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a b s t r a c t

In this paper, we develop numerical methods based on the weighted Birkhoff average for studying
two-dimensional invariant tori for volume-preserving maps. The methods do not rely on symmetries,
such as time-reversal symmetry, nor on approximating tori by periodic orbits. The rate of convergence
of the average gives a sharp distinction between chaotic and regular dynamics and allows accurate
computation of rotation vectors for regular orbits. Resonant and rotational tori are distinguished by
computing the resonance order of the rotation vector to a given precision. Critical parameter values,
where tori are destroyed, are computed by a sharp decrease in convergence rate of the Birkhoff average.
We apply these methods for a three-dimensional generalization of Chirikov’s standard map: an angle–
action map with two angle variables. Computations on grids in frequency and perturbation amplitude
allow estimates of the critical set. We also use continuation to follow tori with fixed rotation vectors.
We test three conjectures for cubic fields that have been proposed to give locally robust invariant tori,
but are not able to provide compelling evidence that one of these three fields is more robust than the
other two.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of an integrable Hamiltonian or volume-
reserving system consists of quasi-periodic motion on invariant
ori. As such a system is smoothly perturbed, KAM theory implies
hat some of these tori persist, but some are replaced by iso-
ated periodic orbits, resonances, and chaotic regions. Typically,
s the perturbation grows, more of the tori are destroyed. For
wo-dimensional maps, the robust tori are circles on which the
ynamics is conjugate to rigid rotation with a Diophantine rota-
ion number. It is conjectured from careful numerical study that
he most robust of these invariant circles have rotation numbers
hat are ‘‘noble’’—they are in the quadratic field of the golden
ean, or equivalently they have continued fractions with an

nfinite tail of ones [1,2]. A similar result for higher dimensional
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tori has not been found even though, as we discuss below, there
has been considerable research and conjecture on a suitable
generalization.

Here we investigate the existence of tori for a map f : Td
×

k
→ Td

× Rk of the angle–action form

x′ = x+Ω(y′)
y′ = y+ εF (x).

(1)

e view x ∈ Td
= Rd/Zd as angle variables, taken modulo one,

nd y ∈ Rk as action variables. The function Ω : Rk
→ Td is

he frequency map and F : Td
→ Rk is the force. This family

f maps is the composition of two volume-preserving shears,
.g., (x, y) ↦→ (x + Ω(y), y) and (x, y) ↦→ (x, y + εF (x)), and
ence is always volume-preserving. If k = d, (1) is symplectic
f the force and frequency maps are gradients: F (x) = −∇V (x),
(y) = ∇S(y). Two prominent and well-studied examples of

uch maps are Chirikov’s standard area-preserving map [3], and
roeschlé’s four-dimensional symplectic map [4].
When ε = 0 the dynamics of (1) is simple: the actions are

onstant, and every orbit lies on a ‘‘horizontal’’ d-torus

(y) = {(x, y) : x ∈ Td
}. (2)

hen ε = 0, the dynamics of f |H is simply horizontal translation
y ω = Ω(y), i.e., every orbit on H has rotation vector ω. More
enerally an orbit {(x , y ) : t ∈ Z} has rotation vector ω if the
t t
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= lim
T→∞

1
T

T−1∑
t=0

Ω(yt ) (3)

exists. Of course, if ε = 0, then this is simply the value of the
requency map on the conserved action.

We say that a d-dimensional torus T is rotational if it is
homotopic to H(0). If, in addition, the torus is invariant under (1)
and f |T is conjugate to rigid translation with a rotation vector ω

we will denote the torus by Tω .
When the force F and frequency map Ω are analytic and a

twist condition is satisfied, KAM theory shows that there are tori
with ‘‘Diophantine’’ rotation vectors (see Appendix A) that persist
when ε is nonzero but small [5,6]. A vector ω is defined to be
Diophantine, denoted ω ∈ D, where

D =
⋃
c>0

{
ω : |m · ω − n| >

c
∥m∥d

∞

, ∀(m, n) ∈ Zd
\ {0} × Z

}
.

(4)

y contrast, we say that ω is resonant if there exists a nonzero
∈ Zd such that

· ω = n ∈ Z. (5)

or area-preserving maps, i.e., (1) with d = k = 1, resonances
orrespond to periodic orbits where ω = p/q is rational. Elliptic
eriodic orbits are typically surrounded by island chains, and hy-
erbolic orbits have stable and unstable manifolds that typically
ntersect transversely, giving rise to chaotic motion. For d > 1
island chains are replaced by resonant tubes, and these are also
surrounded by chaotic zones. Typically as the parameter ε grows,
so do the regions of chaos and resonance, destroying more of the
rotational tori. Our goal in this paper is to use computations of
(3) to investigate this destruction.

Our major tool is the weighted Birkhoff average that was intro-
duced in [7–9]. We will use this to compute the rotation vector (3)
efficiently and accurately. The rigorous convergence results given
in [10] imply that the same method can be used to distinguish
and remove chaotic orbits, leaving only regular behavior. We
previously used this method to compute rotational circles for the
Chirikov standard map and several other 2D maps [11].

For two-dimensional maps, a computed rotation number has
been used to efficiently find transport barriers [12] and to find the
breakup of circles in Chirikov’s standard map [13] and in nontwist
maps [14]. The gradient of ω was also used as an indicator of
stickiness [15]. A number of methods have been proposed for
computing a scalar rotation number accurately, based on recur-
rence [16], conjugacy to rigid rotation on a circle [17,18], or
recurrence times using Slater’s method [19–21].

There have been a number of studies of the existence and
breakup of tori for angle–action maps. A major focus of these
studies is to attempt to identify the subset of the Diophantine
frequency vectors for which the invariant tori are locally robust;
that is, more resistant to destruction than nearby vectors. The
noble numbers that are robust for the area-preserving case are
quadratic irrationals – in the field Q[φ] of the golden mean – and
it is known that more generally the class of algebraic numbers
(see Appendix B) contains Diophantine vectors [22]. As a result,
it has long been thought that a robust d-torus would typically
have a frequency vector that is formed from a basis for a degree-d
algebraic field.

We will study the case d = 2 and k = 1 where the expected
robust rotation vectors are cubic irrationals. One can classify
the cubic fields by the discriminant of the minimal generating
polynomial, see Appendix B. There are – at least – three natural
 s

2

conjectures about which of these fields should replace Q[φ]. For
example, Hu and Mao [23] studied a map on T2, the case d = 2
and k = 0, looking at tori in the cubic field with discriminant
D = −44. This field is ‘‘natural’’ from the point of view of a
generalization of the continued fraction, the Jacobi–Perron algo-
rithm (JPA). Just like the golden-mean has a continued fraction
with elements all equal to one, there is a basis for the D = −44
field with a period-one JPA expansion consisting of ‘‘all ones’’. The
robustness of tori with frequency vectors in this same field were
also studied in [24]. Both of these studies used periodic orbits to
approximate the tori.

A higher dimensional case, d = 2, k = 1, was studied by
Artuso et al. [25]. They fixed the frequency map to be Ω =

y, δ) so that only the first component depends upon the action
ariable. Given an irrational value for δ, this map is a quasiperi-
dically forced area-preserving map. In this paper frequencies
rom another cubic field, that with D = −23, were studied.
his field corresponds to the so-called spiral mean proposed
y [26] when they developed a generalization of the Farey, or
tern–Brocot, tree expansion. The spiral mean is distinguished
y its period-one expansion (that spirals) on this tree. Artuso
gain used periodic orbits to approximate the incommensurate
requency vector, and generalized Greene’s residue criterion [27]
or this case. The residue criterion essentially conjectures that a
orus exists only if sequences of periodic orbits that converge to
t have linearizations with bounded eigenvalues, as measured by
he trace, or a scaled version of this that Greene called the residue.

Greene’s residue was also used in [28] to study a fully three-
imensional case, again looking for breakup of tori by studying
equences of periodic orbits that approach given incommensurate
ectors on the generalized Farey tree. This map will be the focus
f the paper below, see Section 2. Later, Fox and Meiss [29]
omputed tori directly from their conjugacy to a rigid rotation,
sing the efficient, parameterization method [30] to compute
ourier series.
Studies of the breakup of tori for four-dimensional, symplectic

aps of the form (1) include [31] who computed periodic orbits
nd the frequency map on the Kim–Oslund tree for the Froeschlé
ap. Later [32] studied a complex extension of this map and

ori in the spiral mean field as well as several quartic irrational
ectors. Attempts to extend Greene’s residue method to the 4D
ase include [24,33,34], though to our knowledge, no one has
ound a generalization of the renormalization, or self-similarity
roperty that is observed in the 2D case.
A third cubic field that has been proposed to replace Q[φ]

orresponds to the cubic D = 49 field [35]. This field has
he smallest discriminant of all the totally real fields, and is
onjectured to have bases with the largest value of the (linear)
iophantine constant (see Section 5) among all vectors for d =
[36]. Lochak argued that the linear approximation constant is
ore appropriate, from the point of view of KAM theory, than

he simultaneous constant, as these numbers appear in the small
enominators in the Fourier series expansions for the conjugacy
unctions of tori. The maximal Diophantine property, of course,
ould generalize the similar, proven property of the golden mean

or d = 1.
The rest of this paper proceeds as follows. In Section 2 we in-

roduce the standard three-dimensional, volume-preserving
odel that we study in this paper. Section 3 describes the
eighted Birkhoff average. In Section 4 we describe methods

or distinguishing regular behavior from chaotic dynamics, and
or distinguishing resonant from rotational tori. In Section 5
e consider locally robust tori and the critical surface and in
ection 6 study the continuation of tori with rotation vectors
n cubic algebraic fields. We conclude in Section 7 and describe

ome of the many problems that remain open.
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ction values for resonances up to order two in the range |y| < 0.5 when ε = 0
nd δ = −0.4.
(m, n) y (m, n) y

(1, 1, 1) −0.481 (2, −1, 0) −0.317
(1, −1, 0) −0.164 (0, 2, 1) −0.224
(1, 1, 1) −0.019 (2, 0, 1) −0.118
(1, 0, 1) 0.382 (2, −1, 1) 0.090

(2, 1, 2) 0.157
(0, 2, 1) 0.224
(1, 2, 2) 0.276
(1, 1, 2) 0.494

2. Standard volume-preserving map

A three-dimensional analog to Chirikov’s area-preserving map
nd Froeshlé’s four-dimensional symplectic map was obtained
n [37]. This normal form corresponds to (1) with (x, y) ∈ R2

×R1

and the frequency map and force

Ω(y, δ) = (y+ γ ,−δ + βy2) ,

F (x) = −a sin(2πx1)− b sin(2πx2)− c sin(2π (x1 − x2)) .
(6)

We will think of five of the parameters as fixed, choosing

γ = 1
2 (
√
5− 1) ≈ 0.61803 , β = 2 , a = b = c = 1 . (7)

This leaves two essential parameters, δ and ε, that will vary for
our computations. Note that for each δ, the image Ω(y, δ) is a
parabola in R2: only invariant tori with rotation vectors that lie
on this curve exist in the integrable case ε = 0. However, we
take δ to be an essential parameter. Allowing it to vary makes
the frequency map Ω : R2

→ R2 a diffeomorphism.
More generally, suppose that the initial point (x, y) = (0, y0)

lies on a rotational, invariant two-torus with rotation vector ω.
We call such a torus Tω(ε, y0, δ), labeling it with parameters ε and
δ as well as the initial action. Note that Tω(0, y0, δ) = H(y0) and
that a Cantor set of Diophantine tori are preserved when ε ≪ 1,
according to the volume-preserving version of KAM theory [5,6].

Previous computational studies of invariant tori for this map
include studies of ‘‘crossing orbits’’ giving parameter thresholds
for the ‘‘last torus’’ that divides vertically separated points [38], a
version of Greene’s residue criterion to find critical tori with given
rotation vectors—tori at the threshold of destruction [28], and the
parameterization method to numerically compute tori and their
breakup thresholds [29].

The first three panels of Fig. 1 show examples of orbits for
(1) with (6) for three values of ε, and δ = −0.4 (other values
of δ exhibit similar behavior). As predicted by KAM theory, when
ε ≪ 1 the typical orbits appear to be dense on (rotational) two-
tori Tω that are graphs over the angles x with y nearly constant.
Even in Fig. 1(a), however one can see two resonant tubes. These
are driven by the primary resonances, (5), of the force F , and
correspond to the phases x1 and x1−x2 remaining constant mod 1
(the third driven resonance, where x2 is constant is out of range of
the figure). These resonant tubes correspond to the resonances in
Table 1 such that (m, n) = (1, 0, 1) and (1,−1, 0) respectively. As
ε grows, more of the orbits become chaotic and other resonances
become visible as tube-like structures, in particular the resonant
tubes with (m, n) = (2,−1, 1) and (2, 1, 2) seen in Fig. 1(b, c).
Note that the transport of chaotic trajectories in y can be impeded
by recently destroyed tori, just like in the 2D case, where it is
known that the flux through cantori is small near the break-up
threshold [38,39].

We restrict our interest to tori with rotation vectors (3), in
a fixed range, ω ∈ [0, 1] × [0, 1]. When ε = 0, (6) implies
that ω depends linearly on δ and quadratically on y0. Indeed,

each resonance in (16) defines a parabola (or a vertical line if

3

m2 = 0), m · Ω(y0, δ) = n, in the (y0, δ) plane. When ε is
relatively small, we expect that persisting rotational tori will
have rotation vectors that at least approximate this quadratic
relationship. To illustrate this we compute the rotation vector
ω using the methods described in Sections 3 and 4. Fig. 1(d)
shows the values of (y0, δ) for which there are rotational tori with
ω ∈ [0, 1]2. The color represents the largest ε ∈ [0.015, 0.045]
for which a rotational torus exists for a given (y0, δ). We omitted
smaller ε values so that the resonant gaps in the figure would be
clearer. The parabolic relationship between y0 and δ is still clear
in this image—the gaps represent initial conditions for which the
corresponding orbits are resonant or chaotic. Several of the low
order resonances are labeled in the figure. As ε grows there are
fewer initial conditions that lie on rotational tori, indicated by the
dearth of yellow in Fig. 1(d).

Our primary goal is to study the persistence of rotational tori
of (1) with conditions (6) as ε grows from 0. We observe in
Section 4 that, for ω ∈ [0, 1]2, there are rotational tori only when
ε < 0.051. In Section 5 we compute the most robust torus in
subsets of this ω region; that is, the rotational torus with the
largest maximum ε value in the subset.

In our calculations, we use the ε = 0 approximation to
determine appropriate ranges for y0 and δ, setting (y0, δ) =
−1(p1, p2), i.e., inverting the frequency map (6), to obtain

y0, δ) ∈ P = {(p1−γ , β(p1−γ )2−p2) : −0.05 ≤ p1, p2 ≤ 1.05}.
(8)

The added 0.05 in P is a buffer to cover all ω ∈ [0, 1]2 as ε grows.
Our calculations indicate this buffer is sufficient; indeed, we have
checked that values of (y0, δ) outside this range do not give such
ω values.

3. Weighted Birkhoff averages

A finite-time Birkhoff average on an orbit of a map f : M → M
beginning at a point z ∈ M for any function h : M → R is the
sum

BT (h)(z) =
1
T

T−1∑
t=0

h ◦ f t (z). (9)

This average need not converge rapidly. Even if the orbit lies
on a smooth invariant torus with irrational rotation vector, the
convergence rate of (9) is O(T−1), caused by edge effects for
the finite orbit segment. By contrast, for the chaotic case, the
convergence rate of (9) is observed to be O(T−1/2), in essence as
implied by the central limit theorem [40].

The convergence of (9) on a quasiperiodic set can be sig-
nificantly improved by using the method of weighted Birkhoff
averages developed in [7–9]. Since the source of error in the
calculation of a time average for a quasiperiodic set is due to the
lack of smoothness at the ends of the orbit, we use a windowing
method similar to the methods used in signal processing. Let

g(t) ≡
{

e−[t(1−t)]
−1

t ∈ (0, 1)
0 t ≤ 0 or t ≥ 1

,

be an exponential bump function that converges to zero with
infinite smoothness at 0 and 1, i.e., g (k)(0) = g (k)(1) = 0 for all
k ∈ N. To estimate the Birkhoff average of a function h : M → R
efficiently and accurately for a length T segment of an orbit, we
modify (9) to compute

WBT (h)(z) =
T−1∑

wt,T h ◦ f t (z) , (10)

t=0
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Fig. 1. (a–c) Orbits for (1) and (6) for δ = −0.4 and three values of ε. All initial conditions have x1 = 0, x2 = 0. Each image shows fourteen different orbits with
y0 ∈ [−0.4, 0.5]. As ε increases, the number of rotational tori decreases, and at ε = 0.05, only resonant tori and chaotic orbits are visible in the figure. (d) Values
f (y0, δ) for which there are rotational tori with ω ∈ [0, 1]2 for ε ≥ 0.015. The color represents the largest value of ε with a corresponding rotational torus. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
here

wt,T =
1
S
g

( t
T

)
, S =

T−1∑
t=0

g
( t
T

)
. (11)

That is, the weights w are chosen to be normalized and evenly
spaced values along the curve g(t). For a quasiperiodic orbit, the
infinitely smooth convergence of g to zero at the edges of the
definition interval preserves the smoothness of the original orbit.
Indeed it was shown in [10] that for a C∞ map f , a quasiperi-
odic orbit {f t (z)} with Diophantine rotation number, and a C∞
function h, it follows that (10) is super-convergent: there are
constants cn, such that for all n ∈ N⏐⏐⏐⏐WBT (h)(z)− lim

N→∞
BN (h)(z)

⏐⏐⏐⏐ < cnT−n. (12)

Several papers [41–43] include a similar method to compute
frequencies with a sin2(π t) function instead of a bump function,
but this function is fourth order smooth rather than infinitely
smooth at the two ends, implying that the method converges as
O(T−4), see e.g., [9, Fig. 7]. In addition to converging more rapidly,
the weighted Birkhoff average (10) is relatively straightforward to
implement.

4. Computing tori

Using the weighted Birkhoff average (10), we can compute an
approximation to a rotation vector ω asWB (Ω) for the frequency
T

4

map (6). To discern whether an orbit lies on a rotational torus Tω

we must first distinguish chaotic from regular orbits, and then
distinguish resonances from nonresonant tori.

By contrast to the case of regular orbits, when an orbit is
chaotic (i.e., has positive Lyapunov exponents), (10) typically con-
verges much more slowly; in general it converges no more rapidly
than the unweighted average of a random signal, i.e., with an
error O(T−1/2) [9,40]. We see in Section 4.1 that this distinction
is valid for the map (1) as well. While is also possible to use
Lyapunov exponents themselves – or the related ‘‘fast indicators’’
such as FLI – for this distinction, we showed previously for the
2D case that the weighted Birkhoff average gives the same result
and that it can be more efficient [11].

Given a regular orbit, in Section 4.2, we use resulting the high-
precision computation ω ≃ WBT (Ω) to define an approximate
resonance order. This allows a distinction, up to some precision,
between those orbits that have a commensurate frequency vector
and those that appear to be nonresonant.

4.1. Distinguishing chaos

To establish the distinction between chaotic and regular orbits,
we estimate the number of digits of accuracy in the weighted
Birkhoff average. Following [11], we compute (10) for two seg-
ments of an orbit, using iterates {1, . . . , T } and {T + 1, . . . , 2T };
these values should be approximately equal when T is large
since the Birkhoff average depends only on the choice of orbit.
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comparison of these gives the error estimate

ig (T )
h = − log10

⏐⏐WBT (h)(z)−WBT (h)(f T (z))
⏐⏐ , (13)

i.e., the number of consistent digits beyond the decimal point for
the two approximations of WB(h). If, for a modest value of T ,
dig (T )

h is relatively large, then the convergence is relatively rapid,
meaning the orbit is regular. On the other hand, if dig (T )

h is small,
then convergence is slow, with the implication that the orbit is
chaotic.

Using h = Ω , (6), the accuracy of the calculation of both
components of ω is

dig (T )
= min{dig (T )

Ω1
, dig (T )

Ω2
}, (14)

In addition to distinguishing chaotic and regular orbits, dig (T ) can
be used to estimate the precision of ω. We will use these preci-
sion estimates in Section 5 when we consider number theoretic
properties of the frequencies of the robust tori.

Fig. 2 shows the behavior of orbits when δ = −0.4 and ε =

0.02 for a set of initial conditions along the line x1 = x2 = 0.
Panel (a) is the slice with |x2| ≤ 0.005 through Fig. 1(b); it
clearly shows a strongly chaotic region for y ≲ −0.41, then
narrower chaotic bands for −0.41 ≲ y ≲ −0.07, followed by
region of tori and resonances up to y ≈ 0.27, and finally a
ixed regular/chaotic region up to y = 0.5. The largest resonant

egions shown correspond to m = (1,−1) near y = −0.16, and
= (1, 0) near y = 0.38; we also saw these in Fig. 1 and Table 1.
Fig. 2(b) shows corresponding values of dig (T ) for three values

f T . Even when T = 103 (blue points), the calculations can
istinguish between strongly chaotic – where dig (T )

∼ 2−4 – and
egular orbits—where dig (T )

∼ 8. However there is a population
f orbits, especially those near the edges of resonant regions, that
ave intermediate values of dig (T ), and for these it is harder to ob-
ain a definitive classification. When T = 3(10)4 (orange points),
he values of dig (T ) become better separated – with regular orbits
aving dig (T )

∼ 13 − 14 and chaotic orbits still having dig (T )
∼

− 4 – but there are still a fair number of intermediate values,
gain especially at the region edges. However, when T = 106

red points), regular orbits predominantly achieve full floating
oint accuracy, dig (T )

∼ 14 − 16, while chaotic orbits still have
dig (T ) ≲ 5.

Fig. 2(c) shows the components of ω computed for T = 106.
ach of the flat intervals corresponds to a range of y values

in a resonant tube, and these are bounded by chaotic regions
where the computed values of ω vary rapidly with y and the
orresponding accuracy is low.
The dichotomy between the values of dig (T ) for chaotic and

regular orbits is also reflected in histograms of dig (T ), shown in
Fig. 3. These show the fraction of those orbits with ω ∈ [0, 1]2
that have a given value of dig (T ) for a range of δ, ε, and initial
conditions (0, 0, y0), with y0 and δ chosen such that (y0, δ) ∈ P ,
(8). For the smaller T , panel (a), there are clear peaks near dig (T )

=

2 and 14 corresponding to chaotic and regular orbits, respectively,
but there is also a broad shoulder with 8 < dig (T ) < 13 that
corresponds to orbits for which the distinction is less clear. Note,
however, that in panel (b), where T = 106, this middle peak has
moved to larger values of dig (T ), leaving only a smaller tail just
below the peak at dig (T )

= 14.
As we saw in Fig. 1, as ε increases the chaotic region expands.

Many of the chaotic orbits leave the interval −0.7 < y < 0.5;
as a consequence, the computed frequencies for these orbits will
be outside [0, 1]2. We think of the orbits that leave the ω range
as essentially unbounded, though we cannot guarantee that there
are no rotational tori acting as barriers at larger or smaller action
values. Fig. 4(a) shows the proportion of the 104 orbits in Fig. 3
that are bounded as ε grows. Since P includes a buffer, at ε = 0,
5

the proportion is 1/1.1 ≈ 91% (not shown in the figure), but for
ε = 0.055, that proportion has dropped to about 10%. Only the
bounded orbits were used in the histograms in Fig. 3.

Fig. 4(b) shows for bounded orbits how the proportions of
values of dig (T ) that are small, intermediate, and large vary with
respect to T . As T grows, the fraction of orbits in the intermediate
range, dig (T )

∈ (5, 11), decreases, and the corresponding fractions
in the lower and upper ranges saturate. In order to choose a
measure to provide a good separation between order and chaos,
we set T = 106 for subsequent computations.

Fixing T = 106, we next need to choose an appropriate cutoff
value for dig (106) to distinguish order from chaos. Fig. 5 shows the
proportion of orbits with dig (106) < 7, 9, 11. Even though varying
the cutoff does give quantitative differences, the proportions have
the same qualitative form as ε varies. In particular, the propor-
tions grow when ε < 0.03, reflecting the increasing fraction of
bounded orbits that are chaotic. Beyond the peak at ε = 0.03,
the fraction of unbounded orbits increases rapidly as the tori,
which act as transport barriers [38,39], are destroyed, allowing
the escape of previously trapped, chaotic orbits. Since we want
to be conservative in classifying an orbit as a regular – as well as
to guarantee that ω has high accuracy – we use the cutoff

dig (106) > 11 (15)

to declare that an orbit is ‘‘nonchaotic’’.
Fig. 6 shows the set of frequencies for the nonchaotic, bounded

orbits as a function of ε as identified using the criterion (15). Note
that this number drops significantly for large values of ε.

4.2. Distinguishing resonances

In this section, we seek a numerical method to distinguish
between resonant and incommensurate vectors. For a given ω ∈
Rd, define the resonant module

L(ω) ≡ {m ∈ Zd
: m · ω ∈ Z}. (16)

We say that ω is incommensurate when L(ω) = {0}. By contrast,
ω, is resonant if (16) is nontrivial, i.e., if there is a nonzero vector
m ∈ Zd that satisfies (5). Of course, if m,m′ ∈ L(ω), then so are
m + m′ and km for any k ∈ Z: the set (16) of such vectors is a
module. The length, M = ∥m∥1, of the smallest (nonzero) integer
vector m in L(ω) is the order of the resonance.

The rank of a resonant frequency ω is the dimension of L(ω).
We say that a frequency is rational if dim(L(ω)) = d. In this case
there is a (p, q) ∈ Zd+1 so that ω =

p
q ; i.e., ω ∈ Qd. When d > 1,

very rational frequency is resonant, but the converse need not
e not true. For example, the vector (

√
2, 2 + 3

√
2) is resonant

with (m, n) = (−3, 1, 2), but it is not rational. For this example
he resonance order is M = 4.

Since we can compute the frequency vector for an orbit only to
inite precision, we can only evaluate resonance up to some preci-
ion. If ω ∈ Rd is (m, n) resonant, then it lies in the codimension-
ne plane

m,n = {α ∈ Rd
: m · α − n = 0}. (17)

The collection of resonant vectors is

R =
⋃

m,n∈Zd+1\{0}

Rm,n. (18)

For the case d = 2 of interest here, the lines up to order M = 8
are shown for a portion of the ω-plane in Fig. 7. Of course R is
dense in Rd, as are the Diophantine vectors (4).

We will say a vector ω is (m, n) resonant to precision ρ if the
resonant plane intersects a ball of radius ρ about ω, i.e., if

R ∩ B (ω) ̸= ∅. (19)
m,n ρ
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Fig. 2. Orbits of (1) for δ = −0.4, and ε = 0.02 with initial conditions (0, 0, y) and a grid of 104 initial y values between −0.7 and 0.5 (a) Slice for |x2| ≤ 0.005
howing the (y, x1) phase space. (b) dig (T ) , (14), as a function of initial y for T = 103 (blue), 3(10)4 (orange), 106 (red). The value of dig (T ) changes significantly more
t the edge of resonant tubes than it does in the middle of the tube, and for small T the accuracy of the computation is low. (c) The two components of the rotation
ector ω using T = 106 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Frequency histograms of dig (T ) for (a) T = 3(10)4 and (b) T = 106 for a 100 × 100 grid on the domain P , (8), for initial conditions (0, 0, y0) and 50 values
f ε ∈ [0.005, 0.055].
Fig. 4. (a) The proportion of orbits in P with ω ∈ [0, 1]2 as a function of ε. As the tori are destroyed, only a small fraction of orbits have computed rotation
ectors in this range. (b) Log–log plot of the proportion of bounded orbits with dig (T ) < 5 (blue), between 5 and 11 (red), and > 11 (yellow) as a function of T . (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
u
n

sing the Euclidean norm, the minimum distance between the
esonant plane and the point ω is

m,n(ω) = min
α∈Rm.n

∥α − ω∥2 =
|m · ω − n|
∥m∥2

. (20)

Thus we say that ω is (m, n) resonant to precision ρ, whenever
∆ (ω) ≤ ρ.
m,n

6

Given a vector ω and a precision ρ, what is the smallest order
resonance with ∆m,n(ω) ≤ ρ? For the one-dimensional case
(d = 1), the answer to this question can be efficiently computed
sing the Stern–Brocot (or Farey) tree. Indeed, as we previously
oted [11], for any ρ > 0, the rational p

q with the smallest
denominator in the interval [ω−ρ, ω+ρ] is the first such rational
on the tree that falls in that interval. The Stern–Brocot tree is
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Fig. 5. The proportion of bounded orbits that would be labeled as ‘‘chaotic’’ in P with ω ∈ [0, 1]2 using the criteria dig (T ) < 7, 9, 11 respectively with T = 106 . In
ach case the proportion peaks near ε = 0.03. By criterion (15), the blue (11) curve shows the proportion of chaotic orbits. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Rotation vectors ω ∈ [0, 1]2 for the 1, 613, 136 nonchaotic, bounded orbits, computed using a 10002 grid in the domain P , (8), and ε ∈

0.015, 0.022, 0.029, 0.036, 0.43, 0.05}, determined using the criterion (15). As we see in Section 4.2, the straight lines correspond to orbits trapped in low-order
esonant tubes.
ssentially the generalization of the continued fraction to include
‘intermediates’’ as well as convergents of ω.

As far as we know, there is no generalization of this result for
> 1. Since there are finitely many m ∈ Z with ∥m∥1 ≤ M , a
rute force computation is of course possible for modest values of
. For example, given any ρ > 0, and ignoring issues of floating
oint arithmetic, Algorithm 1 will return

(ω, ρ) = min{∥m∥1 : ∆m,n(ω) ≤ ρ}, (21)

hich we could call ρ-order of ω.
As an example, consider the so-called spiral [26] or plastic [44]

ean, the real solution to
3
= σ + 1⇒ σ ≈ 1.324717957244746. (22)

his generates an algebraic fieldQ[τ ]with integral basis (1, τ , τ 2).
he sequence of minimal order resonances for the frequency
σ−1, σ−2) = (σ 2

− 1, σ − σ 2
+ 1) with tolerances ρ = 10−j for

up to 14 is shown in Table 2. For example, M(ω, 10−9) = 1119.
ote that this vector is Diophantine (4) [45]. The first five optimal
esonant lines are shown in Fig. 7.
7

Algorithm 1 Minimal resonance order (21) to precision ρ for
ω ∈ Rd.

procedure ResonanceOrder(ω,ρ)
M = 0, ∆ = 1
while ∆ > ρ do

M ← M + 1
for m2 = −M to M do

m1 = M − |m2|

n = round(m · ω)
∆ = min

(
∆,
|m·ω−n|
∥m∥2

)
end for

end while
return M
end procedure

The resonance orders (21) in Table 2 grow as a power of the
inverse of the precision ρ with the best-fit

M(ω, ρ) ≃ 0.944 ρ−0.336.
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Fig. 7. Resonant lines (gray), Rm,n , up to order M = 8. Also shown are those of minimal order for the spiral mean frequency (σ−1, σ−2), see (22), for five values of
, 10−1 to 10−5 from Table 2.
d
ε

able 2
ptimal resonances and resonance orders for the frequency ω = (σ−1, σ−2),
een in Fig. 7, as the precision ρ decreases. Note that without loss of generality,
e can assume that n is nonnegative.
log10(ρ) ∥m∥1 m1 m2 n

−1 2 0 2 1
−2 4 4 0 3
−3 10 7 3 7
−4 25 −10 15 1
−5 49 −9 40 16
−6 96 7 89 56
−7 208 171 −37 108
−8 387 316 71 279
−9 1119 −350 769 174
−10 2064 −176 1888 943
−11 4306 3952 354 3185
−12 10322 6783 3539 7137
−13 24301 10676 −13625 295
−14 48897 −10971 37926 13330

Here is the intuition as to why this occurs: by Theorem 1 in
Appendix A, for each K > 0, there is an m ∈ Z2 with ∥m∥∞ ≤ K
uch that for p = 2

m,n ≤
1

∥m∥2K p . (23)

Furthermore, a result of Laurent, see e.g., [46, p. 693], implies that
for almost all ω ∈ R2, it is not possible to satisfy this equation for
any value of p > 2. Therefore, we expect that the typical value
of ∥m∥∞ is close to the maximal value, i.e., that the satisfaction
of this bound requires that ∥m∥∞ ∼ K . Then since the norms
of m are equivalent, choosing K = ρ−1/3, we get ∆m,n ≲ ρ, for
∥m∥1 ∼ ρ−1/3.

More generally, for a given ρ, we computed the minimal reso-
nance order (21) for a set of equi-distributed, random ω ∈ [0, 1]2,
see Fig. 8(a). The log of these values have mean
⟨log10 M(ω, 10−9)⟩ = 2.92 and standard deviation 0.171, though
the distribution differs significantly from a normal with the same
mean and deviation (the red curve in the figure). For the 104

randomly chosen ω we found that

M(ω, 10−9) ≤ m = 3841, (24)
max

8

and only six cases had M > 2500. A similar distribution holds
for other values of ρ. As shown in Fig. 8(b), the mean of log(M)
depends linearly on log(ρ), with the best fit

⟨log10 M(ω, ρ)⟩ = −0.334 log10(ρ)− 0.091, (25)

which is again consistent with (23).
The computation of the minimal resonance order is applied to

the dynamical frequency vectors in Fig. 9 using ρ = 10−9. The
ata corresponds to the nonchaotic orbits on a grid of (y, δ) for
= 0.043. The orbits with M < 8 (dark blue), clearly lie on

the low-order resonant lines (gray) shown in the figure. Of the
nonchaotic orbits at this value of ε, only 76 have M > 250, and
only 79 have M > 200. It is clear that for this value of ε, there
are very few rotational tori. A similar picture is obtained when
more values of ε are included in Fig. 10. The left panel shows
the frequency vectors for the nonchaotic orbits of Fig. 6, now
projected onto the ω plane. Note that many of the resonant lines
lie in gaps in the figure, with clear clusters of points along the res-
onances. Indeed, if we change the color scale to be log10 M(ω, ρ)
for ρ = 10−9, the resonances again show up as dark blue lines,
see Fig. 10(b).

Since randomly chosen ω will almost always be incommen-
surate, the dynamically obtained frequency vectors that are reso-
nant should have values of (21) below the bulk of the distribution
shown in Fig. 8. This is confirmed in Fig. 11(a), a histogram of
resonance orders for the orbits from Fig. 6. Note how resonant
tubes in the dynamics change the histogram from that of the
random frequencies in Fig. 8. Indeed about 60% of these orbits
have M = 1 or 2 corresponding to the largest resonances due to
the Fourier terms of the force (6), and only 20% have M > 250,
i.e., the bulk of the domain of Fig. 8.

For our calculations, we will declare ω to be resonant if
log10(M) is more than three standard deviations below the mean
of the random data of Fig. 8. Given that the cutoff (15) gives at
least 11-digit accuracy in ω, we will use ρ = 10−9 so that the
computation of ∆m,n < ρ from (20) has significance. In summary
we use the cutoff

M(ω, 10−9) > 102.4
= 251 (26)

to declare that an orbit is ‘‘nonresonant’’. Using this cutoff,

Fig. 11(b) shows that the fraction of nonchaotic trajectories from



J.D. Meiss and E. Sander Physica D 428 (2021) 133048

Fig. 8. (a) Probability density of the logarithms of minimal resonance orders (21) for 104 random vectors with precision ρ = 10−9 . The dot (red) on the horizontal
axis shows the mean, 2.92, the thick line (green) shows one standard deviation 0.171, and the curve (red) shows the normal distribution with these parameters. (b)
A log–log plot of the mean and standard deviation of resonance order as a function of precision for a sample of 2000 random vectors. The line (red) is the least
squares fit (25).

Fig. 9. Frequencies of the 140,338 nonchaotic orbits on a 10002 grid in (8) of initial conditions for ε = 0.043. The color scale is log10(M). Only 76 of these orbits
have log10(M) > 2.4. Also shown are the resonant lines, Rm,n , up to order 8. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. (a) The rotation vectors for nonchaotic orbits, using the same data as Fig. 6, now viewed in a two-dimensional projection. The color scale gives largest ε

for which there is a nonchaotic orbit for the given (y0, δ). (b) The same data, but this time colored using the ρ-order, (21). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

9
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Fig. 11. (a) Histogram of log10(M) for the data of Fig. 6. (b) The fractions of nonchaotic orbits with ω ∈ [0, 1]2 that correspond to resonant (blue) and rotational
ori (red) as a function of ε using the criterion (26). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
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ig. 6 that are resonant, i.e., trapped in resonant tubes, grows
onotonically with ε, reaching 100% near ε = 0.043.
Now that we have introduced the full computational method,

e give some information about its computational complexity.
he total runtime starting with initial conditions and distin-
uishing chaotic from nonchaotic and resonant from rotational
rbits in Matlab 2020b using a 14-core Intel Xeon W processor
t 2.5 GHz with 64 GB memory is approximately 2250 orbits
er minute. The computation of M(ω, 10−9) for 2250 frequency
ectors takes approximately 32 s, i.e., roughly half the calculation
ime.

Applying this criterion to the data in Fig. 10, separates the
0% of the orbits that are resonant, shown in Fig. 12(a), from the
emaining 20% of orbits that are not resonant, shown in Fig. 12(b).
e assume that each of these latter orbits lies on a rotational

orus, Tω .

. Critical sets

In this section we investigate the robustness of invariant tori
s a function of the perturbation strength ε. In particular we are
nterested in finding critical tori: those on the threshold of de-
truction. For smooth, two-dimensional, twist maps, an invariant
ircle with rotation number ω ∈ D is critical if has a non-smooth
onjugacy to the rigid rotation θ ↦→ θ +ω mod 1. This idea was
xtended to the three-dimensional case in [29]. Since we are not
omputing the conjugacy, we instead define εc(ω), following [2],
o be a value at which a rotational torus Tω(εc, yc, δc) breaks up;
i.e., in any neighborhood N of (yc, δc), there is a ∆ε > 0 such
that when εc < ε < εc + ∆ε, there is no torus Tω(ε, y, δ) with
the same rotation vector for any y, δ ∈ N .1

When ω ∈ D, and Ω(y, δ) is a bijection and satisfies a twist
condition, then KAM theory implies that for small enough ε > 0
a torus will exist for some point (y0, δ) [5,6]. On the other hand,
each resonant torus, Tω(0, y0, δ) for (y0, δ) = Ω−1(R), generically
breaks up at ε = 0. Define the critical set

εc(ω) = {ε : Tω(ε, y0, δ) breaks up for some (y0, δ) ∈ P} . (27)

For the simplest, two-dimensional case, e.g., the one-parameter
hirikov standard map, the critical set appears to be a graph over

1 One could also look for parameters at which a torus ‘‘re-forms’’, so that it
oes not exist when ε < εc (ω). Since we start from the integrable case, however,

it seems sensible to first look for breakup values.
10
ω, and each invariant circle – once destroyed – does not reap-
pear [47]. However critical set can be much more complicated for
maps with several parameters, e.g., multiharmonic maps [48], or
for nontwist maps [49]. For the standard volume-preserving map,
(6), we do not actually know whether the critical set is simple,
with only one breakup for each ω. Nevertheless, we expect that
εc(ω) = 0 whenever ω ∈ R and εc(ω) > 0 for ω ∈ D. Since
both of these sets are dense, the critical surface will be nowhere
continuous.

5.1. Locally robust tori

As an illustration of the critical set, Fig. 13 shows tori that
exist for a 100 × 100 grid in P , (8), for 50 evenly spaced ε ∈
[0.015, 0.045]. A point (ω, ε) is shown in the figure if the parame-
ters (ε, y0, δ) give a rotational torus, Tω(ε, y0, δ), using the criteria
described in Section 4. The upper boundary of the points shown
provides a rough approximation of the critical set (27). Of the
critical tori, some have locally maximal values of εc(ω), i.e., there
is a neighborhood for which all critical tori have smaller εc . We
will call such tori locally robust.

To find approximations for the locally robust tori in Fig. 13, we
search for local peaks in sub-regions of the critical set using a re-
finement method that does not rely on smoothness. In particular,
for a fixed subset of [0, 1]2, we start at ε = 0.01 with a 100× 100
grid of corresponding points in (y, δ), keeping only those (y, δ)
that correspond to a rotational torus in the ω region. At each step
we refine the grid for the set of parameters that have tori and
increment ε→ ε+ dε. Both the increment dε and the number of
grid points are adapted depending on the tori at the previous ε.
he grid size remains 100 × 100 until the grid spacing is below
0−12 in the y or the δ direction. After this point we use a 10× 10
rid. To choose the next dε, if more than twelve tori remain at ε,
hen dε → 1.3 · dε. If between four and twelve tori remain, dε
is unchanged, and if fewer than four tori remain, dε → dε/2.
inally, if no tori are found, then dε → dε/2, and instead of
ncreasing ε, we decrease it such that ε→ ε− dε. Our procedure
halts once we have determined a single value that is isolated on
a grid of 10 × 10 points such that ymax − ymin and δmax − δmin
re both less than 10−12, and such that there is no torus in the
ame region for ε+10−14. Thus these values should correspond to
local peaks up to the corresponding accuracy in δ, y, ε. Dividing
[0, 1]2 into four regions, the maxima that we computed are listed
in Table 3. The last two rows of the table are the computed dig (T )

and M(ω, ρ) for these tori. Note that in each case, dig (T )
∼ O(11),
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Fig. 12. Frequency vectors for (a) 1, 295, 986 resonant orbits and (b) 317,150 nonresonant orbits, using the data of Fig. 6. These are distinguished by the criterion
(26). Values are colored by the largest ε for which a torus persists at the corresponding (y0, δ) ∈ P . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 13. Rotation vectors corresponding to rotational tori, using a 1002 grid in the domain P (8), and 50 ε values. The color scale represents ε and is the same as
ig. 12.
h
l
t
b

ω
a
e
a
t
f
w
t
d
c
ω

elow the mean O(14) of Fig. 3. This drop is expected since, as we
ill see in Section 6, the number of correct digits drops rapidly
s a torus nears criticality. Rather than using the standard value
f ρ = 10−9 of criterion (26) to determine whether the torus
s non-resonant, the table uses ρ = 10−dig

(T )
, since this is the

omputed accuracy of the rotation vector. In Fig. 14, we show
ow M(ω, ρ) varies with respect to ρ−1. On average, M remains
ear the expected fit from the random vectors in Fig. 8. However
n several cases, M remains constant for an interval below ρ =

0−8 before jumping up several orders of magnitude near 10−11.
The global maximum, found in quadrant II where ω ∈ [ 12 , 1]×

0, 1
2 ], agrees within 0.6% for ε and ω of the results in [28] that

ere achieved using Greene’s residue method. In that paper, tori
ere approximated using periodic orbits chosen on the Kim–
stlund tree and the most robust torus was represented by a
eriodic orbit of period 32,316. This torus was estimated to
reakup at ε = 0.0512 ± 0.0005. For the initial conditions

corresponding to this value, the weighted Birkhoff method iden-
tifies the orbit as chaotic for ε > 0.0512 − 0.00050005. Thus
he identification of regular orbits using the Greene’s residue
ethod in [28] is slightly less restrictive than the identification
f regularity that we are using in the current paper.
11
We now give a more in depth computation of the critical set,
taking slices through Fig. 13 by choosing a curve in (y0, δ)-space.
Such a slice, fixing δ and varying y0, is shown in Fig. 15. Points
ere correspond to tori indicated in Fig. 1(d) along the horizontal
ine at δ = −0.4. Here we plot the values of ε for which there is a
orus Tω(ε, y0,−0.4) as y0 varies. The horizontal axis is taken to
e ω1 since, when ε = 0, ω1 = Ω1(y,−0.4) = y+γ is a bijection.

Note that since the rotation vectors in Fig. 15 are computed on a
fixed grid in y0, they are not true peak values, like those we found
by refinement in Table 3.

In this cross section, as well in similar cross sections for five
other δ values, there appears to only be one critical torus at any
. In particular, the empty holes in the enlargement are sampling
rtifacts that go away when computing on a finer grid. As the
nlargement shows, for each fixed y0, the curve in (ε, ω1) begins
s a line for small ε, but each bends as ε grows, especially for
hose values approaching a visible resonant region. The curve for
ixed y0 does not always slope in the same direction, as we also
ill see below in Fig. 20. Gaps in these constant y0 curves appear
o be due to crossing such resonances. Unfortunately, since ω
epends on (y0, δ, ε), the cross section is not a simple plane ω2 =

onstant. Nevertheless, since ε is relatively small, the values of
(y ,−0.4) lie almost on a curve, as shown in Fig. 15(b), that is
0
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Table 3
Most robust tori in four ω regions. These were computed by successive refinement of a grid in P . To compute M we have used
ρ = 10−dig

(T )
. The value of M is significantly smaller for ρ = 10−9 of (26) (see Fig. 14).

Quadrant I II III IV
ω-region [0, 1

2 ]
2

[
1
2 , 1] × [0, 1

2 ] [0, 1
2 ] × [

1
2 , 1] [

1
2 , 1]2

εc 0.031282089698381 0.051261692234977 0.032740058025373 0.041019021169048
δ −0.133386500670280 −0.334376117328629 −0.743481096516467 −0.884496372446711
y −0.119301311749656 0.123097748168231 −0.162656510381853 −0.046691232395606
ω1 0.476213927381772 0.734410803700126 0.482238008029131 0.641541383714863
ω2 0.175290820661118 0.365412254352543 0.781945554897404 0.890319673258112
dig (T ) 11.35 11.12 11.17 11.26
M(ω, 10−dig

(T )
) 5052 345 9898 19083
Fig. 14. Resonance order for the four ω in Table 3, plotted as a function of ρ−1 . In each case, when ρ−1 small, M(ω, ρ) stays near the average of the random values
n Fig. 8 (dashed line). However, in three cases for larger ρ−1 there are significant intervals where M(ω, ρ) remains flat.
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lose to the parabola in given by (8). This thickened curve has
aps due to resonances and has a maximum thickness ∆ω2 ∼

.001. The thickness is largest when 0.5 < ω1 < 0.9 where, as is
een in Fig. 13(a), tori persist for larger ε.
Note that the critical set seen in Fig. 15(a) is visually similar

o that for the standard map [2], which is zero on every rational
nd has local maxima on the noble numbers. In our case the zeros
ccur whenever the cross section intersects a resonant line, and
he local maxima are perhaps narrower than in the 2D case.

.2. Best approximants

Lochak [35] conjectures that the robust two-tori for a symplec-
ic map of the form (1) with d = k = 2 will have rotation vectors
uch that (ω, 1) is an integral basis for the cubic algebraic field of
iscriminant 49 generated by
3
+ α2

− 2α − 1⇒ α = 2 cos(2π/7), (28)

see Appendix B). The field Q[α] has an integral basis (ω, 1) with

ω = (α2
− 1, α − 1)

≈ (0.554958132087371, 0.246979603717467).
(29)

his field has the smallest discriminant amongst all totally real
ubic fields. An alternative conjecture, probably due to Kim and
stlund [26], is that the spiral field, (22), should give the gen-
ralization of the noble numbers for two-dimensional maps. The
piral mean is a Pisot (or PV) number: its minimal polynomial
as only one root outside the unit circle [22]. The spiral field is
omplex with discriminant −23, the smallest, in absolute value
12
f all cubic fields; moreover, it is the smallest Pisot number (see
ppendix B). We will consider the vector

= (σ −1, σ−1) ≈ (0.324717957244746, 0.754877666246693),
(30)

hich, together with 1 gives an integral basis for Q[σ ]. Fi-
ally, [24] considers the field with discriminant −44 and the
inimal polynomial
3
− τ 2
− τ − 1⇒ τ ≈ 1.83928675521416, (31)

nd chooses a basis vector for Q[τ ] that is distinguished by
having a periodic sequence in its Jacobi–Perron expansion (see
Appendix B):

ω = (τ − 1, τ−1) = (0.83928675521416, 0.543689012692076).
(32)

Here we would like to provide evidence for/against these conjec-
tures.

As a first attempt, we investigate the Diophantine constants
for the robust frequency vectors that we have found. As discussed
in Appendix A the simultaneous Diophantine constant can be
computed by finding rational approximations ω ≈

p
q , and com-

uting ∥qω∥Z = ∥qω − p∥∞. The sequence of periods, qi, (34),
efined so that ∥qiω∥Z decreases monotonically, corresponding to
sequence of best rational approximations ω ≈

pi
qi
. A frequency

vector is Diophantine if the sequence

cs(ω, qi) = qi∥qiω∥2Z
s bounded away from zero as qi → ∞ (see (37)–(38) in Ap-
endix A).
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Fig. 15. Rotation vectors for rotational tori with fixed δ = −0.4 and for a grid of 1000 y ∈ [−0.05− γ , 1.05− γ ] as in (8) and a grid of 500 ε ∈ [0.0015, .055]. (a)
ata projected onto the (ω1, ε)-plane, with an enlargement for a small ω1 range shown in the red box. (b) A projection of the same data onto the ω-plane.
For example, the sequence of Diophantine constants cs(ω, qi)
or (29) are shown in Fig. 16(a) (see the data in Table 5 of
ppendix A). These appear to oscillate quasiperiodically but are
ounded below, giving an estimate cs(ω) ≈ 0.19 for the D = 49
ield, at least for qi ≤ 108. It is conjectured that there is some
ntegral basis in this field with Diophantine constant 2

7 ≈ 0.286,
and that this value is the largest possible for d = 2 [36]. The
corresponding Diophantine sequence for (30) in the D = −23
field and (32) in the D = −44 field, are also shown in the figure—
again they are bounded away from zero as is consistent with the
known Diophantine property of cubic fields. The dependence of
cs on qi is less regular for these two vectors than for the first case,
and the limit infimum appears smaller, cs(ω) ≈ 0.1.

We show in Fig. 16(b) the sequence of Diophantine constants
computed for the four robust tori from Table 3. For these vectors,
the values cs(ω, qi) appear to be bounded away from zero for
qi ≲ 105, but the values are smaller than the pure cubic vectors.
Note however, that the peak in quadrant I could have cs(ω) ≃ 0.1,
though numerical issues cause the value to drop when qi > 105.

Fig. 17 shows histograms of the Diophantine sequence cs(ω, qi)
for three different data sets. The first correspond to randomly
chosen ω ∈ [0, 1]2. Note that this distribution decreases mono-
tonically, perhaps consistent with the expectation that there will
be near rational vectors in a random collection. To construct a
second data set, we fix the vector (α, α2, 1), an integral basis
for the D = 49 cubic field. Multiplication of this vector by any
matrix A ∈ SL(3,Z) results in another integral basis. We choose
four elementary matrices that generate this group, and randomly
draw a product of 50 of these matrices to give a set of integral
bases for this field. The resulting Diophantine constants have the
distribution as shown in Fig. 17(b). Note that this distribution is
peaked away from cs = 0.

Finally, in Fig. 17(c), we compute cs(ω, qi) for the local peak
data that is obtained as follows. A discrete approximation to
εc(ω) is obtained from a 300 × 300 grid in P and 50 values of
ε ∈ [0.005, 0.045] –a refinement of data set shown in Fig. 13.
Then for each bin in ω of size 0.01 (1002 bins) we select εc to
be the largest of the ε for tori with ω falling in that bin. This
gives 3066 bins that have tori with εc > 0.02. Since the true
critical surface is not smooth or continuous, these values almost
certainly do not include the true local maxima for all ω in each
bin; indeed the largest εc on this grid in P is 0.045, below that
of the most robust torus in Table 3 that we found by refinement.
Nevertheless, this process gives a set of tori that are more robust
than their computed neighbors, so that these tori are, at least,
locally robust, if not true local maxima.
13
Note that the maximum of the distribution for the peak tori
is shifted to cs ∼ 0.1, considerably above that of the cubic
field, indicating that the peak tori are preferentially selected to
have larger Diophantine constants. Indeed, even though all three
distributions have similar means and standard deviations, they
are statistically different: a Kolmogorov–Smirnov test applied to
these data sets indicates that these distributions are distinct with
p-values that are extremely small.

The histograms shown Fig. 17 do not distinguish values of cs
as a function of the period qi. To do this, Fig. 18 shows two-
dimensional histograms with bins for both cs and log10(q). The
comparison of the randomly generated data, in the left panel,
with the data from the computed peak rotation vectors in the
right panel, shows again the that the latter has significantly more
values of cs bounded away from zero.

In conclusion, our computations give strong evidence that
the more robust tori preferentially have larger values of the
simultaneous Diophantine constant, at least up to periods qi ∼
106.

6. Continuation

In order to further test the conjectures on which classes of fre-
quency vectors correspond to most robust tori, we study here the
breakup of tori Tω for several fixed rotation vectors. In particular
we will find tori for vectors in the three cubic fields that have the
smallest discriminants: D = −23, 49, and −44, recall (22), (28)
and (31).

As we noted, each of these fields has properties making it
a candidate to generalize of the set of noble numbers, Q[φ].
The field Q[σ ] is generated by the smallest Pisot number and
has bases that are periodic sequences in the Kim–Ostlund gen-
eralization of the Farey tree. The field Q[α] is conjectured to
have bases with the largest possible simultaneous Diophantine
constant. The fieldQ[τ ] contains a basis with a period-one Jacobi–
Perron sequence, one generalization of the continued fraction, see
Appendix B.

For each case (29), (30), and (32), give vectors for which (ω, 1)
is an integral basis for the respective cubic field. Additionally,
we will consider the permuted vector (ω2, ω1, 1), which gives an
additional integral basis for the same field, so that there is a set
of six vectors, ω∗, that we study.

For each frequency vector, we continue the torus with respect
to the parameter ε, e.g., finding Tω∗ (ε, y(ε), δ(ε)), fixing ω = ω∗.

We find the maximum ε such that the corresponding torus is
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Fig. 16. Diophantine constants for best approximants. (a) Frequencies in the cubic field with discriminants D = 49 (29), D = −23 (30), and D = −44 (32). (b) The
eak frequencies in the four quadrants of Table 3.
Fig. 17. Histograms of Diophantine constants cs(ω, qi) for the sequence of best periods {qi} for frequency vectors ω computed to ∥qiω∥Z ≤ ρ = 10−11 . (a) 4000
andom frequency vectors chosen from a uniform distribution in [0, 1]2 (mean = 0.180, σ = 0.139). (b) 4000 vectors that are integral bases in the cubic field with
iscriminant D = 49 (mean = 0.186, σ = 0.135) (c) 3066 frequencies of tori that are locally robust on a 1002 grid for ε > 0.02 (mean = 0.199, σ = 0.134).
Fig. 18. Diophantine constants vs log10(q) for randomly chosen ω equi-distributed in [0, 1]2 (left panel) and ‘‘peak’’ tori of the volume-preserving map (right panel).
ε

f
p

onchaotic—using the dig (T ) criterion (15). The torus is found us-
ng a predictor–corrector method starting with the guess (y, δ) =
−1(ω∗) at a small value of ε. Specifically, at each ε, we apply the
atlab root finder fsolve to find the value of (δ(ε), y(ε)) such

hat the rotation vector is ω∗ when computed using WB . We
106 c

14
look for εc such that dig (T ) > 11, but for which dig (T ) < 11 when
c < ε < εc+10−9. Fig. 19 shows an example of the computation
or (32). The results for other ω values appears quite similar. In
articular, as seen in Fig. 19(b), dig (T ) drops very quickly near the
ritical value.
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Fig. 19. An example of a rotational torus found using a predictor–corrector continuation method using the weighted Birkhoff method. (a) The graph (y(ε), δ(ε)) for
a torus Tω(ε, y, δ) with ω = (τ−1, τ − 1) in the D = −44 field. (b) Number of correct digits in ω as a function of ε. This number drops precipitously as ε approaches
the critical value 0.028845453269968, see Table 4. In each case, the blue dots are the computed points.
Results of the continuation method for six frequency vectors
are shown in Fig. 20 and Table 4. None of these frequency vectors
correspond to the globally most robust torus, nor to the quad-
rant maxima found in Table 3. The first case shown, the spiral
frequency (σ − 1, σ−1), was also studied in [28]. They found the
stability threshold εc = 0.02590 ± 5(10)−5 extrapolated from a
sequence of periodic orbits up to period 31,572. Note that our
threshold in Table 4, εc ≃ 0.02573 = 0.02590 − 1.7(10)−4,
is again slightly more conservative than that given by Greene’s
residue.

While it is not possible to compute whether these tori are
locally most robust on arbitrarily small neighborhoods, we can
quantify the degree to which they fail to be local maxima on a
fixed small interval in ω1, fixing a cross-section δ = δc that passes
through the corresponding critical point. We compute rotational
tori for values of y near yc such that the spacing of ω1 values is
approximately 10−4 (i.e., using the ε = 0 approximation for y and
δ), and the ε spacing is 4(10)−5 with ε ≤ εc +0.005. Of these, we
consider only tori with |ω1 − ω∗1| < 0.002, and which are more
robust than ω∗. These tori correspond to the points in Fig. 20 that
lie above εc(ω∗), which is indicated by the (red) X in each panel.

One measure of local robustness is the distance,
∆ω = |ω1 − ω∗1|, to the closest, more robust torus. The first
spiral mean vector, (a) in the table and figure, has a distance of
∆ω ∼ 2(10)−3; this makes it five-times more robust than (e), the
first D = −44 torus, and more than 25-times more robust than
all others. By this measure the frequency (b) in D = −23, is least
robust since there is a more robust torus within ∆ω ∼ 4(10)−6.
This measure best matches what is observed by eye in Fig. 20,
where similarly (a) and (e) appear the most locally robust within
a single peak of the each panel.

Another measure of robustness is the distance ∆ε = εc(ω) −
εc(ω∗) for the most robust computed torus in the interval. By this
measure, the first vector, (a), is more robust in the sense that
for this torus ∆ε ∼ 3(10)−4, and this value is at least three-
times smaller than that for any of the other tori. Torus (b), the
second spiral mean case, is the least robust with ∆ε more than
nine-times larger than the value for (a).

Finally, the last column of Table 4, labeled #M.R., lists the
number of more robust tori within the computed frequency in-
terval. Again by this measure the first spiral mean, (a), is the most
robust since the number is least 14-times smaller than any other
number. The second spiral mean, (b), is the least robust with 180
nearby, more robust tori.

From these results, though none of the six vectors considered
is locally robust over a large range, both (a) and (e) could be
15
considered locally robust, and the first spiral mean case, (a), is
the most robust over the range we have considered. This perhaps
provides some indication that the spiral field remains the best
candidate to generalize the noble numbers. Nevertheless, since
there are a countably infinite number of vectors in each field, we
cannot rule out that another representative would behave more
robustly.

7. Conclusions

In this paper we develop criteria to distinguish orbits that lie
on rotational two-tori from those that are chaotic or resonant, as
well as to compute rotation vectors for the rotational two-tori.
Our model is a three-dimensional, volume-preserving map (1)
with frequency map and force (6), and the primary tools are the
weighted Birkhoff average (10) and an algorithm for calculating
resonance order, Algorithm 1.

To distinguish chaotic from regular orbits and calculate rota-
tion vectors, we use the weighted Birkhoff average. Computation
of the rotation vector of the tori to at least 11-digit accuracy
required 2T = 2(10)6 iterates of the map – the second half of the
iterates being used to estimate the error (13). However in most
cases as we saw in Fig. 3, many fewer iterates – say 3(10)4—would
be sufficient to obtain this accuracy and to distinguish regu-
lar from chaotic dynamics. Moreover, as we previously showed
in [11], the weighted Birkhoff average is more efficient than other
techniques, such as Lyapunov methods, for this distinction.

To distinguish tori from resonances, it was important to use
‘‘linear approximations’’ rather than the often-used simultaneous
approximations to the vector ω: we look for the closest reso-
nant line (5) to the computed rotation number in the sense of
Euclidean distance (20). Unlike the case of a single frequency
(where the Stern–Brocot tree is the optimal method [11]), there
seems to be no general theory that gives a ‘‘fast’’ method for
determining optimal linear approximations. The general theory
of optimal resonance order is not completely understood, though
the scaling of resonance order with tolerance that is seen in Fig. 9
is what would be expected from the theorems of Dirichlet and
Minkowski (see Appendix A).

To compute resonance order to a precision ρ we use a brute
force method, recall Algorithm 1, and unfortunately, this is a
substantial part of the computational cost in our method (about
50% of the effort). Nevertheless, is important to find such linear
approximations to eliminate dynamical resonances; such orbits
lie on regular tori that are not ‘‘rotational’’, instead these enclose
isolated invariant circles of the map (if they exist [37]).
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Fig. 20. Tori in the (ω1, ε) plane, near εc (ω∗) for the six vectors ω∗ in Table 4. Each point represents a torus at a fixed δ = δc that passes through the corresponding
ritical point. In each figure, the (red) X marks the location of the associated critical torus. The frequencies corresponding to nearby tori (blue) are computed on a
rid with spacing 10−4 in ω1 and 4(10)−5 in ε.
Table 4
Critical parameters for tori in cubic fields with discriminants −23, 49 and −44, recall (22), (29), and (32). The labels (a)–(f) indicate
the corresponding panel in Fig. 20. For each field, two rotation vectors ω∗ are chosen, related by permutation. The torus Tω∗ (ε, y, δ)
breaks up at εc and is located at (yc , δc ). The final column shows the number of tori that are more robust among the tori computed
in an interval |ω1 − ω∗1 | < 0.002 with ω1 spacing of 10−4 and ε < εc + 0.005 with spacing of 4(10)−5 .

ω∗ εc yc δc #M.R.

(a) (σ − 1, σ−1) 0.025731358271922 −0.300341913511639 −0.581991952776833 3
(b) (σ−1, σ − 1) 0.035042379103690 0.137249321586741 −0.285775646047323 180
(c) (α2

− 1, α − 1) 0.031629688390353 −0.046265357816195 −0.237775229395970 61
(d) (α − 1, α2

− 1) 0.017453913097431 −0.374459102422933 −0.279201189795316 92
(e) (τ − 1, τ−1) 0.029861717573837 −0.444144360895140 0.203236055553548 47
(f) (τ−1, τ − 1) 0.028845453269968 −0.826759694950616 −0.103754031724428 44
After finding rotational tori, in Sections 5 and 6 we use a
ariety of methods, including simultaneous approximations and
arameter continuation to study the most robust tori, and to test
onjectures regarding the robustness of tori with rotation vectors
n three cubic fields. Since the number of tori studied here is rel-
tively small (compared to the number tested to find the locally
obust rotational tori), we also use, in Section 5.2, a brute force
ethod to compute the sequence of best simultaneous approx-

mations to ω, e.g., the sequence of ‘‘periods’’ (34) of a rotation
ector. Note that, by contrast with linear approximations, there
s a fast method for computing the simultaneous approximation
equence [50].
A key open problem is finding a higher-dimensional general-

zation of the noble numbers, which correspond to the robust
nvariant circles for area-preserving maps. Our results indicate
hat frequencies of robust two-tori are discernibly different from
andom frequency vectors, see Fig. 17, but as in [28], we have
een unable to extract a simple number-theoretic property for
he globally most robust tori and the Diophantine constant se-
uence does not seem to have a simple behavior, Fig. 16. There
s only weak evidence for local robustness of conjectured, low-
iscriminant cubic fields, and in particular while some of the
lements in the three conjectured cubic fields may be locally
16
robust, none of them seem to be associated with the most robust
tori in the same way that the noble numbers are associated with
most robust and locally robust invariant circles for 2D maps.

Our results for computing tori should be compared with previ-
ous techniques that used periodic orbits to approximate the torus
and Greene’s residue criterion to estimate their breakup. Greene’s
residue is certainly the optimal method for area-preserving maps
with a time-reversal symmetry: it can easily give highly accurate
breakup thresholds for an invariant circle [1]. As was shown
in [28], this idea can be generalized to the volume-preserving
case studied in the current paper because it does have a time-
reversal symmetry, which permits the computation of sequences
of symmetric periodic orbits. In [28], orbits with periods of order
104 were used to obtain estimates of breakup thresholds with a
relative error in εc that was estimated to be 0.002. The results
obtained in the current paper show that these thresholds were
slight over-estimates of εc(ω), and allow us to refine the breakup
threshold to a relative error of about 4(10)−8. This relies on the
ad hoc criterion (15), that declares that the orbit has become
chaotic when the accuracy of the weighted Birkhoff average drops
below our threshold of 11-digits (of course, there is a similar, ad
hoc threshold for the residue criterion). Note, however that the
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apid decrease of dig (T ) over a narrow parameter range, as seen
in Fig. 19, is a clear signal of the torus destruction.

One key reason for studying the most robust tori is to develop
a better understanding of the transport of chaotic orbits when
these tori no longer exist. It is known from Aubry–Mather theory
that rotational circles of twist maps are replaced by cantori and
that the flux of trajectories through a (noble) cantorus grows
approximately as (ε − εc)3 [39]. There is some evidence for a
similar power law for the three-dimensional case—even though
we do not know if cantori exist: studies of the crossing time
distribution for a similar map show that it diverges as (ε−εc)−2.6
[38]. It would be interesting to use the more precise break-up
thresholds that we have computed here to refine this calculation.

Another advantage of the weighted Birkhoff method used here
is that it can be applied to asymmetric maps (as we did for 2D
in [11]), and does not rely on any sophisticated method to find
periodic orbits that are simultaneous rational approximations to a
given incommensurate frequency vector. Moreover, even though
the residue method works very well in 2D and is successful in 3D,
it has not led to accurate methods that can estimate the breakup
thresholds for tori in 4D symplectic maps. One of the problems
for the 4D case is that there are multiple ‘‘partial traces’’ of a
symplectic matrix needed to define a stability threshold. Such
considerations are irrelevant for weighted Birkhoff averages.

In the future, we plan to continue the study of two-tori for
maps in three and possibly four dimensions. The fast conver-
gence for the weighted Birkhoff method makes it well suited
for extended precision computations as noted in [9]. We have
successfully performed test cases for one- and two-dimensional
tori in phase spaces of dimensions one, two, and three. In future
work, we plan to explore such high precision calculations in the
hope that extracting more digits will lead to a better number
theoretic understanding of the properties of the rotation vectors
for robust tori.
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Appendix A. Diophantine constants

There are two common ways in which a vector ω ∈ Rd can be
approximated by rationals. The first, simultaneous approximation,
seeks a vector (p, q) ∈ Zd

× N that corresponds to a nearby
rational, i.e., ω ≈

p
q . The second, linear approximation, seeks an

nteger vector (m, n) ∈ Zd
\ {0}×Z, that corresponds to a nearby

resonance, i.e., m · ω − n ≈ 0.
Define the pseudo-norm

∥ω∥Z = inf
p∈Zd
∥ω − p∥∞ (33)

that computes the distance to the nearest point on an integer grid.
Lochak [35] defines the periods, qi of ω as the sequence of positive
integers so that, q0 = 1, and ∀q < qi+1,

∥qiω∥Z ≤ ∥qω∥Z. (34)

Thus if pi is the integer vector such that ∥qiω∥Z = ∥qiω − pi∥∞,
then pi are (strong) best approximants of ω.
qi
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Similarly we can define a set of nearest resonances to ω as a
sequence of nonzero integer vectors mi so that m0 = (1, . . . , 1)
and whenever 0 < ∥m∥ ≤ ∥mi+1∥ then

∥mi · ω∥Z ≤ ∥m · ω∥Z, m,mi ∈ Zd
\ {0}.

The sequence of resonance orders, ∥mi∥1 = Mi thus obtained is
unique, even though the resonant sequence itself may not be.

Theorems of Dirichlet and Minkowski, give a bound on the
goodness of these approximations:

Theorem 1 ([22,51,52]). For any ω ∈ Rd and for any K > 0, there
exist (m, n) ∈ Zd

\ {0} × Z with ∥m∥∞ ≤ K such that

|m · ω − n| <
1
K d . (35)

Similarly whenever at least one ωi is irrational, then for any Q > 0,
there exist 0 < |q| ≤ Q and p ∈ Zd such that

∥qω − p∥d
∞

<
1
Q

. (36)

In (35) we say that (m, n) is a ‘‘near’’ resonance for ω and, for
(36), that the vector p/q is a ‘‘good’’ rational approximation to
ω. Note the complementary placement of the dth power in these
two expressions.

Based on these complementary notions of approximation,
there are also two senses in which ω can be strongly ‘‘irrational’’,
or Diophantine. Defining the linear and simultaneous ‘‘closeness’’
parameters

cl(ω,m) = ∥m∥d
∞
∥m · ω∥Z,

cs(ω, q) = q∥qω∥dZ,
(37)

then the associated Diophantine constants are

cl(ω) = lim inf
∥m∥∞→∞

cl(ω,m),

cs(ω) = lim inf
q→∞

cs(ω, q).
(38)

A vector ω is (linear, simultaneous) Diophantine if cl,s(ω) > 0.
A theorem of Dirichlet implies that if θ is an algebraic irrational
of degree d + 1, then for ω = (θ, θ2, . . . , θd), cs(ω) > 0; thus
the vector ω is (simultaneous) Diophantine. For example, every
quadratic irrational is Diophantine for d = 1.

Note that, by Theorem 1, cl, cs ≤ 1. When d = 1 these
constants are trivially equal and it is known that for any ω,
cs(ω) ≤ cs(φ) = 1

√
5
, where φ is the golden mean [53, Thm. 194].

As noted in [35], for d = 2 it has been proven by Davenport that
the upper bounds on cl and cs over ω ∈ R2 are the same, and that
these upper bounds are at least 2

7 . Furthermore, Adams showed
hat there are integral bases for cubic fields for which cs(ω) = 2

7 .
t has been conjectured that for any ω, cs ≤ 2

7 , and that the only
numbers for which cs is near 2

7 are integral bases of a real cubic
field [36]. Indeed Cusick conjectures that there is an integral basis
for the discriminant 49 field (28) that achieves this value.

Computation of the sequence of periods (36) can be done
efficiently using algorithms developed by Clarkson [50], and this
would be especially important if high precision computations are
required to attempt to estimate the asymptotic Diophantine con-
stant. We simply use the brute force method of computing ∥qω∥Z
for each natural number up to some Q . The resulting sequence of
periods and approximations to the Diophantine constant for the
vector (29) are shown in Table 5. A comparison between several
cubic irrationals is shown in Fig. 16(a).

Note that if we know ω to precision ρ, then cs(ω, q) can be
computed with precision qρ. Using the cutoff dig (T )

= 11, this
implies that periods must be limited so that q ≪ 1011, e.g., q ≲
107 so that c can be computed with 4 digit accuracy.
s
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able 5
est approximants for (29), a vector in the D = 49 cubic field. Extended precision
omputations were used to obtain 14 digit accuracy.
p1 p2 q ∥qω∥Z cs(ω, q)

1 0 1 0.44504186791263 0.19806226419516
2 1 3 0.33512560373789 0.33692751084205
2 1 4 0.21983252834948 0.19330536208211
7 3 13 0.21445571713583 0.59788630995914
9 4 16 0.12066988660206 0.23297954452087

11 5 20 0.09916264174742 0.19666459036656
36 16 65 0.07227858567913 0.33957260660537
45 20 81 0.04839130092293 0.18967915840613

146 65 263 0.04601126102138 0.55678050502442
182 81 328 0.02626732465775 0.22631092905362
227 101 409 0.02212397626518 0.20019336324499
737 328 1328 0.01560058797106 0.32320644221672
919 409 1656 0.01066673668669 0.18841847367561

2984 1328 5377 0.00987623379490 0.52447254758451
3721 1656 6705 0.00572435417616 0.21971098707235
4640 2065 8361 0.00494238251053 0.20423535834513

15066 6705 27148 0.00336990795310 0.30830027891744
18787 8361 33853 0.00235444622306 0.18766129628539
61001 27148 109920 0.00212095615864 0.49447017655387
76067 33853 137068 0.00124895179447 0.21380971201242

Appendix B. Cubic fields and Jacobi–Perron

An algebraic field is an extension of Q to include some family
f algebraic numbers. Consider the monic polynomial

(x) = x3 − kx2 − lx−m (39)

or k, l,m ∈ Z and m ̸= 0. If τ is a root of p, but not of a quadratic
r linear polynomial with coefficients in Q, it is an algebraic
nteger and generates a cubic field Q[τ ] = {a+bτ+cτ 2

: a, b, c ∈
Q}. The integers in such a field correspond to the restriction
a, b, c ∈ Z. An integral basis of such a field is a vector (1, τ , σ )
that generates the integers. The fields can be characterized by
the discriminant, D = k2l2 − 4k3m + 4l3 − 18klm − 27m2 of the
polynomial (39). When D < 0 there are two complex roots and
when D > 0 all the roots are real.

The cubic field with the smallest |D| is that of the spiral
mean, which has D = −23, the minimal polynomial (39) with
(k, l,m) = (0, 1, 1) with real root σ , and integral basis (1, σ , σ 2).
Siegel showed this root is the smallest Pisot number (an algebraic
18
number that is the unique root of its minimal polynomial outside
the unit circle) [54]. We have used the fact that the vector
(1, σ−1, σ−2) forms an integral basis for Q[σ ]. An alternative
polynomial for this field has (k, l,m) = (−1, 0, 1). The real root
in this case is σ−1.

When m = 1, and τ is a Pisot number, Tompaidis noted
that there is an integral basis of the cubic field for which the
Jacobi–Perron algorithm (JPA), a generalization of the continued
fraction, is periodic. Given a vector ω ∈ [0, 1]2 the JPA generates
a sequence of integer vectors ri = (pi, qi) ∈ N3 so that pi/qi is a
rational approximation to ω and these vectors obey a recursion

rn+1 = kn+1rn + ln+1rn−1 + rn−2.

The coefficients (kn, ln) of this recursion are determined by iter-
ating the map

ω ↦→

(
1
ω2

,
ω1

ω2

)
− (k, l),

(k, l) =
(⌊

1
ω2

⌋
,

⌊
ω1

ω2

⌋)
.

(40)

The algorithm is initialized with r−2 = (0, 1, 0), r−1 = (1, 0, 0)
and r0 = (0, 0, 1). We give the resulting expansions for several
frequency vectors in the first four cubic fields in Table 6. Here
the sequences (kn, ln) are always eventually periodic, with the
repeated portion enclosed in [ ]. For example the first spiral mean
case gives a period-two sequence.

There are two cases in the table for which the sequences
are period-one, analogous to the golden mean for the ordinary
continued fraction. The resulting sequences are then the values
(k, l) in the polynomial (39) with m = 1. In order for this to occur,
the root must be a Pisot number, with k < τ < k+1 and one must
choose ω = (τ − k, τ−1). Following Tompaidis, we might think of
these vectors as generalized versions of the golden mean.

More generally it is known there are only finitely many pe-
riodic JPA sequences associated with each unit in an algebraic
field [55]. When d = 1, every eventually periodic continued frac-
tion is a quadratic irrational; however, it is apparently not known
how to characterize the vectors that have eventually periodic JPA
sequences.
Table 6
Jacobi–Perron sequences for vectors in the four cubic fields with |D| < 50. The last column shows the sequence generated by (40).
All are eventually periodic, and the periodic portions are enclosed in brackets.

D p(x) Root ω Jacobi–Perron

−23 x3 − x− 1 1.324717957244745 (σ − 1, σ−1)
[(

1
0

)
,

(
2
0

)]
(σ−1, σ − 1)

(
3
2

)
,

[(
2
0

)
,

(
4
0

)]
−31 x3 − x2 − 1 1.465571231876768 (κ − 1, κ−1)

[(
1
0

)]
(κ−1, κ − 1)

(
2
1

)
,

[(
2
0

)
,

(
3
0

)]
−44 x3 − x2 − x− 1 1.839286755214161 (τ − 1, τ−1)

[(
1
1

)]
(τ−1, τ − 1)

(
1
0

)2

,

(
3
1

)
,

[(
1
0

)
,

(
2
0

)3

,

(
1
0

)
,

(
4
0

)]

49 x3 + x2 − 2x− 1 1.246979603717467 (α − 1, α−1)
[(

1
0

)
,

(
3
0

)]
(α−1, α − 1)

(
1
0

)
,

(
2
1

)
,

[(
1
0

)
,

(
3
0

)]
(α − 1, α2

− 1)
(
4
2

)
,

[(
4
0

)
,

(
5
0

)]
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