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ABSTRACT

Hyperbolic Sets for Noninvertible Maps and Relations

by Evelyn Sander

This thesis presents a theory of hyperbolic structures and dynamics of smooth
noninvertible maps and relations. In this context, it includes a new proof of the
stable manifold theorem for fixed points, the shadowing lemma, and a version
of the stable manifold theorem for hyperbolic sets. It also gives a description of
some of the behavior of transverse homoclinic orbits for noninvertible maps and

relations.
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Chapter 1

Introduction

1.1 Preliminary remarks

The mathematical theory of dynamical systems is the study of systems governed
by a consistent set of laws over time. Even very simple systems can result in highly
complicated behavior, so rather than trying to solve such systems explicitly, we
study them qualitatively.

Dynamical systems originally focussed on the behavior of continuous systems,
governed by differential equations. The approach has been applied to a number
of famous problems, such as Poincaré’s seminal study of the motion of the planets
under the laws of Newtonian mechanics, the Lotka-Volterra model for the rate of
change in the population of animal species competing for resources, and the Lorenz
equations for fluid flow in the atmosphere. For processes modelled by differential
equations, there are often related maps which reflect the dynamics of the system,
the principal example of which is the Poincaré map. Looking at the Poincaré map
makes a dynamical system conceptually simpler, since it reduces the dimension of
the space.

Motivated by this need to understand the dynamics of the Poincaré map, in

1



CHAPTER 1. INTRODUCTION 2

the 1960’s there was a great surge of interest in the study of diffeomorphisms in
their own right. The theory of dynamics of diffeomorphisms has come to be very
useful in applications independent of the theory of continuous dynamics.

Not all iterated maps arising in natural systems have the property that time is
reversible. In other words, there may be multiple points which map to the same
point under iteration. This is evident in one-dimensional dynamics; for example,
the frequently studied logistic map 2,41 = pz,(1 — x,) is noninvertible. Despite
the potential usefulness of such a theory, there has been little study of iterated
noninvertible maps in dimensions greater than one. We are currently experiencing
expansion of the field to include noninvertible maps. This thesis generalizes the
ideas of hyperbolic sets to the noninvertible setting.

Rather than restricting only to noninvertible maps, in this thesis we work in
the setting of relations. Relations are maps which can be not only noninvertible,
having non-unique preimage, but also multivalued, with non-unique image. Here
is a motivation for working in this more general setting: If f is a diffeomorphism,
then sois f~!. Thus forward and backward iteration are symmetric concepts. This
symmetry is used extensively in the study of diffeomorphisms. In contrast, the
inverse of a smooth noninvertible map is not map; there is a qualitative distinction
between going forward and going backward. On the other hand, the inverse of
a relation is another relation. Thus the symmetry of iteration is restored. See
Definition 3.4 for the formal definition of a relation. Section 3.3 gives further

definitions and framework.

1.2 Previous theory and applications

There have been many works studying specific examples of noninvertible maps. For

example, the work of Aronson, Chory, Hall, and McGehee [3] describe a noninvert-
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ible map in a simple population model. Hale and Lin [11] describe time one maps of
delay equations, which may be noninvertible. Several works of Adomaitis, Frouza-
kis, and Kevrekidis [7, 8, 1] describe the dynamics of noninvertible maps arising in
control theory algorithms. Rico-Martinez, Kevrekidis, and Adomaitis [16] study
a noninvertible maps arising in neural networks. Finally, Lorenz [14] shows the
behavior of a noninvertible map arising from a large time step when applying an
iterated difference method to approximate an ordinary differential equation. Chap-
ter 2 describes these applications in more detail. In addition to maps arising in
the modelling of natural systems, many abstract examples of noninvertible maps
of the plane can be found in [9, 10], and other related works.

In comparison to the wealth of specific examples, there are relatively few at-
tempts to classify the general theory of iterated noninvertible maps. Of particular
note are the works of Hale and Lin [11] and Marotto [15] on homoclinic orbits, the
work of McGehee in the context of iterated relations [18], and the work of Steinlein

and Walther [27, 26] for hyperbolic sets in Banach spaces.

1.2.1 The noninvertible stable manifold theorem

How does one classify the dynamics of iterated maps? The simplest orbits are fixed
points, which themselves constitute an entire orbit. The stable manifold theorem
is a beautiful characterization of behavior near a fixed point at which the derivative
has no eigenvalues of norm one, called a hyperbolic fixed point. It says that for a
smooth map, points locally converging to a hyperbolic fixed point form a smooth
manifold. This is true both for points converging forwards in time, forming the
stable manifold, and also for points converging backwards in time, forming the
unstable manifold.

The unstable manifold of a diffeomorphism is the same as the stable manifold

of its inverse. Thus the stable and unstable versions of the manifold theorem



CHAPTER 1. INTRODUCTION 4

are symimetric statements with symmetric proofs. However, since the inverse of a
noninvertible map is no longer a map, there is no apparent symmetry between the
noninvertible stable and unstable manifolds. Chapter 3 gives a new proof of the
noninvertible stable manifold theorem from joint work with Richard McGehee [17].
By considering relations, the stable and unstable manifolds retain the symmetry

of the diffeomorphism case.

1.3 Hyperbolic sets, stable manifolds, and the
shadowing lemma

By results from spectral theory, the tangent space of a hyperbolic fixed point is the
direct sum of a stable subspace and an unstable subspace. The derivative is eventu-
ally contracting on the stable subspace and eventually expanding on the unstable
subspace. This notion of hyperbolicity at fixed points generalizes invariant sets of
diffeomorphisms. Namely, at each point in an invariant set with hyperbolic struc-
ture, there is a continuous splitting of the tangent space into stable and unstable
subspaces. These subspaces map invariantly under the derivative; on the stable
subspaces the derivative is eventually uniformly contracting, and on the unstable
subspaces the derivative is eventually uniformly expanding.

In order to define hyperbolic sets for noninvertible maps, we must reformulate
the assumption that a hyperbolic splitting maps invariantly under the derivative.
Even a hyperbolic fixed point of a linear map can lose the strict invariance property
for the stable subspace; the subspace collapses under the action of a singular linear
map. In addition to this problem with the stable set, the assumption that the
expanding subspaces map invariantly is also too strong [27]; since there can be
multiple points mapping to the same point, it is too restrictive to insist on the

existence of a continuous splitting which maps invariantly under the derivative.
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From these examples, we see that the generalization of the definition of hyperbolic
sets is quite delicate. The ideas from our proof of the stable manifold theorem give
a way to define hyperbolic sets for smooth relations. Again, looking at relations
preserves symmetry of forwards and backwards iteration in hyperbolic sets.

For diffeomorphisms, the stable manifold theorem for fixed points generalizes
to a theorem for hyperbolic sets. Namely, given a point p in a hyperbolic set, the
set of points with forward iterates converging to forward iterates of p locally form
a smooth stable manifold. In addition, the set of points with backward iterates
converging to backward iterates of p locally form a smooth unstable manifold. For
noninvertible maps, it is no longer possible to talk about an unstable manifold to
a point, since there may be many points mapping to the same point, and thus
many unstable manifolds. However, restricting to forward and backwards orbits,
a similar theorem still holds for noninvertible maps and relations, as described in
Chapter 4.

Another result for hyperbolic sets for diffeomorphisms is the shadowing lemma
of Bowen [5]. It pertains to pseudo-orbits; these are sequences of points such
that the image of each point in the sequence is no more than a small previously
specified distance from the next point in the sequence. The shadowing lemma says
that near a compact invariant hyperbolic set, every bi-infinite pseudo-orbit has
a unique nearby exact orbit. Thus small mistakes in iteration do not effect the
qualitative picture of the dynamics of the map. Chapter 4 contains a proof of the

shadowing lemma for smooth noninvertible maps and relations.

1.4 Transverse homoclinic orbits

An important application of the shadowing lemma is to describe behavior of trans-

verse homoclinic orbits. Homoclinic orbits are orbits which converge to a hyper-
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bolic fixed point both forwards and backwards; transverse means that at some
point in the orbit, the stable and unstable manifolds intersect transversally. For a
diffeomorphism, the closure of a transverse homoclinic orbit to a hyperbolic fixed
point is a compact hyperbolic set. The stable and unstable subspaces of the hyper-
bolic splitting are the subspaces tangent to the stable and the unstable manifolds.
The shadowing lemma implies that near a transverse homoclinic orbit to a fixed
point, there is an invariant set upon which an iterate of the diffeomorphism is topo-
logically conjugate to a subshift of finite type. This sort of complicated behavior
is often referred to as a homoclinic tangle.

Since there is a noninvertible shadowing lemma one would think that transverse
homoclinic orbits of noninvertible maps would be similar to homoclinic tangles for
diffeomorphisms; but this is not true, because in general the closure of a transverse
homoclinic orbit is not a hyperbolic set. Chapter 5 contains an example of a map
with a transverse homoclinic orbit near which there is no recurrent behavior. The
chapter also contains appropriate conditions for noninvertible maps and relations

to have a homoclinic tangle.



Chapter 2

Applications

This chapter describes a few applications in which it is appropriate to study iterated

smooth noninvertible maps and relations.

2.1 Difference methods

Non-autonomous differential equations of the form
&= F(z),

always have invertible solutions. However, numerical approximations are often
noninvertible for too large a time step. For example, this is true in the simple case

of the Euler difference approximation:

Tpi1 = Ty + TF(2,).

2

Lorenz describes this phenomenon [14] in the case F(z) = x — z*. In this case,

the Euler approximation gives z,,,1 = (1 + 7)x,, — 722, a version of the quadratic
equation.
Lorenz also describes the nature of solutions to a two-dimensional version of

the Lorenz equations. The way in which the approximation fails to behave like the

7



CHAPTER 2. APPLICATIONS 8

original solution depends on the noninvertibility of the map. The noninvertible
nature of an approximation may result in a qualitative change in behavior from
the true solution. For example, it may result in a smooth invariant circle losing its
smoothness, containing overlapping loops, or containing disconnected components.
For a bounded invertible map, iterates inside an invariant circle all remain inside
the circle under iteration. Thus for differential equations, invariant circles restrict
movement. For noninvertible maps, this is no longer true. The invariant circles for
the examples in Lorenz’s paper [14] display these kinds of noninvertible behavior.

It is theoretically possible to make the time step small enough that there is
a clear choice of inverse for a difference approximation. However, in applications
such as meteorology, in which there are many variables and multiple time scales,

it is infeasible to make the time step sufficiently small.

2.2 Adaptive control

Adaptive control systems automatically control processes using periodic feedback
information. One tests the output state of a system at regular intervals, using this
information to determine the next input. The goal is to reach a preset ideal output,
called the set point. This process is associated with a map from output and input
at time n to output and input at time n 4+ 1. Ideally, we would like to find an
algorithm for controlling the input so as to map any output at time n to the set
point at time n+1. In other words, the ideal control map is noninvertible. Thus an
iterated map modelling an adaptive control algorithm is inherently noninvertible.

A simple example, described in [7, 8, 1], considers a constantly mixing tank
with a stream of water and a concentrated dye solution flowing in, and a well
mixed solution flowing out. The controlled input is the rate at which concentrated

solution of dye flows into the tank. The output, measured with a photometer,
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is the concentration of dye in the tank after each discrete time interval; the set
point is some desired concentration of dye. The map governing this situation
is noninvertible. The papers cited above show experimental data verifying the
noninvertible nature of the model. For example, they show that that the basin of

attraction of the set point consists of a series of disconnected components.

2.3 Delay equations

A delay differential equation describes a vector field depending on both current

and previous values of a solution. For example, an equation of the form
(t) = F(a(t — 1)).

A periodic solution for a delay equation defines a Poincaré map. However, such a
map will not in general be invertible. The works of Steinlein and Walther [27, 26]
and Hale and Lin [11] study the nature of such noninvertible maps. Poincaré maps
from delay equations are infinite dimensional; only finite dimensional approxima-

tions can be studied with the theory developed in this thesis.

2.4 Delayed regulation population map
A standard model of population is of the form
Pn-l—l = RPna

where P, is the population at time n. According to Maynard Smith Mathemat-
ical Ideas in Biology [25], there are practical situations in which R depends on
P, _y. The reproduction rate for a herbivorous species may depend most strongly

on the amount of vegetation eaten in the previous year. A paper of Aronson,
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(1,1)

y-axis

(0,0) x-axis

Figure 2.1: Unstable manifold of the origin for the delayed regulation map, a = 2.0.

Chory, Hall, and McGehee [3] analyzes the following version of this population

model, which they call the delayed regulation model:

Pn—H = (an<1 — Pn_]).

Making the change of variable z, = P, and y, = P,_1, we get
Tpt+l = Yn
Yn+1 = ayn(l - rn)

This is clearly a noninvertible map, since the entire z-axis gets mapped to the
origin. Thus the fixed point at the origin has the z-axis as its local stable manifold.
For small values of a (< 2.27), iterates of points on the unstable manifold to the
origin converge to an attracting circle, as shown in the Figure 2.1.

When a is approximately 2.27, the stable and unstable manifolds appear tan-
gent, as shown in Figure 2.2. Finally, for a > 2.27, the stable and unstable man-
ifolds intersect transversally, as shown in Figure 2.3. This transverse homoclinic
orbit will be used as a principle example of a hyperbolic set for a noninvertible

map.
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y-axis

(0,0) r-axis
Figure 2.2: Unstable manifold of the origin for the delayed regulation map, a =

2.27. The unstable manifold is tangent to the x-axis, the local stable manifold.

(1,1)

\

"

y-axis

(0,0) ? y-axis
Figure 2.3: Unstable manifold of the origin for the delayed regulation map, a =
2.28. The unstable manifold intersects the stable manifold transversally at points

q and 7 on the r-axis.
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2.5 Multivalued maps

In addition to applications for noninvertible maps, there are also some applications
for iterated multivalued maps. For example, Barnsley uses hyperbolic iterated func-
tion systems as a means of creating fractals [4]. These function systems are simple

examples of multivalued relations.

Definition 2.1 (Iterated function systems) An iterated function system is a

complete metric space with a finite set of contraction mappings {w,,n =1,...,N}.

Of interest is the dynamics of the multivalued map U2_,w,. By the definitions
in Chapter 3, the graph of each such multivalued map is a relation with hyperbolic
structure. Thus it is possible to describe the dynamics of such a map using results

for hyperbolic sets presented here.



Chapter 3

The Stable Manifold Theorem

This chapter contains of a new proof of the local stable manifold theorem for
hyperbolic fixed points of smooth relations. This proof shows that the local stable
and unstable manifolds are projections of a relation obtained as a limit of the
graphs of the iterates of the original relation.

In contrast to the local stable manifold theorem, the global stable manifold
theorem does not hold in the noninvertible case. The last section of this chapter

describes a variety of ways in which the theorem can fail.

3.1 Background

The stable manifold theorem states that near a hyperbolic fixed point p, points with
forward orbit converging to p and points with backwards orbit converging to p are
both smooth manifolds. This is a standard theorem for diffeomorphisms [12, 19],
and is also known to be true for noninvertible maps [23, 11]. This chapter gives
a new proof of the stable manifold theorem, a joint work with Richard McGehee
first presented in [17]. The proof is in the context of “smooth relations” [2, 18],
a generalization which includes as special cases hyperbolic fixed points of both

13



CHAPTER 3. THE STABLE MANIFOLD THEOREM 14

invertible and noninvertible maps.

The proof presented here is not merely an effort to generalize the standard
theorem to the case of relations. Looking at relations restores to the noninvertible
case the symmetry between the stable and unstable manifolds as is seen in the
diffeomorphism case. In addition, it provides a new geometric way of looking at
the local stable and unstable manifolds of a map; namely, they are both projections
of an object one can think of as the “infinite iterate” of the graph of the map.

The key to this new proof is that rather than looking at stable and unstable
manifolds as subsets of the state space, we view them as projections of a smooth
manifold in higher dimensions arising from the graph of the original map. More
precisely, near a hyperbolic fixed point, the graph of a map and the graphs of its
iterates can be expressed in an appropriate coordinate system as graphs of smooth
contractions. The limit of these contractions exists and is smooth. The graph of
this limit projects to the stable and unstable manifolds.

The derivative of a smooth map on R"™ at a hyperbolic fixed point has no
eigenvalues on the unit circle. Thus locally, in coordinates given by the stable and

unstable directions X and Y, a map can be expressed as follows:

P\ (Art (o)
= , (3.1)
Y By + g2(,y)
where 2 and y are vectors in X and Y, (2, ) being the iterate of (z,y), A and B

matrices with |A] < 1,|B7!| < 1, and g, and g are Lipschitz with small Lipschitz

constant.
By the Implicit Function Theorem, we can locally change to a skewed coor-

dinate system such that in these new coordinates, we have a local contraction.

B~ + go(2,y)

Namely, we can write:

N

<@ 8

N———
[l
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g1 and ¢o are again Lipschitz with small Lipschitz constant.
The proof presented here capitalizes on the fact that the map and all its iterates
are local contractions when written in this skewed coordinate system. Before

presenting the proof, we illustrate the ideas with some simple examples.

3.2 Some simple examples

Example 3.1 Consider the graph of the following linear diffeomorphism f on R?
with hyperbolic fixed point (0,0):

(x/) = (a O) (T), for0<a<1<hb. (3.3)
Y 0 0)\y

Since the z-axis and the y-axis are respectively the one-dimensional stable and
unstable directions, we choose them to be the directions X and Y respectively in
the skewed coordinates. Call the new function resulting from writing f in skewed

coordinates ¢,. It is written as follows:

)60 o

The k' iterate of the original map is

Tk a 0 T 25
()= (e ) .

Writing the k™ iterate in skewed coordinates, gives the following function ¢.
Note that ¢, is found by looking at f* and not by iterating ¢,, although in this

case both methods give the same answer.

Ty a 0 T
0)-G0) o
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Consider the limit of the ¢y: it exists and is equal to the map which is identically

zero; explicitly, limy,_. @y is the following map in skewed coordinates on R?:

WRHIb o

Notice that this limit map in the skewed coordinate system does not correspond
to a function in the original coordinates. However, we can gain information about
the stable and unstable manifolds from its graph. Namely, the projection of the
graph to the xy- plane is the x-axis, the stable manifold. The projection of the

graph to the z'y/- plane is 3/-axis, the unstable manifold.

Example 3.2 The trick in Example 3.1 still works if the linear map is noninvert-

ible; i.e. if « = 0. The map becomes:

2’ 0
(1/’) = (by) : for 1 < b, (3.8)

which can still be expressed in the same skewed coordinates as before:

x 0
(0)-(2)
Yy Y

The limit of the ¢y, the k' iterate written in skewed coordinates, is the same
as before. Indeed, the stable and unstable manifolds are once again the z-axis and

y-axis respectively.

Example 3.3 If we allow the stretching term b in Example 3.1 to increase without
bound, the graph of the map of f converges to {(u,0, au,v) : (u,v) € R?}. This is
no longer the graph of a function from the zy-plane to the z’y/-plane. It is only a

relation.

Definition 3.4 (Relation) A relation on a space Z is a subset of Z X Z. Viewing

this in terms of iteration, an iterate of z under relation F is a point 2’ such that
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(z,2') € F. Notice that iterates of a point are not necessarily unique; nor do

iterates necessarily exist.

The relation in this example is a two-dimensional plane which is a subset of
R* with second coordinate always equal to 0. A point (z,y) € R? has no iterates
unless y = 0. A point (x,0) has as iterates every point of the form (az,v'), ¥’ € R.
Thus the origin is still a “fixed” point under iteration. Since points on the z-axis
have k' iterates of the form (a*x,0), which converge to the origin, the z-axis is in
(and in fact equal to) the stable manifold. Likewise, every point on the y-axis is
an iterate of the origin. Thus the y-axis is contained in (and in fact equal to) the
unstable manifold.

We can also use the technique in Examples 3.1 and 3.2 to see this; although
there is no longer a map, the limit of b increasing without bound corresponds to

1

b= oo; i.e. = 0. Thus although our example is no longer a map, it is the graph

of a function in skewed coordinates:

(2) _ (a;) (3.10)

In this case, as in Examples 3.1 and 3.2, the limit of the iterates as expressed in
skewed coordinates exists and is equal to the zero function. Again the projections

of the graph of this zero function are the stable and unstable manifolds.

Example 3.5 Here is a contrived quadratic example to illustrate the same idea

in a nonlinear case. Note that the map f on R? has a hyperbolic fixed point (0,0):

x ax
= , for0<a<1<b. (3.11)
) \bly+ea?) |

Since the axes are again the stable and unstable directions, we choose the axes
for the skewed coordinate directions as before. The map represented in the skewed

coordinate system gives the following function ¢:
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Figure 3.1: Projections of the graph of ¢; resulting from the map in Example 3.5.
Domain and range [—.3,.3] x [-.3,.3],a=.7,b=143, and ¢ = 1.

/

) Y

Figure 3.2: Same projections as in Figure 3.1, this time of ¢9g, the skewed function

of f20. See also Figure 3.3.
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Figure 3.3: The graph of ¢yy shown in Figure 3.2 after it has been rotated slightly
in R*. Same projections as before. This figure illustrates that although three of
the four projections in the Figure 3.1 appear to be curves, the graph is actually a

surface in R*.
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() _ ( ) (5.12)
Y Y —cx

Figure 3.1 shows the graph of ¢; with domain [—.3,.3] x [-.3,.3]. By the fact
that ¢; is a contraction, this figure is the same as the graph of f with both domain
and range restricted to [—.3,.3] x [—.3,.3]. Since the graph of a map from R? to
R? is in R*, the figure consists of projections of the graph to coordinate planes.
The projections have the following relationship to the maps f and ¢;: f maps the
region in the zy- plane to the region in the x'y/- plane. ¢; maps the region in the
xy'- plane to the region in the 2'y- plane.

The k' iterate f* is:

Ty, atx a?
=1 .. ke o | where pt = —. (3.13)
n by + o( T2 )2) b
Represented in skewed coordinates, it gives the following function ¢y:
(V-(, %) et
= L , where p = —. 3.
Y b%yk - C(ll__’;_k>x2 b

Figure 3.2 shows the graph of ¢y for the same domain and constants as in
Figure 3.1. Again, f?° maps the region in the zy- plane to the region in the a2'y/-
plane; ¢99 maps the region in the z3/- plane to the region in the z'y- plane.

The limit limy_.o, ¢ exists. It is given by:

() 2) ‘
- . (3.15)
Y _l_cﬁxQ

As in the previous examples, the projections of the limit map to the zy- and

2'y/- planes are respectively the local stable and unstable manifolds for f.
Since the convergence to the limit function is exponentially fast, the graph of
@90 in Figure 3.2 is visually indistinguishable from the graph of limj_. . ¢r. This

is why three of the projections appear to be curves. However, the graphs of both
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&9 and the limit function are two-dimensional surfaces in R*. To emphasize this

point, Figure 3.3 shows projections of the same surface after it has been rotated

in RY[13)].

The result from the above examples generalizes to a certain class of relations.
In Section 3.3 we give basic definitions for the dynamics of relations and state the
stable manifold theorem in this general setting. In Section 3.4, we outline the proof
of the stable manifold theorem. Finally, in Section 3.5 we give the full details of

the proof.

3.3 Basic definitions

In the previous section, relations on Z were defined as subsets of Z X Z and were

viewed in terms of iteration. Here are some definitions in this context. We denote

: ) . f
z having an iterate z’ under relation f by z ¥ 2.

Definition 3.6 (Fixed point) Given a relation f on set Z, = € Z is a fized point
of I if (2,2) € .

Definition 3.7 (Composition for relations) Given relations g and h on set Z,

h o g s the relation given by
{(z,2"):3 7 €Z(z,7)€gand (¢, 2") € h} (3.16)

Notation: If I is an interval of integers and 2, € Z for all k € I is a sequence

of points in Z, then we denote

(2is Zit1, s 27), T =2, ]
{Zk}kel = ("'725—1735)7 if I = (—OO,j] (3-17)

(2{,2{_}_1, ), if I = [2, OO)
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Definition 3.8 (Orbits for relations) Given relation f on space Z, an orbit
through = is a sequence {zy},.; such that z = z; for some i € I, and (2, zp41) € f
whenever k,k+1 € I. If I = [i,00) then {z} is called an infinite forward orbit.
If I = (—o0,i| then {z} is called an infinite backward orbit.

Definition 3.9 (Stable and unstable manifolds) For a relation f on metric
space Z with fized point z,, the stable and unstable manifolds W*(z,) and W*"(z,)
are defined by:

W*(z,) = {2z € Z: there exists an infinite forward orbit {z.} through z such
that zp — z, as k — oo}.

W'(z,) = {z € Z : there exists an infinite backward orbit {z.} through z such

that z — z, as k — —oo}.

Definition 3.10 (C" relations) If f is a relation on a smooth manifold Z, then
f s C" when it 1s a C" embedded submanifold of Z x Z.

Definition 3.11 (Linear relations) If f is a relation on a vector space Z, then

f 1s a linear relation of it 1s a linear subspace of Z X Z.

Definition 3.12 (Hyperbolic linear relations) If f is an n-dimensional linear
relation on an n-dimensional vector space Z, then f is hyperbolic when there is a

splitting Z = E° X E" such that under this splitting, f is of the form

([ x )
by
cxe€ B,y € B}, (3.18)
ax
(\ Y )

where a and b are matrices, and |a

b < 1.

Note that the graph of any hyperbolic linear map is a hyperbolic linear relation.

See Example 3.1 for the case of a saddle in R
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Definition 3.13 (C" hyperbolic relations) A C” relation f on a smooth man-
ifold Z has a hyperbolic fized point z, when T, .\ f. its tangent plane at (z,, 2,),

is a hyperbolic linear relation on T(., . \Z X Z.

Note that the graph of a map with hyperbolic fixed point z, is a relation which
has hyperbolic fixed point z,,.

We now state the main theorem of the chapter.

Theorem 3.14 (Stable manifold theorem for relations) If f is a C” rela-
tion on R", and f has hyperbolic fized point z,, then near z,, W*(z,) and W"(z,)

are graphs of C" functions.

3.4 Outline of the proof of the main theorem

The following definitions and lemmas outline the proof of the main theorem. The
proofs of the lemmas are in the next section.

First note that for a relation f on R" with a C" hyperbolic fixed point z,, f is
locally the graph of a function f. More precisely, for any p and k& < r, there is a
neighborhood of z, such that for some splitting R" = E*Xx E" on this neighborhood,

[ is the graph of function f, which is of the following form:

x ar+g (z,y')
_ = 3.19
- (y’) (by’ +gz(w7y’)) (319

where x € E*, y' € E", a and b matrices, [a|, [b| < 1, and g, and g, functions

which have all derivatives of order < k Lipschitz with Lipschitz constant p.
Motivated by this local expression of a hyperbolic relation as the graph of a

function, we consider some definitions for relations on Euclidean space Z which

are graphs of functions with certain properties for some coordinate system. We
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call these functions “associated” functions and call the coordinates “skewed” coor-
dinates, represented by X and Y, where Z = X x Y, and X and Y are Euclidean.
Note that not every relation is the graph of such an associated function; these def-
initions are specifically intended for working with relations with hyperbolic fixed
points. Also notice that the skewed coordinate system is not unique in any of the
definitions below. However, once we choose a coordinate system, if there is an
associated function in the coordinate system, then it is unique.

Notation: In the rest of this chapter, a relation is represented by a letter, and

an associated function for this relation by the same letter underlined.

Definition 3.15 (Lipschitz relations) A relation f is Lipschitz of order A, or

f € Lip,, when there is an associated function f € Lip, such that (x,y) EN
(@, y) & fz,y) = (', y).

Lemma 3.16 Suppose a relation f € Lipy, A < 1 has an associated Lipschitz
function [ as described in the above definition. Then the relation f is C" exactly

when the associated function f is C".

The proof of the above lemma follows from the implicit function theorem. The
result is tacitly assumed in the following lemma, which states that the composition

of two Lipschitz and C” relations gives another Lipschitz and C” relation.

Lemma 3.17 Leta <1 andr > 0. If g,T" are relations in Lip, and C" on Z =
X XY, with associated functions in the same skewed coordinates, then I'og € Lip,

and C" as well.

Given relation f, for a relation ¢, define G by G(¢) = fo ¢o f. The fol-
lowing lemma says that for f with a hyperbolic fixed point and certain ¢, G is a

contraction.
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Lemma 3.18 Let f satisfy the hypotheses of theorem 3.14 and o < 1. For suitably
small neighborhood of the fixed point, assume ¢ is Lip, with associated function
in the same skewed coordinates as f. Note that {¢} lies in the Banach space of
Lip, relations in a fired skewed coordinate system with the norm being the sup
norm on the associated functions. Then G is a contraction in the sup norm on the

associated functions.

Since G is a contraction in the space of Lip, relations, G has a unique fixed
point which is also in the space of Lip, relations, and any such relation converges
to this fixed point. In fact we can choose a neighborhood € such that f is an
appropriate Lipschitz relation in the domain of G. Thus on this neighborhood, the
fixed point is equal to lim,_. f*. Call this fixed point relation & and its associated
function h. The above lemma guarantees that h is Lipschitz on €. In fact, A is

also C" on (), as is restated below.

Lemma 3.19 Assume f € C" satisfying the hypotheses in theorem 3.14, and for
Q) a neighborhood of z, such that on ) the fixed point relation is Lipschitz and equal
to limy_.oc f*. Then h is C" on Q.

Definition 3.20 (w-limit relation) Given the relation f on compact metric space

Z

)

2 = Np>1Upsn fF,

where f* is the composition of k copies of f.

The following lemma states that the relation h defined above is equal to the

w-limit relation:
Lemma 3.21 f“ = h.

The next two lemmas state that the w-limit relation is locally the cross product

of the stable and unstable manifolds.
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Lemma 3.22 For a relation f satisfying the hypotheses of theorem 3.14, there is
a neighborhood of the fized point such that if u € W*(z,) and v € W"(z,), then

(u,z,) and (z,,v) are contained in f<.

In fact, a stronger statement holds; the following lemma states that f relates

every point in W*(z,) to every point of W"(z,).

Lemma 3.23 For a relation f satisfying the hypotheses of theorem 3.14, there
is a neighborhood of the fixed point such that u € W*(z,) and v € W'(z,) <
(u,v) € f“.

We now use the lemmas stated in this section to prove the stable manifold
theorem for relations.
Proof of theorem 3.14: By lemma 3.23, the stable and unstable manifolds are
projections of f“. Precisely, f“ = W*(z,) x W"(z,). By lemma 3.22, this set equals
{u:(u,z,) € f*} x{v:(z,v) € f*}. By lemma 3.21, h = f“; by lemmas 3.19
and 3.16, h has an associated C" function h. In terms of the splitting, denote 2, =
(o, o). W x W = {(2,y) : (2, 50) = (20,y)} x {(2z,0) : h(xo,w) = (2, 90)}
Thus both W* and W* are locally the graphs of C" functions. O

3.5 Proofs of lemmas

Proof of lemma 3.17: The proof is an application of the C'" and Lipschitz implicit
function theorems. Since it is less common than the C'" implicit function theorem,

we state the Lipschitz version here.

Theorem 3.24 (Lipschitz implicit function theorem) If X and Y are met-
ric spaces, and F : X XY — X 1s a continuous mapping F € Lipy, A < 1, then

there exists function g : Y — X, g € Lipyx such that

E(r,y) =2 o2 =g(y).
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Proceeding with the proof of lemma 3.17, we need to show that if ¢,I" €Lip,
and C”, then there exists a Lip, and C" function I' o g such that (z,y, 2", y") € Tog
exactly when I' o g(x,y") = (2", y). Define a function F : Z x Z X Z — Z X Z by

E((IL””, y'), (x/’ y)v (337 y”)) = (E(mla y”)v 2($7 y,)) (3-20)

Since F' is Lip, and has no unit norm eigenvalues, by the implicit function theorem,
there exists a Lip, and C” function m : Z — Z x Z such that F(2",y, 2/, y,x,y") =

(", 2’ y) exactly when m(x,y") = (2",y,2',y). Thus (m;,my) =T og. O

Proof of lemma 3.18: This proof is a series of estimates. The key to the estimates
is that f and the domain of GG are Lipschitz.
Assume that f is as in the theorem, and we have picked a neighborhood

and splitting so that equation 3.19 holds and g,,g, are Lip, functions. Let

A = max(|al,|b]) + p. Assume we have chosen a small enough neighborhood that
A+ ap < 1.

(Note that f € Lip,.)

For a relation ¢ with associated function 1, let ||.|| denote the sup norm, and
let 9 = (11,%2) be the components of the associated function.

We want to show that for any relations ¢, € Lip,, there is some uniform

constant # < 1 such that ||G(v)) — G(¢)|| < 0| — ¢||. This is equivalent to showing

that sup,_¢ ym_pm [(2, 5, 2", y") = (£, 10,8, 0")| < 0¥ — @], where (z,y, 2", y") €
G(¢), and (,7,£",n") € G(¥).
If (x,y,2",y") € G(¢), and (&, n, ", n") € G(), then there exist 2’y 2" y",

&, ¢, and 7" such that

", ///)

(x’,;y') }i (I”,y”) }i} (T y
f
H

(5///777/”) (321)

(z,y)

N
(Em) (&) ()

The following inequalities hold:
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|FL’”’ i €///| _ |ar// + 21(1,//’ y///) i af" N gl(g/’n///)' (3.22)
< )\|$// _ f”|7 since y/// — 77///
and [ — €' = |on(a',y") = r(€ ") (3.23)

< amax(la’ - €|, [y = ']) + |6 — vl since ¥, 6 € Lip,

Similarly,
|2 =& < ply =1 (3.24)
|( 7! _ TI”| S u|$// _ §II| (325)
Iy — 1| < amax(|2’ =&, [y —7"])+ ¢ — | (3.26)
ly—nl < Ay =1 (3.27)

If we let A = max(|2" — &"|,|y —1'|), then from the above equations, we have

A < apA+ ¢ -, so (3.28)
1
< —
< oale-vl
Thus for # = —— < 1, which is guaranteed by our original assumption,

l—ap
Supm:&y”’:n"' |(l'7 Y, l'/”7 y”,) - (57 m, 5”,7 77,”>| < 9”1/_/) - ?“ . g

Proof of lemma 3.19: To show that h € C" when f € C", we first show that
there is a neighborhood of the fixed point of f such that the limit relation of f
restricted to this neighborhood is C". To do this, we use the fiber contraction
theorem [12] to show that the map G is a C' contraction when f is C'. G is
locally a C'" contraction when f € C'" by an induction argument. In order to show
that h is a C'" relation on the original neighborhood, the relationship between h

and the limit relation on a smaller neighborhood bears further comment. To this
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end, we prove that h is equal to the limit relation on the smaller neighborhood
composed with finitely many C" subsets of f. Therefore h is C" on the entire
original neighborhood. We use the following definitions and lemmas; the central
proof follows their statements and proofs.

The following is a definition of a derivative relation of a smooth relation.

Definition 3.25 (Tangent relation) Given a smooth relation T' on RP, the tan-

gent relation TT on R?P is the tangent bundle of T.

If a relation has an associated function, then its tangent relation has an asso-

ciated function, as described in the following lemma.

Lemma 3.26 For a smooth relation I' on RP = X X Y with associated function
L, TT is the graph of (L, DL). In other words, (x,y, 2"y, &, n,&,n') € TT ezactly
when (z,y,2',y') € T and DL(x,y" ) (&, 1) = (&, n).

Proof This is due to the fact that a graph of a smooth function has tangent

bundle equal to the graph of the derivative of the function. O

Lemma 3.27 (Derivatives and composition) Assume thatT and g are smooth
relations with associated functions, and (x,y,2",y") € T' o g. Then locally there
exist ' and y' such that the graph of D(T o g). ) is equal to graph(DL . ny) 0
gmph(Dg(x’y,)). In terms of tangent relations, locally TT o Tg =T(T o g).

Proof of lemma 3.27: In the proof of lemma 3.17, we showed that locally there

are unique 2’ and ¥’ which are functions of (x,y") such that

(z,y) ¥ (' y) = (2 y). (3.29)

We know that y' = I's(g,(7,¥'),¥"). For the coordinate system R" = E*x E", write
Dlgl D2g1

the derivative matrices in the form Dg = ( ) . Implicit differentiation

D1g2 DQQQ
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gives

Dy = (1 = DiTyDyg,)” (D1LyDyg,, Doly), (3.30)

where all derivatives are evaluated at (z,y,2’,y',2",y"). It is now possible to
write the derivative of I' o ¢ explicitly. Comparing this derivative to the function

associated with graph DI, o graph Dg(gc ) shows that they are equal. O

Lemma 3.28 Leta <1, g and " both be Lip, C" relations on the compact set 'V ;
assume that in the coordinates V= Vi X Vy, there is a contraction g associated with
g. Also assume that for Uy C Vi andUs C Vo, g : Ui XV — Voand g : VixU; — V.

Let T be a relation on V.. Then go T o g is Lip, and C" on Uy x Us.

Proof of lemma 3.28: Define the function £/ : V xV xV xU -V xV xV as

E((2",y), (2" y"), (@".y), (x,y") = (g(z",y"),L(2",y"), g(x,y')). Proceed using

the implicit function theorem as in the proof of lemma 3.17. O

The final lemma is the fiber contraction theorem due to Hirsch and Pugh. Its

proof can be found in [12].

Lemma 3.29 (Fiber contractions) Let W be a map on a space X with attractive
fixed point p. For each x € X, let T, be a map on metric space Y such that
O(z,y) = (¥(z), T.(y)) is continuous on X x Y. For fired A < 1 and each z, let

each Y, € Lipy. Then there is an attracting fized point (p,q) for ©.
Finally, the following definition makes the notation more convenient:

Definition 3.30 ((C",¢) and (Lip”",¢) Small Relations) A relation is (C”, €)
small if there is some associated function which is (C”, €) small; in other words,
there is an associated function which is C", and all its derivatives of order < r are
Lip.. A relation is (Lip",€) small if it is (C", €) small and the v derivative of the

associated function is Lip,.
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Using these lemmas, the proof of lemma 3.19 proceeds as follows: Let f be a
C" relation on R™ with hyperbolic fixed point at z,, as in theorem 3.14. Let 2 be
a neighborhood of the fixed point such that lim; .., f/ = h, as described in the
discussion after the statement of lemma 3.18. Let p and A be as in the proof of

lemma 3.18, and let z, = (z,,¥,) in terms of the splitting.

First we show G is a C! contraction when f is C' (r = 1). Since T'f is not
necessarily Lipschitz, we cannot just apply lemma 3.18 on the tangent bundle.
However, as in the diffeomorphism case, we can still prove the result using the

fiber contraction theorem.

Let ¢ be a Lipy relation on R*" such that ¢ = (p,L), p a relation on R",
and L(z,y/,.) linear. Consider the map TG : ¢ — T'fo ¢ oTf. We verify the
conditions for the fiber contraction theorem for T'G; mT'G has attractive fixed
point h. Near (7,,%,), Df(z,y') is close to Df(z,.9,) in linear norm. Thus
we can use estimates similar to those in the proof of lemma 3.18 on 7,7'G on a
neighborhood of (z,,y,,0,0). On such a neighborhood, for fixed p and varying
L, mTG is Lipy in the sup norm. By the fiber contraction theorem, T'G is a
contraction in the sup norm on relations ¢ above. Thus T'G is a contraction when
¢ = Tp, where pis a (Lip',;z) small relation on R™. Therefore G is a C'! contraction

on (Lip!,x) small relations.

For the case r > 1, proceed by induction. Assume that for all relations g € C"!
on with hyperbolic fixed point on RP, and for p (Lip"', ) small, that p — gopogis
a C"~! contraction. Choose § C", hyperbolic. By our assumption, Tp — T'goTpo
Tgisa C™! contraction when p (Lip”,u) small relations. Therefore p — go po g

is a C" contraction.

We have so far shown that for f € C7", there is an € such that on a ball of
radius € of the fixed point, G is a contraction in the C” sup norm on (Lip”, )

small relations. The limit relation on this small ball is thus C". We now use the
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smoothness of the limit relation on the small balls to show that the relation A is
C" on all of 2.

Choose r. Denote the ball of radius € of the fixed point by B! x B?. Let T be
the C" fixed point of G restricted to this € ball. Note that I' C h, since it can be
described as the limit of iteration of the relation f|ngBz.

For A described in the proof of lemma 3.18, if |(2,y) — (70,¥,)] < §, then
|f(2,y) = (20,9o)| <€ Thus f: Blﬁ X B? — B! x B? and f : B! ><B2§ — B! x B2
Thus by lemma 3.28, foT' o f is Lipy and C" when restricted to the set Bli X B%.

This new relation is also a subset of h since if f C f' and I' C I”, then
fol'C floI'. We know that ' C h. Thus fol'ofC foho f=h.

Now iterate this process of composing with f and restricting to a neighborhood;
eventually we have a Lip,, C" relation on (). Since this relation is contained in h
and both are associated with functions on 2, the relations must be equal. Thus h

isC" on ). O

Proof of lemma 3.21: Assume that we have a neighborhood and splitting for f as
in equation 3.19. We show that there is a sequence in f* converging to a limit point
(z,y, z,w) exactly when there is a sequence k; such that lim; . f* (2, w) = (z,y).

First we show that h C f“; from the definition,
o = {u : uy, — u for some uy, € fk} . (3.31)

By lemma 3.18, f +— fo fo f f°— .. maps to h in the sup norm on the
associated functions. Thus for all (z,w) and odd k, f*(x,w) has a limit, and the
limit is equal to h(x,w). Thus uy = (r,f_kQ(:r7 w),f_kl(x, w),w) shows that h C f“.

Conversely, to show that f“ C h, suppose n = (z,y,z,w) € f*, and u, =
(Th,, Ynis 2k, WE, ) 18 the sequence in f* guaranteed by equation 3.31 such that

|uk, —n| — 0. Define vy, = (:r,ié(a:,w%ff(rw),w) Then
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| 7 — vk (<[ — wey |+ | wk, — v (3.32)

The first term on the right goes to zero by construction. In addition, since f is in
Lip,, the second term is less than or equal to the first term. Therefore it goes to

zero as well. Thus n € h. O
Proof of lemma 3.22 follows from lemma 3.23. O

Proof of lemma 3.23: Assume that we have a neighborhood and splitting de-
scribed in equation 3.19 and that in terms of the splitting, the fixed point is
denoted by (x,,9,). Assume (x,y) € W*(2,,9,) and (z,w) € W"(x,,y,). In the
proof that follows, we look at the forward k-iterates of a neighborhood of (z,y)
and the backward k-iterates of a neighborhood of (z,w). For large k, near the
fixed point, a portion of the forward iterates form a Lipschitz “vertical” curve,
and a portion of the backward iterates form a Lipschitz “horizontal” curve. The
two curves are near each other, and thus intersect, implying the existence of a
point near (z,y) with a 2k-iterate near (z,w). More precisely, we use this idea to
show that for any e, K there exists & > K and a point (s,t,u,v) € f* such that
dist((z,y, z,w), (s,t,u,v)) < € and thus (z,y, z,w) € f*.

Let € be given. We know that there exist sequences (xy, yx), and (2, w;) both
converging to the fixed point, (z,y, vx, y) € f* and (2x, wg, z,w) € f*. For a small
0, let k be large enough that distance from (zy, yi) to (2x, wy) is less than 6.

Now look at an € ball of y; in Y. For the point (z,7'), where 7 is in the €
ball, we have the point (z,7,&, 1) € f*. The set of points (¢/,7') form the graph
of a Lipschitz function from Y to X near (xy,yx), each point of which is related
to a point near (z,y) by f*. Similarly, there is a graph of a Lipschitz function
from X to Y near (2, wy), and a point near (z,w) is related to each of the points

in this graph. But if ¢ is small enough, these Lipschitz graphs must intersect.



CHAPTER 3. THE STABLE MANIFOLD THEOREM 34

Thus there is a point (s,t,u,v) € f2* within € of (x,y,z,w). We conclude that
(r,y,z,w) € f*.

Conversely, assume (z,y, z,w) € f¥. Therefore for any k > 0, there are points
near (z,y) with k forward iterates. Using compactness, we show that (x,y) has
an infinite forward orbit. Using the fact that f € Lip,, we show that the forward
orbit must converge to the fixed point, and thus (x,y) € W*(x,,v,). Likewise,
(z,w) € W20, Yo).

Let B.(x,y) be the closed € ball of (z,y), and define the set

SH(w,y) = {(f, n) € B(x,y) : (£,n) has a k" iterate}.

S*(z,y) is nonempty, by the assumption on (x,y). It is compact, since f is closed,
which implies f* closed [18] and thus compact. Thus N.S¥(z, y) is nonempty, since
it is the intersection of non-empty nested compact sets. It is equal to {(x,y)}, since
this is the only point it could contain. Therefore (z,y) has a k™ iterate (x,yx)
for every k. Thus there exists an infinite forward orbit starting at (z,y). By
compactness, there exists a limit point (z/,w’). Thus (z;,y;, 2, w') € f* for the
same z',w' for all j.

Since (z;,y;,2',w') € f* for all j, if (24, y,) and (z;,y;) are in this forward
orbit, then |y; — yi| < A|z; — 2.

Since f* is Lipy for every k,|zpy1 — 2] < Amax(|zr 1 — 2, [y — wi]) <
Amax(|zr_ 1 — Tg|, A|Tgr1 — zg]). Thus |vpp1 — 2] < A2k — 2%|. This Cauchy
sequence implies that xp converges to a unique z,. Likewise, y; converges to a
unique w,. This means that (Tg, Yg, Trr1, Yrt1) — (2o, Wo, 2o, W,). Since f is closed
and (Tk, Yk, Tht1, Yetr1) € [y (20, Wo, 2o, W,) € f as well. The unique fixed point of f
is (25, 9,). Therefore (z,y,) converges to (x,,%,). Therefore (z,y) € W5(x,,y,).

Similarly, (z,w) € W¥(2,,y,). O

This completes the proof of the stable manifold theorem.
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Figure 3.4: A portion of the global stable manifold of the origin in the delayed
regulation map. This could never be a stable manifold for a fixed point of a

diffeomorphism, since it has self-intersections.

3.6 Global manifolds

So far we have talked only about local results for stable and unstable manifolds of
fixed points. In other words, for relation F', and €2 a neighborhood of hyperbolic
fixed point p, we have looked only at W . = W*(p, F N ). For diffeomorphisms,
even if we don’t restrict to looking at the relation F' N {2, a global theorem follows
from the local stable manifold theorem. Although the global manifolds may no

longer be embedded submanifolds, they still have a smooth structure.
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Definition 3.31 (Immersed manifolds) A subspace S of an ambient space M
15 called an immersed submanifold if there is a smooth manifold N, and a one-to-

one smooth function with derivative an isomorphism, mapping N to S.

Theorem 3.32 For a diffeomorphism, the global stable and unstable manifolds of

a hyperbolic fized point are immersed submanifolds.

This theorem follows from:
W*(p, f) = Ursof T (Wi(p))

W"(p, f) = Ukzof’“(Wféc(p)‘)-

Thus we can use the smoothness of the local manifolds, and the fact that f is a
diffeomorphism, to get the smooth structure of the global manifolds. In contrast,
a noninvertible map is not one-to-one, and thus cannot be used to show anything
about structure of the global manifolds. In fact, generally the global manifolds for
noninvertible maps fail to have any smooth structure.

The diffeomorphism theorem guarantees that global stable and unstable mani-
folds for diffeomorphisms are connected, locally smooth, of a fixed dimension, and
with no self-intersections. These properties all can fail for noninvertible maps; the
stable manifold may have infinitely many components, an image under a nonin-
vertible map may have a cusp [7], it may collapse in dimension [11], or it may
have self-intersections, as occurs in the global stable manifold to the origin in the
delayed regulation map. See Figure 3.4.

In general, it does not seem that there is anything special to distinguish global
stable and unstable manifolds of relations from arbitrary closed sets. The theorems
we can expect to hold for noninvertible maps and relations are those that are local

n nature.



Chapter 4

Hyperbolic Sets

This chapter contains a definition of hyperbolic sets for smooth relations. It then
presents a proof of the shadowing lemma and stable manifold theorem for hyper-

bolic sets.

4.1 Background

For diffeomorphisms, the idea of hyperbolic fixed points generalizes to sets of points

which are not necessarily fixed. Here is a precise definition.

Definition 4.1 (Hyperbolic sets for diffeomorphisms) A compact invariant

set K for a diffeomorphism f is a hyperbolic set if the following conditions hold:

1. There is a continuous splitting of the tangent space into stable and unstable

subspaces,

T.R"=FE; x E;, v€kK.
2. The deriwative is invariant for the splitting,

Df(x)E; = E;(rjp
37
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Df(x)E; = E}L(w‘)-

3. The derivative is eventually contracting on the stable subspaces and eventually

expanding on the unstable subspaces. That is, for C > 0, A < 1,
|IDf"(z)v| < CA"|v|, v € E;,
|Df"(z)v] > C™'A™"|v|, v e EL

By a theorem due to Mather [24], there is a continuous metric such that C' =1,
and thus the derivative contracts stable subspaces and expands unstable subspaces
under just one iterate. This is called the adapted metric.

Hyperbolic sets for diffeomorphisms have been carefully studied, and there are
many theorems describing the dynamics on such sets. Thus we would like to

generalize the definition and corresponding theorems to noninvertible maps.

4.1.1 Why have a new definition?

For noninvertible maps, we cannot just apply the definition of hyperbolic sets as
it stands. The requirement that stable and unstable subspaces map invariantly
is too stringent. Trivially, if the derivative is singular, then we can only expect
Df(x)E: C ch(m). In addition, we cannot expect the unstable subspaces to map
invariantly either, since there may be multiple points mapping to the same point.
For example, in the delayed regulation model at a > a* = 2.2701, there are
transverse homoclinic orbits to the fixed point. The closure of such an orbit is a
likely candidate for a hyperbolic set. However, for such a transverse homoclinic
orbit, it is impossible to define invariant unstable directions at every point. This
arises from the fact that points on the z-axis map directly to the fixed point, rather

than converging to it; in the two homoclinic orbits, there exist points ¢ = (¢1,0)
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TooW*  Df(q)T,W

y-axis

Figure 4.1: W" near the origin for the delayed regulation model. The three tan-

gents to W* show that there is no invariantly mapping unstable subspace.

and r = (g2,0) such that f(q) = f(r) =(0,0). Since the derivative
0 1
Df(x,y) = ( ) (4.1)
—ay a(l —x)

maps point g and r by Df(g;,0)(&,1) = (1,a(1l —¢;)), there is no vector in the tan-
gent space of ¢ or r which maps by the derivative to (1, a), the unstable eigenspace
for the fixed point. Thus the derivative cannot map invariantly on the unstable sub-
spaces. This phenomenon was first described in work of Steinlein and Walther [27].
Figure 4.1 shows the global unstable manifold in a neighborhood of the origin. The
three lines are candidates for £ ;): the unstable eigenspace (1,a) of the derivative
at the origin, and (1,a(1 —¢;)) and (1,a(1 — ¢2)), the images under the derivative
of the tangent vector corresponding to the homoclinic points ¢ and r on the z-axis.
Based on these ideas, Steinlein and Walther [26, 27] generalize the definition of
hyperbolic sets to a definition for C! noninvertible maps on Banach spaces. For

their definition, they assume that there exist stable subspaces mapping invariantly,
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and eventually contracting. They also assume that there exist unstable subspaces,
not mapping invariantly, but with unstable projections eventually expanding. For
this definition, they prove the shadowing lemma by making some adjustments to
the traditional functional analytic techniques. My development of the theory of
hyperbolic sets follows a very different approach. Using the ideas in the proof
of the stable manifold theorem, I give a symmetric definition of hyperbolic sets,
which also applies to smooth relations. From this definition, I prove the shadowing
lemma using a proof, which though functional analytic, differs significantly from
the traditional approach. I also give a proof of a version of the stable manifold

theorem for hyperbolic sets.

4.2 Definitions

Definition 4.2 (Splitting for R") A splitting for R™ is a pair of subspaces (E*, E")
satisfying
R" = ES x E".

Definition 4.3 (4-Splitting for R" x R™) A 4-splitting for R" X R™ is a pair of
splittings for R", (E}, EY') and (E3, EY), satisfying dim( E})=dim(E5) and dim(E}')
= dim(EY ).

Definition 4.4 (Hyperbolic Linear Relation with respect to a 4-splitting)
If A is an n-dimensional linear relation on R", then A s hyperbolic with respect to
the 4-splitting (E3, EY, E5, EY) if there is a linear contracting map M : Ef x Ey —
ES x E}, | M| < XA <1 such that A is the graph of M. Thus

A= {(:c,y,:z:’,y’): (3:) =M (:r/)}
Yy Y

We say A has a contraction constant | M| with respect to this /-splitting.
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Notation: For the rest of the thesis, a capital F' represents a relation, whereas

a lower case f represents a function.

Definition 4.5 (Compact hyperbolic sets for C* relations) Let F be a C*
relation on R". Let K be a compact set in R". K is a hyperbolic set for F' when
the following conditions hold:

There 1s a continuous splitting of the tangent space of R™ over K. Denote it:
T.R" = F; x EY.

There is a constant A < 1.

There is some metric on a neighborhood of K such that at every (z,w) €
FN(K x K), Ti.uw)F is a hyperbolic linear relation with contraction constant < A

with respect to the 4-splitting (E5, EY, ES EL).

The following lemma relating hyperbolicity and Lipschitz relations is what we

actually use in the proofs of the theorems in the next section.

Lemma 4.6 (Hyperbolic implies Lipschitz) If (z,w) € FN(K X K), with F
and K as above, then in a neighborhood of (z,w), F is the graph of a Lipy function

fiE;XE} — E; X EY.

Proof By the Implicit Function Theorem. O

4.3 Cones

Although hyperbolic sets for diffeomorphisms always have invariant subspaces,
it is often difficult to find them. To avoid this problem, hyperbolicity is often
formulated in terms of an equivalent condition on stable and unstable cones. We
show below that a hyperbolic set for a relation satisfies a generalization of the cone

condition.
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For diffeomorphisms, the cone formulation says that on some compact invariant
set K, if the derivative is expanding on a cone of vectors roughly in the unstable
direction and contracting on a cone of vectors roughly in the stable direction, then
K is a hyperbolic set for the diffeomorphism [21]. The following makes this more

precise.

Definition 4.7 (Stable and unstable cones) Given o > 0, and a splitting of
the tangent space at each point T,R" = E; x EY, then the stable and unstable a

cones are defined by:
C? ={(vs,v) € EL X B ¢ |uu| < afvs]}
€ = {(vy0,) € BS x B2 : Ju] < afnl}.

Definition 4.8 (Cone condition for diffeomorphisms) If f is a diffeornor-
phism and K is a compact invariant set, then K satisfies the cone condition if there
is a continuous metric and a continuous splitting of K such that D f(z)C? C C}‘i(z),
Df_l(f(z:))C}‘(z) C C¥, and Df is uniformly contracting on the stable cone and

uniformly expanding on the unstable cone.

Theorem 4.9 (Hyperbolic sets and cones for diffeomorphisms) If f is a
diffeomorphism and K 1s a compact invariant set, then K satisfies the cone con-

dition if and only if K 1is a hyperbolic set.

This theorem is due to Newhouse and Palis [21].
The new definition of hyperbolic sets for relations is similar to this cones for-
mulation. Here is a natural generalization of the cone condition to relations, and

a statement that hyperbolic sets for relations satisfy this cone condition.

Definition 4.10 (Cone condition for relations) Let F be a smooth relation

and K a compact set. Then F satisfies the cone condition on K if there is some
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continuous splitting and a continuous metric, and a uniform A\ < 1 such that for all
(z,w) € FN (K x K), vectors in the unstable A cone at z relate only to vectors in
the unstable A cone at w under T(, ., F'. Further, it is backwards \-contracting. In
other words, if a vector v in the unstable cone relates to a vector v', then |v| < A|v/|.

Similarly, vectors in the the stable A\ cone at w only come from the stable )

cone at z under T ., F', and are A-contracting.

Lemma 4.11 (Cones and hyperbolic sets for relations) Assume F is a re-
lation, K is a compact hyperbolic set for F. Then F satisfies the cone condition

on K.

Proof Choose a nonzero vector (vg, v,) in the unstable cone at z. Suppose (vs, v,)

relates to a vector (v}, v),) at w under the derivative relation. Then using the max

8?7 Cu

norm,
(v, )| < Al(ws, v,

By hypothesis, |vs| < A|lvy|, so |[v)| > |vs]. Thus |v)| < A|v)|, so the vector

is in the unstable cone. Furthermore the derivative is expanding vectors, since

[(vs, vy)| = |vu| < AlU)| = Al(v],2])]. A similar proof holds for the stable cones. O

RN

The obvious question here is whether the converse of the above lemma holds.
In other words, if the cone condition holds on a compact set, then is the set

hyperbolic? I believe that this converse is true.

4.4 Examples of hyperbolic sets
Example 4.12 A hyperbolic fixed point for a C" relation is a hyperbolic set.

Example 4.13 For diffeomorphisms, the definition for relations is equivalent to

the traditional definition. In other words, we have the following theorem:;
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Theorem 4.14 If f : R" — R" 1s a diffeomorphism, and K is a compact invariant
set under f, then K 1is a hyperbolic set for f by the traditional definition if and

only if K is a hyperbolic set for the relation graph(f ) under the relations definition.

Proof By the Mather adapted norm, the diffeomorphism conditions imply that
the new definition holds. The cone condition in the previous section implies that

the converse holds as well. O

Example 4.15 (The case of homoclinic orbits) For diffeomorphisms, all trans-
verse homoclinic orbits are embedded in hyperbolic sets. However, this is not
always true for noninvertible maps and relations. Chapter 5 gives examples of
noninvertible maps and relations with transverse homoclinic orbits, but for which
the shadowing lemma does not hold. Since the next section shows that the shadow-
ing lemma holds for all hyperbolic sets, these examples cannot ever be embedded in
hyperbolic sets. Chapter 5 also gives sufficient conditions for homoclinic orbits to
be hyperbolic sets. These conditions are satisfied, for example, by the homoclinic
orbits in the delayed regulation model.

Another special case of homoclinic orbits which are always hyperbolic sets are

snap-back repellers [15], defined as follows.

Definition 4.16 (Snap-back repellers) For a noninvertible map f with repelling
fized point p, a snap-back repeller is a homoclinic orbit {z},., for which every

point in the orbit has D f(z) an isomorphism.

Namely, snap-back repellers are homoclinic orbits of repelling fixed points,

which are contained in the zero-dimensional stable manifold.

Example 4.17 (Iterated function systems) As described in Chapter 2, an it-
erated function system is a relation which is the union of a finite number of smooth

contractions {wy},.,. Under the assumption that for allz and i # 7, w;(x) # w;(x),
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an iterated function system forms a smooth relation. The whole space has a triv-
ial splitting with no unstable directions. Thus the entire space has hyperbolic

structure.

4.5 Shadowing

The shadowing lemma states that near a hyperbolic set, making small errors on
each iteration still gives a reasonable picture of the dynamics. The shadowing
lemma for diffeomorphisms is due to Bowen [5]. Here we give a proof of it for
hyperbolic sets for smooth relations. The proof is functional analytic in nature.
However, it seems to be conceptually simpler than the standard functional ana-
lytic proofs for diffeomorphisms, as the definition of hyperbolic sets in terms of
a contraction allows the straight forward application of the contraction mapping
theorem.

Notation: For 7 > 0 and set S, the closed ball of radius v is denoted by B, (.5).

Definition 4.18 (Pseudo-orbit) A sequence {2}, ., is called a 6-pseudo-orbit
for relation F when dist((z;, zi11), F') < 6 whenever i,i+ 1 € I. More elegantly in

terms of relations, a 6-pseudo-orbit for F is an orbit of Bs (F).

Definition 4.19 (Shadow) An orbit of F' {w;},., €-shadows a sequence {y;},.;

when for all i € I, dist{w;,y;) < €.

If in some set, every sufficiently small pseudo-orbit has a unique nearby shadow,
the set is said to have the shadowing property. The following lemma says that

hyperbolic sets have the shadowing property.

Theorem 4.20 (Shadowing) If K is a hyperbolic set for F, then for any € > 0,

there is a 6 > 0 such that any d-pseudo-orbit in Bs (K) is e-shadowed by an orbit
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of F. If € is small enough and the pseudo-orbit is bi-infinite, then its e-shadow is

unique. Further, if the pseudo-orbit is periodic, so is its shadow.

The proofis conceptually simple. In summary, uniformly close to a pseudo-orbit
near K, F' is the graph of a contraction. Associated with F', there is a relation on
the space of sequences. Near the pseudo-orbit, this sequence relation is the graph
of a contraction from the space of sequences to itself. By the contraction mapping
theorem, this contraction has a unique fixed point, which is the shadowing orbit
we wanted to find. Here are the details of the argument.

Proof Assume we are given relation F' and hyperbolic set K.

Given e sufficiently small, there is a small enough ¢ so that if z,w € B.(K) and
(z,w) € Bs(F'), then F is the graph of a Lipschitz contraction on B(z, w).

Assume that ™ = {z},., is a é-pseudo-orbit in Bs (K).

For sequence 2, note that at each point there is an induced splitting, defined
by EII = {Ej} and B = {Eg} Thus there is an induced splitting for any
sequence in B, (z*).

For sequence 2* € E?;, define the norm ||2*|| = sup; |x;|.

Likewise, for y* € E, let ||y*|| = sup; |uil.
On (a7,y7) € B2 x %, use the nomm [[(z, y*)|| = max(|la[] ly7]l)
Let F* be the relation induced by F. Namely, on the space of bi-infinite

sequences in B, (z*):

w* £ p* if and only if for all 4, w; ¥ pisy

Lemma 4.21 For any N > X\, F* is the graph of a Lipy function f* induced by
f.

Proof Assume (2, y%) N (o, 5%). Then (z;,v;) £ (it1, Bix1), which implies
f(xi, Biv1) = (a4, yis1). Thus there is a function f* induced on sequences such that

fram, p7) = (% y7).
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To show that this function is Lipy, assume (£*, 1) N (0%, ). Thus (&, n:) K
(Oi1, pit1)-

By assumption, we know max(|a;41 — 0ip1|, |yi — mi|) < Amax(|z; — &, |Biz1 —
Hit1])-

Taking the sup of both sides, we see that max(||a*—0"|, ||y*—7"||) < A max(||z*—
&l |

B* — p*||). Thus f* is Lipy. O
Lemma 4.22 F* has a fized point if and only if f* has a fixed point.

Proof Follows from the fact that ((z*, y*), («*, 5%)) € F* ifand only if f*((z*, 3%)) =

(a%,y). O
Lemma 4.23 By the contraction mapping theorem, f* has a unique fized point.

Proof The space of bi-infinite sequences on compact balls of radius € along with
the norm previously described is a Banach space. Thus we can use the contraction

mapping theorem. O

From the above lemma, F™* has a unique fixed point. A fixed point of F* is an

orbit of F'. Thus this fixed point sequence is the unique shadow of the pseudo-orbit

~%
A~

This completes the proof of the shadowing lemma. O

4.6 Stable manifold theorem for hyperbolic sets
of relations

This section describes a generalization of the stable manifold theorem for hyper-
bolic sets which holds for noninvertible maps and relations.
The stable manifold theorem for hyperbolic sets of diffeomorphisms says that

for every point in a hyperbolic set, the set of points with nearby forward orbits
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and the set of points with nearby backward orbits both form smooth manifolds.
It was originally stated by Hirsch and Pugh [12]. In the case of relations, the
nonuniqueness of orbits implies that this statement breaks down.

The delayed regulation model previously discussed is an example of a hyperbolic
set for a noninvertible map such that there are multiple unstable manifolds to a
point. At a = 2.28 the transverse homoclinic orbits form hyperbolic sets. However,
within the hyperbolic set, the unstable manifold to the origin is not unique. By
the same calculation which showed there was no invariant unstable direction at the
origin, there are many curves which comprise the unstable manifold to the origin,
as can be seen in Figure 4.1. Each of these curves follows one of the backwards
orbits to the origin.

As the preceding example suggests, the stable manifold theorem for hyperbolic
sets for relations is a theorem about orbits rather than about points. Since the
shadowing lemma guarantees that these orbits are isolated, we lose any results
about continuously varying manifolds. Although for relations stable and unstable
manifolds correspond to orbits rather than to points, the new theorem is powerful
in a different way. Namely, it shows that for each orbit in a hyperbolic set, there
are stable and unstable manifolds, consisting of points with locally unique forward
and backward orbits respectively. Since for a given point, orbits of a noninvertible
map or relation are neither guaranteed to exist nor to be locally unique, this is a

powerful result.

Definition 4.24 (Local manifolds for orbits) Let {z},., be an orbit for a
smooth relation F on space Z. The stable and unstable manifolds to {z;} at z;,
denoted W7, y(z;) and W, ,(z;) are defined by:

Wi o (zi) ={w € Z : there exists an infinite forward orbit {wy.} through w such
that wy — zp as k — oo}.

Wi (z) = {w € Z: there exists an infinite backward orbit {wy.} through w
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such that wy — z as k — —oo}.

Theorem 4.25 (Stable manifolds for relations) Let F be a smooth relation
with compact hyperbolic set K. Assume {z},c; is an orbit of F' contained in I.

For sufficiently small €, if [i,00) C I, the local stable manifold W{SZk}(zi,e) is
the graph of a Lipschitz function E — FE. Further, each point q, in the local
stable manifold has a locally unique forward orbit. In other words, there is only
one forward orbit through q, converging to the orbit {z}.

Similarly, for the unstable case, if (—oo,i] C I, and € is sufficiently small,
then the local unstable manifold W{ik}(zi,e) 15 the graph of a Lipschitz function
EY — E;. Further, each point r, in the local unstable manifold has a locally

unique backward orbit.

For diffeomorphisms, the stable and unstable manifolds for points in hyperbolic
sets are as smooth as the the diffeomorphism. Smoothness seems likely for stable
and unstable manifolds for relations as well. Note that the estimates in the pre-
vious chapter for the fixed point case do not apply here, since there we assumed
invariance of subspaces, and we do not assume that here.

Before beginning the proof, we develop some notation and reformulate the
theorem in terms of this notation; assume F' is a relation with hyperbolic set K,
and {z},., is an orbit in K.

For (z,w) € R" x R", denote the projections to the two coordinates by m; and

mo; namely, m(z,w) = z and mo(2z, w) = w.

Definition 4.26 (Forward shadow) S} is the set of pairs e-shadowing forward

for one iterate. 1i.e.

S ={(u,v) € F:(u,v) € B(zi,2i41)}

(3

Equivalently, S} = F N Bz, zi11)-

1



CHAPTER 4. HYPERBOLIC SETS 50

Si’C 15 the set of pairs which are connected by a k-forward shadow. Equivalently,

i terms of composition of relations,

E_ ¢l 1 1

2

Likewise, for backward shadowing,

Definition 4.27 (Backward shadow) S; ! is the set of pairs e-shadowing back-
ward for one iterate. Thus, S;' = F N B(zi_1, z).
S7F is the set of pairs which are connected by a k-backward e-shadow. In terms

of composition of relations,

“k_ g1, o1 -1
S, =08;"08_0--08 ;..

2 2

By definition W*(2;) = limy_o 71 (S¥), and W¥(2;) = limy_ WQ(S[I“). Thus
the following lemma in terms of the new notation is equivalent to the stable man-

ifold theorem for hyperbolic sets for relations.

Lemma 4.28 Under the hypotheses of theorem /.25, there is a constant) < A < 1
such that limy_, m(SF) exists and is the graph of a Lipy function E; — E.
Fach point in this limit set has a unique forward orbit converging to {z}. Also
limg_ oo 7@(5{"') exists and is the graph of a Lipy function EY — E7.. Fach point

in this limit set has a unique backward orbit converging to {z}.

Proof
Here is the proof for the backward orbits case. Forward orbits case follows by

symmetry.
Step 1 m (Si_k) C 7o (S;(kfl)).

This is because the set of points shadowing backward £ iterates automatically

must shadow backward for k — 1 iterates.
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Step 2 m (S{k) 15 compact.

This set is a projection of S;*, which is compact since it is the composition of

compact relations.

Step 3 If ¢ is sufficiently small, then for every k and every y € E?., there exists
x so (x,y) € (Si_k).

This follows from the following lemma on the composition of relations.

Lemma 4.29 The composition of relations which are graphs of Lipschitz functions
15 a graph of a Lipschitz function. Specifically, if F' s the graph of Lipy function
f., G the graph of Lipy function g,

fiE] xEy — E5 x EY, and

g:E5x B — E3 X Ej

then G o F 1is the graph of a Lipy function E{ X E§ — E5 X E}

Proof of the lemma: By the Lipschitz Implicit Function Theorem. O
Step 4 limy_., ™ (S{k) is the graph of a function from E. to E .

From the previous step, 7o (Si_k) is nonempty. Thus limy .., 7 (Si_k> =
Nk>0T2 <Sz-_k) is nonempty since it is the intersection of a nested sequence of com-
pact sets. Further, using the same reasoning, for every y € £, there is an = € E7,
such that (z,y) € limg_ o 72 (S{k).

Before giving the final step in the proof, here is a useful estimate:

Lemma 4.30 Assume {w_,} and {u_} are backwards orbits such that for some
sufficiently small v > 0, and i < k < N, dist{w_p,2_p) and dist{u_p,z_p) <
7. Then by continuity of the splitting we can rewrite w_j, = (T_p, Y—p),U—f =
(§—k,n-r) € B x EY . Then:

'Z,k

max(|z; — &, [yi-1 — ni-1|) < max( M|z, — &k |, Ay — i)
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Proof Since F is Lipy, max(|y;—1 — ni—1|, |2 — &|) < max(A|xi—1 —&—1|, A|yi —mil)-
Call this right hand quantity A.
Similarly, |7;_; — §—1| < max(A|z;_y — §_of, Alyi—1 — mi1])-
Thus
lz; — & < A < max(A|zi_y — &a|, X2A, Myi — mil).

But A > A\2A, so
lv; — & < A< maX(/\2|SCi—2 — &ials Ay — mil)-
Continuing inductively gives the desired inequality. O

Corollary 4.31 If (x;,y;) and (&,n;) both in limy_ . 7y (Sﬁ), then |z, — &| <

Nyi = mil-

Proof Choose N so that AVe < Aly; — m;|. By assumption, there is some
(i-n,¥Yin) and (&, mi—n) such that (v, n,yi—n, i, y:) and (§-n, 0w, &, 1)
e SN,

From the preceding lemma,

max(|z; — &/, [yi-1 — mi-1]) < maX()\N|$i—N —&ionls My — nil) < A|yi — il

O

Step 5 limy .o, ™ (S{k’) 15 the graph of a Lipy function. Every point of the limait

set has a unique backward orbit converging to the original orbit.

That the limit set is the graph of a function follows from the previous step.
That the function is Lipschitz follows from the above corollary.

To show that points have unique backwards orbits in the limit set, consider the
behavior of the inverse relation when restricted to the limit set. From the last line

of the proof of the above corollary, the inverse relation is a contraction. A relation
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which is a contraction is a function. Thus the inverse relation when restricted to
the limit set is actually a function. From this it is clear that points in the limit set
have unique backward orbits and that the orbits converge to {z}.

This final step completes the proof of the stable manifold theorem for hyperbolic

sets for relations. O

4.7 Iterated function systems example

As an illustration of the ideas of this chapter, consider once again iterated function
systems. As mentioned in Section 2.5, if {wi},., are a finite number of smooth
contractions, and for all # and i # j, wi(x) # w;(x), then this iterated function
system forms a smooth relation F' = Uwy, and every compact set is hyperbolic.

The stable manifold theorem says that every point z, with an infinite forward
orbit {1}, has a neighborhood in which every point w has a forward orbit con-
verging to the orbit {Z'k}kzo- In fact, on a compact space, this neighborhood turns
out to be the whole space, the orbit depending only on the sequence of contrac-
tions chosen. The theorem also says that the unstable manifold for a backward
orbit is zero-dimensional. The shadowing lemma says that every sufficiently small
bi-infinite pseudo-orbit has a unique shadow.

Using the above, we can recover information about which sequence of con-
tractions in F' converges to a given point, as in Barnsley’s Chaos Game [4]. Let
(z,y) € F. Then y = wj(x) for some j. Notice that for sufficiently small ¢, all
points in F' N Bs (x,y) are also of the form (z,w;(z)) for the same j. Thus for a
sufficiently small pseudo-orbit, we can recover the bi-infinite sequence of contrac-
tions from F' which give the shadowing orbit. Also, to every backward sequence
of contractions, there corresponds a unique point with the sequence corresponding

to its backward orbit. However, there may be many forward and backward orbits



CHAPTER 4. HYPERBOLIC SETS o4

through such a point.

In [4], there is a proof of a version of the shadowing lemma for iterated function
systems which are are the union of invertible contractions. Here, we do not assume
that contractions are invertible, but the main difference is in the framework and

approach to looking at iterated function systems.



Chapter 5

Homoclinic Orbits

One of the basic examples of a hyperbolic set for diffeomorphisms is the closure of
a transverse homoclinic orbit. Such an orbit implies the existence of the famous
homoclinic tangle, in which as early as Poincaré, mathematicians observed com-
plicated behavior. Using the shadowing lemma it is possible to show the precise
nature of the complicated behavior nearby such an orbit.

For noninvertible maps and relations, transverse homoclinic orbits are not nec-
essarily embedded in hyperbolic sets. This chapter gives the basic definitions and
implications of transverse homoclinic orbits for diffeomorphisms. It then gives
examples of the manner in which these implications fail for noninvertible maps
and relations. It ends with a sharp condition for when the closure of transverse

homoclinic orbits of relations are hyperbolic sets.

5.1 Definitions and background

The following definitions follow the standard literature, such as [23] or [2§], as
closely as possible. Extra care is taken so that the definitions still make sense for

noninvertible maps.

ot
Ut
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Definition 5.1 (Homoclinic point) If a smooth relation has a hyperbolic fixed
point with global stable and unstable manifolds W* and W*", then a homoclinic

point is a point in W* N W,

Definition 5.2 (Homoclinic orbit) A bi-infinite orbit is called a homoclinic or-
bit of 1t converges to the fixed point both forwards and backwards. i.e. for a homo-

clinic orbit {zp}, imy_o zp = limp_ 2 = P.

Through an arbitrary point in a noninvertible map or relation, there may be
multiple orbits or no orbits. However, the following lemma says that through each

homoclinic point, there exists a homoclinic orbit.

Lemma 5.3 Assume there is a smooth relation with hyperbolic fixed point p and a
homoclinic point q. Then q is contained in a homoclinic orbit. Conversely, every

point in a homoclinic orbit is a homoclinic point.

Proof This follows from the definitions of the stable and unstable manifolds and

homoclinic point. O

Definition 5.4 (Transverse homoclinic point) Assume a smooth relation has
a hyperbolic fixed point with stable and unstable manifolds W* and W*". A trans-

verse homoclinic point is a point at which W* and W* intersect transversally.

Transverse intersection is a property of smooth manifolds. Thus the above defi-
nition makes sense only when the stable and unstable manifolds are locally smooth.
When defined, it gives a conceptually simple geometric condition occurring near
one point. Since transverse intersection of manifolds is stable under perturbation,
it is possible to check the definition computationally, assuming it is possible to

compute the stable and unstable manifolds.
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5.2 Homoclinic tangle

Global stable and unstable manifolds for diffeomorphisms are immersed subman-
ifolds of the ambient space. Thus transversality of homoclinic orbits is always
well defined. Furthermore, the existence of a transverse homoclinic point implies

recurrent behavior, as described in the following theorem.

Theorem 5.5 (Homoclinic tangle for diffeomorphisms) For diffeomorphism
f, let q be a transverse homoclinic point for a hyperbolic fixed point p, and let U
be a neighborhood containing p and q. Then U contains a compact hyperbolic in-
variant set IX, and there is some n such that on K, f" is topologically conjugate

to the shift map on two symbols.

Also, 1n any neighborhood of the closure of the orbit of q, there is a hyperbolic
mwvariant set for f and an n such that f 1is topologically conjugate to a subshift of

finite type on n symbols.

The key observation of the proof is that there exists a hyperbolic structure on
the closure of the orbit of . (The closure of the orbit of ¢ is equal to the orbit union
p.) Precisely, setting E2 = T,W* and E¥ = T,W", it is possible to show that the
homoclinic orbit has the proper expanding and contracting behavior. Once this is
verified, the proofs of the two statements in the above theorem follow easily using
the shadowing lemma.

There are many things that can go wrong with the theory of transverse ho-
moclinic points for noninvertible maps. In contrast to the diffeomorphism case,
for noninvertible maps, the global stable and unstable manifolds for noninvertible
maps are not necessarily smooth, as described in Chapter 3. Thus transversality

of homoclinic points is not always well defined.
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5.3 Counterexamples

Even when tranversality of homoclinic points is well defined for noninvertible maps
and relations, the homoclinic tangle theorem above does not hold for noninvertible
maps. The first example below shows the existence of a noninvertible map with
a transverse homoclinic point with no recurrent behavior. Thus the shadowing
property fails to hold. The other examples show the existence of transverse homo-
clinic orbits for relations with infinitely many points shadowing arbitrarily small

pseudo-orbits. Thus the uniqueness of orbits for the shadowing property fails.

Example 5.6 (Homoclinic orbit with no shadowing orbits) We start with
an orientation-preserving diffeomorphism f : R? — R? with a transverse homo-
clinic orbit. We then introduce some standard terminology for diffeomorphisms, to
make precise the statement that near a point ¢ in the homoclinic orbit, all points
on one side of the stable manifold never return near ¢ under f. Namely, these
points end up following the branch of the unstable manifold which never returns
to q. Using this fact, we perturb the diffeomorphism in a neighborhood of ¢ in
such a way that all the points in the neighborhood map to the same side of the
stable manifold. Under this new noninvertible map, no points in the neighborhood

of ¢ return to near q.

5.3.1 Pips, lobes, and transport

The terminology introduced here for diffeomorphisms of R? follows [28]. First, the

idea that r is a primary intersection point of W* and W".

Definition 5.7 (Primary intersection point, or pip) Assume f is a diffeo-
morphism with hyperbolic fized point p. Homoclinic point r is a primary inter-
section point, or pip, when the segments of W* and W" joining p to r intersect

only at p and r.
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Figure 5.1: Transverse homoclinic orbit of an orientation preserving diffeomor-
phism. The dotted line marks the pseudoseparatrix. The regions near ¢ and f(q)

mark the perturbed domain and range respectively.

Definition 5.8 (Lobe) Let 71 and ry be two adjacent pips. Precisely, there are
no pips between them along the segment joining p to ry either along W* or along
W™, The lobe is a region bounded by the segments joining r1 to ro along W* and

along W

It is possible to bound a region using the segments of W* and W* joining p
to r. This region is called a pseudoseparatriz. Assuming that there is only pip 7
between r and f~!(r), it is possible to use the 7,71 and r1, f~'(r) lobes to classify

the movement of points in and out of the pseudoseparatrix.

Lemma 5.9 (Turnstile lobes) If pip | is the only one between r and f~'(r),
then r,r lobe contains all point entering the pseudoseparatriz in one iterate, and

the ry, f~1(r) lobe contains all the points leaving the pseudoseparatriz in one iterate.

5.3.2 Perturbing the diffeomorphism

Using the notation developed above, assume that r is a pip, and that there is one

pip 71 between r and f~!(r). Thus the 7, lobe contains all points entering the
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« X

Figure 5.2: A cubic map folds the plane over itself.

ws

Figure 5.3: A look at the change of stable and unstable manifolds near ¢ and f(q).

Note that there is an extra curve added to W?.
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pseudoseparatrix made with 7 in one iterate. Let ¢ = f(71). By the above lemma,
and the fact that points cannot map across the W*, in a neighborhood of ¢, points
outside the pseudoseparatrix never return near ¢ under forward images of f. See
Figure 5.1

Choose a neighborhood of ¢. Smoothly perturb f in this neighborhood to get
a new map ¢. Do this in such a way that outside the neighborhood, the map is
equal to f, and inside a slightly smaller neighborhood, all points not on W*(f)
map to the outside of the pseudoseparatrix, and all points on W*(f) map onto
W#(f). This can be done, for example, with a cubic map. See Figure 5.2.

In a neighborhood of ¢, the unstable manifold for g is the same as the unstable
manifold for f. By mapping points on W*( f) to other points on W*(f), we assure
that the stable manifold is locally near ¢ the same as before the perturbation.
Away from ¢, but in the perturbed neighborhood, there is actually an extra portion
of W*(g) formed as the preimage under the cubic map, but this does not affect
the behavior sufficiently near gq. See Figure 5.3. W*(g) and W"(g) still intersect
transversally at ¢. Since all points near ¢ map outside the pseudoseparatrix under
g, no point near ¢ ever returns near ¢. Thus there is no chaotic behavior near
the homoclinic orbit containing ¢q. Note that for all ¢, there are é-pseudo-orbits

containing ¢. Thus shadowing does not hold.

5.3.3 Analysis of the example

One difference between a diffeomorphism and the map in this construction is that
not every point in the orbit is a transverse homoclinic point. A second feature of
this example is that the derivative map is singular on the tangent to the unstable
manifold. The proof that a transverse homoclinic orbit for a diffeomorphism has
a hyperbolic structure relies on the fact that the tangent to the unstable manifold

is eventually expanding. Clearly that condition fails to hold here.
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When these two differences described above are absent, the homoclinic orbit of
a noninvertible map can be embedded in a hyperbolic set. This is made precise in

the next section.

Example 5.10 (Homoclinic orbit with nonunique orbits) Here is a relation
on R! with a transverse homoclinic orbit, points of which also form a periodic or-
bit. Again in this case, the shadowing property fails, implying that the orbit was
not contained in a hyperbolic set. Let F be a relation on R! with the following

properties:
1. (0,0) € F;i.e. 01is a fixed point.

2. Locally near 0, the relation is equal to the line (x,a%r),a < 1. This means

that 0 is a contracting fixed point.

3. (0,s) € F and (s,0) € F. This means that 0 and s are points in a period
two orbit. The points are also contained in a homoclinic orbit to the fixed

point.

4. Locally near both (0, s) and (s,0), the relation is equal to a line (z, %r)+ the
point. Thus the period two orbit through the fixed point is expanding. Since
the unstable manifold is zero-dimensional, the homoclinic orbit containing

these two points is transverse.

See Figure 5.4. The composition of F' near (0,s) with F near (s,0) gives a
portion of F? near (0,0), which is equal to (=, a%a:) Composing this with F' near
(0,0) gives a portion of F3 near (0,0) which is equal to the line (z, z), the identity
map. From this we see that every point in a neighborhood of the fixed point has

bi-infinite orbits shadowing the orbit ...0, s, 0,0, s, 0, .... Thus uniqueness required

for the shadowing property fails.



CHAPTER 5. HOMOCLINIC ORBITS 63

(0.s)

X-axis /.6 (5.0)

y-axis

Figure 5.4: The relation described in Example 5.10 near the homoclinic orbit.

In this example, points of the homoclinic orbit are also contained in a periodic
orbit. Further, the fixed point is contracting as a fixed point, but as a point in
a periodic orbit, it is expanding. Since the homoclinic orbit relates both forward
and backward to the fixed point, there is no way to make up eventually for the

expansion around the orbit.

Example 5.11 (Homoclinic orbit with incompatible directions) Here is an-
other example of a relation on R with a homoclinic orbit which does not satisfy the
uniqueness part of the shadowing property. Unlike the previous example, the the
derivative of the periodic orbit and the derivative of the fixed point are both con-
tracting. However, the tangent directions are not maps in compatible coordinate

systems. Let F be a relation on R' with the following properties:

1. (0,0) € F;i.e. 0 is a fixed point.

2. Locally near 0, the relation is equal to the line (z,ax), 0 < a < 1. This

means that 0 is a contracting fixed point.
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(r.s)

.1

X-axis /.(H/O) —.—( s.0)

y-axis
Figure 5.5: The relation described in Example 5.11 near the homoclinic orbit.

3. (0,7),(r,s),(s,0) € F. Thus {0,7,s} are contained in a period three orbit.

They are also contained in a homoclinic orbit to the fixed point.

4. Locally near (0,7) and (s, 0), the relation is equal to a line (x,0)+ the point.

Locally near (7, s), the relation is equal to a line (0,y) + (r, s).

See Figure 5.5. Points near 0 relate to points near r. r relates to points near
s. Points near s relate to 0. Thus, under the third iterate through the period
three orbit, points near 0 relate to 0, which is also a contracting relation near 0.
Notice that near r, there are no other points in the unstable manifold of 0, so the
homoclinic orbit is a transverse homoclinic orbit. However, not only is {0,r, s}
part of a period three orbit, but also for any small z, {0,7,s+ x} is contained
in a periodic orbit as well. Thus there is no uniqueness for the shadowing of
pseudo-orbits.

This example cannot be explained by the fact that the points of the homoclinic
orbit formed a periodic orbit. This choice was only for simplicity. It is possible
to make an example with a similar behavior, but for which the homoclinic orbit

converges to the fixed point in both directions, rather than consisting of points in a
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periodic orbit. The problem here is the incompatibility of coordinates. No matter
how we change the metric, the relation from r to s is not the graph of a contraction.
This shows that it is necessary to require compatible coordinates for the relation,
rather than looking at a high iterate of the relation in the neighborhood of the

fixed point.

5.4 Conditions for hyperbolicity

This section describes conditions for a transverse homoclinic orbit to be embedded
in a hyperbolic set. The first version is geometric. The second version is stronger
and well-defined for all homoclinic orbits of noninvertible maps. It is the condition
from the work of Steinlein and Walter [27]. Their work lacks the examples such as
in the previous section to make the results sharp. The third version is an extension
of the section version to a condition for relations. All results have the disadvantage
that checking the specified conditions is in general computationally infeasible.

Hypotheses: For the first two theorems, let p be a hyperbolic fixed point for a

map, and let {z;} be a homoclinic orbit to p.

Theorem 5.12 (Homoclinic orbits for maps) If every point in the orbit is a
transverse homoclinic point, and at each point the derivative is an isomorphism on

the tangent to the unstable manifold, then the closure of the orbit s hyperbolic.

Theorem 5.13 (Homoclinic orbits for maps, stronger version) Let{z.} be
a homoclinic orbit. Then there exists a sufficiently large N such that for all
m < —N and n > N, z,, € Wjt., and z, € Wi,.. If Df*"™(z,) is injective

onT, W" and maps T, W" to a subspace transversal to T, W*, then the closure

of {z} is hyperbolic.

Note that this theorem is more general than the previous one.
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Definition 5.14 (Inverse relation) For the relation F, the inverse relation, de-

noted F* is equal to:

{(z,w) : (w,z) € F}.

Theorem 5.15 (Homoclinic orbits for relations) Let p be a hyperbolic fized
point for a smooth relation F on R™, and let {2} be a homoclinic orbit to p.
Denote the tangent relation along the orbit by T(j, k). Precisely, T(j, k) =
TF(2k—1,2k)0...0 TF(2j41,%j42) 0 TF(2;, zj41)-
Assume that there exists some local neighborhood of p small enough that for all

Zm € Wi and z, € W}, ., the following conditions hold:

loc»

1. Transversality and compatibility: In the local neighborhood of the fixed
point, define E; =T, W* and E! =T, W". For each k, the set of vectors
relating to E: under the linear relation T*(n, k) is a subspace of the same
dimension as E; . If z # p, call this subspace E7, . Likewise, the set of
vectors relating to EY under T(m, k) is a subspace of the same dimension
as B . If z. # p, call this subspace E7 . For each pair of points in the ho-
moclinic orbit, T(j,k) is a graph of a linear function in the skew coordinates:

E’ xE* — E° x E*.
Zj Zk Zk Zj

2. Nondegeneracy: Within the set of points in {z,}, none comprise periodic

orbits, aside from p being a fixed point.
Then the closure of the homoclinic orbit s hyperbolic.

This theorem implies the previous one; assuming the hypotheses of the previous
theorem, if 7, W™ maps injectively, then its image is always a subspace of the same
dimension. Since these images are eventually transverse to 7, W*, it must always
be transverse to inverse images of 7, W?*, and the inverse image 7, W* under the

derivative must also be of the same dimension as T, W?*. Injectivity of the unstable
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subspaces also implies that the derivative is the graph of a linear contraction in the
skew coordinate system. Furthermore, the nondegeneracy condition always holds
for maps.

Here are two lemmas we will use in the proof of theorem 5.15.

Lemma 5.16 (Continuity of subspaces) As z, — p, £ — E; and K —

Er.

Proof By the proof of the stable manifold theorem, in some sufficiently small
neighborhood, F* — F“ in C* norm. Since EY, ., is the image under the tangent

relation of £ , £} — EJ. O

Note that rather than the above lemma, the proof of this theorem for diffeo-
morphisms uses the A\-lemma. Since F¥ — F* in C* norm, and since F* projects

to W*, I believe that the A-lemma is true for relations as well.

Lemma 5.17 There exists A\ < 1 such that for v, € E; and v, € E;_|T'(k, k +
Jvs| < CN|vg| and |T*(k, k — j)va| < CAF|u,|.

Proof The two inequalities are well defined, since by the hypotheses, TF is a
function on stable subspaces and T'F* is a function on unstable subspaces. At p,
the derivative is contracting on the stable subspace; backwards, it is contracting
on the unstable subspace. Thus near enough to p, there is a A < 1 such that
the inequalities are true with C' = 1, since T'F' is continuously varying, and the
subspaces are continuously varying as well. There are only finitely many points
outside any neighborhood of the p. Thus C' is just an upper bound for the value

away from p. O

Proof of theorem 5.15
Because we are dealing with relations, it is possible for a point in the homoclinic

orbit other than p to be related to p. It is also possible for p to be related to a
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another point in the homoclinic orbit. However, by the nondegeneracy hypothesis,
in one direction, z, converges to p only in the limit. Assume that this happens for
n — —oo. The proof of the other case follows by symmetry.

Now we change the metric on the stable and unstable subspaces. Let L be such
that CAF < 1. Pick 1 > X' > A.

At the point z, # p, define the new metric:
v, = SE_ N F|T(n,n + kv,

lv,| = Eﬁzo/\'_ﬂT*(n =k, kvl

This is well-defined since the derivative forward is invariant on the stable sub-
spaces and is a map when restricted to the stable subspaces. Also, the derivative
backward is invariant on the unstable subspaces, and is a map when restricted to
unstable subspaces.

At p,

|vs|" = Bi_oA” k|TFpp) Us|

vy = SE_g A k|TF(’;’fp)vu|.

The coordinate system is continuous, since the derivative and the directions
are continuously varying. Now other than at p, if (v,,v,) relates to (v}, 7] ), then
(05, vu)]" = max(lvi]', [vu]) < Nlvg, v, ["

Let J be such that z; relates to p. Now we alter the metric so that the derivative
relation from z; to p is a contraction in skew coordinates.

We know that T'F(z;,p) is still the graph of a linear function £ x E —
Esx EY (v, v) = (avs + bv,,, cv, + dvy,). We know ¢ = 0 since E? is the inverse
image of EJ. Also, [a|' < 1, by the choice of metric. Choose 1 >y > X', and let
M = pmax(|b|’,|d|'). Now define a new metric on EY by |v,|” = M]|v,|". In the

new metric, the derivative relation is the graph of a p-contraction at (z,,p), but
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not at (zy_1,zs). So define a new metric on EY by |v,|" = £0v,|". Proceed
inductively, and let the new metric at EY  be |v,|" = ”;,—J,lf We only need to do
this a finite number of times, since for a finite £, ”;,—24 < 1. Thus we did not effect

the continuity of the metric. This completes the proof. O

For snap-back repellers, the assumption that the derivative is an isomorphism
makes these conditions automatically true. Correspondingly, there are also snap-
forward attractors for relations which are hyperbolic sets, being orbits in the zero-
dimensional unstable manifold of an attracting hyperbolic fixed point of a relation
with derivative relation an isomorphism.

In general, the conditions in the above theorem would be difficult if not im-
possible to check. However, for the delayed regulation map, the map is invertible
except on the z-axis. Since the unstable manifold is transverse to the stable man-
ifold at each homoclinic point on the z-axis, the same must be true for all points
in the homoclinic orbits. We only need to verify that the map is an isomorphism
on the tangent to the unstable manifold at the homoclinic points on the z-axis.

This is clearly true since D f(q1,0)(&,1) = (1,a(1 — ¢1)).
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Conclusion

6.1 Summary of results

In order to understand the dynamics of noninvertible smooth maps, we have con-
sidered in this thesis, the more symmetric iterated smooth relations. Namely, a
smooth relation on R™ is an n-dimensional submanifold of R?". By iteration, we
mean that if 2z and w in R", and the pair (z,w) is within the relation, then w is an
iterate of z. Since the inverse of a smooth relation is also a smooth relation, this
is a symmetric approach to forward and backward iteration.

Since iteration of relations is well defined, the concept of fixed point makes sense
as well. If the tangent plane at a fixed point is the graph of a contraction which
is invariant on stable and unstable subspaces, we call this fixed point hyperbolic.
Note that this contraction has its domain and range in some skew coordinates,
which are not relevant to the dynamics of the relation. In Chapter 3, we proved
the local stable manifold theorem for a hyperbolic fixed point of a smooth relation.

The idea of looking at the relation as the graph of a contraction in some skew
coordinates applies not only to fixed points but also to compact sets. In Chapter 4,
we used this idea to develop the theory of hyperbolic sets for smooth relations. If

70
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there are continuous coordinates and a continuous metric on a compact set such
that at every point in the set, the smooth relation is the graph of a contraction
in terms of these coordinates, then we say that the set is hyperbolic. For dif-
feomorphisms, this is equivalent to the standard definition. This is due to the
equivalence between the existence of invariant stable and unstable subspaces and
the existence of stable and unstable cones. For general smooth relations, the new
definition allows for the possibility of stable and unstable subspaces which do not
map invariantly under the derivative.

From this definition of hyperbolic sets, we proved the shadowing lemma and a
version of the stable manifold theorem for hyperbolic sets. In the diffeomorphism
case, the stable manifold theorem for hyperbolic sets is a theorem about stable and
unstable manifolds to points. However, since for noninvertible maps and relations,
there are many orbits through each point for a relation, the stable manifold theorem
is instead a theorem about forward and backward orbits.

One of the principle examples of a hyperbolic set for a diffeomorphism is the
closure of a transverse homoclinic orbit to a hyperbolic fixed point. In Chapter 5,
we gave several examples to show that the closure of a transverse homoclinic orbit
is not always a hyperbolic set. We then generalized Steinlein and Walther’s con-
ditions for noninvertible maps; we formulated conditions for when the closure of a
transverse homoclinic orbit of a hyperbolic fixed point for a smooth relation is a

hyperbolic set.
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6.2 Some open questions

To conclude, the following section lists some open questions related to the work in

this thesis. This list is by no means comprehensive.

6.2.1 Global manifolds

As described in Chapter 3, nothing is known about global stable and unstable
manifolds for maps and relations. In general, they seem to be as complicated as
arbitrary sets. Can anything in fact be said about the underlying structure of

these sets. Otherwise, what sorts of conditions guarantee some structure?

6.2.2 Adapted norms

If a set is hyperbolic for an iterate of a diffeomorphism, then it is automatically
hyperbolic for the diffeomorphism. This comes from the fact that eventually ex-
panding and contracting subspaces are immediately expanding for some adapted
metric. However, for noninvertible maps and relations, it is not clear that this
is true. The definition of hyperbolic sets used in this thesis always assumes im-
mediate expansions and contractions. Is it possible to infer such a metric from
the behavior of higher iterates? The adapted metric for diffeomorphisms comes
from a weighted sum separately on the expanding and contracting subspaces; it
is not clear how to renorm when there is no invariance of subspaces. In addition,
looking at iterates of a noninvertible map or relation may be the wrong approach,
since in general, F' a smooth relation does not imply that F* is a smooth relation.

However, we make the following conjecture:

Conjecture 6.1 (Adapted norm for relations) Assume F is a smooth rela-

tion, and K is a compact set such that every point in K has a bi-infinite orbit in
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K. Then if for some m > 1, F™ s a smooth relation, and if K 1is hyperbolic for

F™, then K 1s hyperbolic for F'.

6.2.3 Homoclinic orbits

The previous chapter gave several examples for which transverse homoclinic orbits
are not embedded in hyperbolic sets. It also gave some conditions for homoclinic
orbits to have hyperbolic structure. Generically, does the existence of a transverse
homoclinic point imply the existence of a hyperbolic structure on the homoclinic
orbit? Transversality of intersection is not always well defined. Is it well defined
generically? For noninvertible maps, in order for the unstable manifold to lose its
injectivity and its local smooth structure, it must intersect the set of points for
which derivative is singular. However, this is a codimension one set. Thus for high
dimensions, it is plausible that this will happen generically. From this, here is a

conjecture.

Conjecture 6.2 For noninvertible maps and relations in high enough dimensions,

transverse homoclinic points are not generically embedded in hyperbolic sets.
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