to the respective standard Sobolev norms on these spaces. Moreover,
the rigorous upper bound is established using interval arithmetic, more precisely,
the Matlab package INTLAB [21].

We now turn our attention to the hypothesis (H2). The required inverse norm
bound for the Fréchet derivative DwF(σ∗, w∗) presented in (37) can be established
directly using the results of [20]. In this paper, we developed a method based on the
Neumann series and the construction of a suitable approximate inverse to compute
a rigorous bound on the inverse operator norm of certain fourth-order linear elliptic
operators which include scalar constraints. More precisely, in [20, Theorem 4.1] we
considered a linear operator

L : Rp ×
q∏

i=1

Ui → Rp ×
q∏

i=1

Vi , (40)

where Ui ⊂ X and Vi ⊂ Y are suitably chosen closed subspaces, which acts on the
argument vector (η1, . . . , ηp, v1, . . . , vq), and whose first p components are given by

p∑
i=1

αkiηi +

q∑
j=1

ℓkj(vj) for k = 1, . . . , p , (41)
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while the remaining q functional components are

−βk∆2vk −
p∑

i=1

bkiηi −∆

q∑
j=1

ckjvj −
q∑

j=1

γkjvj for k = 1, . . . , q . (42)

Clearly, the operator DwF(σ∗, w∗) defined in (37) falls into this category, and the
necessary correspondences are collected in Table 4. Thus, we can simply apply this
theorem to compute the norm estimate, and we refer the readers to [20, Theorem 4.1]
for more details.

As the final step, we have to establish the Lipschitz estimates required in (H3).
This can be accomplished similar to our proceeding in [20, 24], so we will keep our
discussion as short as possible. For this, we define for every ℓ ∈ N0 the constant

f (ℓ)max := max
|ρ|≤∥u∗∥∞+C1dw

∣∣∣f (ℓ)(ρ+ µ)
∣∣∣ , where C1 = 0.149072 (43)

denotes the embedding constant from Sobolev’s embedding theorem in one space
dimension introduced in [24, Lemma 2.3], see also [28]. Furthermore, consider
pairs (σ,w) and (σ∗, w∗) in R×X , where X was defined in (30), which satisfy both
estimates |σ− σ∗| ≤ dσ and ∥w−w∗∥ ≤ dw. Then the definition of the operator F
in (28) implies the estimates

∥DλF (σ, λ, u)−DλF (σ
∗, λ∗, u∗)∥Y

≤ ∥∆f(u+ µ) + σu−∆f(u∗ + µ)− σ∗u∗∥Y
≤ ∥f(u+ µ)− f(u∗ + µ)∥L2 + ∥σu− σu∗∥Y + ∥σu∗ − σ∗u∗∥Y

≤ π2f
(1)
max + |σ∗|+ dσ

π4
∥u− u∗∥X + ∥u∗∥Y |σ − σ∗| , (44)

where we also used the estimates ∥u∥L2 ≤ ∥u∥X/π2 and ∥u∥Y ≤ ∥u∥X/π4 for all
u ∈ X, see for example [24, Lemma 2.6]. Similarly, one obtains for all ũ ∈ X the
estimate

∥DuF (σ, λ, u)[ũ]−DuF (σ
∗, λ∗, u∗)[ũ]∥Y

≤ ∥∆(λf ′(u+ µ)ũ− λ∗f ′(u∗ + µ)ũ)∥Y + |λσ − λ∗σ∗| ∥ũ∥Y
≤ |λ| ∥f ′(u+ µ)ũ− f ′(u∗ + µ)ũ∥L2 + |λ− λ∗| ∥f ′(u∗ + µ)ũ∥L2

+|λ− λ∗| |σ|
π4

∥ũ∥X + |σ − σ∗| |λ
∗|
π4

∥ũ∥X

≤ |λ| f (2)max ∥u− u∗∥∞∥ũ∥L2 + |λ− λ∗| ∥f ′(u∗ + µ)∥∞ ∥ũ∥L2

+|λ− λ∗| |σ|
π4

∥ũ∥X + |σ − σ∗| |λ
∗|
π4

∥ũ∥X ,

which in turn implies

∥DuF (σ, λ, u)−DuF (σ
∗, λ∗, u∗)∥L(X,Y )

≤ π2∥f ′(u∗ + µ)∥∞ + |σ∗|+ dσ
π4

|λ− λ∗|

+
C1f

(2)
max(|λ∗|+ dw)

π2
∥u− u∗∥X +

|λ∗|
π4

|σ − σ∗| . (45)

We now start estimating the two terms which remain in the last component of the
operator F . On the one hand, we have

∥DλuF (σ, λ, u)[v]−DλuF (σ
∗, λ∗, u∗)[v∗]∥Y ≤
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≤ ∥∆(f ′(u+ µ)v − f ′(u∗ + µ)v∗)∥Y + ∥σv − σ∗v∗∥Y
≤ ∥f ′(u+ µ)v − f ′(u∗ + µ)v∗∥L2 + |σ| ∥v − v∗∥Y + ∥v∗∥Y |σ − σ∗|
≤ ∥f ′(u+ µ)v − f ′(u+ µ)v∗∥L2 + ∥f ′(u+ µ)v∗ − f ′(u∗ + µ)v∗∥L2

+
|σ|
π4

∥v − v∗∥X + ∥v∗∥Y |σ − σ∗|

≤ f
(1)
max

π2
∥v − v∗∥X +

f
(2)
max ∥v∗∥∞

π2
∥u− u∗∥X

+
|σ|
π4

∥v − v∗∥X + ∥v∗∥Y |σ − σ∗|

≤ f
(2)
max ∥v∗∥∞

π2
∥u− u∗∥X +

π2f
(1)
max + |σ∗|+ dσ

π4
∥v − v∗∥X

+∥v∗∥Y |σ − σ∗| , (46)

while on the other hand one obtains the estimate

∥DuuF (σ, λ, u)[v, ũ]−DuuF (σ
∗, λ∗, u∗)[v∗, ũ]∥Y

≤ ∥∆(λf ′′(u+ µ)vũ− λ∗f ′′(u∗ + µ)v∗ũ)∥Y
≤ ∥λf ′′(u+ µ)vũ− λf ′′(u∗ + µ)vũ∥L2

+∥λf ′′(u∗ + µ)vũ− λ∗f ′′(u∗ + µ)v∗ũ∥L2

≤ |λ| f (3)max ∥u− u∗∥∞ ∥v∥∞ ∥ũ∥L2 + ∥λf ′′(u∗ + µ)vũ− λf ′′(u∗ + µ)v∗ũ∥L2

+∥λf ′′(u∗ + µ)v∗ũ− λ∗f ′′(u∗ + µ)v∗ũ∥L2

≤ |λ| f (3)max ∥u− u∗∥∞ ∥v∥∞ ∥ũ∥L2 + |λ| ∥f ′′(u∗ + µ)∥∞ ∥v − v∗∥∞ ∥ũ∥L2

+|λ− λ∗| ∥f ′′(u∗ + µ)v∗∥∞ ∥ũ∥L2 ,

which in turn implies

∥DuuF (σ, λ, u)[v, ·]−DuuF (σ
∗, λ∗, u∗)[v∗, ·]∥L(X,Y )

≤ ∥f ′′(u∗ + µ)v∗∥∞
π2

|λ− λ∗|+ C1f
(3)
max(|λ∗|+ dw)(∥v∗∥∞ + C1dw)

π2
∥u− u∗∥X

+
C1∥f ′′(u∗ + µ)∥∞(|λ∗|+ dw)

π2
∥v − v∗∥X . (47)

Altogether, we have established the estimates

∥DλF (σ, λ, u)−DλF (σ
∗, λ∗, u∗)∥ ≤ c1∥u− u∗∥+ c2|σ − σ∗| ,

∥DuF (σ, λ, u)−DuF (σ
∗, λ∗, u∗)∥ ≤ c3|λ− λ∗|+ c4∥u− u∗∥

+c5|σ − σ∗| ,
∥DλuF (σ, λ, u)[v]−DλuF (σ

∗, λ∗, u∗)[v∗]∥ ≤ c6∥u− u∗∥+ c7∥v − v∗∥
+c8|σ − σ∗| ,

∥DuuF (σ, λ, u)[v, ·]−DuuF (σ
∗, λ∗, u∗)[v∗, ·]∥ ≤ c9|λ− λ∗|+ c10∥u− u∗∥

+c11∥v − v∗∥ ,

where the Lipschitz constants ck can be inferred from equations (43) through (47),
and we dropped the subscripts indicating the specific norms. After these prepara-
tions, one can now easily establish the estimates in (H3). For this, we write the
nonlinear operator F in component form as F = (F1,F2,F3). Then we clearly have

DwF1(σ,w)[w̃]−DwF1(σ
∗, w∗)[w̃] = 0 ,
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while for the second component one obtains

∥DwF2(σ,w)[w̃]−DwF2(σ
∗, w∗)[w̃]∥Y

≤ ∥DλF (σ, λ, u)−DλF (σ
∗, λ∗, u∗)∥Y |λ̃|

+∥DuF (σ, λ, u)[ũ]−DuF (σ
∗, λ∗, u∗)[ũ]∥Y

≤ (c1∥u− u∗∥X + c2|σ − σ∗|) |λ̃|
+(c3|λ− λ∗|+ c4∥u− u∗∥X + c5|σ − σ∗|) ∥ũ∥X

≤ (c3|λ− λ∗|+ (c1 + c4)∥u− u∗∥X + (c2 + c5)|σ − σ∗|) ∥w̃∥X

≤
(√

c23 + (c1 + c4)2 ∥w − w∗∥X + (c2 + c5)|σ − σ∗|
)

∥w̃∥X ,

and similarly for the third component

∥DwF3(σ,w)[w̃]−DwF3(σ
∗, w∗)[w̃]∥Y

≤ (c6∥u− u∗∥X + c7∥v − v∗∥X + c8|σ − σ∗|) |λ̃|
+(c9|λ− λ∗|+ c10∥u− u∗∥X + c11∥v − v∗∥X) ∥ũ∥X
+(c3|λ− λ∗|+ c4∥u− u∗∥X + c5|σ − σ∗|) ∥ṽ∥X

≤ ((c3 + c9)|λ− λ∗|+ (c4 + c6 + c10)∥u− u∗∥X
+(c7 + c11)∥v − v∗∥X + (c5 + c8)|σ − σ∗|) ∥w̃∥X

≤
(√

(c3 + c9)2 + (c4 + c6 + c10)2 + (c7 + c11)2 ∥w − w∗∥X
+(c5 + c8)|σ − σ∗|) ∥w̃∥X .

If we now define the constants M1 and M2 as

M1 =
√
2max {c23 + (c1 + c4)2, (c3 + c9)2 + (c4 + c6 + c10)2 + (c7 + c11)2}, (48)

M2 =
√
2 max {c2 + c5 , c5 + c8} , (49)

then one immediately obtains

∥DwF(σ,w)[w̃]−DwF(σ∗, w∗)[w̃]∥Y ≤ (M1∥w − w∗∥X +M2|σ − σ∗|) ∥w̃∥X ,

i.e., the first estimate in (H3) holds. Furthermore, in view of (38) we have the
estimate

∥DσF(σ,w)−DσF(σ∗, w∗)∥Y
≤

(
∥λu− λ∗u∗∥2Y + ∥λv − λ∗v∗∥2Y

)1/2
≤

√
2
(
∥λu− λu∗∥2Y + ∥λu∗ − λ∗u∗∥2Y + ∥λv − λv∗∥2Y + ∥λv∗ − λ∗v∗∥2Y

)1/2
≤

√
2
(
|λ|2 ∥u− u∗∥2Y + ∥u∗∥2Y |λ− λ∗|2

+|λ|2 ∥v − v∗∥2Y + ∥v∗∥2Y |λ− λ∗|2
)1/2

≤
√
2 max

{
|λ∗|+ dw

π4
,
√

∥u∗∥2Y + ∥v∗∥2Y
}

∥w − w∗∥X ,

and therefore the second estimate in (H3) is satisfied with

M3 =
√
2 max

{
|λ∗|+ dw

π4
,
√
∥u∗∥2Y + ∥v∗∥2Y

}
and M4 = 0 . (50)

This completes the verification of the assumptions of the regular branch segment
validation result in Theorem 4.1.
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n λ N τ K M1 dw
5 115.69 178 0.49917 73.453 54.859 1.2408e-04
7 315.57 670 0.29987 154.78 150.85 2.1415e-05
4 336.05 874 0.49972 503.86 253.14 3.9201e-06
6 769.12 2000 0.29979 829.58 636.9 9.4642e-07

Table 5. Validation parameters for the validated solutions.

4.3. Sample computational validations. In this section, we implement the tech-
niques listed above in order to computationally validate the first two solutions shown
in Figure 1, and the first two solutions shown in Figure 2 for the fixed parameter
value σ = 6. The computed validation parameters are given in Table 5. For larger λ
values, the computationally necessary value of N becomes extremely large if one
uses the model equations in their original unmodified form. Notice that this is
unavoidable, as the number of modes required to represent the solutions increases
quickly with increasing λ. In addition, in this limit the equation becomes closer to
singular, and therefore one fully expects that numerical approaches become signifi-
cantly more difficult.

Nevertheless, our focus in this paper is on the analytical background for a new
type of symmetry-breaking pitchfork bifurcation. For the sake of space, we therefore
do not address the computationally heavy methods needed to refine this method,
and choose to address this numerical machinery in a future work. The following are
two specific techniques which we plan to incorporate in future.

In order to improve the validation and to address the validation of further solu-
tions with larger n values and substantially larger λ values at bifurcation, we would
need to include preconditioning in our validation, which essentially amounts to
rescalings in the underlying partial differential equation. In particular, since both λ
versus (u, v), and the components of function Fe, occur on extremely different length
scales, one would expect to see rather substantial stiffness in the computation of
both the Lipschitz constants and the bound K. See for example the improvement in
the method due to preconditioning in the recent paper [12]. After preconditioning
is established, we would further be able to consider the case of varying σ, and create
a validated continuation method to find the curve of bifurcation points in the two-
parameter family. In [12], we developed a validated pseudo-arclength continuation
method. In future work, we intend to adapt this method to the current setting.
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