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Abstract. This paper develops the theory of hyperbolic sets for relations, a gener-
alization of both noninvertible and multivalued maps. We give proofs of shadowing
and the stable manifold theorem in this context.

1. Introduction. Not all iterated maps arising in natural systems have the prop-
erty that time is reversible. In other words, there may be multiple points which
map to the same point under iteration. This is evident in one-dimensional dy-
namics; for example, the frequently studied logistic map xn+1 = µxn(1 − xn) is
noninvertible. Such maps also arise in higher dimensional models. Examples of
noninvertible maps have been studied in the contexts of population dynamics [3],
time one maps of delay equations [13], control theory algorithms [1, 10, 9], neural
networks [21], and iterated difference methods [19]. There have been relatively few
attempts to classify the general theory of iterated noninvertible maps. Of particular
note are the works of Hale and Lin [13] and Marotto [20] on homoclinic orbits, and
the work of Steinlein and Walther [34, 33], and the textbook of Lani-Wayda [18]
for hyperbolic sets in Banach spaces.

Aside from noninvertible maps, another useful generalization of the theory of
diffeomorphisms is to the study of iterated multivalued dynamical systems, in which
one point may map to multiple points forwards in time. Multi-valued maps have
been used for a rigorous mathematical analysis of numerical methods for Conley
index theory to give a computer-aided proof of the existence of chaos in the Lorenz
equations [24], as well as in other related contexts [25].

In the current work, we develop a theory of hyperbolic sets for which shadow-
ing and the stable manifold theorem hold. Rather than exclusively studying one
or the other of the above concepts, we look at a generalization of both iterated
noninvertible and multivalued maps, namely relations (Definition 4.4). If f is a dif-
feomorphism, then so is f−1. Thus forward and backward iteration are symmetric
concepts, a symmetry which is used extensively in the study of diffeomorphisms. In
contrast, the inverse of a noninvertible map is a multivalued map, and the inverse
of a multivalued map is a noninvertible map; in each case, there is a qualitative
distinction between forward and backward iteration. However, the inverse of a re-
lation is another relation, so the symmetry of iteration is restored. Our definitions
and proofs of hyperbolic sets capitalize on this symmetry.
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The theory of hyperbolic sets for relations is new, but the theory of iterated
relations can be seen in a number of previous works. McGehee [23] and Akin [2]
laid down the framework for studying iterated relations. McGehee and the current
author [22] gave a proof of the stable manifold in this context. Langevin et al
developed the concept of entropy for relations [11, 16, 17]. In [30], Sintoff showed the
parallels between the theory of iterated relations and the logic of iterative programs.
Bullet and Penrose [6, 7] used relations, which they call correspondences, to study
holomorphic dynamics.

In the context of relations, it is not possible to define a hyperbolic set exactly
as in the diffeomorphism case. Since two points may map to the same point, it
is too strict to assume that stable and unstable subspaces are invariant under the
derivative map. Section 3 contains an example illustrating this problem. To avoid
the assumption of invariance, the definition of hyperbolic sets for relations is a
condition equivalent to the geometric condition of existence of stable and unstable
cones. Section 4 illustrates the ideas of hyperbolicity for relations in the simple
case of a hyperbolic fixed point, and Section 5 contains the formal definitions. Sec-
tion 6 contains proof of equivalence between hyperbolicity and the cone condition.
Section 7 contains a proof of the shadowing lemma. For relations, it is no longer
possible to talk about a stable and unstable manifold to a point, since there may be
many orbits to the same point, and thus many manifolds. However, there do exist
stable and unstable manifolds for specified forward and backward orbits. Robust-
ness and continuous change of manifolds then follow immediately. These results
are described in Section 8. Finally, Section 9 contains some examples of hyperbolic
sets.

2. Background. For a diffeomorphism, at each point in a hyperbolic invariant
set, there is a continuous splitting of the tangent space into stable and unstable
subspaces. These subspaces map invariantly under the derivative; on the stable
subspaces the derivative is eventually uniformly contracting, and on the unstable
subspaces the derivative is eventually uniformly expanding. In other words, we
have the following definition.

Definition 2.1 (Hyperbolic sets for diffeomorphisms). A compact invariant set K
for a diffeomorphism f is a hyperbolic set if the following conditions hold:

1. There is a continuous splitting of the tangent space into stable and unstable
subspaces,

TxRn = Es
x × Eu

x , x ∈ K.

2. The derivative is invariant for the splitting,

Df(x)Es
x = Es

f(x),

Df(x)Eu
x = Eu

f(x).

3. The derivative is eventually contracting on the stable subspaces and eventually
expanding on the unstable subspaces. That is, for C > 0, λ < 1,

|Dfn(x)v| < Cλn|v|, v ∈ Es
x,

|Dfn(x)v| > C−1λ−n|v|, v ∈ Eu
x .

By a theorem due to Mather [31], there is a continuous adapted metric such that
C = 1, and thus the derivative contracts stable subspaces and expands unstable
subspaces under just one iterate.
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Hyperbolic sets for diffeomorphisms have been carefully studied, and there are
many theorems describing the dynamics on such sets. Thus we would like to general-
ize the definition and corresponding theorems to relations. In the following sections,
we justify modifications of the original definition by looking at what happens in the
case of noninvertible maps. The same statements would apply to multivalued maps
with time reversed.

3. Why have a new definition? For noninvertible maps, we cannot just apply
the definition of hyperbolic sets as it stands. The requirement that stable and
unstable subspaces map invariantly is too stringent. Trivially, if the derivative is
singular, then we can only expect Df(x)Es

x ⊂ Es
f(x). More subtly, we cannot expect

the unstable subspaces to map invariantly either, since there may be multiple points
mapping to the same point, as shown in the following example.
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q r

(0, 0)

(1, 1)

Figure 1. Unstable manifold of the origin for the delayed regu-
lation map, a = 2.28. The unstable manifold intersects the stable
manifold transversally at points q and r on the x-axis.

Example 3.1. A standard model of population is of the form

Pn+1 = RPn,

where Pn is the population at time n. According to Maynard Smith Mathematical
Ideas in Biology [32], there are practical situations in which R depends on Pn−1.
The reproduction rate for a herbivorous species may depend most strongly on the
amount of vegetation eaten in the previous year. A version of this model is the
delayed regulation model [3]:

Pn+1 = aPn(1− Pn−1).
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Making the change of variable xn = Pn−1 and yn = Pn, we get

xn+1 = yn

yn+1 = ayn(1− xn).

This is clearly a noninvertible map, since the entire x-axis gets mapped immediately
to the origin. Thus the fixed point at the origin has the x-axis as its local stable
manifold. Just as for diffeomorphisms, we can define the global stable and unstable
manifolds to be the set of points through which there is an orbit converging forward
(resp. backward) to the fixed point under iteration. Note that this map has a unique
orbit through every point, but there are many backwards orbits through a given
point. In order for a point to be in the unstable manifold, it is only necessary for one
of its backward orbits to converge to the fixed point. When the stable and unstable
manifolds cross, the intersection is a homoclinic point, which is contained in an
orbit with both forward and backward iterates converging to the fixed point. For
more about stable and unstable manifolds and homoclinic points for noninvertible
maps, see [29].

For the delayed regulation model at a > 2.27, the stable and unstable manifolds
to the origin intersect transversally, as shown in Figure 1. Thus there are transverse
homoclinic orbits to the fixed point at the origin.

The closure of such a homoclinic orbit for the delayed regulation map is a likely
candidate for a hyperbolic set. However, for such an orbit, there are no invariant
unstable directions. This arises from the fact that points on the x-axis map directly
to the fixed point, rather than converging to it; thus in the two homoclinic orbits,
there exist points q = (q1, 0) and r = (q2, 0) such that f(q) = f(r) = (0, 0). Note
that the unstable eigenspace of the origin is {(1, a)}. Thus to have invariance we
would need vectors v ∈ TqR

2 and u ∈ TrR
2 such that Df(q)v and Df(r)u are

multiples of (1, a). However, since the derivative

Df(x, y) =
(

0 1
−ay a(1− x)

)
(1)

maps point q and r by Df(qi, 0)(ξ, 1) = (1, a(1 − qi)), there are no such vectors.
This phenomenon was first described in work of Steinlein and Walther [34]. Figure 2
shows the global unstable manifold in a neighborhood of the origin. The three lines
are candidates for Eu

(0,0): the unstable eigenspace (1, a) of the derivative at the
origin, and (1, a(1− q1)) and (1, a(1− q2)), the images under the derivative of the
tangent vector corresponding to the homoclinic points q and r on the x-axis.

Based on these ideas, Steinlein and Walther [33, 34] generalize the definition of
hyperbolic sets to a definition for C1 noninvertible maps on Banach spaces. For
their definition, they assume that there exist stable subspaces mapping invariantly,
and eventually contracting. They also assume that there exist unstable subspaces,
not mapping invariantly, but with unstable projections eventually expanding. For
this definition, they prove the shadowing lemma by making some adjustments to
the traditional functional analytic techniques. The development here of the theory
of hyperbolic sets follows a very different approach, by exploiting the structure of
smooth relations.

4. Illustration of hyperbolicity. This section illustrates the concepts of hyper-
bolic sets for relations. First are a series of examples in the simple case of hyperbolic
fixed points. The final example shows how these ideas apply to give a definition of
hyperbolic sets.
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y-axis

x-axis

T(0,0)W
u Df(q)TqW

u

Df(r)TrW
u

Figure 2. Wu near the origin for the delayed regulation model.
The three tangents to Wu show that there is no invariantly map-
ping unstable subspace.

Example 4.1. Consider the graph of the following linear diffeomorphism f on R2

with hyperbolic fixed point (0, 0):

(
x′

y′

)
=

(
a 0
0 b

) (
x
y

)
, for 0 < |a| < 1 < |b|. (2)

Note the derivative at any hyperbolic fixed point with a stable and an unstable
direction can be written in this form, using an appropriate change of coordinates.

We can solve for y in terms of x and y′. Thus the graph of f is the graph of a
contraction φ1 in skewed coordinates:

(
x′

y

)
=

(
a 0
0 1

b

)(
x
y′

)
. (3)

The kth iterate of the original map is

(
xk

yk

)
=

(
ak 0
0 bk

)(
x
y

)
. (4)

Writing the graph of the kth iterate in the same skewed coordinates, gives the
following contraction φk. Note that this is found by looking at fk and not by
iterating φ1, although in this case both methods give the same answer.

(
xk

y

)
=

(
akx

b−kyk

)
. (5)

The advantage of the skew coordinate system is that it gives the graph of a map
in terms of a contraction. For example, consider the limit of the φk; it exists and
is equal to the map which is identically zero; explicitly, limk→∞ φk is the following



344 EVELYN SANDER

map in skewed coordinates on R2:(
x′

y

)
=

(
0 0
0 0

)(
x
y′

)
. (6)

Notice that limk→∞ fk is not well-defined. The limit of φk in the skewed coordi-
nate system does not correspond to a function in the original coordinates. However,
we can gain information about the limit behavior of the original map from the graph
of this limit relation. Namely, the projection of the graph to the xy- plane is the
x-axis, the stable manifold. The projection of the graph to the x′y′- plane is y′-axis,
the unstable manifold.

Example 4.2. The trick in Example 4.1 still works if the linear map is noninvertible;
e.g. if a = 0. The map becomes:(

x′

y′

)
=

(
0

by

)
, for 1 < |b|, (7)

which can still be expressed in the same skewed coordinates as before:
(

x′

y

)
=

(
0

1
b y′

)
. (8)

The limit of the φk, the kth iterate written in skewed coordinates, is the same
as before. Indeed, the stable and unstable manifolds are once again the x-axis and
y′-axis respectively.

Example 4.3. If we allow the stretching term b in Example 4.1 to increase without
bound, the graph of the map of f converges to

{
(u, 0, au, v) : (u, v) ∈ R2

}
. This is

no longer the graph of a function from the xy-plane to the x′y′- plane. It is only a
relation.

Definition 4.4 (Relation). A relation on a space Z is a subset of Z × Z. Viewing
this in terms of iteration, an iterate of z under relation F is a point z′ such that
(z, z′) ∈ F . Notice that iterates of a point are not necessarily unique; nor do iterates
necessarily exist.

The relation in this example is a two-dimensional plane which is a subset of R4

with second coordinate always equal to 0. A point (x, y) ∈ R2 has no iterates unless
y = 0. A point (x, 0) has as iterates every point of the form (ax, y′), y′ ∈ R. Thus
the origin is still a fixed point under iteration. Since points on the x-axis have kth

iterates of the form (akx, 0), which converge to the origin, the x-axis is contained
in (and in fact equal to) the stable manifold. Likewise, every point on the y-axis is
an iterate of the origin. Thus the y-axis is contained in (and in fact equal to) the
unstable manifold.

We can also use the technique in Examples 4.1 and 4.2 to see this; although
there is no longer a map, the limit of b increasing without bound corresponds to
b = ∞; i.e. 1

b = 0. Thus although our example is no longer a map, it is the graph
of a function in skewed coordinates:

(
x′

y

)
=

(
ax
0

)
. (9)

In this case, as in Examples 4.1 and 4.2, the limit of the iterates as expressed in
skewed coordinates exists and is equal to the zero function, and again the projec-
tions of the graph of this zero function are the stable and unstable manifolds.
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Figure 3. Projections of the graph of φ1 resulting from the map
in Example 4.5. Domain and range [−.3, .3] × [−.3, .3], a = .7,
b = 1.43, and c = 1.
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Figure 4. Same projections as in Figure 3, this time of the limit
of the skewed functions limφk.

Example 4.5. The implicit function theorem guarantees that for a hyperbolic fixed
point of a nonlinear map, it is still possible to write the graph locally as the graph
of a contraction in skew coordinates. Again in the nonlinear case, limits of the skew
coordinate functions exist and give important information about the limit behavior
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of the original map. Here is a contrived quadratic example to illustrate this idea.
Note that the map f on R2 has a hyperbolic fixed point (0,0):

(
x′

y′

)
=

(
ax

b(y + cx2)

)
, for 0 < a < 1 < b. (10)

Since the axes are again the stable and unstable directions, we choose the axes
for the skewed coordinate directions as before. The map represented in the skewed
coordinate system gives the following function φ1:

(
x′

y

)
=

(
ax

1
b y′ − cx2

)
. (11)

Note that φ1 is a contraction in a sufficiently small neighborhood of the fixed
point. Figure 3 shows the graph of φ1 with domain [−.3, .3] × [−.3, .3] [15]. Since
the graph of a map from R2 to R2 is in R4, the figure consists of projections of the
graph to coordinate planes. The projections have the following relationship to the
maps f and φ1: f maps the region in the xy- plane to the region in the x′y′- plane.
φ1 maps the region in the xy′- plane to the region in the x′y- plane.

The graph of fk is the graph of φk in skew coordinates, which is once again a
contraction close to the fixed point. The limit limk→∞ φk exists. It is given by:

(
x′

y

)
=

(
0

− bc
b−a2 x2

)
. (12)

Figure 4 is the graph of limk→∞ φk. Once again, the projection to the xy-plane
is the stable manifold, the projection to the x′y′-plane is the unstable manifold.

The discussion above for fixed points also applies to sets. Namely, using the
adapted metric and writing everything in terms of stable and unstable subspaces,
the derivative at a point in a hyperbolic set for a diffeomorphism has the same
form as the derivative of a hyperbolic fixed point. It can therefore be written as
the graph of a contraction in terms of skew coordinates. Further, if we assume only
that there is some set of skew coordinates in which the derivative is a graph of a
contraction, and do not require the contraction to be of a special form, we remove
the assumption of invariance of stable and unstable subspaces.

Example 4.6. For the delayed regulation map f , consider the homoclinic orbit
{q−k} through q = qo. (This argument will work for the orbit through r as
well.) For points in the orbit in a neighborhood of the origin, let Eu

x = TxWu(0)
and Es

x = TxW s(0). Recursively define Eu
q−k

= Df(q−k−1)Eu
q−k−1

. For Es, let
Es

qo
be the x-axis, since this is the subspace mapping to Es

x under the deriva-
tive. The map is invertible except on the x-axis, so for k > 0 we can also let
Es

q−k
= Df(q−k−1)Es

q−k−1
. Since the unstable manifold is transverse to the stable

manifold at each homoclinic point on the x-axis, the same must be true for all
points in the homoclinic orbit. In addition, at q, the map is an isomorphism on Eu.

From the above, it is possible to find a new continuous metric such that Df is
contracting on stable subspaces and expanding on unstable subspaces. See [28] for
details. In fact, the graph of the derivative Df(q−k) : Es

q−k
× Eu

q−k
→ Es

q−k+1
×

Eu
q−k+1

is the graph of a linear contraction Dφq−k : Es
q−k

×Eu
q−k+1

→ Es
q−k+1

×Eu
q−k

.
Looking at the limits of skew coordinate contractions gives information about

the limit behavior of the map. Projections of the limit maps give stable and un-
stable manifolds for points in the hyperbolic set. See Section 8. In addition, the
contraction on the tangent space to each point gives rise to a local contraction in
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sequence space. This contraction leads quite naturally to a proof of the shadowing
lemma. See Section 7.

As mentioned in the discussion before the final example, in order to remove
the assumption that the stable and unstable subspaces map invariantly, we need
to assume that hyperbolicity only guarantees the existence of a skewed coordinate
linear contraction, not a diagonal matrix; in this example, the matrix corresponding
to Dφqo : Es

qo
×Eu

0 → Es
0×Eu

qo
is not diagonal. This is exactly because the subspaces

do not map invariantly.

5. Definitions. This section develops the definition of hyperbolicity for relations.
Recall that relations on Z were defined as subsets of Z × Z and were viewed in
terms of iteration. Here are some definitions in this context. We denote z having
an iterate z′ under relation F by z

F7→ z′. For example, zo is a fixed point exactly
when zo

F7→ zo. The following basic definitions for relations follow the discussion
in [22].

Notation: In this paper, capital letters F , G, and H represent relations, whereas
a lower case f , g, and h represent functions.

Definition 5.1 (Composition for relations). Given relations G and H on set Z,
H ◦G is the relation given by

{(z, z′′) : ∃ z′ ∈ Z, (z, z′) ∈ G and (z′, z′′) ∈ H} (13)

Notation: If I is an interval of integers and zk ∈ Z for all k ∈ I is a sequence of
points in Z, then we denote

{zk}k∈I =





(zi, zi+1, ..., zj), if I = [i, j]
(..., zj−1, zj), if I = (−∞, j]

(zi, zi+1, ...), if I = [i,∞)



 (14)

Definition 5.2 (Orbits for relations). Given relation F on space Z, an orbit
through z is a sequence {zk}k∈I such that z = zi for some i ∈ I, and (zk, zk+1) ∈ F
whenever k, k + 1 ∈ I. If I = [i,∞) then {zk} is called an infinite forward orbit. If
I = (−∞, i] then {zk} is called an infinite backward orbit.

Definition 5.3 (Cr relations). If F is a relation on a smooth manifold Z, then F
is Cr when it is a Cr embedded submanifold of Z × Z.

Definition 5.4 (Tangent relation). Given a smooth relation F on Rp, the tangent
relation TF on R2p is the tangent bundle of F .

Based on the motivation from the previous section, we now give the definition
of hyperbolic sets for smooth relations.

Definition 5.5 (Splitting for Rn). A splitting for Rn is a pair of subspaces (Es, Eu)
satisfying

Rn = Es × Eu.

Definition 5.6 (4-Splitting for Rn × Rn). A 4-splitting for Rn × Rn is a pair of
splittings for Rn, (Es

1 , Eu
1 ) and (Es

2 , Eu
2 ), satisfying dim(Es

1)=dim(Es
2) and dim(Eu

1 )
= dim(Eu

2 ).

Definition 5.7 (Hyperbolic linear relation with respect to a 4-splitting). If A is
an n- dimensional linear relation on Rn, then A is hyperbolic with respect to the
4-splitting (Es

1 , Eu
1 , Es

2 , Eu
2 ) if in terms of the max norm on the subspaces of the
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splitting, there is a linear contracting map M : Es
1 × Eu

2 → Es
2 × Eu

1 , |M | < λ < 1
such that A is the graph of M . Thus

A =
{

(x, y, x′, y′) :
(

x′

y

)
= M

(
x
y′

)}
.

We say A has a contraction constant |M | with respect to this 4-splitting.

Definition 5.8 (Compact hyperbolic sets for C1 relations). Let F be a C1 relation
on Rn. Let K be a compact set in Rn. K is a hyperbolic set for F when the
following conditions hold:

There is a continuous splitting of the tangent space of Rn over K. Denote it:
TzR

n = Es
z × Eu

z .
There is a constant λ < 1.
There is some metric on the subspaces of the splitting in a neighborhood of K

such that at every (z, w) ∈ F ∩(K ×K), T(z,w)F is a hyperbolic linear relation with
contraction constant < λ with respect to the 4-splitting (Es

z , Eu
z , Es

w, Eu
w).

The following lemma relating hyperbolicity and Lipschitz relations is what we
actually use in the proofs of the theorems in the next section.

Lemma 5.9 (Hyperbolic implies Lipschitz). If (z, w) ∈ F ∩ (K ×K), with F and
K as above, then in a neighborhood of (z, w), F is the graph of a Lipλ function
f : Es

z × Eu
w → Es

w × Eu
z .

Proof. By the Implicit Function Theorem.

6. Cones. Although hyperbolic sets for diffeomorphisms always have invariant
subspaces, it is often difficult to find them. To avoid this problem, hyperbolic-
ity is often formulated in terms of an equivalent condition on stable and unstable
cones. We show below that a hyperbolic set for a relation satisfies a generalization
of the cone condition.

For diffeomorphisms, the cone formulation says that on some compact invariant
set K, if the derivative is expanding on a cone of vectors roughly in the unstable
direction and contracting on a cone of vectors roughly in the stable direction, then
K is a hyperbolic set for the diffeomorphism [26]. The following makes this more
precise.

Definition 6.1 (Stable and unstable cones). Given α > 0, and a splitting of the
tangent space at each point TzR

n = Es
z ×Eu

z , then the stable and unstable α cones
are defined by:

Cs
z = {(vs, vu) ∈ Es

z × Eu
z : |vu| ≤ α|vs|}

Cu
z = {(vs, vu) ∈ Es

z × Eu
z : |vs| ≤ α|vu|} .

Definition 6.2 (Cone condition for diffeomorphisms). If f is a diffeomorphism
and K is a compact invariant set, then K satisfies the cone condition if there is
a continuous metric and a continuous splitting of K such that Df(z)Cs

z ⊂ Cs
f(z),

Df−1(f(z))Cu
f(z) ⊂ Cu

z , and Df is uniformly contracting on the stable cone and
uniformly expanding on the unstable cone.

Theorem 6.3 (Hyperbolic sets and cones for diffeomorphisms). If f is a diffeo-
morphism and K is a compact invariant set, then K satisfies the cone condition if
and only if K is a hyperbolic set.



HYPERBOLIC SETS FOR MAPS AND RELATIONS 349

This theorem is due to Newhouse and Palis [26].
The new definition of hyperbolic sets for relations is similar to this cone formu-

lation. Here is a natural generalization of the cone condition to relations, and a
statement that hyperbolic sets for relations satisfy this cone condition.

Definition 6.4 (Cone condition for relations). Let F be a smooth relation and K a
compact set. Then F satisfies the cone condition on K if there is some continuous
splitting and a continuous metric, and a uniform λ < 1 such that for all (z, w) ∈
F∩(K ×K), vectors in the unstable λ cone at z relate only to vectors in the unstable
λ cone at w under T(z,w)F . Further, it is backward λ-contracting. In other words,
if a vector v in the unstable cone relates to a vector v′, then |v| < λ|v′|.

Similarly, vectors in the stable λ cone at w only come from the stable λ cone at
z under T(z,w)F , and are λ-contracting.

Lemma 6.5 (Equivalence of cones and hyperbolic sets for relations). Assume that
F is a relation and K is a compact set. Then K is a hyperbolic set for F if and
only if F satisfies the cone condition on K.

Proof. (⇒)
Let K be a hyperbolic set for F . Choose a nonzero vector (vs, vu) in the unstable

cone at z. Suppose (vs, vu) relates to a vector (v′s, v′u) at w under the derivative
relation. Then

|(v′s, vu)| < λ|(vs, v
′
u)|.

By hypothesis, |vs| < λ|vu|, so |v′u| > |vs|. Thus |v′s| < λ|v′u|, so the vector is in the
unstable cone. Furthermore the derivative is expanding vectors, since |(vs, vu)| =
|vu| < λ|v′u| = λ|(v′s, v′u)|. A similar proof holds for the stable cones.

(⇐)
Let F on K satisfy the cone condition. Let (x, y) ∈ (K × K) ∩ F . Writing

vectors in terms of the splitting for the cones, let {(u1i, u2i, v1i, v2i)}n
i=1 be a basis

for T(x,y)F . Then {(u1i, v2i)}n
i=1 must be linearly independent, because if not, there

is some vector {(0, u2i, v1i, 0)} ∈ T(x,y)F , which implies that a vector in Cu relates
to a vector in Cs, which violates the cone condition. Thus T(x,y)F is a contraction
in terms of the splitting given by the coordinates for the cones. This is a linear
contraction by the cone condition and linearity.

7. Shadowing. The shadowing lemma states that near a hyperbolic set, making
small errors on each iteration still gives a reasonable picture of the dynamics. The
shadowing lemma for diffeomorphisms is due to Bowen [5]. Here we give a proof
of it for hyperbolic sets for smooth relations. The proof is functional analytic in
nature. However, it seems to be conceptually simpler than the standard functional
analytic proofs for diffeomorphisms, as the definition of hyperbolic sets in terms
of a contraction allows the straightforward application of the contraction mapping
theorem.

Notation: For γ > 0 and set S, the closed ball of radius γ is denoted by Bγ (S).

Definition 7.1 (Pseudo-orbit). A sequence {zi}i∈I is called a δ-pseudo-orbit for
the relation F as long as dist((zi, zi+1), F ) < δ whenever i, i+1 ∈ I. More elegantly
in terms of relations, a δ-pseudo-orbit for F is an orbit of Bδ (F ).

Definition 7.2 (Shadow). An orbit of the relation F {wi}i∈I is said to ε-shadow
a sequence {yi}i∈I if for all i ∈ I, dist(wi, yi) < ε.
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If in some set, every sufficiently small pseudo-orbit has a unique nearby shadow,
the set is said to have the shadowing property. The following lemma says that
hyperbolic sets have the shadowing property.

Theorem 7.3 (Shadowing). If K is a hyperbolic set for F , then for any ε > 0,
there is a δ > 0 such that any δ-pseudo-orbit in Bδ (K) is ε-shadowed by an orbit
of F . If ε is small enough and the pseudo-orbit is bi-infinite, then its ε-shadow is
unique. Further, if the pseudo-orbit is periodic, so is its shadow.

The proof is conceptually simple. In summary, uniformly close to a pseudo-orbit
near K, F is the graph of a contraction. Associated with F , there is a relation on
the space of sequences. Near the pseudo-orbit, this sequence relation is the graph
of a contraction from the space of sequences to itself. By the contraction mapping
theorem, this contraction has a unique fixed point, which is the shadowing orbit we
wanted to find. Here are the details of the argument.

Proof. Assume we are given relation F and hyperbolic set K.
Given ε sufficiently small, there is a small enough δ so that if z, w ∈ Bε(K) and

(z, w) ∈ Bδ (F ), then F is the graph of a Lipschitz contraction on Bε(z, w).
Assume that z∗ = {zi}i∈I is a δ-pseudo-orbit in Bδ (K).
For sequence z∗, note that at each point there is an induced splitting, defined

by Es∗
z∗ =

{
Es

zi

}
and Eu∗

z∗ =
{
Eu

zi

}
. Thus there is an induced splitting for any

sequence in Bε (z∗).
For sequence x∗ ∈ Es∗

z∗ , define the norm ‖x∗‖ = supi |xi|.
Likewise, for y∗ ∈ Eu∗

z∗ , let ‖y∗‖ = supi |yi|.
On (x∗, y∗) ∈ Es∗

z∗ × Eu∗
z∗ , use the norm ‖(x∗, y∗)‖ = max(‖x∗‖, ‖y∗‖).

Let F ∗ be the relation induced by F . Namely, on the space of bi-infinite se-
quences in Bε (z∗):

w∗ F∗7→ ρ∗ if and only if for all i, wi
F7→ ρi+1

Lemma 7.4. F ∗ is the graph of a Lipλ function f∗ induced by f .

Proof. Assume (x∗, y∗) F∗7→ (α∗, β∗). Then (xi, yi)
F7→ (αi+1, βi+1), which implies

f(xi, βi+1) = (αi+1, yi). Thus there is a function f∗ induced on sequences such
that f∗(x∗, β∗) = (α∗, y∗).

To show that this function is Lipλ′ , assume (ξ∗, η∗) F∗7→ (θ∗, µ∗). Thus (ξi, ηi)
F7→

(θi+1, µi+1). By assumption, we know max(|αi+1 − θi+1|, |yi − ηi|) ≤ λ max(|xi −
ξi|, |βi+1 − µi+1|). Taking the sup of both sides, we see that max(‖α∗ − θ∗‖, ‖y∗ −
η∗‖) ≤ λ max(‖x∗ − ξ∗‖, ‖β∗ − µ∗‖). Thus f∗ is Lipλ.

Lemma 7.5. F ∗ has a fixed point if and only if f∗ has a fixed point.

Proof. Follows from the fact that ((x∗, y∗), (α∗, β∗)) ∈ F ∗ if and only if f∗(x∗, β∗) =
(α∗, y∗).

Lemma 7.6. By the contraction mapping theorem, f∗ has a unique fixed point.

Proof. The space of bi-infinite sequences on compact balls of radius ε along with
the norm previously described is a Banach space. Thus we can use the contraction
mapping theorem.

From the above lemma, F ∗ has a unique fixed point. A fixed point of F ∗ is an
orbit of F . Thus this fixed point sequence is the unique shadow of the pseudo-orbit
z∗.

This completes the proof of the shadowing lemma.



HYPERBOLIC SETS FOR MAPS AND RELATIONS 351

8. Stable manifold theorem for hyperbolic sets of relations. This section
describes a generalization of the stable manifold theorem for hyperbolic sets which
holds for noninvertible maps and relations.

The stable manifold theorem for hyperbolic sets of diffeomorphisms says that
for every point in a hyperbolic set, the set of points with nearby forward orbits
and the set of points with nearby backward orbits both form smooth manifolds.
It was originally stated by Hirsch and Pugh [14]. In the case of relations, the
nonuniqueness of orbits implies that this statement breaks down.

The delayed regulation model previously discussed is an example of a hyperbolic
set for a noninvertible map such that there are multiple unstable manifolds to a
point. At a = 2.28 the transverse homoclinic orbits form hyperbolic sets. However,
within the hyperbolic set, the unstable manifold to the origin is not unique. By
the same calculation which showed there was no invariant unstable direction at the
origin, there are many curves which comprise the unstable manifold to the origin,
as can be seen in Figure 2. Each of these curves follows one of the backward orbits
to the origin.

As the delayed regulation example suggests, the stable manifold theorem for
hyperbolic sets for relations is a theorem about orbits rather than about points.
Namely, it shows that for each orbit in a hyperbolic set, there are stable and
unstable manifolds, consisting of points with locally unique forward and backward
orbits respectively. Since for a given point, orbits of a noninvertible map or relation
are neither guaranteed to exist nor to be locally unique, this is a powerful result.

Definition 8.1 (Local manifolds for orbits). Let {zk}k∈I be an orbit for a smooth
relation F on space Z. The stable (unstable) manifold to {zk} at zi exists as long
as [i,∞) ⊂ I (respectively (−∞, i] ⊂ I). These manifolds are denoted W s

{zk}(zi)
and Wu

{zk}(zi), and are defined as follows:
W s
{zk}(zi) = {w ∈ Z : there exists an infinite forward orbit {wk} through w such

that wk → zk as k →∞}.
Wu
{zk}(zi) = {w ∈ Z : there exists an infinite backward orbit {wk} through w

such that wk → zk as k → −∞}.
The local stable and unstable manifolds consist of points in the stable and unstable

manifolds whose iterates always remain close to the original orbit. Specifically, for
ε > 0, W s

{zk}(zi, ε) and Wu
{zk}(zi, ε) are defined exactly as above, except in each

case, we must have the additional condition that for all k ∈ I, wk ∈ Bε(zk).
Theorem 8.2 (Stable manifolds for relations). Let F be a Ck smooth relation
with compact hyperbolic set K. Assume {zk}k∈I is an orbit of F contained in K.

For sufficiently small ε, if [i,∞) ⊂ I, the local stable manifold W s
{zk}(zi, ε) is

the graph of a Ck smooth function Es
zi
→ Eu

zi
. Further, each point qo in the local

stable manifold has a locally unique forward orbit. In other words, there is only one
forward orbit through qo converging to the orbit {zk}.

Similarly, for the unstable case, if (−∞, i] ⊂ I, and ε is sufficiently small, then
the local unstable manifold Wu

{zk}(zi, ε) is the graph of a Ck smooth function Eu
zi
→

Es
zi

. Further, each point ro in the local unstable manifold has a locally unique
backward orbit.

Before beginning the proof, we develop some notation and reformulate and prove
the Lipschitz version of the theorem in terms of this notation. Then we prove the
smooth version of the theorem using a proof similar to the graph transform method.
Assume F is a relation with hyperbolic set K, and {zk}k∈I is an orbit in K.
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For (z, w) ∈ Rn × Rn, denote the projections to the two coordinates by π1 and
π2; namely, π1(z, w) = z and π2(z, w) = w.

Definition 8.3 (Forward shadow). S1
i is the set of pairs ε-shadowing forward for

one iterate. i.e.
S1

i = {(u, v) ∈ F : (u, v) ∈ Bε(zi, zi+1)} .

Equivalently, S1
i = F ∩Bε(zi, zi+1).

Sk
i is the set of pairs which are connected by a k-forward shadow. Equivalently,

in terms of composition of relations,

Sk
i = S1

i+k−1 ◦ · · · ◦ S1
i+1 ◦ S1

i .

Likewise, for backward shadowing,

Definition 8.4 (Backward shadow). S−1
i is the set of pairs ε-shadowing backward

for one iterate. Thus, S−1
i = F ∩Bε(zi−1, zi).

S−k
i is the set of pairs which are connected by a k-backward ε-shadow. In terms

of composition of relations,

S−k
i = S−1

i ◦ S−1
i−1 ◦ · · · ◦ S−1

i−k+1.

By definition W s(zi) = limk→∞ π1(Sk
i ), and Wu(zi) = limk→∞ π2(S−k

i ). Thus
the following lemma in terms of the new notation is equivalent to the Lipschitz
version of the stable manifold theorem for hyperbolic sets for relations.

Lemma 8.5. Under the hypotheses of Theorem 8.2, there is a constant 0 < λ < 1
such that limk→∞ π1(Sk

i ) exists and is the graph of a Lipλ function Es
zi
→ Eu

zi
.

Each point in this limit set has a unique forward orbit converging to {zk}. Also
limk→∞ π2(S−k

i ) exists and is the graph of a Lipλ function Eu
zi
→ Es

zi
. Each point

in this limit set has a unique backward orbit converging to {zk}.
Proof. Here is the proof of the above lemma for the backward orbits case. Forward
orbits case follows by symmetry.

Step 1. π2

(
S−k

i

) ⊂ π2

(
S
−(k−1)
i

)
.

This is because the set of points shadowing backward k iterates automatically
must shadow backward for k − 1 iterates.

Step 2. π2

(
S−k

i

)
is compact.

This set is a projection of S−k
i , which is compact since it is the composition of

compact relations.

Step 3. If δ is sufficiently small, then for every k and every y ∈ Eu
zi

, there exists
x so (x, y) ∈ π2

(
S−k

i

)
.

This follows from the following lemma on the composition of relations.

Lemma 8.6. The composition of relations which are graphs of Lipschitz functions
is a graph of a Lipschitz function. Specifically, if F is the graph of Lipλ function
f , G the graph of Lipλ function g,

f : Es
1 × Eu

2 → Es
2 × Eu

1 , and
g : Es

2 × Eu
3 → Es

3 × Eu
2

then G ◦ F is the graph of a Lipλ function Es
1 × Eu

3 → Es
3 × Eu

1

Proof. of the lemma: By the Lipschitz Implicit Function Theorem.
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Step 4. limk→∞ π2

(
S−k

i

)
is the graph of a function from Eu

zi
to Es

zi
.

From step 3, π2

(
S−k

i

)
is nonempty. Thus limk→∞ π2

(
S−k

i

)
= ∩k>0π2

(
S−k

i

)
is

nonempty since it is the intersection of a nested sequence of compact sets. Further,
using the same reasoning, for every y ∈ Eu

zi
, there is an x ∈ Es

zi
such that (x, y) ∈

limk→∞ π2

(
S−k

i

)
.

Here is a useful estimate:

Lemma 8.7. Assume {w−k} and {u−k} are backward orbits such that for some
sufficiently small γ > 0, and i ≤ k < N , dist(w−k, z−k) and dist(u−k, z−k) <
γ. Then by continuity of the splitting we can rewrite w−k = (x−k, y−k), u−k =
(ξ−k, η−k) ∈ Es

z−k
×Eu

z−k
. Then

max(|xi − ξi|, |yi−1 − ηi−1|) ≤ max(λk|xi−k − ξi−k|, λ|yi − ηi|).
Proof. Since F is Lipλ, max(|yi−1−ηi−1|, |xi−ξi|) ≤ max(λ|xi−1−ξi−1|, λ|yi−ηi|).
Call this right hand quantity ∆.

Similarly, |xi−1 − ξi−1| ≤ max(λ|xi−2 − ξi−2|, λ|yi−1 − ηi−1|).
Thus

|xi − ξi| ≤ ∆ ≤ max(λ2|xi−2 − ξi−2|, λ|yi − ηi|).
Continuing inductively gives the desired inequality.

Corollary 8.8. If (xi, yi) and (ξi, ηi) are both in limk→∞ π2

(
S−k

i

)
, then |xi−ξi| ≤

λ|yi − ηi|.
Proof. Choose N so that λN ε ≤ λ|yi−ηi|. By assumption, there is some (xi−N , yi−N )
and (ξi−N , ηi−N ) such that (xi−N , yi−N , xi, yi) and (ξi−N , ηi−N , ξi, ηi) ∈ S−N

i .
From the preceding lemma,

max(|xi − ξi|, |yi−1 − ηi−1|) ≤ max(λN |xi−N − ξi−N |, λ|yi − ηi|) ≤ λ|yi − ηi|.

Step 5. limk→∞ π2

(
S−k

i

)
is the graph of a Lipλ function. Every point of the limit

set has a unique backward orbit converging to the original orbit.

That the limit set is the graph of a function follows from the previous step. That
the function is Lipschitz follows from the above corollary.

To show that points have unique backward orbits in the limit set, consider the
behavior of the inverse relation when restricted to the limit set. From the last line
of the proof of the above corollary, the inverse relation is a contraction. A relation
which is a contraction is a function. Thus the inverse relation when restricted to
the limit set is actually a function. From this it is clear that points in the limit set
have unique backward orbits and that the orbits converge to {zk}. This completes
the proof of the Lipschitz portion of the stable manifold theorem.

We now prove smoothness of stable and unstable manifolds, following a method
similar to the graph transform method in [14] and the proof of the cone condition
in [26]. Basically, we look at the image under the derivative TF of the graph of a
smooth function from unstable to stable space, and a linear subspace in the unstable
cone at each point. We show that this has an attracting fixed point in terms of
the entire sequence. This fixed point turns out to be the unstable manifold and its
derivative, showing Wu is C1. Induction shows that it is also Cr.

In Bε(z−i), choose a Lipλ function ρ : Eu
z−i

→ Es
z−i

. Refer to the graphs of
such ρ as unstable disks. Let G(ρ) be the function ρ′ : Eu

z−i+1
→ Es

z−i+1
such that
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graph(ρ′) is the image of graph(ρ) under the relation F . Hyperbolicity guarantees
that ρ′ is an unstable disk.

In the tangent space, choose subspaces to each point L : Eu
z−i

→ Lin(TEu, TEs)
in the unstable cone. Let TG(ρ, L) be the function (ρ′, L′) which has as its
graph the image of graph(ρ, Lgr(ρ)) under TF . One can show that L′ : Eu

z−i+1

→ Lin(TEu
z−i+1

, TEs
z−i+1

) is well defined, and by the cone condition, L′(y′) is al-
ways in the unstable cone.

Now look at G on sequences. Namely, let ({ρi, Li}) be a sequence of functions
defined for the entire backward orbit, denoted (ρ∗, L∗). Let G∗(ρ∗) = (ρ∗1) and
let TG∗(ρ∗, L∗) = (ρ∗1, L∗1). All sequences converge uniformly to the sequence of
unstable manifolds under G∗ by the Lipschitz portion of the proof. For the sequence
L∗, let |L∗| = supi supy ‖Li(y)‖, where ‖.‖ denotes the linear norm. The following
lemma says that fixing the base sequence, the fibers converge to a fixed point.

Lemma 8.9. Fibers converge under TG∗. Specifically, if we fix the sequence ρ∗,
then for m sufficiently large, and TG∗m(ρ∗, L∗) = (ρ∗m, L∗m) and TG∗m(ρ∗,M∗) =
(ρ∗m, L∗m), then |L∗m −M∗m| < Cλm.

Proof. First note that |L∗m|, |M∗m| < λ, since unstable cones map to unstable
cones. Choose (x, y, xm, ym) in graph(ρ−i, ρ

m
−i+m). Choose vm ∈ TEu

z−i+m
with

norm one, and choose u and v so that

(L−i(y)v, v, Lm
−i+m(ym)vm, vm),

and
(M−i(y)u, u,Mm

−i+m(ym)vm, vm) ∈ TF(x,y,xm,ym).

Since TF expands vectors in the unstable cone, 1 = |vm| > |u|, |v|.
Using Lemma 8.7,

‖Lm
−i+m(ym)−Mm

−i+m(ym)‖ < λm|Li(y)v −Mi(y)u| (15)
< λm(‖Li(y)‖|v|+ ‖Mi(y)‖|u|), (16)
< λm(2λ). (17)

Since the right hand side is independent of y and i, |L∗m −M∗m| < (2λ)λm.

From the previous lemma and the fact that TF is smooth, TG∗ has an attracting
fixed point. Since TG∗ preserves derivatives, we now see that Wu is C1. The proof
of the Ck case proceeds by induction, analogously to the standard diffeomorphism
proof. Namely, we assume that for all smooth relations H with hyperbolic structure,
sequences of smooth unstable disks converge in Ck−1 to the unstable manifold.
Assume ρ∗ is a sequence of Ck unstable disks for the hyperbolic splitting with
respect to F . Then (ρ∗, Dρ∗) are Ck−1 unstable disks for the hyperbolic splitting
with respect to TF . By induction, this must converge in Ck−1. Thus ρ∗ converges
in Ck to the sequence of unstable manifolds. This completes the proof.

8.1. Related remarks. Since the definition of hyperbolicity is equivalent to the
cone condition, robustness of hyperbolic sets follows immediately:

Theorem 8.10 (Robustness). If K is a compact hyperbolic set for relation F , and
G is a relation C1 close to F , then K is a hyperbolic set for G.

In addition, from the proof of the stable manifold theorem, the manifolds vary
continuously with the orbit:
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Theorem 8.11 (Continuous change of stable and unstable manifolds). The unsta-
ble (stable) manifolds to an orbit of a relation vary continuously as the orbit varies
in the inverse (forward) limit norm.

9. Examples of hyperbolic sets.

Example 9.1. A hyperbolic fixed point zo of a smooth relation F is defined in [22]
as a fixed point such that in terms of a splitting Es × Eu of the tangent space
DF (zo) is of the form:








x
By′

Ax
y′


 : x ∈ Es, y′ ∈ Eu





, (18)

where A and B are matrices, and |A|, |B| < 1. Clearly a hyperbolic fixed point for
a smooth relation is a hyperbolic set.

Example 9.2. For diffeomorphisms, the definition for relations is equivalent to the
traditional definition. In other words, we have the following theorem;

Theorem 9.3. If f : Rn → Rn is a diffeomorphism, and K is a compact invariant
set under f , then K is a hyperbolic set for f by the traditional definition if and only
if K is a hyperbolic set for the relation graph(f) under the relations definition.

Proof. By the Mather adapted norm, the diffeomorphism conditions imply that
the new definition holds. The cone condition implies that the converse holds as
well.

Example 9.4 (Homoclinic orbits). As outlined in Example 4.6, the homoclinic orbits
of the delayed regulation map are hyperbolic sets. Thus shadowing holds, and it is
possible to show the existence of recurrent behavior near the orbit.

For diffeomorphisms, all transverse homoclinic orbits are embedded in hyperbolic
sets. However, this is not always true for noninvertible maps and relations. There
are examples of noninvertible maps and relations with transverse homoclinic orbits,
but for which the shadowing lemma does not hold [28]. Since the shadowing lemma
holds for all hyperbolic sets, these examples cannot ever be embedded in hyperbolic
sets. There are sufficient conditions for homoclinic orbits for noninvertible maps
and relations to be hyperbolic sets [28, 34, 33].

Example 9.5 (Snap-back repellers). A special case of a homoclinic orbit which is
always a hyperbolic set is snap-back repellers [20], defined as follows.

Definition 9.6 (Snap-back repellers). For a noninvertible map f with repelling fixed
point p, a snap-back repeller is a homoclinic orbit {zk}k∈I for which every point in
the orbit has Df(zk) an isomorphism.

Namely, snap-back repellers are homoclinic orbits of repelling fixed points, which
are contained in the zero-dimensional stable manifold.

Example 9.7 (Iterated function systems). All of the examples listed above are nonin-
vertible maps. An iterated function system [4] is a simple example of a multivalued
map.

Definition 9.8 (Iterated function systems). An iterated function system is a com-
plete metric space with a finite set of smooth contractions {wn, n = 1, . . . , N}.
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Of interest is the dynamics of the multivalued map ∪N
n=1wn. Under the assump-

tion that for all x and i 6= j, ωi(x) 6= ωj(x), an iterated function system forms a
smooth relation. The whole space has a trivial splitting with no unstable directions.
Thus the entire space has hyperbolic structure.

The stable manifold theorem says that every point zo with an infinite forward
orbit {zk}k≥0 has a neighborhood in which every point w has a forward orbit
converging to the orbit {zk}k≥0. For iterated function systems on a compact space,
this stable manifold turns out to be the whole space, the orbit depending only
on the sequence of contractions chosen. The theorem also says that the unstable
manifold for a backward orbit is zero-dimensional.

Using the above, we can recover information about which sequence of contrac-
tions in F converges to a given point, as in Barnsley’s Chaos Game [4]. Let
(x, y) ∈ F . Then y = ωj(x) for some j. Notice that for sufficiently small δ, all
points in F ∩ Bδ (x, y) are also of the form (z, ωj(z)) for the same j. Thus for a
sufficiently small pseudo-orbit, we can recover the bi-infinite sequence of contrac-
tions from F which give the shadowing orbit. Also, to every backward sequence
of contractions, there corresponds a unique point with the sequence corresponding
to its backward orbit. However, there may be many forward and backward orbits
through such a point.

In [4], there is a proof of a version of the shadowing lemma for iterated function
systems which are the union of invertible contractions. Here, we do not assume
that contractions are invertible, but the main difference is in the framework and
approach to looking at iterated function systems.
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