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a b s t r a c t

Rotational invariant circles of area-preserving maps are an important and well-studied example of KAM
tori. John Greene conjectured that the locally most robust rotational circles have rotation numbers that
are noble, i.e., have continued fractions with a tail of ones, and that, of these circles, the most robust
has golden mean rotation number. The accurate numerical confirmation of these conjectures relies
on the map having a time-reversal symmetry, and such high accuracy has not been obtained in more
general maps. In this paper, we develop a method based on a weighted Birkhoff average for identifying
chaotic orbits, island chains, and rotational invariant circles that does not rely on these symmetries.
We use Chirikov’s standard map as our test case, and also demonstrate that our methods apply to
three other, well-studied cases.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of an integrable Hamiltonian or volume-
preserving system is organized by periodic and quasi-periodic
motion on invariant tori. When such a system is smoothly per-
turbed, Kolmogorov–Arnold–Moser (KAM) theory [1] implies that
some of these tori persist and some are replaced by isolated
periodic orbits, islands, or chaotic regions. On each KAM torus,
the dynamics is conjugate to a rigid rotation with some fixed
frequency vector. Typically, as the perturbation grows the propor-
tion of chaotic orbits increases and more of the tori are destroyed.
Invariant tori can be found numerically by taking limits of peri-
odic orbits [2] and by iterative methods based on the conjugacy
to rotation [3–5]. In these methods, one fixes a frequency vector
and attempts to find invariant sets on which the dynamics has
this frequency. In this paper we explore an alternative technique,
based on windowed Birkhoff averages [6], to distinguish between
chaotic, resonant, and quasiperiodic dynamics. Since we do not
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fix the rotation vector in advance, this method permits us to
accurately compute the rotation vector for each initial condition
that lies on a regular orbit. As such the method is analogous
to Laskar’s frequency analysis [7,8], which uses a windowed
Fourier transform to compute rotation numbers. Notably there
have been improvements to this technique using collocation [9]
or Richardson extrapolation [10].

As an illustrative example, we will primarily study Chirikov’s
standard map [11], though in the last section we will consider
several generalizations. Two-dimensional, area-preserving maps
are simplest, nontrivial case of Hamiltonian dynamics (for a re-
view, see [12]). Letting f : M → M , where M = T × R,
the cylinder, the standard map can be written as (xt+1, yt+1) =
f (xt , yt ) = f t (x0, y0) with

xt+1 = xt +Ω(yt+1) mod 1,
yt+1 = yt + F (xt ).

(1)

For Chirikov’s case, the ‘‘frequency map’’ and ‘‘force’’ are given by

Ω(y) = y, F (x) = −
k
2π

sin(2πx),

respectively. When the parameter k = 0, the action y is constant,
and every orbit lies on a rotational invariant circle with rotation
number ω = Ω(y). When ω is irrational the orbit is dense on the
circle, and the dynamics is conjugate to the quasiperiodic, rigid
rotation

θ → θ + ω mod 1 (2)

for θ ∈ T, under the trivial conjugacy (x, y) = C(θ ) = (θ, ω).
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Fig. 1. The dynamics of the standard map for k = 0.7. Using the weighted Birkhoff method we are able to distinguish chaotic orbits (upper right), islands (lower
left), and rotational circles (lower right). The rotation number of each nonchaotic orbit is color-coded (color bar at right). The computations were performed for
an evenly spaced grid of 10002 points in [0, 1]2 with T = 104 , using the distinguishing criteria in (24). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

As k increases, some of these rotational invariant circles per-
sist, as predicted by KAM theory, but those with rational or ‘‘near’’
rational rotation numbers are destroyed. On each KAM circle, the
dynamics is still conjugate to (2), for some irrational ω, under
a smooth map C : T → T × R. As an example, Fig. 1 depicts
the dynamics for the Chirikov map for k = 0.7. In the top row,
we distinguish between non-chaotic and chaotic dynamics, and in
the bottom row we distinguish between two types of non-chaotic
behavior, namely island chains and rotational invariant circles.
The methods for doing this will be discussed in Sections 2–3.

An orbit {(xt , yt ) : t ∈ Z} has a rotation number ω if the limit

ω = lim
T→∞

1
T

T−1∑
t=0

Ω(yt ) (3)

exists. Of course, if k = 0, ω is simply the value of Ω on the
conserved action. If an orbit is periodic, say (xn, yn) = (x0, y0) +
(m, 0) for some integers m, n, then ω = m

n is rational. Indeed, (1)
implies that if we lift x to R, then

xT − x0 =
T∑

t=1

Ω(yt )

so for the periodic case ω = (xn − x0)/n. Note that ω, as a
rotation number, is measured with respect to rotation in x. For an
invariant circle within an island chain, the effect of the rotation of
the orbit about the island center will average out, and ω will equal
m/n, the value for the periodic orbit it encloses. This can be seen
in the lower left portion of Fig. 1, where each elliptic island has a
single solid color due to having the same value of ω. In particular,
the rotational invariant circles are the only non-chaotic orbits
with the property that ω is irrational. In Section 3, we develop a
numerical method to determine whether a floating point number
is (with high probability) rational or irrational. With this method,
we are able to use the rotation number computed with the
weighted Birkhoff average to distinguish between rotational and
non-rotational invariant circles.

The invariant circles that persist by KAM theory have Diophan-
tine rotation numbers, i.e., there is a τ ≥ 1 and a c > 0 such that

|nω −m| >
c
|n|τ

, ∀n ∈ N, m ∈ Z. (4)

Such rotation numbers are hard to approximate by rationals (see
Section 3). An invariant circle is said to be locally robust if it
has a neighborhood in M in which it is the last invariant circle;
i.e., it exists for 0 ≤ k ≤ kcr (ω) and kcr is a local maximum. It
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is known from careful numerical studies that invariant circles
with ‘‘noble’’ rotation numbers (their continued fractions have
an infinite tail of ones) are robust [2,13]. Since these continued
fractions are asymptotically periodic, these rotation numbers are
quadratic irrationals and satisfy (4) with τ = 1.

John Greene discovered that the last rotational circle of (1)
has rotation number given by the golden mean γ ,2 and that it is
destroyed at k = kcr (γ ) ≈ 0.971635 [2]. It has been proven that
the golden circle persists up to k = .9716 [14] and that there are
no invariant circles for k > 63/64 [15] and when k = 0.9718 [16].
Greene used limits of periodic orbits to find invariant circles, and
his method depends on accurate computations of these orbits.
Such high accuracy can be obtained because Chirikov’s map has a
time-reversal symmetry, and every rotational circle is symmetric.
Moreover, there are fixed lines of the symmetry (e.g., x = 0) that
contain symmetric periodic orbits of all rotation numbers [13].
This allows the computation of orbits of high periods, and implies
that they alone can be used to approximate the invariant circles.
For example, using symmetric orbits up to periods of order 105,
Haro improved Greene’s estimate in his 1998 PhD thesis to obtain
kcr ≈ 0.97163540324 [5]. Interestingly, conjugacy-based meth-
ods can be used to confirm the first 7 digits of kcr using a Fourier
series with 524,288 terms [5].

The average (3) need not exist for orbits that are neither
periodic nor quasiperiodic. For example if an orbit is heteroclinic
between two periodic orbits with different rotation numbers, the
forward and backward time averages of Ω(y) will be different.
Moreover, when k is large enough, y can be unbounded,3 and the
limit (3) need not even converge. However, if an orbit ergodically
covers a bounded region, then Birkhoff’s ergodic theorem implies
that the time average of Ω does exist.

More generally a finite-time Birkhoff average on a orbit of a
map f beginning at a point z ∈ M for any function h : M → R is
given by

BT (h)(z) =
1
T

T−1∑
t=0

h ◦ f t (z). (5)

This average need not converge rapidly. Even if the orbit lies on
a smooth invariant circle with irrational rotation number, the
convergence rate of (5) is O(T−1), due to edge effects at the two
ends of the finite orbit segment. By contrast, for the chaotic case,
the convergence rate of (5) is observed to be O(T−1/2), in essence
as implied by the central limit theorem [17].

We can significantly improve the convergence of a Birkhoff
sum on a quasiperiodic set by using the method of weighted
Birkhoff averages developed in [6,18,19], see Section 2.1. If the
map f , the function h, and z belongs to a C∞ quasiperiodic set,
and the rotation number is Diophantine, this method is supercon-
vergent, meaning that the error decreases faster than any power
of T [19,20]. Notice that the weighted Birkhoff method does
not speed up the convergence rate on chaotic sets since these
lack smoothness. Therefore weighted Birkhoff averages have two
distinct uses: (a) to distinguish chaotic from regular dynamics,
and (b) to give a high precision computation of the rotation
number.

We comment here on the relationship between the current
paper and the previous papers [6,18–20] on the weighted Birkhoff
average mentioned above. Only [18] and [19] use (1) as an ex-
ample; the others focused on other examples and details of the
numerical method. In particular, in [18] the weighted Birkhoff
average is first shown to distinguish between regular and chaotic

2 Or any integer shift of this value by a discrete symmetry of (1).
3 Often one thinks of y as diffusing in this case, but it can also grow linearly

in time due to ‘‘accelerator modes’’ [11]).

orbits for (1) for one fixed parameter value. Both papers [18,19]
calculate the rotation number for a single, non-rotational invari-
ant circle inside an island. The papers also present high precision
computations of the Fourier series expansion of the conjugacy
map for the invariant circle. We do not make use of the conjugacy
map in the current paper. None of the previous papers contain
a comparison to other methods for distinguishing between chaos
and regularity, nor do they contain any calculations for more than
one parameter value, and none contain a method distinguishing
between rotational orbits and islands.

Other methods for accurate computations of rotation numbers
include frequency analysis, which is based on finding the Fourier
amplitudes of a quasiperiodic signal using a Hanning window [7];
this has an error that decreases as a power of T . Frequency
analysis can be improved by collocation techniques to more ac-
curately find the peaks of the discrete Fourier transform [9,21].
Another technique uses a recurrence method based on continued
fraction expansions [22]. Slater’s criterion [23–27] can be used
to compute whether an orbit satisfies the same ordering as an
irrational rotation; this method can be used to estimate kcr =
0.9716394, slightly above Greene’s value [28]. A conjugacy-based
Fourier method for finding Diophantine rotation numbers was
applied to circle [29] and planar maps [30]. This method can also
be extended to accurately compute frequency vectors for orbits
on higher-dimensional tori in Hamiltonian flows [10].

Computations of rotation number, or more generally of fre-
quency vectors have many applications. For example, a finite-
time computation of the rotation number has been used to define
coherent structures by considering ridges in the finite time sum
(3) [31]. This method also can distinguish between trapped and
escaping orbits [32] by monitoring the gradient of (3) with re-
spect to initial condition, and to determine the break-up of circles
in nontwist maps [33].

Our paper proceeds as follows: We start in Section 2 with a
description of the weighted Birkhoff method in Section 2.1. In
Section 2.2, we review the two standard methods for distinguish-
ing between regular and chaotic orbits, namely Lyapunov expo-
nents and the 0–1 test of Gottwald–Melbourne. In Section 2.3
we compare the three methods for distinguishing chaos from
regularity for the Chirikov standard map. In Section 3 we describe
how to use the weighted Birkhoff average for non-chaotic or-
bits to distinguish between rotational circles and island chains.
In Section 4, after removing chaotic orbits and island chains,
we are left with the rotational circles. We are able to create
the critical function diagram, and describe the number theoretic
properties of the rotation numbers for rotational circles, showing
that their behavior does not match that of randomly chosen
irrational numbers. In Section 5, we apply our methods to three
generalizations of the standard map, namely a symmetric two-
harmonic generalized standard map, a standard non-twist map,
and an asymmetric two-harmonic map. We conclude in Section 6
with comments on how these methods can be applied to other
maps.

2. Distinguishing chaos and regularity

In this section, we introduce the weighted Birkhoff method,
and we compare it to two different methods for distinguishing
chaos from regular dynamics, namely Lyapunov exponents and
the 0–1 test of Gottwald and Melbourne [34].

2.1. The weighted Birkhoff average

We now describe in more detail the method of weighted
Birkhoff averages [6,18,19]. Since the source of error in the calcu-
lation of a time average for a quasiperiodic set occurs due to the
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Fig. 2. Convergence of the weighted Birkhoff average (6) for orbits of the standard map at k = 0.7 for the function h = cos(2πx). On left, the error of the computation
is shown as a function of the number of iterates T for 50 initial conditions at x = 0.45 with y on a grid in [0, 0.5]. On the right, the convergence rate is shown
for 1000 initial conditions at the same x and k values, where convergence rate was calculated using the errors before the values flattened out due to floating point
errors, measured by where they have dropped below 10−13 . In each case, the values are compared with WBT (Ω) at T = 105 . Using the distinguishing criteria in
(24), the red curves are identified as chaotic, the green curves as islands, and the remaining blue curves are thus the rotational invariant circles. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

lack of smoothness at the ends of the orbit, we use a windowing
method similar to the methods used in signal processing. Let

g(t) ≡
{
e−[t(1−t)]

−1
t ∈ (0, 1)

0 t ≤ 0 or t ≥ 1
,

be an exponential bump function that converges to zero with
infinite smoothness at 0 and 1, i.e., g (k)(0) = g (k)(1) = 0 for all
k ∈ N. To estimate the Birkhoff average of a function h : M → R
efficiently and accurately for a length T segment of an orbit, we
modify (5) to compute

WBT (h)(z) =
T−1∑
t=0

wt,Th ◦ f t (z) , (6)

where

wt,T =
1
S
g

( t
T

)
, S =

T−1∑
t=0

g
( t
T

)
. (7)

That is, the weights w are chosen to be normalized and evenly
spaced values along the curve g(t). For a quasiperiodic orbit, the
infinitely smooth convergence of g to the zero function at the
edges of the definition interval preserves the smoothness of the
original orbit. Indeed it was shown in [20] that given a C∞ map
f , a quasiperiodic orbit {f t (z)} with Diophantine rotation number,
and a C∞ function h, it follows that (6) is super-convergent: there
are constants cn, such that for all n ∈ N⏐⏐⏐⏐WBT (h)(z)− lim

N→∞
BN (h)(z)

⏐⏐⏐⏐ < cnT−n. (8)

Several papers [7,9,10] include a similar method to compute
frequencies with a sin2(πs) function instead of a bump function,
but this function is fourth order smooth rather than infinitely
smooth at the two ends, implying that the method converges
as O(T−4), see e.g., [19, Fig. 7]. In addition to converging more
rapidly, the weighted Birkhoff average is relatively straightfor-
ward to implement. By contrast to the case of regular orbits, when
an orbit is chaotic (i.e., has positive Lyapunov exponents), then (6)
typically converges much more slowly; in general it converges no
more rapidly than the unweighted average of a random signal,
i.e., with an error O(T−1/2) [17,19].

A graph of the error in WBT for h = cos(2πx) as a function of
the number of iterates T is shown on the left panel of Fig. 2. Here
we have chosen 50 orbits of (1) for the parameter k = 0.7 with
initial condition x = 0.45, and y evenly spaced between 0 and
0.5. For orbits that are independently identified as chaotic (red),
WBT essentially does not decrease with T ; however, for orbits
that lie on rotational (blue) or island (green) invariant circles,
the error for all but three has decreased to machine precision,
10−15, when T reaches 104. Further, right panel of Fig. 2 shows
the convergence rate as a function of y, this time for 1000 orbits.
Note that there is no evidence of superconvergence in Fig. 2:
the convergence rate for (8) has n = 2 − 5.5. Indeed, super-
convergence was only observed in [19] when extended precision
computations were done. Nevertheless, there is a clear distinction
between chaotic and regular orbits even for T as small as 103.
Note that the Richardson extrapolation method used in [10] can
also compute frequencies to 12-digit accuracy using 216 iterates
of a Poincaré map.

To distinguish chaotic from regular dynamics, we compute
(6) for two segments of an orbit, using iterates {1, . . . , T } and
{T + 1, . . . , 2T }. In the limit T → ∞, these values should
be the same. Therefore we can measure convergence rate by
comparing them. In order to distinguish chaotic sets, we compute
the number of consistent digits beyond the decimal point in our
two approximations of WB(h), which is given by

digT = − log10
⏐⏐WBT (h)(z)−WBT (h)(f T (z))

⏐⏐ . (9)

If digT is relatively large, then the convergence is fast, meaning
the orbit is regular. If digT is small, then the convergence is slow,
meaning the orbit is chaotic. We will call 2T , the ‘‘total orbit
length’’ as it is the total number of iterates needed to compute
(9).

Three examples are shown in Fig. 3(a) for a set of 1000 initial
points on a vertical line segment at x = 0.321 for three different
values of k. For the smallest parameter, k = 1.0, a substantial
fraction of the orbits are regular, and these have a distribution
of dig104 centered around 14, nearing the maximum possible for
a double precision computation. By contrast, when k = 2.0
there are only chaotic orbits in the sample, and these have a
distribution of dig104 centered around 2. Note that when k =
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Fig. 3. Histograms of (a) Weighted Birkhoff accuracy, digT , and (b) finite-time Lyapunov exponent, λT , for orbits of the standard map with k = 1.0, 1.5 and 2.0. The
initial conditions are (0.321, y) with 1000 values of y on a uniform grid in [0, 1]. (a) Histograms of digT (9), for h(x, y) = cos(2πx) and T = 104 . (b) Histograms of
λT (10), for T = 2(10)4 , and v = (0, 1)T .

1.0 there are also orbits with digT ∈ [6, 13], and which seem
to represent orbits trapped in islands that are either oscillatory
invariant circles or weakly chaotic orbits between a pair of such
invariant circles.

In order to determine the cutoff in digT between regular and
chaotic orbits, we computed a histogram (not shown) of dig104 for
the Chirikov standard map for 500,000 different starting points:
a grid of 500 k-values between 0.1 and 2.5, with 1000 distinct
initial conditions for each. This histogram has two large peaks,
one at around 2 and the second around 15 (corresponding to the
machine epsilon value). As is consistent with the case k = 1.0
shown in Fig. 3(a), the lowest probability occurs around digT = 5.
In our calculations of chaos, we wish to err on the side of false
positives of chaos, and thus we use a value of 5.5 as our cutoff
value to distinguish whether orbits exhibit regular or chaotic
behavior.

Using this cutoff, the putative set of regular orbits with initial
conditions along three vertical line segments, x = 0.0, 0.321
and 0.5 are shown in Fig. 4 for k ranging from 0.1 to 2.5. When
x = 0.0, the figure is dominated by the regular region around the
fixed point islands surrounding (0, 0) and (0, 1)–these points are
elliptic up to k = 4.0. Other islands can also be seen; for example
for x = 0.0 and for x = 0.5, we can see the period two orbit
(0, 1

2 ) ↦→ ( 12 ,
1
2 ), which is elliptic until k = 2.0, where it period

doubles. By contrast the line x = 0.321 intersects fewer islands,
and there appear to be no regular orbits when k ≥ 1.915 with
initial conditions on this line.

2.2. Lyapunov exponent and the 0–1 test

In this section we recall two other standard tests for chaos:
positive Lyapunov exponents and the 0–1 test. The finite-time
Lyapunov exponent is defined by

λT (v) =
1
T
log

(
|Df T (x0, y0)v|

)
, (10)

where Df is the Jacobian matrix, and v is a generic deviation
vector with |v| = 1. Histograms of λT for three values of k are
shown in Fig. 3(b) using T = 2(10)4, which is the total orbit length

used for the weighted Birkhoff method. As noted by [35], when
there are regular and chaotic orbits, these histograms are typically
bimodal. For example, we observe that when k = 1.5 there is a
lower peak centered near λ = 0 with width of order 0.02. This
peak is well separated from the broader peak centered near λ =
0.3. The peaks are less well separated for smaller values of k; for
example when k = 1.0 about 40% of the orbits have λT < 0.01,
and there is a broader peak of presumably chaotic trajectories
with λ ∈ [0.08, 0.2]. However, these two distributions have some
overlap near λ ≈ 0.05. As k grows, the mean value of λ increases
and the lower peak of regular orbits disappears.

To visualize the dependence of the exponents on k, we chose
the same three lines of initial conditions shown in Fig. 4 for the
weighted Birkhoff average. The resulting exponent, as a function
of y0 and the parameter k of (1) is shown in Fig. 5. In this figure,
orbits with λ < 2.2(10)−3 are colored black: these correspond
to the regular orbits. As k grows, the distribution in the chaotic
region is peaked around a growing value that reaches a maximum
of λ = 0.588 when k = 2.5. Note that each of the panes of
this figure is essentially the negative of the corresponding pane
in Fig. 4.

The fraction of chaotic orbits can be estimated by removing
orbits with λT in the range of the lower peak of Fig. 3(b). Fig. 6
shows the variation of Lyapunov λT and its error as a function of
T for 30 orbits, where blue depicts regular orbits and red depicts
chaotic orbits as determined at the maximum time T = 216.
We can see that for the regular orbits, the convergence λT → 0
is as T−1, which is significantly slower than the convergence of
the weighted Birkhoff average. Furthermore, many of the chaotic
orbits take on λT values very close to zero for large values of T .
For example, we calculate that 0.45% of the cases have min(λT ) <
0.01 and max(λT ) > 0.02 for T between 214 and 216. By care-
ful visual inspection of individual orbits, we find that we must
choose our cutoff quite small to avoid the misidentification of
chaotic orbits (more details are given below in Section 2.3). Based
on these considerations, we use the value

λc = 0.0005 (11)

as the cutoff between chaos and regularity.
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Fig. 4. Using the weighted Birkhoff method, this figure shows the number of digits (9) for orbits of the standard map (1) with (a) x0 = 0 and (b) x0 = 0.321 and
(c) x0 = 0.5 for y0 ∈ [0, 1] and k ∈ [0.1, 2.5]. Here digT is computed by computing the average (6) for the function h(x, y) = cos(2πx) for T = 2(10)4 steps. Initial
conditions with digT < 5.5 are colored black. The value of digT for the regular orbits is indicated in the color bar. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Lyapunov exponent λ using v = (0, 1)T for orbits of the standard map (1) with (a) x0 = 0 and (b) x0 = 0.321 and (c) x0 = 0.5 for y0 ∈ [0, 1] and k ∈ [0.1, 2.5].
To improve convergence, the exponent (10) is computed for T = 216

= 65,536. Black corresponds to λ < 0.0022, the lowest of the 256 colors. The value of λ for
the chaotic orbits is indicated in the color bar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

The resulting fraction of ‘‘chaotic’’ orbits as a function of k is
shown in Fig. 7. This fraction is strongly dependent on choice of
line for the initial conditions. For the lines of symmetry (e.g. x = 0
or 0.5) of the standard map [13], the fraction of orbits trapped in
regular islands is larger.

Another test for chaos is the 0–1 test of Gottwald and Mel-
bourne [34]. This test involves computing a time series (here we
use {sin(2πxt ) : t ∈ [0, T ]}) from which a supplemental time se-
ries (called (pt , qt ) in [34]) is constructed and tested for diffusive
behavior. This ultimately gives a parameter, Kmedian, that is ideally
either 0, when the orbit is quasiperiodic, or 1 when it is chaotic,
and we use the cutoff Kmedian > 0.5 for chaos. Implementation of
this test requires random samples of a frequency parameter. Us-
ing T = 1000 and 100 random samples gives an algorithm that is

about 200 times slower than computing Lyapunov exponents. The
resulting dichotomy between regular and chaotic orbits for this
test is shown in Fig. 8 for initial conditions at x = 0.0. This figure
agrees well with those in Figs. 4(a) and 5(a), though it appears
to identify slightly fewer orbits as chaotic than the Lyapunov
test: some orbits designated chaotic by Lyapunov exponent do
not have Kmedian > 0.5.

2.3. Comparing the methods

In this section we systematically compare the detection of
chaos for the Chirikov standard map using the three differ-
ent methods: Lyapunov exponents, 0–1 test, and the weighted
Birkhoff method. We show that – weighing questions of speed,
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Fig. 6. (a) Lyapunov exponents (10) computed for k = 0.55 for 30 orbits on the line x0 = 0.45 for T ∈ [100, 216
]. If λ216 < λc = 0.0005, the orbit is determined

using this method to be regular and the curve is colored in blue. The other orbits are determined to be chaotic; they are colored in red. (b) For the same orbits and
color scheme, we plot the error at each T value, defined as |λT − λ216 |. Note that for ‘‘regular orbits’’ λT appears to converge to 0 as T−1 . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Using the Lyapunov method, this figure shows the fraction of orbits that
have λ > 0.0005 for three values of x0 , a uniform grid of 1000 values of y0 , and
T = 216 . When k < 4 there is an island around the elliptic fixed point at (0, 0)
that decreases the number of chaotic orbits found for x0 = 0 (red curve), and
when k < 2 the island around the elliptic period-two orbit through (0.5, 0.5)
has a smaller, but similar effect for x0 = 0.5 (blue curve). When x0 = 0.321
(green curve), the regular regions around both of these elliptic orbits are not
sampled when k ≥ 1.4, and when k ≥ 1.914, at most one of the 1000 y0 values
is deemed to not be chaotic. These variations can be observed in Figs. 4 and 5.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

accuracy, and ease of implementation – the weighted Birkhoff
average is better than either of the other two methods.

Fig. 9 shows the fraction of orbits identified as chaotic by
the three methods for initial conditions on the line x0 = 0.0
with a uniform grid of y0 ∈ [0, 1]. Note that the Lyapunov and
weighted Birkhoff methods are difficult to distinguish on this
scale. However, the chaotic fraction from the 0–1 test is uniformly
below both that for other two methods. The difference is largest

Fig. 8. Chaotic region of the standard map with x0 = 0 for y ∈ [0, 1] and
k ∈ [0.1, 2.5] using a time series {sin(2πxt ) : 0 < t ≤ 1000} and the 0–1
method of [34]. An orbit is deemed to be chaotic (colored white) if the 0–1
parameter Kmedian > 0.5.

near k = 1, 1.5 and 2.3; these values correspond to major
bifurcations in which regular islands and circles are destroyed.
Nevertheless, the mean absolute deviation between the weighted
Birkhoff and 0–1 test results is 2.6%.

For a further comparison, we computed the Lyapunov expo-
nent and weighted Birkhoff average using ten different total orbit
lengths of 27, 28, . . . , 216

= 65,536 iterates, for k ∈ [0.1, 2.5] on
an evenly spaced grid of 50 values. We used the same grid of ini-
tial conditions for the 0–1 method, but due to its computational
burden, we only used 1000 iterates. At each parameter value, we
chose initial conditions on the line x0 = 0.321 with y0 ∈ [0, 1] on
an evenly spaced grid of 500 points: thus there are 25,000 trials.



8 E. Sander and J.D. Meiss / Physica D 411 (2020) 132569

Fig. 9. (b) The fraction of chaotic orbits as a function of k for initial conditions
on the line x0 = 0.0. The red curve shows the fraction of chaotic orbits computed
using Lyapunov exponents with λ > 0.0005, the blue curve shows the fraction
with the 0–1 parameter Kmedian > 0.5, and the yellow curve shows the fraction of
chaotic orbits computed using the weighted Birkhoff average with dig < 5.5. For
each k value, 1000 initial conditions were used for the Lyapunov and weighted
Birkhoff methods. For the Lyapunov method T = 216 , and for the weighted
Birkhoff method T = 104 (which involves 2(10)4 calculations). For the 0–1
test, 500 initial conditions were used for each k-value and T = 1000. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Designating one of the methods as the ‘‘ground truth’’, one
way to compare another method is by the True Skill Statistic, also
known as the Hanssen–Kuiper skill score [36]:

TSS =
TP

TP + FN
−

FP
FP + TN

.

Here TP (‘‘true positive’’) is the fraction of initial conditions that
are classified correctly as chaotic by the test method according
to the reference standard, FP is the fraction classified incorrectly
as chaotic, TN is the fraction that are correctly as non-chaotic,
and FN is the fraction classified incorrectly as non-chaotic. The
TSS ranges from −1 for a classification that always disagrees
with the reference, to 1 for one that always agrees. An advantage
of TSS is that it does not depend upon the number of trials,
just on the relative accuracy. However, if we are comparing two
predictions, the skill statistic does depend upon which prediction
is designated as the ‘‘ground truth’’: changing this designation is
equivalent to exchanging FP ↔ FN .

As ‘‘ground truth’’, we declare an orbit to be ‘‘chaotic’’ when
λ > λc = 0.0005 for an orbit length of 216. We then find that
the weighted Birkhoff method with the same total orbit length,
i.e., 2T = 216, gives TSS = 0.997. Furthermore, whenever 2T ≥
210, the weighted Birkhoff method gives TSS > 0.9, and even for
the small value 2T = 256, it gives TSS = 0.80. These results
confirm Fig. 9, which showed the near overlap of the Birkhoff
average curve for 2T = 2(10)4 with the ‘‘ground truth’’ Lyapunov
curve (in that case for x0 = 0.0). In contrast, the Lyapunov
method for 215 iterates yields TSS = 0.77 as compared to the
ground truth, confirming again the convergence of this method
is indeed slow.

An alternative comparison measure is to simply count the
percentage of correctly classified initial conditions,

R =
TP + TN

TP + FP + TN + FN
,

the ‘‘ratio’’ of [36]. Using the same definition of ground truth, the
weighted Birkhoff method gives R ≥ 0.98 whenever 2T ≥ 212. In
contrast, the Lyapunov method has R = 0.8 for T = 214.

Finally, the 0–1 method for 1000 iterates gave TSS = 0.91 and
R = 0.96 when comparing to the ground truth Lyapunov method.
The same values are obtained if we compare the 0–1 method to
the weighted Birkhoff method for total orbit length 216.

We now comment on the choice of chaos cutoff values digT
(9) and λc (11). The agreement between the weighted Birkhoff
and Lyapunov methods changes only slightly if we vary cutoff for
digT , and the best agreement occurs when digT = 4. However, R
is not very sensitive to variations 3.5 < digT < 6.

In contrast, varying the cutoff value λc for the Lyapunov ex-
ponent calculation causes significant changes. Indeed, if λc is
increased, an orbit can be identified as ‘‘regular’’ with a smaller
number of iterates. This is explained by the data in Fig. 6: the
computed value of λ for regular orbits is seen to decrease as 1

T ,
so if λc is increased, an orbit can be identified as ‘‘regular’’ sooner.
However, choosing a larger cutoff value has the disadvantage of
introducing a systematic error in the sense that orbits that are
‘‘weakly chaotic’’ will never be so identified. Moreover, in Fig. 6
one can see that a number of orbits identified as ‘‘chaotic’’ at
T = 216 have earlier episodes in which λT decreases with time.
Such orbits can be trapped in a narrow chaotic layer or can be
very close to a boundary of a chaotic layer for a long time. We
found by careful examination of the phase space behavior of for
over 100 different orbits in which the weighted Birkhoff and
Lyapunov methods disagreed, that if we chose λc > 0.0005, the
Lyapunov method would systematically misidentify chaotic orbits
as compared to the weighted Birkhoff method. The choice λc =
0.0005 minimized these errors when T = 216. Note that because
we choose λc quite small, this method very rarely misidentifies an
orbit as regular when it is chaotic: the number of false positives
and false negatives are not equal between the three methods.

For a given total orbit length, the computation time for the
Lyapunov exponent was approximately 1.5 times slower than and
weighted Birkhoff average. For example computing the Lyapunov
exponent for 25,000 initial conditions and total orbit length 215

took around 10.6 s using Matlab on an iMac Pro, whereas the
weighted Birkhoff method took around 7 s. The 0–1 method was
significantly slower; on the same machine with the same initial
conditions, and smaller total orbit length 1000, the computation
took 45 min. In our case, the Jacobian of the map (1) is quite sim-
ple, thus we expect that if the derivative were computationally
more expensive, then the weighted Birkhoff method would have
an even more significant speed advantage over the Lyapunov
method.

We note that the comparisons in this section do not include
a variety of other efficient methods that use hyperbolic growth
to distinguish between chaos and regular behavior including the
Fast Lyapunov Indicator (FLI), OFLI, Mean Exponential Growth
factor of Nearby Orbits (MEGNO), and the alignment indices SALI
and GALI; see [37–40] for discussions of these methods.

The weighted Birkhoff method has another advantage, as we
will illustrate in the next section: it gives an accurate calculation
of the rotation number ω that we can use to distinguish between
rotational invariant circles and island chains.

3. Island chains

The regular orbits of the Chirikov standard map are of two
distinct topological types: rotational invariant circles and orbits
within the island chains. We are primarily interested in studying
the rotational invariant circles, and thus must look for a way to
distinguish and remove orbits within island chains.
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Fig. 10. The continued fraction expansion and some entries on the Stern–Brocot
or Farey tree. Each rational has two possible finite continued fractions but a
unique Farey path. See the appendix for the relationship between the two.

For a twist map Birkhoff’s theorem implies that the rotational
invariant circles are graphs, x ↦→ (x, c(x)). Generically the dy-
namics on each such circle is conjugate to an incommensurate
rotation, implying that ω in (3) is irrational.

By contrast, around each elliptic period-n orbit there is gener-
ically a family of trapped orbits forming a chain of n islands.
The regular orbits in these island chains are further partitioned
into orbits that are quasiperiodic and those that are periodic
relative to the nth power of the map. The latter, if elliptic, can
again be the center of chains of islands. This gives rise to the
familiar island-around-island structure. Each regular orbit within
a period-n island chain that is not itself periodic is generically
dense on a family of topological circles: these are oscillational
invariant circles. Nevertheless, the rotation number ω, (3) will
average out the internal dynamics, resulting in a rational value
that is the rotation number of the central period-n orbit. Of course
if one were to measure the rotation number of an oscillational
circle relative to the periodic orbit that it encloses, one would
generically find it to be irrational as well.

In Section 2.1 we developed a highly-accurate method for
removing chaotic orbits and for computing ω for regular orbits. In
Section 3.1, we establish a numerical method to remove regular
orbits in island chains by determining which of the computed ω
values are ‘‘rational’’, and which are ‘‘irrational’’. In Section 3.2 we
use this method to identify orbits within island chains.

3.1. Numerical identification of rational numbers

We are interested in establishing a numerical method to de-
termine whether a numerically computed number determined
using floating point arithmetic is representative of a rational or
an irrational. At the outset, this is not a well-posed question,
since floating point representations of numbers are rational. The
question becomes whether a numerical value is – with high prob-
ability – the approximation of a rational or an irrational number.
In this section, we concentrate on a closely related question, and
in the next section we show how the answer can be applied to
establish rationality. Our question is: given a number x, and an
interval

Iδ(x) ≡ (x− δ, x+ δ), (12)

with some tolerance δ, what is the rational number p/q with the
smallest denominator in Iδ(x)?

If, for a small δ, there is a rational p/q ∈ Iδ(x) with a suf-
ficiently small denominator q, we would expect that x is – to a
good approximation – given by this rational. Whereas if all such
rationals have large denominators, we would expect that x is an

Fig. 11. Probability density of log10(qmin) computed by appendix Algorithm
2 with δ = 10−12 for 108 randomly chosen numbers in (0, 1) (black). This
distribution has mean 5.9497, mode 5.9662, standard deviation σ = 0.29333,
and kurtosis 6.3073. The red curve shows the normal distribution with the same
mean and standard deviation. Also shown is the histogram for 108 randomly
chosen numbers of constant type with A = 10 (green). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. A graph of the probability that qmin ∈ 10tol/2
[10−s, 10s

], for δ = 10−tol
for 104 randomly chosen x ∈ [0, 1]. The blue curve is for tol = 4 and the red
for tol = 14 (These curves are nearly indistinguishable). The yellow curve shows
the probability for numbers of constant type with A = 10. The probability for
a normal distribution with standard deviation (21) is the dashed curve. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

approximation of an irrational number. Actually, we will argue
that if q is too large, x is more likely an approximation of a rational
number that just missed being in the interval. We will return to
the question of what constitutes small, large, and too large for
values of q, but first we discuss the question of how to actually
find the value p/q in a prescribed interval.

We denote the smallest denominator for a rational in an
interval I by

qmin(I) ≡ min{q ∈ N : p
q ∈ I, p ∈ Z}. (13)

The question of finding qmin has been considered previously
in [41–43], and a closely related question is considered in [44].
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Fig. 13. A plot of the smallest denominator, qmin(Iδ(x)), in an interval (12) for
δ = 10−5 and 104 values of x ∈ [0.095, 0.105]. The dots below the x-axis
indicate the size of the denominator of each rational number in the interval
with a denominator up to 80; larger dots correspond to smaller denominators.
There is a spike in denominator size immediately outside the interval around
small denominator rationals. The mean log-denominator, (20), is shown by the
dashed (red) line. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Given an interval I in R, one would imagine that there are
standard algorithms for finding the rational number p/q in I with
q = qmin(I). Indeed packages such as Mathematica and Matlab
both have commands that appear to do this. However these algo-
rithms use truncations of the continued fraction expansion [45],
and neither of them work correctly in the sense of finding the
smallest denominator [42]. Recall that the continued fraction
expansion for x ∈ R+ is

x = a0 +
1

a1 + 1
a2+

1
...

≡ [a0; a1, a2, . . .], ai ∈ N, a0 ∈ N ∪ {0}.

(14)

Truncation of this path after a finite number of terms gives a
rational ‘‘convergent’’ of x:
pk
qk
= [a0; a1, a2, . . . , ak]. (15)

Convergents are best approximants in the sense that if⏐⏐⏐⏐pq − x
⏐⏐⏐⏐ < 1

2q2
, (16)

then p/q is a convergent to x [45, Theorem 184]. Moreover, at
least one of any two successive convergents satisfies (16).

However, the convergents are not necessarily the rationals
with the smallest denominators in a given interval. As a sim-
ple example, the rational with the smallest denominator within
δ = 10−3 of π is 201

64 , i.e., qmin(I10−3 (π )) = 64. However,
this rational is not a convergent of the continued fraction π =
[3; 7, 15, 1, 292, 1, 1, . . .]; indeed, the first convergent in the in-
terval is p2

q2
=

333
106 .

A correct algorithm (e.g., that proposed by Forisek [42]), is
easiest to explain based on the Stern–Brocot or Farey tree. Every
number in R+ has a unique representation as a path on this
binary tree:

x = s1s2 . . . , si ∈ {L, R}. (17)

The tree, whose first levels are sketched in Fig. 10, is constructed
beginning with the root values 0

1 and 1
0 . Subsequent levels are

obtained by taking the mediants of each neighboring pair:
pm
qm
=

pl
ql
⊕

pr
qr
≡

pl + pr
ql + qr

. (18)

Level zero of the tree is the mediant of the roots, 1
1 ; it is defined

to have the null path. If x < 1
1 , then its first symbol is L, and if

x > 1
1 , then its first symbol is R. At level ℓ of the tree, 2ℓ new

rationals are added, the mediants of each consecutive pair. The
left and right parents are neighboring rationals that have level
less than ℓ. For every consecutive pair of rationals at level ℓ, the
two elements of the pair are neighbors in the sense that

prql − plqr = 1. (19)

A consequence is that pm and qm are coprime.
For ℓ = 1, the new mediants 1

2 =
0
1 ⊕

1
1 and 2

1 =
1
1 ⊕

1
0 are

added to give the level-two Farey sequence 0
1 ,

1
2 ,

1
1 ,

2
1 ,

1
0 . Then the

22 mediants of each neighboring pair are added to give 23 level-
three intervals, see Fig. 10. Since the level-three rational 2

3 >
1
2 ,

to the right of its level-two parent, then 2
3 = LR. Similarly 3

2 is to
the left of its level-two parent 2

1 = R, so 3
2 = RL.

The Farey path (17) for any x ∈ R+ is the unique path of left
and right transitions that lead to x starting at 1

1 . Every rational has
a finite path and every irrational number has an infinite path [45].

Fig. 14. The rotation number computed for rotational invariant circles orbits of the standard map (1) with (a) x0 = 0 and (b) x0 = 0.321 and (c) x0 = 0.5 for
y0 ∈ [0, 1] and k ∈ [0.1, 1.0]. The computations are done using T = 2(10)4 , using the distinguishing criteria in (24).
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Fig. 15. Fraction of orbits of (1) from Fig. 14 that are on invariant circles for
1000 initial conditions with y0 ∈ [0, 1] on three vertical lines as shown. The
largest fraction occurs when x = 0.5, as this line tends to avoid many of the
larger islands.

Fig. 16. Computation of digT for the golden mean circle for T = 2(10)4 for
500 values of k ∈ [0.95, 1.00]. Continuation is used to find the initial condition
(0.321, y0) that has ω = γ−1 . The drop of digT from 12 to 6 indicates that the
circle is destroyed for a parameter value in (0.9706, 0.9731).

Algorithm 1 in the appendix computes the Farey path, up to
issues of floating point accuracy and a stopping criterion.

The Farey expansion allows one to find the rational with
smallest denominator in any interval:

Lemma 1 (Smallest Rational). The smallest denominator rational in
an interval I ⊂ R+ is the first rational on the Stern–Brocot tree that
falls in I.

The proof of this lemma, from [42], is given in the appendix.
An alternative version of this result using continued fractions can
be found in [41].

An algorithm for finding qmin(Iδ(x)), based on Lemma 1 is given
in the appendix in Algorithm 2. For example, for x = 0.12 = 3

25 =

L8R2
= [0; 8, 3], the sequence of Farey approximants is

1
1 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
7 ,

1
8 ,

1
9 ,

2
17 ,

3
25 .

Fig. 17. Probability distribution for the occurrence of continued fraction ele-
ments of the rotation number for rotational invariant circles of the standard
map for two values of k. These were computed using T = 104 iterates, and a
grid of 5(10)4 initial conditions at x = 0.321, using the distinguishing criteria
in (24). When k = 0.3 (blue), we found 30,176 invariant circles, and when
k = 0.95 (red), we found 682. The black curve shows the Gauss–Kuzmin
distribution, which is the distribution of elements for a random irrational chosen
with uniform probability in [0, 1].

Given δ = 0.005 for example, the Farey interval ( 17 ,
1
8 ) ⊃ Iδ , and

the mediant 2
17 ∈ Iδ since 0.12− 2

17 ≈ 0.0024 < δ. Thus from the
algorithm we obtain

SmallDenom(0.12, 0.005) = [2, 17] ⇒ qmin(I0.005(0.12)) = 17.

As noted in [42], the built-in routines of standard mathematical
software do not always compute the smallest rational approxima-
tion correctly. For example, the built-in Matlab command ‘‘rat’’
gives rat(0.12, 0.005) = [3, 25], giving x itself, since the second
convergent 1

8 = 0.12 + 0.005, is not in I . The point is that
the intermediate convergents of the Farey path can satisfy the
approximation criterion before the principal convergent of the
continued fraction, and this can happen whenever the Farey path
is not alternating . . . LR . . . or equivalently the continued fraction
elements are not all 1’s.

To determine the ‘‘typical’’ size of a denominator in an interval
I , we show in Fig. 11 a histogram of the minimal denominator
computed using Algorithm 2 in the appendix for randomly cho-
sen floating point numbers in (0, 1) with a uniform distribution.
For this case, when δ = 10−12, the mean minimal denom-
inator appears to be close to 106

= δ−1/2. The distribution
is not log-normal: the data is significantly more concentrated
around the mean than a normal distribution with the same stan-
dard deviation. Over the range δ = [10−4, 10−14], the mean
log-denominator obeys the relation

⟨log10 qmin⟩ = −
1
2 log10 δ − 0.05± 0.001, (20)

and in this same range of δ values, the standard deviation is
nearly constant,

σ = 0.2935± 0.0006. (21)

Further support for this statement is found in Fig. 12, which
shows that for δ = 10−tol, the probability that qmin is in the
range 10tol/2±s does not depend on the choice of tol. Indeed, the
curves in this graph were obtained from only 104 random trials:
if more values were randomly chosen, it would be impossible to
distinguish between these distribution plots.
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The mean of our observations (20) is consistent with the ex-
pectation from (16). Indeed, for any δ, then there is a convergent
with |x− p/q| < δ, with a denominator that must satisfy q ≥
(2δ)−1/2. Since the minimum denominator is no more than this,
we expect that qmin ∼ (2δ)−1/2, and thus

log10 qmin ∼ −
1
2 log10 δ − 0.15,

which is not far from the observation (20).
A related result was obtained by [46]: for intervals of the

form JN = ( i−1N ,
i
N ], the mean smallest denominator in grows

asymptotically as

⟨qmin(JN )⟩ ∼ CN1/2,

with a coefficient 1.35 < C < 2.04. Since these intervals are of
size 1

N = 2δ, this gives

log10⟨qmin⟩ ∼ −
1
2 log10 δ + K , K ∈ [−0.020, 0.159].

Note that since the minus logarithm is convex, Jensen’s inequality
implies that (20) is no larger than this result. We are not aware,
however, of any results in the literature that imply the validity of
(20) or (21).

As a second numerical experiment, we consider numbers of
constant type; that is numbers that have bounded continued frac-
tion elements: supk{ak} = A <∞. Such numbers can be thought
of as ‘‘highly irrational’’ in the sense that they are Diophantine
(4), with τ = 1, and c > 1

A+2 . Conversely, if x is Diophantine
with constant c then A < 1

c [47]. This class of numbers is
especially important in the context of area-preserving maps: it
was conjectured that invariant circles with constant type rotation
numbers are locally robust and that every circle that is isolated
from at least one side has constant type [48].

For the numerical experiment shown in Fig. 11, we chose
rational numbers with continued fractions of length 40, with
ai ≤ 10, i = 1, . . . , 40 chosen as iid random integers. Note that
this means that every trial x is rational; however, the denomi-
nator of these rationals is at least as large as the case ai = 1,
which gives the Fibonacci F40 ≈ 1.08(10)8. The resulting smallest
denominator distribution is the green histogram in Fig. 11. The
cumulative distribution of these numbers is also shown in Fig. 12,
which shows that the probability that Prob(|log10(qmin)− tol/2| >
0.728) = 1%.

As mentioned previously, rational numbers nearby a given a
value of x can result in both extremely small and extremely large
values of qmin(Iδ(x)). To demonstrate this, Fig. 13 shows a plot
of qmin(I10−5 (x)) for evenly spaced x values between 0.095 and
0.105. The dots below the x-axis are centered at each rational
with a denominator q ≤ 80; the size of each dot is inversely
proportional to q. Note that in the vicinity of each dot, there
is a small region where qmin drops to the corresponding small
value of q, but additionally, there is a larger interval in which
qmin becomes much larger than average, with a larger jump near
smaller denominators. Dynamically these rationals correspond to
orbits that are limiting on the separatrices of islands, and hence
are chaotic.

The main takeaway message from the ‘‘typical size’’ experi-
ments in this section is that numbers outside the main peak of the
distribution in Fig. 11 correspond to those ‘‘close’’ to rationals. In
the next section, we will discard such rotation numbers to filter
for candidates for rotational invariant circles.

3.2. Identification of island chains using the weighted Birkhoff aver-
age

In this section, we use the weighted Birkhoff method to obtain
an accurate computation of the rotation number ω defined for the
Chirikov standard map in (3). Namely,

ω(z) = WB(Ω)(z). (22)

Using this, we can distinguish rotational invariant circles from
orbits in island chains by determining whether the computed
value of ω is an approximation of a rational or irrational number
as follows. Fix tol and let δ = 10−tol. For a rotation number ω,
we find qmin(Iδ(ω)) in (13), the smallest denominator of a rational
number within distance δ of ω. In most of our numerics, we have
chosen tol = 8. To distinguish between rationals and irrationals,
for each rotation number ω define the absolute deviation

devω = |log10(qmin(Iδ(ω)))− tol/2|. (23)

For a fixed cutoff value s, we remove the orbits within island
chains as follows. Let z be an initial condition of a regular orbit
with associated rotation number ω. If devω > s, then we discard
z as a member of an island chain. Note that this is equivalent to
saying that qmin is outside the range 10tol/2±s.

It remains to choose a cutoff value s. In our numerics, when
we wish to be conservative about identifying rotational circles,
we have used the cutoff value s = 0.3375, which implies that we
have kept slightly above 81% of randomly chosen values, as can
be seen in Fig. 12. This corresponds to choosing only irrational
numbers that are very badly approximated by rationals with
small denominators.

Now that we have established all of our criteria for distin-
guishing rotation numbers, we summarize the particular values
we have used in most of our numerical calculations as two
criteria:
Chaos criterion: digT < 5.5 for WBT (cos(2πx)),
Irrationality criterion: devω < 0.3375 for tol = 8. (24)

In each case, for each initial condition (x0, y0), we compute an
orbit and determine whether the orbit is chaotic using the above
chaos criterion. We also compute the rotation number ω using
WBT (Ω) and determine whether the orbit is a rotational invariant
circle using the irrationality criterion.

4. Rotational invariant circles

Using the strategy of Section 3.2 for eliminating rationals,
we can now remove orbits that are contained in island chains.
We show in Fig. 14 the rotation number ω for initial conditions
(x0, y0) that are identified to lie on rotational invariant circles
using distinguishing criteria (24).

The panels in Fig. 14 strongly resemble the critical function
computed using Greene’s method for the standard map [48,49].
In this method, one typically chooses a set of noble irrational
numbers, and finds the threshold of instability for a long periodic
orbit that is close to each of these nobles. The periodic orbits used
in these computations are those that are symmetric under the
reversor for (1); for example, every elliptic, symmetric rotational
orbit is observed to have a point on the line x = 0. An advantage
of our current method is that symmetry is not required.

Recall from Section 1 that it is believed that there are no
rotational invariant circles for the standard map above kcr =
0.97163540324 and that the last circle has the golden mean
rotation number [2,5,13]. In Fig. 15, we show how the fraction of
initial conditions that are identified as rotational circles in Fig. 14
varies with k. By k = 0.9685, 99.9% of the circles are destroyed
and the fraction drops to zero at k = 0.9712, though there is one
orbit misidentified as a circle at k = 0.9766. The accuracy of these
computations is limited by the fact that the initial conditions are
fixed to a grid in y0.

As a more precise test of the efficacy of the weighted Birkhoff
average to determine kcr , we used continuation to find an orbit on
the line (0.321, y0) with the fixed rotation number γ−1 = 1

2 (
√
5−

1) when T = 2(10)4. A computation of digT , (9) can then be
used to determine if the orbit is not chaotic. For the computation
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Fig. 18. The dynamics of the two-harmonic map, with force (25) for k = 0.5 and ψ = 0.7776. The weighted Birkhoff method distinguishes chaotic orbits (upper
right), islands (lower left), and rotational circles (lower right). The rotation number of each nonchaotic orbit is color-coded (color bar at right). The computations
were performed for a grid of 10002 initial conditions in [0, 1] × [−0.75, 0.75] with T = 104 , using the distinguishing criteria in (24). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

shown in Fig. 16, digT = 12 at k = 0.9706, and it drops to 6
at k = 0.9731, with a precipitous drop just as the curve crosses
kcr . As an example, when k = 9697/9980 ≈ 0.971643, the initial
condition with ω = γ−1 has y0 = 0.676535782378533. Though
this orbit no longer lies on an invariant circle since k > kcr ,
iteration shows that it remains localized to what appears to be
a circle for hundreds of millions of iterations.

We now focus on the number theoretic properties of rotation
numbers for robust circles. It is thought that the rotation num-
bers of the more robust invariant circles should have continued
fraction elements with more elements ai = 1 [2,48]. To test this,
we plot the distribution of continued fraction elements, an, for
the rotation number of invariant circles in Fig. 17. The expected
distribution for randomly chosen irrationals is the Gauss–Kuzmin
distribution [47], P(ai = k) = log2(1 + 1/(k(k + 2))). When k
is relatively small, the observed distribution follows the Gauss–
Kuzmin distribution closely, at least for an ≤ 10; but for k = 0.95,
when most circles have been destroyed, the probability of an =
1 or 2 is larger than would be predicted for random irrational

numbers, and the probability that an ≥ 8 is at least four times
smaller than the Gauss–Kuzmin value.

5. Generalizations of the standard map

The method we have developed to find rotational invariant
circles works equally well for other area-preserving maps. As a
first example, we consider two-harmonic generalized standard
map (1) with the force

F (x) = −
k
2π

(sin(ψ) sin(2πx)+ cos(ψ) sin(4πx)) , (25)

that was first studied in [50] (see [51] for later references). phase
portrait of this map, analogous to that shown for the standard
map in Fig. 1, is shown in Fig. 18 for the value ψ = 0.7776.
Note that at these parameters there are invariant circles in four
narrow bands. The set of circles as a function of k is shown in
Fig. 19. This figure is similar to [52, Figure 12(b)], where the
critical parameters were computed for a set of 256 noble rotation
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Fig. 19. (a) Fraction of orbits of the map (1), with two-harmonic force (25) for ψ = 0.7776, that are chaotic and are rotational circles for initial conditions along
the line x0 = 0.35. (b) The rotation number of the rotational circles as a function of initial y and the parameter k. As in Fig. 18, T = 104 with distinguishing criteria
in (24).

numbers. In that case the last invariant circle, with ω ≈ 0.247,
was destroyed at k ≈ 0.613. The numerical experiment here
shows that at least 99.9% of the invariant circles are destroyed
when k > 0.61850. The last invariant circle in our sample appears
to have

ω = 0.239184971708802 = [0; 4, 5, 1, 1, 8, 8, 5, 8, 8, 1, . . .],

with qmin(I10−8 ) = 13153.
A similar, well-studied map is the standard nontwist map

(see [33,52] for references). This map is of the form (1) with the
standard force, but with the frequency map

Ω(y) = y2 − δ. (26)

Note that Ω : R → [−δ,∞), and that the rotation number
(3) will also take values in this interval. The phase space of the
dynamics for k = 1.5 is shown in Fig. 20 for δ = 0.3. At these
parameter values, there are large chaotic regions around islands
with rotation number 0 (colored green) and a band of rotational
circles near the minimum of Ω (colored blue). The most robust
circles tend to be the shearless circles; they cross the line y = 0
where Ω ′(y) = 0. The fraction of chaotic orbits and rotational
circles as k varies is shown in Fig. 21. For the 1000 initial y
values in our experiment, the last detected rotational circle is
at k = 2.7725 for (x0, y0) = (0.35,−0.2620) with the rotation
number

ω = −0.255234160728417 = [−1; 1, 2, 1, 11, 5, 4, 7, 19, . . .],

with qmin(I10−8 ) = 7260. We verified that there are no rotational
circles in the interval −2 < y < 2 for k = 2.7841 by
direct iteration: finding an initial condition whose orbit crossed
this region. For example, the initial condition (x0, y0) = (0.0,
2.088767893349248) has yT < −2 for T = 129, 072, though this
T value is uncertain due to floating point errors.

Finally, we consider an asymmetric two-harmonic map (1)
with the force

F (x) = −
k
2π

(sin(ψ) sin(2πx)+ cos(ψ) cos(4πx)) , (27)

studied in [52]. This map does not have the usual x ↦→ −x
reversor of the standard map (1), and therefore its periodic orbits
are not aligned by a symmetry. Phase portraits for k = 0.2 and
ψ = 0.7776 are shown in Fig. 22, and the fraction of circles as a
function of k in Fig. 23.

6. Conclusions and future work

The weighted Birkhoff average (6) and the distinguishing cri-
teria (24) have been shown to efficiently categorize orbits as
chaotic, trapped in islands, or quasiperiodic on rotational circles.
Using only T = 104 iterations, the rotation number of regu-
lar orbits is typically known to machine precision, as shown in
Fig. 2. By contrast the weighted Birkhoff average for chaotic orbits
converges much more slowly, and this allowed us to identify
chaotic trajectories. Note that it requires at least thirty times
more iterates to obtain a comparable distinction using Lyapunov
exponents. Orbits trapped in islands have rational rotation num-
bers, and we are able to identify these using the distribution,
shown in Fig. 11, of the minimal denominator in an interval of
size δ defined by qmin(Iδ) in (13).

The weighted Birkhoff method has the advantages of being
extremely simple to compute and that it does not rely on the
symmetry used in Greene’s residue method. Using a total orbit
length of 2(10)4, we estimated the break-up parameter for the
golden mean invariant circle to 0.3% accuracy, as seen in Fig. 16.
While this accuracy does not compete with that of Greene’s
method nor of conjugacy based methods, it requires much less
computation.

Additionally the Birkhoff method does not require fixing the
rotation number in advance, nor computing the lengthy Fourier
series of conjugacy-based methods. This adds flexibility since,
whereas the golden mean is established as the most robust ro-
tation number for the standard map, the rotation number of the
most robust invariant circle in a general map is not generally
known. For example, the relationship between robustness of in-
variant circles and noble rotation numbers is less well established
for asymmetric maps [52], and we have demonstrated in Sec-
tion 5 that the weighted Birkhoff method can compute robustness
of invariant circles for such asymmetric maps.

Another potential application of the weighted Birkhoff aver-
age is that it can be applied to higher-dimensional maps, with,
say, d-dimensional invariant tori. There have been a number of
attempts to accurately compute parameters for the break-up of
two-dimensional tori by generalizing Greene’s criterion [53–55].
Though it is known that the residues of a sequence of periodic
orbits that limit on a smooth torus do limit to zero [54,56], this
has not led to accurate computations of the parameters at which
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Fig. 20. The dynamics of the standard nontwist map, with frequency (26) for k = 1.5 and δ = 0.3. The weighted Birkhoff method distinguishes chaotic orbits (upper
right), islands (lower left), and rotational circles (lower right). The rotation number of each nonchaotic orbit is color-coded (color bar at right). The computations
were performed for a grid of 10002 initial conditions in [0, 1] × [−0.75, 0.75] with T = 104 , using the distinguishing criteria in (24). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

a torus is destroyed (the best achieved accuracy, about 1%, is for a
three-dimensional, volume-preserving map [55]). One of the dif-
ficulties in any attempt to extend Greene’s method is that there is
no completely satisfactory continued fraction algorithm for multi-
dimensional frequency vectors. To generalize our method will
require computing the minimal denominator qmin for resonance
relations, e.g., finding a minimal (p, q) ∈ Zd+1 such that |qω − p|
is small. One possible approach is to use generalized Farey path
methods [57] that may provide a version of Lemma 1 for this case.
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Appendix. Farey paths and the smallest denominator

The Farey path (17) for any number x can be computed by the
simple method given in Algorithm 1. In a practical calculation,

a stopping criterion based on precision must be included. This
gives, for example
17
6 = RRLRRRR = [2; 1, 4, 1],
7
10 = LRRLL = [0; 1, 2, 2, 1],

e = RRLR2LRL4RLR6LRL8 . . .
= [2; 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .],

π = R3L7R15LR292LRLR2LR3L . . .
= [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . .].

Note that each element of the continued fraction records the
number of repeated Farey symbols. The value of a0 is nonzero
if the Farey path begins with R, otherwise a0 = 0, and a1 counts
the number of leading L’s in the path. For the rational case there
is an additional last element, which is fixed to be 1.

The Stern–Brocot tree gives a method for finding the rational
with the smallest denominator qmin(I) (13) in an interval I . Here
we prove Lemma 1 to show that qmin is the denominator of the
first rational on the tree that falls in I:
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Fig. 21. (a) Proportion of orbits of the standard nontwist map with frequency map (26) when δ = 0.3 that are chaotic and are rotational circles. (b) The rotation
number of the rotational circles as a function of initial y and the parameter k for orbits with x0 = 0.35. As in Fig. 20, T = 104 with distinguishing criteria in (24).

Algorithm 1 Compute the Farey path for x ∈ R+ assuming exact
arithmetic
procedure FareyPath(x)

i← 1
while x ̸= 1 do

if x < 1 then
si = L
x← x

1−x
else

si = R
x← x− 1

end if
i← i+ 1

end while
end procedure

Proof of Lemma 1. Suppose that for all levels up to ℓ on
the Stern–Brocot tree no Farey rational is in I . Since the Farey
intervals partition (0,∞), there must be a Farey interval J =
( plql ,

pr
qr
) ⊃ I for neighbors pl

ql
and pr

qr
. Note that every number

in J and thus every number in I must then be a descendent of
these parents. Denote the mediant (18) by pm/qm. Without loss
of generality, we can assume that pm/qm ∈ I . Every rational in
the level ℓ + 1 daughter interval ( plql ,

pm
qm

) is a descendent of pm
qm

and since all of these are formed by the mediant operation all
of these denominators are larger than qm. The same is true for
the upper interval ( pmqm ,

pr
qr
). Since I ⊂ ( plql ,

pm
qm

) ∪ { pmqm } ∪ ( pmqm ,
pr
qr
),

all remaining rationals in I have denominator greater than qm.
Consequently qmin(I) = qm, and, moreover, the rational with
minimal denominator is unique.

This result is encapsulated in Algorithm 2 to give a com-
putation of the smallest denominator rational in Iδ(x) (12). For
example, this algorithm gives

qmin(I10−8 (π )) = 32085,
pm
qm
= [3; 7, 15, 1, 283],

qmin(I10−10 (e)) = 154257,
pm
qm
= [2; 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 8].

Neither of these are convergents of the continued fraction expan-
sions. Algorithm 2 ignores issues of finite precision arithmetic,
and is not efficient if the Farey path has a long string of repeated
symbols. An algorithm that does not have this deficit is given
in [43].

Algorithm 2 Find the smallest rational in the interval Iδ(x)
procedure SmallDenom(x, δ)

(n, d) = (pl, ql) = (0, 1)
(pr , qr ) = (1, 0)
while |x− n

d |≥ δ do
(n, d) = (pl + pr , ql + qr ) ▷ Find the mediant
if x < n/d then

(pr , qr ) = (n, d) ▷ x ∈ ( plql ,
n
d )

else
(pl, ql) = (n, d) ▷ x ∈ [ nd ,

pr
qr
)

end if
end while
return (n, d) ▷ The smallest rational is n

d
end procedure

We can obtain some additional understanding of the smallest
denominator for the specific case when the bounds of the interval
I are arbitrary rationals [58],

I = ( plql ,
pr
qr
). (28)

To find the smallest denominator rational we expand each of the
boundary points in their Farey paths:

a =
pl
ql
= a0a1a2 . . . am, b =

pr
qr
= b0b1b2 . . . bn,

with ai, bi ∈ {L, R}. Then, as shown by [58, Thm. 1], there are three
cases:

1. When the boundary points of (28) are Farey neighbors, the
smallest rational in I is the mediant, so qmin = ql + qr .

2. If one Farey path is a subsequence of the other but they are
not neighbors, then the smallest rational is a daughter of
the shorter path and an ancestor of the longer. For example,
if a = b1b2 . . . bnan+1an+2 . . . am = ban+1 . . . am, then the
smallest rational has the path
p
q
= ban+1 . . . ak,
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Fig. 22. The dynamics of the asymmetric two harmonic map (27) for k = 0.2 and ψ = 0.7776. The weighted Birkhoff method distinguishes chaotic orbits (upper
right), islands (lower left), and rotational circles (lower right). The rotation number of each nonchaotic orbit is color-coded (color bar at right). The computations
were performed for a grid of 10002 initial conditions in [0, 1]2 with T = 104 with distinguishing criteria in (24). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

for some k < m. This is the appropriate daughter of b
and ancestor of a. Note that when a < b, then it must be
the case that an+1 = L. If, for example a = bLRL . . ., then
bL < a < bLR < b, so then we set k = n + 2, and obtain
p
q = bLR.

3. If neither path is a subsequence of the other, then the
smallest rational is the unique rational that is a common
ancestor of both on the tree: the longest Farey path for
which they agree. For example, if ai = bi for i = 0, . . . , k <
min(m, n), and ak+1 ̸= bk+1 then p

q = a0a1, . . . , ak is the
smallest rational in I .

Finally, for an interval bounded by irrationals we can prove
the following lemma.

Lemma 2 (Smallest Rational in an Irrational Interval). If I = (a, b),
0 < a < b, a, b ∈ R \ Q, then qmin(I) is the denominator of
the common Farey ancestor of a and b, if there is one; otherwise
qmin(I) = 1.

Proof. Denote the infinite Farey paths of the irrationals by a =
a1a2 . . . and b = b1b2 . . ., where ai, bi ∈ {L, R}, and let ℓ ∈ N be
chosen so that the common ancestor of a and b is
pℓ
qℓ
= a1a2 . . . aℓ = b1b2 . . . bℓ, aℓ+1 ̸= bℓ+1.

If ℓ does not exist, then since a < b, a1 = L and b1 = R, which
means that 1

1 ∈ I , so that qmin = 1.
Now suppose that there is a common ancestor of length ℓ ≥ 1.

Then since a < b, we must have aℓ+1 = L and bℓ+1 = R
and a <

pℓ
qℓ

< b. Denote a ‘‘left truncation’’ of a path as a
rational aL = a1a2 . . . aj < a and a ‘‘right truncation’’ as a rational
aR = a1a2 . . . ak > a, see Fig. 24. For example if aj+1 = R,
and ak+1 = L then we know that a1a2 . . . aj < a < a1a2 . . . ak.
Note that such truncations always exist for any irrational and any
choice of minimal length since the infinite paths with tails . . . L∞
and . . . R∞ are rationals. Now, by item (3) above [58, Thm. 1], for
the interval Iouter = (aL, bR), the smallest denominator is that of
the common Farey ancestor of aL and bR: qmin(Iouter ) = qℓ. Thus,
whenever these rational truncations are both longer than ℓ, then
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Fig. 23. (a) Proportion of orbits of the asymmetric standard map with force (27) and ψ = 0.7776 that are chaotic, and rotational circles. (b) The rotation number
of the rotational circles as a function of initial y and the parameter k for orbits with x0 = 0.35. As in Fig. 22, T = 104 with distinguishing criteria in (24).

Fig. 24. An interval I = (a, b) bounded by a pair of irrationals with the outer
interval (aL, bR), and their common Farey Ancestor pℓ

qℓ
.

Iouter contains the common Farey ancestor pℓ
qℓ

and this has the
smallest denominator. Note that since aL < a and bR > b, then
I ⊂ Iouter . Thus qmin(I) is no less than qℓ. Moreover since pℓ

qℓ
∈ I ,

then qmin(I) is no more than qℓ. Thus qmin(I) = qℓ.
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