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1. Introduction

Not all naturally occurring iterated systems have the property that time is reversible.
In which case, the dynamics must be modelled by a noninvertible map rather than by
a di�eomorphism. While one-dimensional theory describes dynamics of noninvertible
maps, higher-dimensional theory has focussed on di�eomorphisms, though there are
many higher-dimensional examples of natural systems modelled by noninvertible maps.
For example, noninvertible maps occur in the study of population dynamics [2], time
one maps of delay equations [25], control theory algorithms [1, 5, 6], neural networks
[16], and iterated di�erence methods [14]. In order to use dynamical systems theory in
applications for which maps are noninvertible, it is important to know how the theory
di�ers from the di�eomorphism case.
One of the principal indications of chaotic dynamics in deterministic systems is

the existence of transverse homoclinic orbits. This paper examines the existence of
homoclinic tangles and the associated dynamic behavior for noninvertible maps. In
particular, we give examples of maps which have transverse intersection of stable and
unstable manifolds but no horseshoe. Furthermore, we show that this is a codimension
two phenomenon.
Papers by Steinlein and Walther [24,25] and Lerman and Shil’nikov [13] both estab-

lish conditions for a transverse homoclinic point of a noninvertible map to be contained
in a horseshoe. This is discussed further in Section 4. The work of Laura Gardini
[10] addressed transverse homoclinic orbits for planar maps. However, she missed the
subtle distinction for noninvertible maps between a transverse homoclinic point and
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transversality of every point on a homoclinic orbit. Thus she incorrectly concluded that
a transverse homoclinic point implies the existence of a horseshoe. To our knowledge,
no work has addressed bifurcations resulting from homoclinic orbits for noninvertible
maps.
The paper is structured as follows: Section 2 contains de�nitions and background.

It also contains a description of new phenomena that can occur for global invariant
manifolds of noninvertible maps. Section 3 contains examples of maps with transverse
homoclinic points with no nearby horseshoe. Section 4 states some conditions under
which a homoclinic orbit has nearby chaotic behavior and shows that these conditions
are generic. Section 5 describes the bifurcation picture for a two-parameter family con-
taining such a no-horseshoe transverse homoclinic point, and shows that two-parameter
families generically contain a map with such behavior.

2. De�nitions and background

This section contains de�nitions and theorems regarding hyperbolic points, stable and
unstable manifolds, homoclinic orbits, transversality, hyperbolicity, and shadowing.

De�nition 2.1 (Hyperbolic �xed point). A �xed point p of a smooth map f is hyper-
bolic if Dfp has no eigenvalues on the unit circle. This does not exclude eigenvalue
zero.

De�nition 2.2 (Stable and unstable manifolds). For a map f with �xed point p, the
stable and unstable manifolds Ws(p) and Wu(p) are the points with forward (resp.
backward) orbits converging to p. Precisely:
Ws(p)= {z ∈Z : there exists an in�nite forward orbit {zk} through z such that zk →p

as k→∞}.
Wu(p)= {z ∈Z : there exists an in�nite backward orbit {zk} through z such that

zk →p as k→−∞}.

De�nition 2.3 (Local stable and unstable manifolds). The local stable and unstable
manifolds Ws

U (p) and W
u
U (p) are the points in the global stable and unstable manifolds

which converge to p inside U , where U is some small neighborhood of p.

Note that Ws(p)=
⋃
n≥0 f

−n(Ws
U (p)) and W

u(p)=
⋃
n≥0 f

n(Wu
U (p)). For a proof

of the following theorem, see [20] or [17].

Theorem 2.4 (Stable manifold theorem). If f is a Cr map on Rn; and f has a
hyperbolic �xed point p; then there exists a U such that Ws

U (p) and W
u
U (p) are

graphs of Cr functions.

2.1. New phenomena for global invariant manifolds

For di�eomorphisms, a corollary of the stable manifold theorem says that the
global stable and unstable manifolds also have smoothness properties: namely, they are
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one-to-one immersed submanifolds of the appropriate dimensions. This does not hold
for noninvertible maps. The global stable and unstable manifolds of smooth noninvert-
ible maps are in general not even smooth. Here are some examples.

Example 2.5. The stable manifold can be disconnected. For example, consider the map
f :R1→R1, where f is the quadratic map f(x)= �x(1− x), �¿4. Then 0 is a �xed
point with the stable manifold being the end points of a middle-third Cantor set, as
these points eventually map onto 0. See for example [4].
Of course such disconnectedness can also occur in higher dimensions. For an example

from adaptive control, see [1].

In contrast to the above example, the unstable manifold is always connected, since
the local unstable manifold is connected, and the image of a connected set under a
continuous map is connected.

Example 2.6. The stable manifold can increase in dimension. For example, let f be a
map on R2 such that for a hyperbolic �xed point, there is a one-dimensional curve 

of local stable manifold of f in an open set V ; and f maps an open set U into V in
such a way that the image of U is exactly 
. Then clearly there is a two-dimensional
region contained in the stable manifold, with U a subset of this region.
Similarly, the unstable manifold can decrease in dimension. See [25] for a delay

equation example.

Example 2.7. The stable and unstable manifolds can fail to be smooth.
If there is a neighborhood not near the �xed point such that the unstable manifold

is of the form constant + {x=y}, and the map f is in this neighborhood of the form
constant + (x; y) 7→ constant + (x2; y3), we get a cusp.
Similarly, if on a neighborhood V , Ws is of the form {(x; x3)}, and f :U→V is of

the form (x; y) 7→ (x; y2), then in U , Ws has a cusp.

Example 2.8. The unstable manifold can have self-intersections.
We will not give an example here, as this concept is well known; all snap-back

repellers [15] are by de�nition the case in which a full-dimensional unstable manifold
intersects itself. A more visually clear variation of this occurs when a less than full-
dimensional unstable manifold intersects itself. See examples in [2, 22, 25].

Many numerical examples of global stable and unstable manifolds for speci�c maps
have been computed. See for example [12]. [7] gives a more detailed overview of new
phenomena for global manifolds of noninvertible maps.

2.2. Homoclinic tangles

De�nition 2.9 (Homoclinic point). If a smooth map has a hyperbolic �xed point p
with global stable and unstable manifolds Ws and Wu, then a homoclinic point is a
point in Ws ∩Wu\{p}.
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De�nition 2.10 (Orbit). A sequence {zk} is called an orbit for f if f(zk−1)= zk .

De�nition 2.11 (Homoclinic orbit). A bi-in�nite orbit {zk} is called a homoclinic orbit
to the �xed point p, if limk→∞ zk = limk→−∞ zk =p.

Through an arbitrary point in a noninvertible map, there may be multiple orbits or
no bi-in�nite orbit. However, from the de�nitions of stable and unstable manifolds,
through each homoclinic point, there is a homoclinic orbit.

De�nition 2.12 (Transverse homoclinic point). Assume a map has a hyperbolic �xed
point with stable and unstable manifolds Ws and Wu. A transverse homoclinic point
is a point at which Ws and Wu intersect transversally.

For a di�eomorphism, the homoclinic orbit through a transverse homoclinic point
only contains transverse homoclinic points. Thus a simple geometric condition at just
one point gives information about the entire orbit. Further, let U be a neighborhood
containing a hyperbolic �xed point p and a transverse homoclinic point q. Then Smale’s
theorem says that U contains a compact hyperbolic invariant set K , and there is some
n such that on K , fn is topologically conjugate to the shift map on two symbols. In
other words, the existence of a transverse homoclinic point implies chaotic dynamical
behavior. Further, transverse intersection of manifolds is stable under perturbation. In
contrast, it will be shown that for noninvertible maps, the mere existence of a transverse
homoclinic point implies nothing about the dynamics. Nor is transverse intersection
even stable under perturbation. This is a codimension two phenomenon.
The key observation of Smale’s proof is that there exists a hyperbolic structure on

the closure of the orbit of q. (The closure of the orbit of q is equal to the orbit
union p.) Precisely, setting Esx =TxW

s and Eux =TxW
u, it is possible to show that

the homoclinic orbit has the proper expanding and contracting behavior. Once this
is veri�ed, the proofs of the two statements in the above theorem follow easily by
prescribing pseudoorbits and using the shadowing lemma. This is the key to why the
theorem does not hold in the noninvertible case.

2.3. Hyperbolicity and shadowing for noninvertible maps

The following is a discussion of the concepts of hyperbolicity and shadowing for
noninvertible maps. These de�nitions and theorems follow [22], which gives these
theorems in the more general class of smooth multivalued noninvertible maps. Also
see [24] and [25] for another approach to hyperbolicity and shadowing for noninvertible
maps. The results in this section follow from either treatment.

De�nition 2.13 (Stable and unstable cones). Given �¿0, and a splitting of the tangent
space at each point TzRn=Esz ×Euz , then the stable and unstable � cones are de�ned by

Csz = {(vs; vu)∈Esz ×Euz : |vu| ≤ �|vs|}
Cuz = {(vs; vu)∈Esz ×Euz : |vs| ≤ �|vu|}:
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De�nition 2.14 (Cone condition). Let f be a smooth map and K a compact set.
Then f satis�es the cone condition on K if there is some continuous splitting and a
continuous metric, and a uniform �¡1 such that for all (z; w)∈K ×K , and w=f(z),
vectors in the unstable � cone at z map to vectors in the unstable � cone at w under
Dfz, and these vectors are backwards �-contracting. In other words, if a vector v in
the unstable cone maps to a vector v′, then |v|¡�|v′|.
Similarly, vectors in the stable � cone at w only come from the stable � cone at z

under Dfz, and are �-contracting.

The following de�nition of hyperbolicity is in terms of stable and unstable cones.
See [18] for such a theory for di�eomorphisms.

De�nition 2.15 (Hyperbolicity). A compact set K is said to be hyperbolic for f if K
satis�es the cone condition for f. The subspaces Esz and E

u
z mentioned in the de�nition

above are called the stable and unstable subspaces, respectively.

As for di�eomorphisms, hyperbolicity implies shadowing.

De�nition 2.16 (Pseudo-orbit). A sequence {zi}i∈I is called a �-pseudo-orbit for map
f when dist(f(zi); zi+1)¡� whenever i; i + 1∈ I .

De�nition 2.17 (Shadow). An orbit of F {wi}i∈I �-shadows a sequence {yi}i∈I when
for all i∈ I , dist(wi; yi)¡�.

Theorem 2.18 (Shadowing (Sander [22], Steinlein and Walther [24,25])). If K is a
hyperbolic set for map f; then for any �¿0; there is a �¿0 such that any �-pseudo-
orbit in B�(K) is �-shadowed by an orbit of f. If � is small enough and the pseudo-
orbit is bi-in�nite; then its �-shadow is unique. Further; if the pseudo-orbit is periodic;
so is its shadow.

One is tempted to think that since hyperbolicity and shadowing are the major tools
needed to show homoclinic tangles for di�eomorphisms, the previous theorem should
be su�cient in the noninvertible case as well. However, the story of homoclinic tangles
for maps is not so idyllic. First of all, the concept of a transverse homoclinic point is
not always well de�ned in this situation. Speci�cally, transverse intersection is de�ned
only when the stable and unstable manifolds are smooth at the point of intersection.
This is not true in general for noninvertible maps. This problem is avoidable, but a more
severe one remains: a transverse homoclinic point does not imply chaotic behavior.

3. Transverse crossings without chaos

This section contains examples of noninvertible maps with transverse homoclinic
points, such that nearby, there is no hyperbolic structure. The di�erent examples il-
lustrate di�erent ways in which hyperbolicity can fail. The �rst example illustrates a
codimension two phenomenon, whereas the others show higher codimension behavior.
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We start with an orientation-preserving di�eomorphism f :R2→R2 with a transverse
homoclinic orbit. Assume that the upper branch of the unstable manifold contains the
homoclinic orbit, and that the lower branch of the unstable manifold converges to
some other �xed point far away from p. Thus near a point q in the homoclinic orbit,
all points on one side of the stable manifold never return near q under f. Namely,
these points converge to the lower branch of the unstable manifold, and thus never
return near q. Using this fact, we perturb the di�eomorphism in a neighborhood of q,
without changing the map outside this neighborhood. We do so in such a way that all
the points in the neighborhood converge to the never-returning branch of the unstable
manifold. In other words, this new map has no recurrent behavior near q. See the
examples in Ch. 5 of Palis and Takens [19] for a similar kind of alteration of a map
in a neighborhood to study the change in stable and unstable manifolds.

3.1. Pips, lobes, and transport

The terminology introduced here for di�eomorphisms of R2 follows [26]. First, the
idea that r is a primary intersection point of Ws and Wu.

De�nition 3.1 (Primary intersection point; or pip). Assume f is a di�eomorphism
with hyperbolic �xed point p. Homoclinic point r is a primary intersection point, or
pip, when the segments of Ws and Wu joining p to r intersect only at p and r.

De�nition 3.2 (Lobe). Let r1 and r2 be two adjacent pips. Precisely, there are no pips
between them along the segment joining r1 to r2 either along Ws or along Wu. The
lobe is a region bounded by the segments joining r1 to r2 along Ws and along Wu.

It is possible to bound a region using the segments of Ws and Wu joining p to r.
This union of segments is called a pseudoseparatrix. Assuming that there is only pip
r1 between r and f−1(r), it is possible to use the r; r1 and r1; f−1(r) lobes to classify
the movement of points in and out of the pseudoseparatrix. Refer to Fig. 1.

Lemma 3.3 (Turnstile lobes). If pip r1 is the only one between r and f−1(r); then
the r; r1 lobe contains all points entering the interior of the pseudoseparatrix in one
iterate; and the r1; f−1(r) lobe contains all the points leaving the interior of the
pseudoseparatrix in one iterate.

For a proof, see [26].

3.2. An example

Using the notation developed above, assume that r is a pip, and that there is one pip
r1 between r and f−1(r). Thus the r; r1 lobe contains all points entering the interior of
the pseudoseparatrix made with r in one iterate. Let q=f(r1). By the above lemma,
and the fact that points cannot map across the Wu, in a neighborhood of q, points
outside the pseudoseparatrix never return near q under forward images of f. See Fig. 1.
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Fig. 1. Transverse homoclinic orbit of an orientation preserving di�eomorphism. The dotted line marks the
pseudoseparatrix. The regions near q and f(q) mark the perturbed domain and range, respectively.

Fig. 2. A cubic map folds the plane over itself.

Choose a neighborhood of q. Smoothly perturb f in this neighborhood to get a
new map g. Do this in such a way that outside the neighborhood, the map is equal
to f, and inside a slightly smaller neighborhood, all points not on Ws(f) map to the
outside of the pseudoseparatrix, and all points on Ws(f) map onto Ws(f). This can
be done, for example, by composing the original di�eomorphism f with a cubic map
on a neighborhood of q. See Fig. 2.
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Fig. 3. A look at the change of stable and unstable manifolds near q and f(q). Note that there is an extra
curve added to Ws.

In a neighborhood of q, the unstable manifold for g is the same as the unstable
manifold for f, since unstable manifolds are de�ned by images, and the image near q
remains �xed. By mapping points on Ws(f) to other points on Ws(f), we assure that
the stable manifold is locally near q the same as before the perturbation. Away from q,
but in the perturbed neighborhood, there is actually an extra portion of Ws(g) formed
as the preimage under the cubic map, but this does not a�ect the behavior su�ciently
near q. See Fig. 3. Ws(g) and Wu(g) still intersect transversally at q. Since all points
near q map outside the pseudoseparatrix under g, and since outside the neighborhood
of q, the map g is a di�eomorphism, these points converge to the lower branch of the
unstable manifold. By our assumption, this lower branch is in the basin of attraction
of some other �xed point; therefore no point near q ever returns near q. Thus there
is no chaotic behavior near the homoclinic orbit containing q. In fact, by specifying
the perturbation more carefully, it is possible to construct a noninvertible map with
no recurrent behavior near the orbit of any transverse homoclinic point. This involves
doing the same construction, but including the entire lobe between q and f(r) in the
set in the perturbed neighborhood, while taking care that the extra preimage of Ws

does not intersect Wu.
The closure of the above homoclinic orbit cannot be a hyperbolic set, as there is

no shadowing. Namely, for all �, there are �-pseudo-orbits through q, p, and q again.
However, no true orbit shadows, since near q, there is no recurrence.

3.3. Analysis of the example

Unlike di�eomorphisms, the homoclinic orbit above has both transversal homoclinic
points and nontransversal homoclinic points. This occurs because the derivative map
is singular on the tangent space to the unstable manifold, and in addition, the unstable
manifold is tangent to the stable manifold.
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The fact that a transverse homoclinic orbit for a di�eomorphism has a hyperbolic
structure rests on the fact that the tangent direction to the unstable manifold at a point
in the orbit is transverse to the stable manifold and eventually expanding. The unstable
direction can then be chosen as the unstable subspace at each point in the orbit. This
proof breaks down in the current example, since at a point in the orbit, the unstable
manifold becomes tangent to the stable manifold, though previously in the orbit, the
intersection was transverse; this can only happen because derivative is singular in the
unstable direction.

3.4. Another example

As above, start with an orientation preserving di�eomorphism with a transverse ho-
moclinic orbit. Assume that near a homoclinic point q, there are coordinates such that
the unstable manifold is of the form q+ {x=0}, and such that the vertical lines form
the unstable foliation. Also assume that near f(q), there are coordinates such that the
stable manifold can be written as f(q) + {y=0}, and horizontal lines form the sta-
ble foliation. Further, assume that the mapping between the two neighborhoods takes
vertical lines to vertical lines.
Perturb again in the same neighborhood as before in such a way that locally q +

(x; y) 7→f(q) + (x2y2; y3). Thus the unstable manifold still maps to a vertical line
above f(q), but all other vertical lines map to curves with cusps. One of these curves
must be the unstable manifold to points which converge to the �xed point after going
an additional time around near the original homoclinic orbit. Thus the smoothness
of generalized stable and unstable manifolds is no longer preserved. Thus the stable
manifold theorem for hyperbolic sets implies that the closure of the homoclinic orbit
of the new map is not a hyperbolic set.
For the original unperturbed di�eomorphism, the maximal invariant set of a neigh-

borhood of p∪ q for some iterate fn has dynamics conjugate to the subshift on two
symbols. For example, there is a point s near q such that f−n(s) is near q, but fnj(s)
is near p for all j 6=0;−1. Again we reparametrize so that the primary branches of Wu

and Ws correspond to the x- and y-axes respectively, and the unstable leaves are vertical
lines. Note that the point s lies on the intersection of one of these vertical lines with the
x-axis. If we had perturbed the map in such a way that q+(x; y) 7→f(q)+(x; y3−x2y).
Then for the perturbed map, all unstable leaves remain vertical lines, and the stable
and unstable manifolds remain the x- and y-axes. Every line other than x=0 has
three intersections with the x-axis. Thus for example the pseudo-orbit corresponding
to the point s above now has three distinct shadows. Thus the uniqueness of shadows
does not hold, implying again that the closure of the homoclinic orbit is not a hyper-
bolic set.
In the above two examples, the images of the stable and unstable manifolds intersect

transversally. However, the derivative of the map in the direction of the unstable man-
ifold is singular at the homoclinic point. When there is a singularity in the direction
of the tangent plane to the unstable manifold, the closure of the homoclinic orbit is
not a hyperbolic set.
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4. Genericity

As discussed in the previous section, a necessary condition for the closure of a
homoclinic orbit to be a hyperbolic set is that there are no singularities in the map
along the unstable manifold. As stated below, Steinlein and Walther [24] and Lerman
and Shil’nikov [13] independently showed that this is a su�cient condition as well. In
this section, we use the noninvertible version of the Kupka–Smale theorem to show
that this condition is generic.

Theorem 4.1 (Homoclinic tangles for maps). Let p be a hyperbolic �xed point for a
map f, and let {zk} be a homoclinic orbit to p. Then there exists a su�ciently large
N such that for all m¡−N and n¿N , zm ∈Wu

loc, and zn ∈Ws
loc. If Df

n−m
zm is injective

on TzmW
u and maps TzmW

u to a subspace transversal to TznW
s, then the closure of

{zk} is hyperbolic.

Replacing f with fn, this result also applies to periodic orbits.

Theorem 4.2 (Shub [23]; Kupka–Smale for noninvertible maps). Let M be a compact
manifold. Then maps with the following conditions form a residual set in the space
of Cr maps on M in the Cr topology:
1. All periodic points of f are hyperbolic.
2. If p is a hyperbolic periodic point of f; then Ws(p); the global stable manifold

to p; is an injective immersed submanifold of M.
3. If p and q are periodic points of periods j and k for f; the map fnj|Wu

loc(p)
is

transverse to Ws(q) for all n ≥ 0.

This is due to [23]. The theorem and proof are essentially the same as for the dif-
feomorphism case. The changes come from the fact that it is not possible to talk about
transversal intersection of the global stable and unstable manifolds, these not being
well de�ned. Shub �rst shows that generically global stable manifolds are immersed
submanifolds. He then considers the transversality of the global stable manifold with

fnj|Wu
loc
; n¿0;

the positive iterates of the map f, restricted to each local unstable manifold. By re-
stricting in this way, he is able to avoid working with the global unstable manifolds,
which are not in general smooth. The proof that generically these intersect transver-
sally is only a slight modi�cation of the proof for di�eomorphisms that generically the
global stable and unstable manifolds intersect transversally.
Notice that the conditions on the stable and unstable manifolds for a generically

occurring map as described in the Kupka–Smale theorem are exactly the necessary and
su�cient conditions for a homoclinic orbit to be a hyperbolic set. Thus generically, a
map has the property that near every homoclinic orbit, there is chaotic behavior:

Corollary 4.3 (Homoclinic tangles are generic). Within the set of Cr maps on a com-
pact manifold; those with all homoclinic orbits being homoclinic tangles are generic.
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5. Two-parameter families

The �rst example in Section 3 is degenerate, since the stable manifold locally cor-
responds exactly to the set for which the derivative is singular. However, it illustrates
the fact that only knowing that stable and unstable manifolds intersect transversally at
a single point is not enough information to draw conclusions about the dynamics of a
map near the homoclinic orbit. The loss of information occurs precisely when homo-
clinic orbits intersect the set for which the Jacobian is singular, which results in the
stable and unstable manifolds becoming tangent. This section gives an analysis of the
homoclinic bifurcation arising from crossing this set and shows that such a bifurcation
is codimension two. We are interested in two sets in parameter space which determine
the behavior of the homoclinic orbits: the singular set is the set of parameter values
for which the determinant of the Jacobian is zero at a homoclinic point; the tangency
set is the set of parameters for which at some homoclinic point, the image of the un-
stable manifold intersects the stable manifold tangentially. In a generic two-parameter
family with a map for which one homoclinic orbit has both transversal and tangential
intersections of stable and unstable manifolds, the singular set and the tangency set are
tangent to each other.
The bifurcation is illustrated by the following example.

Example 5.1. Let f(�;�) be a two-parameter family of maps on R2 with a saddle �xed
point p. Choose open sets U ′ and V ′ not near p such that f(�; �)(U ′)⊂V ′ for all
(�; �) near (0; 0). Assume there is a smooth portion of the stable manifold in V ′ and
a smooth portion of the unstable manifold in U ′.
Let the portion of the unstable manifold in U ′ be of the form {q + (cy + �; y)},

where |c|¡1 is a constant. Let the portion of the stable manifold in V ′ be of the form
{f(q) + (x; x2 + �)}. Let f :U ′ →V ′ be of the form q + (x; y) 7→f(q) + (x; y2). See
Figs. 4–6.
For �¿0; �=0 the stable manifold in U ′ consists of the curves {f(q) + (x;√
x2 + �)} and {f(q) + (x;−

√
x2 + �)}. Thus there are two transverse homoclinic

points in U ′,

q+
(
c
√

�
1− c2 ;

√
�

1− c2
)

and q+
(
−c
√

�
1− c2 ;−

√
�

1− c2
)
:

See Fig. 4. For (�; �)= (0; 0), the stable manifold in U ′ consists of the curves {q +
(x; x)} and {q+ (x;−x)}. Again, these curves are transverse to the unstable manifold,
so q + (0; 0) is a transverse homoclinic point. See Fig. 5. However, for �¡0; �=0,
the stable manifold in U ′ satis�es {q + (x; y):y2 = x2 + �}, which does not intersect
the line {q + (cy; y)}. Thus there are no longer any homoclinic points. See Fig. 6.
A loss of stability occurs at the point (x; y; �; �)= (q; 0; 0), though this is a transverse
homoclinic point. This demonstrates that transverse homoclinic points are not stable
under a perturbation of the map if the derivative is singular. Although this homo-
clinic orbit contains transversal intersections, it behaves much more like a homoclinic
tangency. The behavior described took place on the �-axis, but in fact qualitatively
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Fig. 4. The homoclinic bifurcation described in Example 5.1. This shows the �¿0; �=0 case, in which
there are two homoclinic points. The left picture shows the stable and unstable manifolds and the set for
which the derivative is singular, denoted by J , near q within the region U . The right picture being the stable
and unstable manifolds and the image of the singular set near f(�;�)(q) in the region V . At this parameter
value, there are two preimages of the stable manifold in U which intersect the unstable manifold. Thus there
are two homoclinic orbits.

Fig. 5. Same as Fig 4, shown at the bifurcation point �= �=0. In this case, there is exactly one homoclinic
point.

Fig. 6. Same as Fig 4, at �¡0; �=0. There are no longer any homoclinic points.
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similar behavior occurs along any curve through the origin in parameter space which
is transverse to the �-axis.
Now consider the singular set and tangency set in parameter space, as de�ned in the

introductory paragraph to this section. Homoclinic points occur at {(x; y; �; �)= (cs +
t; s; (1 − c2)s2 − 2cts − t2; t)}. Note that this is a smooth surface in R2×R2. The
derivative is singular at y=0, so the singular set is {�=−�2}. The tangency set is
{�=−�2=(1− c2)}. Note that the tangency set is a dividing curve for parameters with
two homoclinic orbits and those with none. The tangency set and the singular set
intersect tangentially at (0; 0).

The following theorem says that generically, a codimension two bifurcation occurs in
a way which was illustrated in the example above. The result is inherently noninvertible,
as the bifurcation occurs as a result of the loss of the multiple preimages of the stable
manifold.

Theorem 5.2 (Homoclinic singularity bifurcation). Let M be a compact smooth m-
dimensional manifold. There is an open set in the space of smooth (at least C2)
two-parameter families on M; consisting of f(�; �) :M ×R2→M with the following
properties:
1. f has a hyperbolic �xed point p0 at parameter value (�0; �0). The stable and
unstable manifolds to this �xed point are denoted by Ws and Wu.

2. At (�0; �0), there is a point q0 ∈Wu such that f(�0 ; �0) is singular at q0, and W
u is

tangent to Ws at f(q0). (In addition; the crossing of these singular and tangency
sets must be nondegenerate; as made precise in the course of the proof.)
For an open dense set of f satisfying 1 and 2; the following conclusions can be

drawn regarding the homoclinic points and nearby dynamics:
The set of homoclinic points near (q0; �0; �0) form a smooth two-dimensional sur-

face in M ×R2. The tangency and singularity sets are smooth curves in R2. Generi-
cally; the two curves intersect in a quadratic tangency at the bifurcation point.
The tangency curve divides the parameter space into parameters for which there

are locally two homoclinic points and those for which there are no homoclinic orbits.
The singularity curve corresponds to parameters for which the homoclinic orbits lie on
the essentially noninvertible part of the map. Parameters on the singularity curve but
not on the tangency curve do not have a singularity in the direction of the unstable
manifold; the closures of corresponding homoclinic orbits are hyperbolic sets.

Proof. Assume that Wu is k-dimensional, where 0¡k¡m. The case k =m needs mod-
i�cations, as discussed at the end. The case k =0 is not meaningful for maps.
Let U be a small neighborhood of q0 and V a small neighborhood of f(�0 ; �0)(q0).

Assume that in U , the unstable manifold is a smooth embedded k-dimensional sub-
manifold, and that in V the stable manifold is a smooth (m−k)-dimensional embedded
submanifold. In other words, we assume that the set for which the derivative is singu-
lar only intersects the homoclinic orbit at one point. Call these portions W̃ u and W̃ s.
The assumption is dense in Cr , since the homoclinic orbit is zero-dimensional. It is
also open in Cr , since the set where the derivative is singular changes continuously
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with the parameter. From now on we restrict to parameters in an open set containing
(�0; �0) small enough that the condition still holds. On this set of parameter values,
there is a smooth continuation p(�; �) of p0, and a smooth continuation W̃

u
(�; �) of W̃

u

in U and W̃
s
(�; �) of W̃

s in V . Rm=Rm−k ×Rk by the standard splitting, and we write
z ∈Rm in coordinates as (x; y).
Locally, we can instead consider a map G :Rm×R2→Rm as follows. By the de�-

nition of a submanifold, if U and V are su�ciently small, there is a smooth family
of di�eomorphisms �(�; �) :U→Rm such that �(�; �)(W̃

u
(�; �))=the y-subspace (where

x=0). Likewise, there exists a smooth family of di�eomorphisms �(�; �) :V →Rm such
that �(�; �)(W̃

s
(�; �))= the x-subspace (where y=0). We can also prescribe �(�0 ; �0)(q0)=

(0; 0), and �(�0 ; �0)(f(q0))= (0; 0).
De�ne the smooth family G :Rm+2→Rm by G(x; y; �; �)= �(�; �) ◦f(�; �) ◦�−1

(�; �)(x; y).
Thus point (0; 0; �0; �0) corresponds to the point (q0; �0; �0). For convenience, we as-
sume (�0; �0)= (0; 0). Let �2 be the projection to the y-subspace. The proof of the
theorem now reduces to a statement about smooth maps from Rm+2 to Rm. Speci�-
cally, let K ⊂C2(Rm+2; Rm) be the subspace such that:
1. G(0; 0; 0; 0)= (0; 0). This corresponds to the bifurcation point.
2. DG(0; 0; 0; 0) is singular. This corresponds to a homoclinic singularity.
3. @=@y G(0; 0; 0; 0) is singular. This corresponds to a homoclinic tangency.
We show that for an open and dense set of di�eomorphisms within the set K (and

therefore an open dense set of f(�; �) on M), the following statements hold on M cross
parameter space:
A. The homoclinic points form a smooth two-dimensional surface.
B. The set of homoclinic tangencies form a smooth curve, which projects smoothly to
the parameter plane.

C. The set of singular points form a smooth (k + 1)-dimensional surface projecting
smoothly to both the parameter plane and to the surface of homoclinic points.

D. The set of parameters for which the map has a homoclinic tangency is a curve
dividing the parameter space into a region in which there are two homoclinic points
and a region for which there are no homoclinic points. Furthermore, the set of
homoclinic tangencies and the set of homoclinic singularities intersect in a quadratic
tangency in parameter space.

E. The existence of the bifurcation point described above is stable under perturbation
in C2.
Here are the details of steps A–E. The arguments apply for arbitrary dimensions,

with explicit formulae for a saddle point in dimension two; for this case, we write
the Taylor series expansion of G up to second order around (0; 0; �0; �0), where for
convenience, we let (�0; �0)= (0; 0).

G=

(
a1000� + a

01
00�+ a

00
10x + a

00
01y + a

10
10x� : : :

b1000� + b
01
00�+ b

00
10x + b

00
01y + b

10
10x� : : :

)
:

The fact that q0 is a tangency between stable and unstable manifolds corresponds to
b0001 = 0, where this is the coe�cient of y. The fact that f(q0) is a point of singularity
corresponds to a0001b

00
10 = 0.
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Before proceeding, we describe the type of argument used in each case. To show
that the set of di�eomorphisms with a certain condition is open, we just need to
display a continuous map on C2 so that the image of maps with the desired property
is open. To show that a property is dense is more di�cult; we construct (or describe the
construction of) a speci�c arbitrarily small perturbation which has the desired property.
To do so, we make use of the existence of a C∞ bump function � such that near 0,
�≡ 1, away from 0, �≡ 0, but for speci�ed � and k, ‖��‖Ck¡�.
A. Homoclinic points: De�ne HG :W ⊂Rk+2→Rk by HG(y; �; �)≡ �2 ◦G(0; y; �; �).

The set A= {(y; �; �) :HG(y; �; �)= 0} is di�eomorphic to the homoclinic points of f
near (q0; �0; �0).
For the homoclinic set to be smooth on a neighborhood, we need dHG(y; �; �) to be

rank k at (0; 0; 0). Here, d is used to denote the derivative with respect to y; �; �. Then,
by the implicit function theorem, there is a neighborhood such that the homoclinic set is
a smooth two-dimensional surface. That this is open is clear, since G 7→ dHG(0; 0; 0; 0)
is a continuous map, and the set of maps of rank k is an open set of the k + 2 by k
matrices.
To show that the set is dense, start with any G ∈K so that dHG(0; 0; 0; 0) is not

rank k and choose a small �. It is always possible to �nd an �-small matrix

M =

(
M1 M3 M5

M2 M4 M6

)

so that

DG(0; 0; 0; 0) +

(
M1 M3

M2 M4

)

is rank n− 1, @=@y H (0; 0; 0; 0) +M4 is rank k − 1, and dH + (M4M6) is rank k. Let

P(x; y; �; �)=G(x; y; �; �) + �(G(x; y; �; �))M



x

y

�

�


 :

Then P is an � perturbation of G which is in K , but has that set A is smooth on a
neighborhood of (0; 0; 0; 0).
Explicitly for a two-dimensional saddle, we have

dH =(0; b1000; b
01
00);

so we need either b1000 6=0 or b0100 6=0.
B. Tangencies: De�ne TG :W ⊂Rk+2→R by TG(y; �; �)≡det(d=dy(�2 ◦G(0; y;

�; �))).
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B= {(y; �; �) :T (y; �; �)= 0} is a smooth (k + 1)-dimensional surface transverse to
the homoclinic points on a neighborhood of (0; 0; 0) as long as(

dH (0; 0; 0)

OT (0; 0; 0)

)

is rank k + 1. O denotes the derivative with respect to y; �; �, emphasizing the fact
that this is a scalar function.
That the above occurs for an open set is not hard to see. That it is true for a dense

set again follows from the fact that there is a Ck small perturbation of G such that the
condition is satis�ed. The argument is much the same as the argument in A.
For m=2:

OT =(2b0002; b
10
01; b

01
01):

The intersection of A and B is di�eomorphic to the set of homoclinic tangencies.
C. Singularities: Similar to B, de�ne S(y; �; �)= det(DG(x; y; �; �))|x=0. The deriva-

tive is taken with respect to x and y. Then C = {(y; �; �) : S(y; �; �)= 0} is di�eomor-
phic to the set of singularities.
Using similar reasoning to the previous two arguments, for an open dense set of

maps, there is a neighborhood such that the singularity set is smooth. In fact, there is
an arbitrarily small perturbation Q of G in K such that


dHQ(0; 0; 0; 0)

OSQ(0; 0; 0; 0)

OTQ(0; 0; 0; 0)




is full rank: k +2, and @=@yHQ(0; 0; 0; 0) is rank k − 1. Therefore sets A, B, and C are
mutually transverse on some neighborhood of the homoclinic bifurcation point. The
last condition guarantees that these sets are transverse to the parameter plane.
Speci�cally for m=2; k =1:

OS =
(
2a0010b

00
02 − 2b0010a0002; a0010b1001 − b0010a1001; a0010b0101 − b0010a0101

)
:

D. Under the open dense conditions above, the tangency curve divides parameter
space into a region with two homoclinic orbits and a region with no homoclinic orbits.
This is because for the perturbation Q, HQ is singular in one-parameter direction, but
the second-order terms are positive.
The curves of homoclinic tangency and homoclinic singularity (resp. A∩B and

A∩C) project in the parameter plane to two curves intersecting at a quadratic tan-
gency. This is because the homoclinic tangency projection bounds the set of images
of homoclinic points (A), but the second-order terms are nonzero.
For m=2; k =1, a straightforward but tedious calculation shows that the tangent

direction to the singular curve is equal to the tangent direction to the tangency curve,
and they are both equal to (−b1000=b0100). An even more tedious straightforward calculation
shows that the second derivatives to each of the curves at this point are given by large



E. Sander / Nonlinear Analysis 41 (2000) 259–276 275

expressions in terms of at most second-order coe�cients. For an open dense set, these
two expressions are not equal.
E. The singularity point is stable under perturbation in C2. This is due to the fact

that the transversally intersecting sets A; B; and C are well de�ned for all C2 di�eomor-
phisms. Thus under small perturbation, they must still intersect at a point of homoclinic
singularity and tangency.
The case k =m: This is often referred to as a snap-back repeller, as mentioned

in Example 2.8. The statements above still hold, except that the functions T and S
are actually equal. Thus the bifurcation becomes codimension one bifurcation. The
following statements still hold: A, C, the �rst sentence in the statement of D, and the
fact that this holds in an open set of parameters. That the singularity curve generically
divides the parameter space into two- and no-homoclinic orbit regions, is the main
theorem of Batteli and Lazzari [3].

By looking at fn rather than f, the above proof applies to periodic points.
Future plans are to consider what happens to Newhouse-type structures near the

bifurcation described above. See [11, 19], and references contained therein.
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