

View

Online


Export
Citation

RESEARCH ARTICLE |  JANUARY 21 2025

Proportions of incommensurate, resonant, and chaotic
orbits for torus maps 
E. Sander   ; J. D. Meiss 

Chaos 35, 013147 (2025)
https://doi.org/10.1063/5.0226617

Articles You May Be Interested In

KoopmanLab: Machine learning for solving complex physics equations

APL Mach. Learn. (September 2023)

Experimental realization of a quantum classification: Bell state measurement via machine learning

APL Mach. Learn. (September 2023)

 21 January 2025 19:23:49

https://pubs.aip.org/aip/cha/article/35/1/013147/3331897/Proportions-of-incommensurate-resonant-and-chaotic
https://pubs.aip.org/aip/cha/article/35/1/013147/3331897/Proportions-of-incommensurate-resonant-and-chaotic?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0003-4478-3919
javascript:;
https://orcid.org/0000-0002-0019-0356
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0226617&domain=pdf&date_stamp=2025-01-21
https://doi.org/10.1063/5.0226617
https://pubs.aip.org/aip/aml/article/1/3/036110/2910717/KoopmanLab-Machine-learning-for-solving-complex
https://pubs.aip.org/aip/aml/article/1/3/036111/2910912/Experimental-realization-of-a-quantum
https://e-11492.adzerk.net/r?e=&s=RnrXA7SdyR_AjOR5Fx4X7C0ELr0


Chaos ARTICLE pubs.aip.org/aip/cha

Proportions of incommensurate, resonant, and
chaotic orbits for torus maps

Cite as: Chaos 35, 013147 (2025); doi: 10.1063/5.0226617

Submitted: 2 July 2024 · Accepted: 6 January 2025 ·
Published Online: 21 January 2025 View Online Export Citation CrossMark

E. Sander1,a) and J. D. Meiss2,b)

AFFILIATIONS

1Department of Mathematical Sciences, George Mason University, Fairfax, Virginia 22030, USA
2Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526, USA

a)Author to whom correspondence should be addressed: esander@gmu.edu
b)Electronic mail: jdm@colorado.edu

ABSTRACT

This paper focuses on distinguishing classes of dynamical behavior for one- and two-dimensional torus maps, in particular, between orbits
that are incommensurate, resonant, periodic, or chaotic. We first consider Arnold’s circle map, for which there is a universal power law for
the fraction of nonresonant orbits as a function of the amplitude of the nonlinearity. Our methods give a more precise calculation of the
coefficients for this power law. For two-dimensional torus maps, we show that there is no such universal law for any of the classes of orbits.
However, we find different categories of maps with qualitatively similar behavior. Our results are obtained using three fast and high precision
numerical methods: weighted Birkhoff averages, Farey trees, and resonance orders.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0226617

We study nonlinear one- and two-dimensional torus maps,
starting with Arnold’s circle map.1 Jensen and Ecke and their
collaborators2,3 showed that the proportion of parameters for
which the map has a dense orbit on the circle is given by a power
law as a function of the amplitude of the nonlinearity, up to
a critical amplitude where the map becomes noninvertible. We
compute the power law parameters with higher accuracy. We
then classify orbit types for 2D torus maps with typical non-
linearities. Grebogi et al.4,5 considered such maps but were only
able to give relatively imprecise results. With improved numeri-
cal techniques, we show that there is no universal power law for
the proportion of regular, nonresonant orbits, in contrast to the
1D case. Instead, we find several categories of nonlinearities for
which there are different behaviors.

I. INTRODUCTION

The distinction between regular and chaotic orbits is funda-
mental to the study of dynamical systems. In this paper, we use
the efficient and accurate method of weighted Birkhoff averages
(WBAs)6–10 to distinguish between these classes of orbits by dif-
ferences in the rate of convergence of the average. The WBA can
also compute frequency vectors of regular orbits with high accuracy.

We previously used this to distinguish between rational and com-
mensurate rotation vectors using Farey trees9 and resonance orders10

for area- and volume-preserving maps. In the current paper, we
study maps on the torus and show that these three methods lead to a
precise and efficient classification of their orbits as chaotic, resonant,
or incommensurate.

Other methods for computing rotation numbers include
Laskar’s frequency analysis technique,11 which uses a Hann win-
dow to improve Fourier analysis. It is important to note that Das
and Yorke12 proved that the WBA is super-convergent when the
dynamics is analytically conjugated to a rigid rotation and the rota-
tion number is a Diophantine irrational, while frequency analysis
is only quadratically convergent. Another technique uses Richard-
son extrapolation;13–17 while this appears numerically to be super-
convergent, we are not aware of a proof. Convergence rates have also
been used by Rmaileh18 to distinguish between regular and chaotic
behavior. More generally, MacKay19 showed that one can compute
rotation intervals from a time series and Alseda and Borros-Cullell20

did this for analytically known circle maps. Polotzek et al.21 com-
puted rotation sets of torus maps using set based methods. Other
approaches include numerical continuation of invariant tori22 and
explicitly computing the conjugacy to rigid rotation.23,24 For a com-
parison of some of these methods to the WBA, see the discussion in
Das et al.7
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The paper proceeds as follows. In Sec. II, we give an overview of
the theoretical background. In Sec. III and IV, we apply these meth-
ods to maps f : Td → Td for d = 1 and 2. We end with conclusions
and future plans in Sec. V. The numerical methods we use, which
have been developed in other papers, are described in Appendix A.
Appendix B shows how to compute the critical amplitude for non-
invertibility for d = 2, which we use in Sec. IV. Finally, Appendix C
lists the parameters that we have used in our numerical simulations.

II. TORUS MAPS AND ROTATION VECTORS

We will consider maps f : Td → Td that are homotopic to the
identity. In general, we can assume that f has the form

x′ = f(x) = x + � + g(x; a) mod 1 (1)

where � ∈ Td, a is a parameter vector, and the nonlinear term g
is periodic, g(x + m; a) = g(x; a) for any m ∈ Zd (for every parame-
ter a). We will study several simple examples. In Sec. III, we consider
Arnold’s circle map, where d = 1, and

g(x; a) =
a

2π
sin(2πx). (2)

In Sec. IV, we consider the fully 2D case, where d = 2, and g1 and g2

are both sums of sinusoidal functions. In all cases,

g(x; a) = 0 for a = 0,

so that the dynamics of (1) then reduces to a rigid rotation on Td,

x(t) = f t(x(0)) = x(0) + t � mod 1, (a = 0),

in which case � becomes the frequency or rotation vector.
More generally, to determine the rotation vector for an orbit,

we can lift f to Rd using the standard projection π : Rd → Td. A
map F : Rd → Rd is then a lift of f if

π ◦ F = f ◦ π .

Here, we take the periods of the torus to be one so that
F(x) mod 1 = f(x mod 1). Since f is homotopic to the identity,
F(x + m) = F(x) + m for each m ∈ Zd, i.e., the map acts trivially on
the first homology group of the torus. Note that any two lifts, say, F1

and F2, differ by an integer vector F1(x) = F2(x) + m—indeed this
must be true for any fixed x, but by continuity the same vector m
must work for all x.

The orbit of x ∈ Td has rotation vector ω ∈ Td if the limit

ω(x, f ) = lim
t→∞

F t(x) − x

t
mod 1 (3)

exists. This is independent of the choice of lift; however, it can
depend upon the initial point. More general versions of rotation vec-
tors can be defined,25,26 and sometimes computed,20,21 but we will
only compute (3).

For homeomorphisms of the circle (d = 1), Poincaré proved
that strict monotonicity implies that the limit (3) exists and is inde-
pendent of x. For the form (1), this occurs when |g′(x; a)| ≤ 1 for
all x ∈ T. It is not hard to show that the resulting rotation number
ω is a nondecreasing function of �. A circle map f that is smooth
and strictly monotonic is a diffeomorphism, and, if f is sufficiently

regular, Denjoy showed that it is topologically conjugate to a rigid
rotation when ω is irrational.27,28

Even when d > 1 the dynamics of (1) can be conjugated to a
rigid rotation only if it is a homeomorphism.5 Indeed, suppose that
there exists a homeomorphism 8 : Td → Td such that

f ◦ 8 = 8 ◦ R, (4)

where R(θ) = θ + ω is the rigid translation on Td. Since f = 8

◦ R ◦ 8−1 is a composition of homeomorphisms, it must be one
as well. Moreover, if f and 8 are diffeomorphisms, then upon
differentiation,

Df(x) = D8(8−1(x) + ω)D8−1(x);

therefore, det(Df) 6= 0 for all x. This gives the necessary conditions.
Lemma 1. If the map (1) is diffeomorphically conjugate to

rigid rotation, then its Jacobian is nonsingular.
The converse is—apparently—not true when d > 1.29 More-

over, nonsingularity of Df, implying that f is a local diffeomorphism,
does not imply that f is a global diffeomorphism. (This is related
to the Jacobian conjecture, which has not even been proven for
polynomials when the degree is larger than two.30)

III. ARNOLD’S CIRCLE MAP

In this section, we study the Arnold1 circle map; that is, we con-
sider (1) for d = 1 with (2). This family of maps has two parameters,
(�, a), and without loss of generality we can assume that � ∈ [0, 1)
and a ≥ 0. The results are depicted in Figs. 1–3, and we quickly sum-
marize them here. Figure 1 shows histograms of the precision, digT,
see (A4) in Appendix A 1; the peaks near digT & 14 correspond to

FIG. 1. Histograms of digT (A4) for the Arnold circle map (1) with (2), for ω105

using a grid of 104 values of � ∈ [0, 1). Three histograms are shown, a = 0.8
(blue), 1.5 (orange), and 2.0 (yellow). If the difference between the two averages
in (A4) is no more than 10−16, we set digT = 16. Each distribution has a peak at
digT = 16 (black); these are truncated in the figure and have heights 0.35, 0.65,
and 0.68, respectively.
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FIG. 2. Rotation number for the Arnold circle map (2) as a function of the parameters (�, a). The color indicates ω, and black indicates no orbits of the given type. Panel (a)
shows the nonresonant regular orbits and panel (b) the chaotic orbits.

nearly double precision accuracy for ωT (A8) using T = 105 iterates.
The panels of Fig. 2 categorize the behavior of orbits for � ∈ [0, 1)
and a ∈ [0, 2.5] with colors corresponding to ωT. Parameters with
orbits identified as quasiperiodic using (A15) are shown in Fig. 2(a)
and those identified as chaotic using (A6) in Fig. 2(b). These data
are used to produce Fig. 3, which shows the proportion of chaotic,
periodic, and quasiperiodic orbits as a function of a.

FIG. 3. The proportion of chaotic, periodic, and quasiperiodic orbits in the Arnold
circle map as a function of a using the data from Fig. 2. For a ∈ (0, 1), the
quasiperiodic proportion follows the power law (6).

The Arnold map is a homeomorphism when |a| ≤ 1, in which
case—as noted in Sec. II—there are two possibilities: either the map
is conjugate to a rigid rotation (4) with irrational ω so that the
orbit is quasiperiodic, or every orbit is asymptotic to a periodic orbit
and ω ∈ Q. In either case, the orbits are not chaotic, and the rota-
tion number (3) is independent of x. For |a| > 1, the orbits can be
chaotic. We use the WBA, recalled in Appendix A 1, to distinguish
between regular and chaotic orbits. In particular, T iterates are used
to calculate the approximation ωT (A8) of the rotation vector (3).
Upon T additional iterates, we compute digT (A4), an estimate of
the precision of ωT. If the precision is low, digT < DT (A5), the orbit
is classified as chaotic. There have been other studies of chaos in
Arnold’s circle map using other means, including lower bounds for
the topological entropy31,32 and numerical computation of Lyapunov
exponents.33

Here and for the computations discussed below, we chose a
grid of � ∈ [0, 1) that is shifted slightly away from rationals to avoid
low-order resonances. Each orbit begins at the same, arbitrary initial
point x(0) = 0.117 789 164 297 101 and is initially iterated 500 times
to remove transients. The new initial point x(500) is then iterated
with T = 105 to both compute digT and ωT. A histogram of digT

from the computation of ωT is shown in Fig. 1 for three values of
a. In each case, there are two well separated peaks in the digT dis-
tributions, giving a sharp distinction between chaotic and regular
orbits.

For example, when a = 0.8, where f is a homeomorphism,
the average accuracy is 〈digT〉 = 15.00, and the minimum is
digT = 6.76. Only 0.11% of the orbits have digT < 9 and are, thus,
incorrectly classified as chaotic. By contrast 35% of the orbits have
digT ≥ 16—Fig. 1 truncates the accuracy at 16 since the calculations
are in double precision. Moreover, this tallest peak is trimmed in
the figure to make the portions of the histogram with smaller values
of digT more visible. When a > 1, there is a third small peak in the
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TABLE I. Fraction of orbits of Arnold’s circle map that have digT ≥ 16, are chaotic

(digT < 9), and have rational or irrational rotation number, using 104 values of � for

each a with T = 105 and (A14). For a≤ 1, compare the irrational fraction (column 5)

with the power law (5) (last column).

a digT ≥ 16 Chaotic Rational Irrational (5)

0.5 0.1986 0.0006 0.1919 0.8075 0.8044
0.8 0.3456 0.0011 0.3917 0.6072 0.6033
0.9 0.4170 0.0009 0.5087 0.4904 0.4853
0.99 0.5974 0.0022 0.7622 0.2356 0.2355
1.0 0.5095 0.0026 0.8813 0.1161 0
1.01 0.5237 0.0580 0.9397 0.0023
1.02 0.5326 0.0709 0.9282 0.0009
1.5 0.6524 0.2343 0.7657 0.0000
2.0 0.6863 0.2711 0.7289 0.0000

distributions of Fig. 1 near digT ∼ 8.5; for these orbits, the distinc-
tion between regular and chaotic is less clear. The criterion (A6) is
conservative in the sense that most of these orbits are taken to be
chaotic.

For regular orbits, we use the Farey tree algorithm of
Appendix A 2 to effectively separate rotation numbers into ratio-
nals and irrationals, thereby distinguishing between periodic and
quasiperiodic orbits. This algorithm computes the minimal denom-
inator (A10) and then uses criterion (A15) to designate ωT as
irrational or not. We find that when a = 0.8, 60.72% of the 104

orbits shown in Fig. 1 have effectively irrational rotation numbers
while 39.17% are identified as rational (the remaining 0.11% being
omitted since these have digT < 9). Results of these computations
for additional values of a are given in Table I.

It is interesting to note that, for a = 0.8, all but 0.9% rotation
numbers with the maximum accuracy digT = 16, are rational: it is
easier to compute an accurate value for the rotation number if the
orbit is periodic. On the other hand, 15.7% of the rational rotation
numbers do have 9 < digT < 16.

The classification of orbits with (�, a) ∈ [0, 1) × [0, 2.5] for
2000 × 2000 grid is shown in Fig. 2. When a < 1, Fig. 2(a) is con-
sistent with the nonresonant orbits having a nonzero measure, µ(a)

> 0. Figueras et al.34 used computer assisted proofs to show that

0.860748 < µ(0.25) < 0.914161.

Here, the lower bound is based on their a posteriori KAM theorem,
and the upper was obtained by excluding tongues for rigor-
ously computed orbits up to period 20. From our computations,
µ(0.25) = 0.9134. Their rigorous computations are very time inten-
sive, and it would be impractical to use them to compute anything
like the number of parameter values that we have done. Thus, our
fast but purely numerical method is a complement to the more time
consuming rigorous methods.

Swiateck35 has rigorously shown that the tongues have a full
measure for a = 1, and Khanin36 proved that the Hausdorff dimen-
sion of the nonresonant set is then less than one. The computations
shown in Table I erroneously predict a small but nonzero fraction of
quasiperiodic orbits when a = 1, which we attribute to the selected
cutoffs in criterion (A15).

The computed proportions of chaotic, resonant, and nonreso-
nant orbits are shown as a function of a in Fig. 3. When 0 < a < 1,
the proportion of nonresonant orbits µ(a) is close to the previously
proposed power law,2,3

µ(a) ' (1 − a)0.314. (5)

As seen in Table I, the value predicted by (5) is within 0.005 of
our computations when a < 1. For example, at a = 0.99, the Farey
algorithm identifies 2356 rotation numbers as “irrational,” which is
close to µ(0.99) = 0.2355 from (5). We fit the data in Fig. 3 to the
more general form

µ(a) = (1 − a)p1+p2(1−a) (6)

using a log-linear least squares fit. This form was selected given the
known values µ(0) = 1, and µ(1) = 0, but included a higher order
term in the exponent, since there is no theoretical reason why the
power law should have only a single term. Our fit gives

p1 = 0.3139 and p2 = −0.0208. (7)

The root mean squared (rms) error between the power law and the
computed data for µ(a) (not the log) is 0.0024. By contrast, if we set
p2 = 0, the best fit gives p1 = 0.3139 with rms error 0.004 49. If we
instead compare our data directly with (5), the rms error is 0.004 54.

As is well known, the dynamical behavior of the Arnold cir-
cle map changes abruptly at a = 1. In Fig. 2(b), when a < 1, there
is only a nearly invisible “dust” of points that are falsely labeled as
chaotic—0.07% of the points in this range. For a > 1, the fraction
of chaotic orbits in Fig. 3 grows but has large fluctuations caused
by the well-known bifurcations of the periodic orbits. Conversely,
the computed fraction of quasiperiodic orbits for a > 1 is essentially
zero. Indeed when a = 1.02, only 9 of the 104 orbits in Table I are
mistakenly identified as “irrational” by the Farey algorithm, and by
a = 1.5, there are no incorrectly identified orbits. This can also be
observed in Fig. 2: when a > 1, there are no visible points in panel
(a) that would correspond to falsely labeled nonresonant orbits;
moreover, for a ∈ (1.005, 2.5], the proportion of orbits measured to
be nonresonant is less than 0.55%.

IV. TORUS MAPS

We now consider fully coupled maps on T2 using the form (1)
with

g(x1, x2) =
ε

2π

(

a1 cos(2π(x1 + φ1)) + a2 cos(2π(x2 + φ2))

a3 cos(2π(x1 + φ3)) + a4 cos(2π(x2 + φ4)).

)

(8)

Grebogi et al.4,5 studied similar maps in order to gain an understand-
ing of the typical case, and a number of other specific cases have also
been studied.29,37–43 For simplicity, we will normalize the amplitudes
a ∈ R4 so that ‖a‖1 = 1; in this case, the strength of the forcing func-
tion is governed by the parameter ε, and without loss of generality
we take ε ≥ 0.

In the one-dimensional case, there were three types of orbits:
periodic (ω rational), quasiperiodic (ω irrational), and chaotic
orbits. Since the latter does not occur for a diffeomorphism, verifica-
tion of the power law (6) for Arnold’s map when 0 < a < 1 required
only the study of a single class of orbit. In higher dimensions,
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quasiperiodic orbits can be either resonant or incommensurate, so
there are additional classes of orbits. As in the circle map case, the
proportion of incommensurate orbits is one at ε = 0, and—as we
will see—there exists a critical value εcrit above which there are no
incommensurate orbits. Thus, it seems plausible that a power law
like (12) could hold for ε < εcrit. However, since chaotic orbits can
occur even for diffeomorphisms, any test of such a form requires
computation of all four classes of dynamical behavior.

In the first part of this section, Sec. IV A, we discuss the classifi-
cation of rotation vectors, and then in Sec. IV B we obtain the critical
value εcrit above which the map is guaranteed to not be a homeomor-
phism. The dynamics are studied in Sec. IV C for a “typical” set of
amplitudes and phases in (8). Finally, in Sec. IV D, we study how the
proportions of classes of orbit types vary as the amplitudes change
and show that there is no universal power law.

A. Resonance and incommensurability

Perhaps, the most natural generalization of the rational vs irra-
tional dichotomy for rotation numbers to higher dimensions is
to ask whether a vector has rational components, i.e., ω = p

q
for

some p ∈ Zd, q ∈ N. A more general concept, that of commensura-
bility, resonance, or mode-locking, corresponds to the existence of
m ∈ Zd\{0} and n ∈ Z such that

ω ∈ Rm,n =
{

α ∈ Rd : m · α = n
}

, (9)

a codimension-one plane. Such an ω has resonance order M = ‖m‖1

if this is the smallest length of a (nonzero) vector m for which
ω ∈ Rm,n. The set of vectors that do not lie in any resonant plane

are incommensurate or nonresonant. An example is ω =
(√

2,
√

5
)

.

When f is conjugate to a rigid rotation (4), these orbits are dense
on Td.

For d = 2, the setsRm,n are lines; these are shown in Fig. 4 up to
order M = 7. The rank of resonance for a given ω is the number of
independent commensurability vectors m; i.e., the dimension of the
smallest affine vector space containing all the lines Rm,n through ω.
In the figure, the rank-two frequency vectors are the points at which
nonparallel lines intersect. Note that ω is rational only if it has rank
two: these correspond to eventually periodic orbits.

Commensurabilities that have lower rank are partially reso-

nant, such as the rank-one vector ω =
(

3
√

2, 2
√

2 − 1
)

, which lies

inRm,n for m = (2, −3) and n = 3 so that M = 5. A rank-one ω cor-
responds to a resonant orbit, for d = 2 these are typically asymptotic
to invariant circles.

The above discussion gives rise to a numerical method for clas-
sifying dynamics. Each orbit is labeled chaotic or regular using the
methods in Appendix A 1 and criterion (A7). Given the accurately
approximated ωT for a regular orbit, Appendix B gives a numerical
method for distinguishing between the three commensurabilities.
Nonresonant (rank-zero resonant) points, with an incommensu-
rate rotation vector, are found using criterion (A20). Periodic points
(rank-two resonant) are found using criterion (A21), and resonant
(rank-one resonant) points are given by criterion (A22).

FIG. 4. Resonance lines up to order ‖m‖1 = 7.

B. Critical parameter

In this section, we establish the existence of a critical amplitude,
εcrit, so that the map (1) with (8) cannot be conjugated to a rigid rota-
tion for ε > εcrit: it fails Lemma 1. The experience with circle maps
indicates that local invertibility should be important dynamically.
Note, however, that even when 0 ≤ ε < εcrit, where local invertibil-
ity holds, this lemma does not guarantee the existence of a conjugacy
nor the absence of chaotic orbits.

Recall from Lemma 1 that a necessary condition for the map
(1) with (8) to be diffeomorphic to rigid rotation is that it has a
nonsingular Jacobian,

det(Df) = det (I + εH) = ε2 det H + ε trH + 1,
(10)

εH ≡ Dg = −ε

(

a1 sin(2π(x1 + φ1)) a2 sin(2π(x2 + φ2))

a3 sin(2π(x1 + φ3)) a4 sin(2π(x2 + φ4))

)

.

To be nonsingular, det(Df) must be nonzero for all (x1, x2) ∈ T2;
therefore, we define the critical value of ε as

εcrit ≡ min

{

ε ≥ 0 : min
x∈T2

(det(Df)) ≤ 0

}

, (11)

i.e., the smallest positive ε for which det(Df) = 0 for some value of
x. When ε > εcrit, conjugacy to rigid rotation is not possible. Since
Df = I when ε = 0, we know that—if it exists—εcrit > 0. In order to
compare behavior for different nonlinearities in Sec. IV D, we will
find that it is appropriate to scale with respect to εcrit.

We claim that if det H is not identically zero, there is some
x ∈ T2 such that det H < 0. For example, suppose for simplicity that
φi = 0, i = 1, . . . 4 in (10). In this case, since sine is an odd function,
if det(H(x1, x2)) > 0, then det(H(−x1, x2)) < 0. In turn, (10) then
implies that, if ε is sufficiently large, det(Df(−x1, x2)) < 0; therefore,
εcrit exists. By a similar argument in Appendix B, we show that this
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result holds for all phases and amplitudes except for the trivial case
a1 = a4 = 0 and a2a3 = 0.

We find (11) numerically using standard root finding methods.
For example, for the coefficients of case (0), given in Table III of
Appendix C, we find

εcrit = 2.220 44.

The existence or nonexistence of a conjugacy to rigid rotation will
not only depend upon ε, but also upon �, and of course the resulting
ω. Moreover, as we see below, even when ε < εcrit, chaotic orbits can
occur.

C. A “typical” case

In this section, we study the dynamics for a fixed set of param-
eters a and φ as a function of ε and � [see “case (0)” in Table III of
Appendix C]. The goal is to see “typical” behavior (as much as one
can with a limited set of examples). While no single parameter set
will give all possible dynamics, for case (0) the amplitudes ai have
comparable sizes, and the phases φi are at least not close to rationals
with small denominators. We feel it is useful to look at a single case
in detail before giving comparisons between a larger set of cases in
Sec. IV D.

Six typical phase portraits are shown in Fig. 5 for the values of
ε and � listed in Table II. For the first three panels, ε = 0.8. Pan-
els (a) and (c) show nonresonant orbits that appear to be dense on
T2 and for which the rotation vectors, given in Table II, are incom-
mensurate according to criterion (A20). Panel (b) shows a resonant
orbit with the low-order resonance (m, n) = (1, −1, 0); the orbit lies
on an attracting circle that wraps once around both horizontally
and vertically. In panel (d), where ε = 1.5, the orbit is resonant
with m = (2, 7, 6), as indicated by the fact that the invariant cir-
cle wraps seven times horizontally and twice vertically. Of course,
there are also parameters for which the attractor is periodic for
this family of maps, but due to their simplicity, we did not opt to
depict any here. Panels (e) and (f) show examples that imply crite-
rion (A7) is chaotic. Visually (f) appears to be more chaotic than
(e), and a check of the two Lyapunov exponents supports this: for
T = 106, λ = {0.0256, −0.0644} for (e) and λ = {0.2892, −0.0639}
for (f). Though (e) has a positive exponent it seems quite close to
the “weak chaos” seen for quasiperiodically forced circle maps with
strange non-chaotic attractors (SNAs). We use the WBA to study
such systems in a separate paper.44

The proportions of the four types of orbits, distinguished using
the methods discussed in Appendix A, are shown in Fig. 6 as a
function of ε for case (0). Here we use a grid of 402 evenly spaced

FIG. 5. Orbits of (1) on T
2 with g given by (8). Each panel shows 3(10)4 iterates for two initial conditions (red and blue), with transients removed. The amplitudes and

phases correspond to case (0) in Table III, and values of ε, �, the computed ωT and digT are given in Table II. (a) Two-torus; (b) resonant circle with (m, n) = (1,−1, 0);
(c) two-torus; (d) resonant circle with (m, n) = (2, 7, 6); (e,f) chaotic trajectories when the map is noninvertible. Using T = 106 for the WBA gives digT > 12 for the regular
orbits in panels (a)–(d); for the chaotic orbits (e) digT = 4.05 and (f) digT = 2.55.
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FIG. 6. The proportion of resonant, nonresonant, periodic, and chaotic orbits in
the 2D Arnold map. The green dot on the x-axis shows the point εcrit ≈ 2.220 44
at which the map first becomes locally noninvertible. As in the 1D case, there are
no nonresonant orbits for ε > εcrit.

ε ∈ [0, 1.2εcrit] and the same set of 2500 randomly chosen
� ∈ [0, 1)2 for each ε. Much of the behavior is similar to the 1D case
of Sec. III. By Lemma 1, the proportion of nonresonant orbits is zero
for ε > εcrit (the green dot on the ε-axis in the figure), and indeed
we observe that near this point the computed proportion (blue
curve) does reach zero. However, unlike the 1D case, this proportion
appears to approach zero at εcrit with zero slope. Moreover, Fig. 6
indicates that chaotic orbits (red curve) occur for ε < εcrit. A similar
result, using Lyapunov exponents, was obtained by Yamagishi and
Kaneko45 for high-dimensional torus maps.

We observe that resonant proportion (green curve) peaks just
below εcrit. The proportion of periodic orbits (purple curve) also
reaches a maximum but now near ε = 2.5, beyond the resonant
peak. Both the periodic and chaotic proportions grow more-or-less
monotonically as ε crosses εcrit.

Orbit-type statistics like those shown in Fig. 6 were found in the
work of Grebogi et al.4,5 who studied torus maps for d = 2 and 3. In
particular, they considered a finite Fourier series for the function g in
(1) and—for randomly chosen amplitudes and phases—computed
the fractions of the attractors that are m-tori for m ∈ {0, 1, . . . d},
and the fraction that was chaotic. To do this, they computed the Lya-
punov spectrum (λ1, λ2, . . . λd). If all λi = 0, the orbit was classified
as lying on a d-torus; if all exponents were nonpositive, and m were
zero, the orbit should lie on an m-torus. Finally, if there were any
positive exponents, the attractor was classified as chaotic. Yamagishi
and Kaneko45 also used the Lyapunov spectrum to classify dynamics
of torus maps with d ∼ 100. These studies suffer from the problem
that accurate computation of the Lyapunov spectrum is difficult.

While Fig. 6 gives a large amount of information on the behav-
ior of orbits aggregated over the range � ∈ [0, 1)2, it does not show

how these are organized as � varies. Even when a and φ are fixed,
it would be difficult in a single graph to visualize the categories
of orbits for each � and ε. We show slices through these data for
fixed ε in Fig. 7. Here the computed ωT is shown for nonresonant
(top) and resonant and periodic (bottom) orbits for ε = 1.9 (left),
2.0 (middle), and 2.1 (right). The nonresonant panels show empty
strips along resonance lines, recall Fig. 4, and holes surrounding
the rank-two resonances; these correspond to the Arnold tongues
surrounding periodic orbits. Kim et al.29,46 studied the formation of
Arnold tongues for a similar torus map using the bifurcation the-
ory. They noted that the region in (�1, �2) for which there exists
a periodic attractor (a “resonance region”) that need not be sim-
ply connected and that the number of periodic orbits with a given
rational rotation vector ω = (p1, p2)/q can vary.

To gain further information about the role of �, Fig. 8 shows
ωT for resonant (green) and nonresonant (blue) orbits with fixed

�2 = γ =
(√

5 − 1
)

/2, the golden mean. This corresponds to a
slice through Fig. 7 with fixed �2; however, now ε varies over
[0, εcrit]. This � slice avoids the larger gaps due to lower-order res-
onance tongues around the periodic orbits in Fig. 7. Panel (a) is a
projection onto the ωT = (ω1, ω2) plane, showing how these vary as
ε grows. Panel (b) shows the same data, but this time in (ω1, ω2, ε);
this is a vector-valued version of a devil’s staircase of resonant and
incommensurate rotation vectors.

D. Varying the amplitudes

We now proceed to consider more general amplitudes a and
phases φ for (8) using eight parameter sets given in Table III of
Appendix C. The first four sets are chosen randomly, but the last
four are chosen to illustrate noteworthy dynamical categories. In
each case, we normalize ‖a‖1 = 1 and compute εcrit using (11)—this
is given in the last column in Table III. The four panels of Fig. 9 show
the proportion of (a) nonresonant, (b) resonant, (c) periodic, and (d)
chaotic orbits for the eight parameter sets as a function of ε, scaled
by εcrit. One can see immediately from Fig. 9 that case (4) (purple)
and case (7) (orange) are outliers. These correspond to uncoupled
and semidirect cases and will be discussed further below.

Panel (a) shows that in each of the eight cases the proportion of
nonresonant orbits drops to zero at ε/εcrit = 1. These curves illus-
trate that there is no universal power law for the nonresonant orbits
of the form

µ(ε) '
(

1 −
ε

εcrit

)p

(12)

that would be analogous to (5), since the curves have different
shapes. Indeed, since some of the curves [e.g., cases (3), (5), and
(6)] appear to have zero slope at both ε = 0 and εcrit, they cannot
not satisfy a single power law on the full range [0, εcrit]. Even if the
form (12) was valid asymptotically close to εcrit, p would need to be
greater than one for the fully coupled cases, in stark contrast to (5).

Most of the resonant proportions, shown in Fig. 9(b), exhibit
smooth peaks for some ε < εcrit. The outliers are again cases (4)
and (7), where there are sharp peaks at εcrit. The periodic orbit pro-
portions peak as well, but not at the same ε as the resonant peaks
[and in case (7) there are no periodic orbits]. Panel (d) shows that
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FIG. 7. The rotation numbers ωT = (ω1,ω2) of the nonresonant (top) and resonant/periodic (bottom) orbits for case (0) in Table III and 250 000 � ∈ [0, 1)2, with ε = 1.9
(left), 2.0 (middle), and 2.1 (right). As ε approaches εcrit, the nonresonant set becomes more sparse, and the gaps near the lower order resonance lines and periodic points
widen.

FIG. 8. (a) Resonant (green) and nonresonant (blue) orbits for �1 ∈ [0, 1) with �2 = γ and 30 evenly spaced values of ε ∈ [0, εcrit] showing ωT for T = 106. (b) A 3D
view of the data in (a) for coordinates (ω1,ω2, ε).
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FIG. 9. The proportion of (a) nonresonant, (b) resonant, (c) periodic, and (d) chaotic orbits as a function of ε/εcrit for the eight sets of the coupling and phase parameters a
and φ in Table III. Note that the vertical scales vary for the panels.

the onset of chaos is considerably below εcrit, again with the excep-
tion of cases (4) and (7). All of these observations are consistent with
those for other randomly chosen a and φ that we considered, but
that are not shown.

We now consider four special subcategories, describing their
distinct behaviors. Though these are extreme examples, we have
observed that for nearby amplitudes, the behavior is similar. Though
we have not systematically varied the phases, these do not seem to
change the qualitative behavior.

• Uncoupled components: If a = (1, 0, 0, 0), the system is uncou-
pled and essentially 1D, the second component ω2 = �2 will be

irrational for almost all �. Thus, the rotation vector is incom-
mensurate depending only on the first component which is
the Arnold circle map. Therefore, the power law (12) will hold
with the 1D value p1 ≈ 0.3139 from (6). Of course, the same
considerations apply to the case a = (0, 0, 0, 1).

More generally, the uncoupled case corresponds to
a = (1 − u, 0, 0, u), and we can restrict to u ∈ [0, 1

2
] by

symmetry. Since u ≤ 1
2
, εcrit = (1 − u)−1 where the first com-

ponent becomes noninvertible. An example is case (4) where
u ≈ 0.24. Figure 9 shows that orbit type proportions for this
case have shapes similar to those for Arnold’s map in Fig. 3. In
particular, there is no chaos for ε < εcrit. Note that the rank-two
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resonances, panel (c), correspond to the cross product of Arnold
tongues for each of the decoupled 1D maps; there is no analog
of this in Fig. 3.

For this uncoupled case, the proportion of orbits with irra-
tional ω1 and that with irrational ω2 will both satisfy (12) but the
effective critical parameters will be different, εcrit = (1 − u)−1

and u−1, respectively. However, the incommensurate propor-
tion for the 2D rotation vector ω can have a different behavior.
The simplest case, u = 1

2
, has εcrit = 2 and would have a non-

resonant proportion µ that is approximately the square of the
proportions for each 1D map; therefore, we expect (12) to
hold with p ≈ 2p1. However, note that this does not take into
account rational relations like (9) with both m1 and m2 6= 0.
By contrast, if u is small, the second map will have an irra-
tional proportion that is near 1 and changes only slightly as ε

grows to εcrit = (1 − u)−1. This should give (12) with p ≈ p1,
close to the 1D case. More generally, we observe that the power
p varies continuously between p1 and 2p1 as u grows from 0
to 1

2
.

We have also looked at weakly coupled examples (not
shown); these show orbit-type proportions similar to
case (4).

• Semidirect product: When a = (0, u, 0, 1 − u), the behavior is
similar to the 1D case even for nonzero u since the map is a
semidirect product. [Of course, the case (1 − u, 0, u, 0) is of this
type as well.] An example is case (7) where a ≈ (0, 0.35, 0, 0.65).
Here, the second component is Arnold’s circle map and the first
is linear but driven by the dynamics of x2. Thus, this case is
also essentially 1D and εcrit = (1 − u)−1. Since a1 = 0, we might
expect that ω1 = �1, at least for ε < εcrit where the dynamics of
x2 is either conjugate to an irrational rotation or asymptotically
periodic. Note that there are no periodic orbits in panel (c) for
this case because the grid of � values was chosen to avoid the
rationals.

case (6) is a weakly coupled perturbation of the trivial semidi-
rect case with u ≈ 1. This case is also near the anti-coupled case
discussed below.

• Quasiperiodic forcing: When a = (1 − u, u, 0, 0), the first com-
ponent is generically quasiperiodically forced. We consider this
class of maps separately in a forthcoming paper.44 For fixed
�2 = γ , the proportion of nonresonant orbits appears to have
zero slope at εcrit and, thus, does not satisfy a power law with
0 < p < 1. This also persists when we allowed �2 to vary.
Equivalent behavior occurs for (0, 0, u, 1 − u).

• Anti-coupled system: When a = (0, 1 − u, u, 0), the dynamics is
fully 2D, but could be thought of as anti-coupled. For this case,
εcrit = (u(1 − u))−1/2. An example is case (5) (black) in Fig. 9
where u ≈ 0.23. Here, we again find that the proportion of non-
resonant orbits has zero slope ε = εcrit, with the fastest decay
when u ≈ 0 or (by symmetry) u ≈ 1. We suspect that this is due
to the larger fraction of chaotic orbits at smaller ε/εcrit. Note
that case (3) is a slightly perturbed anti-coupled system, and its
proportion curves are close to case (5) even though the effective
value of u is different. As mentioned above, case (6) can also be
thought of as a perturbation of a trivial version of this case with
u = 0. Baesens et al.39 previously studied mode locking for an
anti-coupled case with u = 1

2
.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have used efficient techniques to character-
ize the dynamics of orbits of one- and two-dimensional torus maps,
which are homotopic to the identity. We used the convergence rate
of the WBA to distinguish between chaotic and regular orbits, defin-
ing a threshold for the precision, digT (A4), after a fixed number of
iterates T. Given an accurate value for rotation vector ωT, we deter-
mined if the vector is nearly resonant by finding the smallest order
of a resonance vector within a distance δ. This allows us to char-
acterize regular orbits as incommensurate (nonresonant), rank-one
(resonant), or rank-two (periodic). This computation is especially
efficient for the 1D case, where we can use the Farey tree to compute
the minimum denominator (A10).9 We hope in the future that an
efficient algorithm to compute (A18) for the 2D case can be found.
Meanwhile, we used a brute force method, following our previous
work on volume-preserving maps.10

Our methods naturally extend to higher dimensional maps.
However, there are some significant computational challenges for
d > 2. The WBA method extends without any difficulty to three
and higher dimensions;10 other than the standard problem of need-
ing more initial conditions and iterates to get a sense of the full
dynamics, there are no difficulties to distinguish between chaotic
and regular orbits. Finding periodic (ie. rank-d resonant) orbits in
dimension d is also just a matter of checking that the rotation vector
is rational in each component.

However, there are computational issues that may limit our
ability to distinguish lower rank resonances. In Appendix A, we
observed that for random values in T1 the typical denominator of δ-
close rational approximation to an irrational scales as qmin ∼ δ−1/2,
recall (A11). Of course, qmin is the 1D version of the resonance order
M, (A18). In dimension two, for random values in T2, we observed
that M scales as M ∼ δ−1/3, recall (A19). There is theoretical support
for the d = 1 result47 and Marklof48,49 has shown that for the general
d-dimensional case (A19) becomes

〈log10(M(ω, δ))〉 ≈ −
1

d + 1
log10 δ + cd. (13)

This is a new torment to add to the usual “curse of dimen-
sionality.” As d grows, the typical resonance order of a theoretically
incommensurate vector will be pushed closer to zero for a given pre-
cision δ. For example, if for d = 4 we were to use the same precision,
δ = 10−9, that we used in the current paper, then the typical res-
onance order would be M ∼ 109/5 ∼ 63. Therefore, the computed
order of an incommensurate ω would be small enough that it would
be quite hard to distinguish it from a vector that is actually res-
onant with even the modest resonance order. In order to be able
to distinguish these values, one would need the added computa-
tional expense of extended precision; moreover, the computation of
a frequency ω to higher accuracy would also require increasing the
number of iterates T. The calculations would quickly become very
slow. We hope that further research in this area will prove us to be
overly pessimistic.
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APPENDIX A: COMPUTATIONAL METHODS

In this section, we describe the numerical methods used in
Secs. III–IV. We use the weighted Birkhoff average, Appendix A 1,
for computing rotation number and identifying chaos. The Farey
tree method in Appendix A 2 distinguishes regular orbits that are
periodic from those that are quasiperiodic for d = 1. The method of
resonance orders in Appendix A 3 extends this to higher dimensions
to distinguish the resonant (lower-dimensional) invariant tori from
those that are nonresonant (full-dimensional).

1. Regularity vs chaos: Weighted Birkhoff averages

We briefly review here the weighted Birkhoff average6–8 and
how it distinguishes between regular and chaotic orbits.9 Given
a map f : M → M, recall that the time average of a function
h : M → R along an orbit of f is simply

B(h)(z) = lim
T→∞

1

T

T−1
∑

t=0

h ◦ f t(z), (A1)

if this limit exists. The classic theorem of Birkhoff implies that if
the orbit of f is ergodic on a set with invariant measure µ, and if
h ∈ L1(M, R), then

B(h)(z) = 〈h〉 =
∫

M

h dµ

for µ-almost every z. However, the convergence to this limit is at
best as 1/T and can be arbitrarily slow.50,51

To compute the average efficiently and accurately for a length-
T segment of an orbit, we modify (A1) using the C∞ weight function

9(s) ≡
{

e−[s(1−s)]−1
s ∈ (0, 1),

0 s ≤ 0 or s ≥ 1.

This exponential bump function limits to zero with infinite smooth-
ness at 0 and 1, i.e., 9(k)(0) = 9(k)(1) = 0 for all k ∈ N. The

finite-time weighted Birkhoff average (WBA) is then defined by

WBT(h)(z) =
1

S

T−1
∑

t=0

9

(

t

T

)

h ◦ f t(z), (A2)

with the normalization constant

S ≡
T−1
∑

t=0

9

(

t

T

)

. (A3)

Das et al.6 have shown that this gives the same answer as
T → ∞ as (A1); however, for regular orbits (A2) can converge
much more quickly. In particular, if the orbit is conjugated to a rigid
rotation (4) with a Diophantine rotation vector ω and the map f and
function h are C∞, then (A2) converges faster than any power,12

|WBT(h) − 〈h〉| <
Ck

T k
, ∀k ∈ N.

Note that the function 9 is not the only C∞ weighting function with
these excellent convergence properties. The recent work of Ruth and
Bindel52 uses reduced rank extrapolation to optimize the choice of
weighting function.

We estimate the error of the WBA for a given function h
and a given time T by computing the effective number of digits of
accuracy,

digT = − log10

∣

∣WBT(h)(z) − WBT(h)(f T(z))
∣

∣ , (A4)

i.e., comparing the result for the first T iterates with that for the next
T iterates.9,10

To obtain a criterion distinguishing chaotic and regular orbits,
we need to make a choice of cutoff value for digT, declaring that
orbits with

digT < DT ⇒ “chaotic.” (A5)

Conversely, all orbits with digT ≥ DT are “nonchaotic.” Based on
Fig. 1 for the 1D case, we choose the cutoff,

T = 105, DT = 9 (circle maps). (A6)

This guarantees at least nine digits of accuracy in the computed rota-
tion number. For the Arnold circle map in Sec. III, we know that
there are no chaotic orbits for 0 < a ≤ 1; with the adopted criterion,
our computations falsely identify only 0.07% (1145 out of 1.6 × 106)
of the orbits in this range to be chaotic.

For the 2D maps in Sec. IV, we use the criterion

T = 106, DT = 9 (two-torus maps). (A7)

Like the one-dimensional case, this is conservative in that chaotic
orbits are quite unlikely to be identified as regular.

2. Rational vs irrational: Farey trees

In addition to providing the distinction between regular and
chaotic orbits, the WBA can be used to compute an accurate value
of the time average of a function h. In particular, we can compute
the rotation vector (3) of an orbit for a torus map of the form (1)
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using

ωT = WBT(F(x) − x) = � + WBT(g(x; a)). (A8)

If T is large enough and the rotation vector exists, we expect
ωT ≈ ω(x, f) (3). We note that this is by no means the only possi-
ble useful h to choose. For example, for quasiperiodic orbits, another
choice of h allows one to compute the conjugacy between the map
and a rigid rotation.6,24

In this section, we focus on circle maps, d = 1, and review the
Farey tree method which we developed in a previous paper.9 This
method, combined with (A8), allows us to distinguish orbits that
are periodic—those with rational ω—from those that are dense on
a circle with irrational ω.

Even though a numerical determination of the irrationality of
ωT is impossible, we will declare it to be “effectively rational” if it
is sufficiently close to a low-order

p

q
∈ Q, i.e., one with a “small”

denominator q. A rational is δ-close to x if it lies in the interval

Bδ(x) ≡ (x − δ, x + δ). (A9)

The smallest denominator of a rational approximation within δ of ω

is then

qmin(ω, δ) ≡ min

{

q ∈ N :
p

q
∈ Bδ(ω), p ∈ Z

}

. (A10)

We previously discussed an efficient method to compute (A10)
that uses the Farey tree expansion of ω.9 The Farey (or Stern–Brocot)
tree computes a sequence of rational approximations that converge
to ω. We proved that the first such rational on the tree that falls in
Bδ(ω) gives qmin.9 For example,

qmin

(√
2, 10−9

)

= 33 461

(with corresponding numerator p = 47 321). Note that qmin ∼ 104.52,
which is close to 1√

δ
= 104.5—as we see next, this is not unusual.

To decide what it means for a denominator to be “small,”
we computed qmin for a uniform distribution ω ∈ (0, 1); since irra-
tionals have measure one, we take the computed distribution to be
that of irrationals. Numerically, we found that the resulting log-
denominators have a distribution that is nearly symmetric about the
mean

〈log10 qmin〉 = −
1

2
log10 δ + α, (A11)

where α = −0.05 ± 0.001, with standard deviation

σ = 0.2935 ± 0.0006, (A12)

which is independent of δ. In support of this, in a recent paper,
Chen and Haynes47 proved that as δ → 0, log10〈qmin〉 has the form
(A11) with a different α. However, this result is for the log of
the mean, whereas our numerics were for the mean of the log.
More recently, Marklof49 has fully verified (A11), showing that
α = −0.050 295 9 . . . and σ = 0.293 336 . . ., consistent with our
numerical results.

It is important to note that it is not just small qmin that corre-
spond to a nearby rational: if an interval Bδ(ω) is close to a low-order
rational, but does not include this point, then qmin can be much
larger than the mean indicated by (A11). For example, if ω is very

close to 0
1
, but δ is so small that 0 /∈ Bδ(ω), then the denominator

can be unusually large; for example,

qmin

(√
2 × 10−8, 10−9

)

= 66 040 883 ∼ 107.8,

which is 11σ above the mean (A11). Thus, we will declare a number
effectively irrational only if qmin is close to the mean (A11) in the
sense of the standard deviation σ . Such an ω is “typical” in the sense
of the uniform distribution and, thus, is “irrational.”

For a given accuracy δ, we declare that ω is an approximation
of an irrational if

∣

∣

∣

∣

log10(qmin(ω, δ)) +
1

2
log10(δ)

∣

∣

∣

∣

< s, (A13)

for a given tolerance s. We typically choose

δ = 10−9 and s = 1.6875 ≈ 5.75σ . (A14)

This means that we declare that ω approximates an irrational for
periods

649 < qmin < 1.54(10)6 ⇒ “irrational.” (A15)

This choice of tolerance s means we are quite conservative in des-
ignating a rotation number as rational. Using criterion (A14), we
incorrectly identify 0.05% of the random ω as rational (since ratio-
nals have measure zero, the result should be zero). Similarly, we see
in Sec. III that (A14) erroneously identifies only 0.08% of the non-
chaotic orbits of the Arnold circle map as having irrational rotation
number when a ∈ (1, 2.5), where it is known that there are no such
orbits.

3. Resonant vs incommensurate: Resonance orders

Here, we recall a numerical method that generalizes the Farey
tree method of Appendix A 2 to higher dimensions. In particular,
given ωT we wish to compute the rank and resonance order, recall
Sec. IV A.

A vector ω is approximately commensurate if |m · ω − n| is
small. In Meiss and Sander,10 we developed a method for computing
such commensurabilities. We say that a vector ω is (m, n)-resonant
to precision δ if the resonant plane (9) intersects the ball (A9)
about ω,

Rm,n ∩ Bδ(ω) 6= ∅. (A16)

Using the Euclidean norm, the minimum distance between the plane
and the point ω is

1m,n(ω) = min
α∈Rm.n

‖α − ω‖2 =
|m · ω − n|

‖m‖2

. (A17)

Thus, ω is (m, n) resonant to precision δ, whenever 1m,n(ω) < δ,
and we call the value

M(ω, δ) = min{‖m‖1 : 1m,n(ω) < δ, m ∈ Zd \ {0}, n ∈ Z},

(A18)

the resonance order of ω.
As far as we know, there is no generalization of the d = 1 Farey

tree result of Appendix A 2 to compute (A18) efficiently. (One could
use the Kim–Ostlund tree to get resonance relations;53 however, it is
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not clear that this algorithm returns a minimal ‖m‖.) Nevertheless,
since there are finitely many m ∈ Zd such that ‖m‖1 ≤ M, a brute
force computation is possible for modest values of M.10

To understand what resonance orders are “typical,” we com-
puted the minimal resonance order (A18) for a set of equi-
distributed, random ω ∈ [0, 1)2 as a function of the precision δ.10

The resulting distribution of log(M) has a mean10

〈log10 M(ω, δ)〉 = −0.334 log10(δ) − 0.091. (A19)

Marklof48,49 has recently obtained theoretical results that are consis-
tent with (A19). We find a standard deviation of

σ = 0.171.

As in the one-dimensional case, the standard deviation seems to be
essentially independent of δ.

Since the cutoff (A7) gives rotation number calculations accu-
rate to within 10−9, we choose δ = 10−9. For this case, (A19) implies
that 〈log10 M〉 = 2.915. We declare that a vector is nonresonant if

256 ≤ M ≤ 2673 ⇒ “nonresonant,” (A20)

corresponding to 2.407 < log10(M) < 3.427, which is a range of
approximately ±3σ about the mean (A19). To test this criterion,
we selected 104 randomly distributed values uniformly in [0, 1)2 and
found that 1.36% were incorrectly identified as resonant. Note that
the distribution of log-orders for random vectors is not symmetric
around the mean; in particular, M < 256 occurred 1.32% of the time
and M > 2673 occurred 0.04% of the time.

We can further categorize the orbits that are determined to
be resonant [those that fail criterion (A20)] by the rank of the
resonance. Rank-two resonant orbits have frequencies on the inter-
section of a pair of different resonance lines, recall Fig. 4. That is,
both of the components of the rotation vector are “rational.” These
can be identified using the criterion

M fails (A20) and ω1, ω2 fail (A15) ⇒ “periodic.” (A21)

If a resonant orbit is not periodic, then it lies on a single reso-
nance line and so has rank one. We will simply refer to such orbits
as “resonant”; they typically are dense on topological circles. Thus,
the criterion for a (rank-one) resonant orbit is

M fails (A20) but at least one of ω1, ω2 satisfy (A15) ⇒ “resonant.”
(A22)

The criteria (A21) and (A22) are used to distinguish the orbit types
for the 2D maps in Sec. IV.

APPENDIX B: CRITICAL ε

In this appendix, we explain why εcrit (11) almost always exists
for most choices of amplitudes ai and phases φi. We first argue that
typically there is some point (x1, x2) for which det(H) < 0 for the
matrix H in (10). First, if we choose x2 = −φ2, then

det(H(x1, −φ2)) = a1a4 sin(2π(x1 + φ1)) sin(2π(φ4 − φ2)).

Therefore, if a1a4 6= 0 and φ4 − φ2 6= nπ for some integer n, this
determinant is nonzero and odd about x1 = −φ1. Thus, det(H) < 0
at some point. If φ4 − φ2 = nπ , we can consider a similar argument
upon choosing x1 = −φ3 as long as φ3 − φ1 6= mπ for some integer
m. Equivalent arguments apply if a2a3 6= 0, as long as φ4 − φ2 6= nπ

or φ3 − φ1 6= mπ .
An exceptional case would be if both φ4 − φ2 = nπ , φ3 − φ1

= mπ . Now choose x1 = π

2
− φ1 and x2 = π

2
− φ4. Then

det H = a1a4 sin
π

2
sin

π

2

− a2a3 sin
(π

2
+ φ3 − φ1

)

sin
(π

2
+ φ2 − φ4

)

= a1a4 − a2a3 sin
(π

2
+ nπ

)

sin
(π

2
− mπ

)

. (B1)

Note that if m and n are both even or both odd (i.e., have
the same parity), then at this point H = a1a4 − a2a3. Thus, as long
as a1a4 − a2a3 < 0, det(H) < 0 at this point. On the other hand,
if a1a4 − a2a3 > 0, then use x2 = 3π

2
− φ2, which flips the signs of

both terms, again giving det(H) < 0. If, however, m and n have the
opposite parity, then at the point (B1) det(H) = a1a4 + a2a3. If this
is negative, we are done. Otherwise, use x2 = −φ2 + 3π

2
, which flips

the signs of both terms.
If none of the above cases hold, then a1a4 − a2a3 = a1a4

+ a2a3 = 0, φ4 − φ2 = nπ , φ3 − φ1 = mπ , implying that det(H) is
identically zero. But as long as the trace is nonzero, we can use a sim-
ilar argument for the term that is linear in ε in (10) to show that εcrit

exists.
Therefore, the only exception to the existence of εcrit is the case

a1 = a4 = 0 and a2a3 = 0, which gives trivial dynamics.

APPENDIX C: PARAMETERS FOR SEC. IV

This appendix gives the parameters for the computations in
Sec. IV. The parameters ε and � for the images in Fig. 5 are
shown in Table II. This also gives the computed ωT for the regular
orbits—cases (a)–(d), and the precision digT for each case. Table III

TABLE II. The parameters ε and � for the orbits in Fig. 5, using the force (8) with amplitudes and phases for case (0) in Table III. The last two columns give the computed ωT

and digT using T = 106.

Label ε � ωT digT

(a) 0.8 (0.2, 0.7) (0.195 709 415 335 09, 0.704 569 417 667 74) 14.7505
(b) 0.8 (0.84, 0.835) (0.839 470 290 894 69, 0.839 470 290 894 70) 15.2556
(c) 0.8 (0.5, 0.7) (0.497 788 528 060 59, 0.703 300 860 156 10) 12.0529
(d) 1.5 (0.1, 0.8) (0.074 250 240 472 12, 0.835 928 502 722 24) 14.3471
(e) 2.6 (0.7, 0.3) 4.0484
(f) 4.0 (0.24, 0.4) 2.5522
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TABLE III. Amplitudes, phases, and εcrit for curves in Figs. 5–8 [case (0)] and in Fig. 9 [cases (0–7)].

Case Param. 1 2 3 4 εcrit

0
ai 0.221 320 306 832 860 0.220 593 736 048 273 0.152 270 586 812 051 0.405 815 370 306 816

2.220 44
φi 0.369 246 781 120 215 0.111 202 755 293 787 0.780 252 068 321 138 0.389 738 836 961 253

1
ai 0.406 588 842 221 655 0.062 715 680 327 705 0.179 066 359 898 821 0.351 629 117 551 819

2.2070
φi 0.957 506 835 434 298 0.964 888 535 199 277 0.157 613 081 677 548 0.970 592 781 760 616

2
ai 0.211 681 398 612 178 0.317 651 811 580 494 0.375 591 536 887 180 0.095 075 252 920 149

2.4566
φi 0.273 022 072 458 714 0.542 430 207 288 253 0.431 224 181 579 691 0.153 093 675 447 227

3
ai 0.012 536 281 513 538 0.465 737 538 631 897 0.503 609 970 119 032 0.018 116 209 735 533

2.0564
φi 0.739 790 415 703 666 0.023 926 884 448 995 0.490 328 482 174 893 0.304 888 898 615 625

4
ai 0.760 566 444 256 527 0 0 0.239 433 555 743 473

1.3148
φi 0.739 790 415 703 666 0.023 926 884 448 995 0.490 328 482 174 893 0.304 888 898 615 625

5
ai 0 0.760 566 444 256 527 0.239 433 555 743 473 0

2.3434
φi 0.739 790 415 703 666 0.023 926 884 448 99 0.490 328 482 174 893 0.304 888 898 615 625

6
ai 0.007 280 035 519 179 0.942 703 650 246 408 0.039 647 117 954 398 0.010 369 196 280 015

5.2100
φi 0.384 398 913 909 761 0.203 897 175 276 146 0.913 862 879 483 257 0.191 420 654 770 675

7
ai 0 0.352 156 017 226 267 0 0.647 843 982 773 733

1.5436
φi 0.369 246 781 120 215 0.111 202 755 293 787 0.780 252 068 321 138 0.389 738 836 961 253

gives amplitudes and phases for (8) used in Figs. 5–8 [case (0)] and
in Fig. 9 (eight cases) along with the calculated values of εcrit. For all
of these parameter sets, ‖a‖1 = 1.
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