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The Lyapunov exponents of a dynamical system measure the average rate of exponen-

tial stretching along an orbit. Positive exponents are often taken as a defining char-

acteristic of chaotic dynamics, with the size of the exponent indicating the strength

of the chaos, or in the case of a negative exponent, a measure of the how far an orbit

is from being chaotic. However, the standard orthogonalization-based method for

computing Lyapunov exponents converges slowly—if at all. Many alternatively tech-

niques have been developed to distinguish between regular and chaotic orbits, though

most do not compute the exponents. We compute the Lyapunov spectrum in three

ways: the standard method, the weighted Birkhoff average (WBA), and the “mean

exponential growth rate for nearby orbits” (MEGNO). The latter two improve conver-

gence for nonchaotic orbits, but the WBA is fastest. However, for chaotic orbits the

three methods converge at similar, slow rates. Since there is little computational cost

for the WBA, we argue it should be used in any case. Though the original MEGNO

method does not compute Lyapunov exponents, we show how to reformulate it as a

weighted average that does.
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I. INTRODUCTION

Lyapunov exponents are a fundamental gauge of chaotic behavior in dynamical systems.

They measure the asymptotic growth rate of the distance between a pair of (infinitesimally)

close orbits, and the existence of a positive exponent, µ > 0, is often taken as a primary

indicator for “sensitive dependence on initial conditions”, one of the principal requirements

for chaos. However, existing techniques for computing exponents typically converge—if at

all—as 1/T , and often no faster than ln(T )/T , where T is the computed orbit length.1

Indeed, it often is difficult to even determine if µ 6= 0; for example, orbits that are very

close to regular regions in a Hamiltonian system can be chaotic but have arbitrarily small

maximal Lyapunov exponents.2

Though there have been many attempts to accelerate this convergence,3–6 such an ac-

celeration seems to be difficult. Many authors have attempted to obviate this difficulty

by developing other methods for distinguishing between regular and chaotic orbits. As re-

viewed by Skokos 7 , Maffione et al. 8 , Skokos, Gottwald, and Laskar 9 , such categorical tests

for chaos include the FLI10,11 (fast Lyapunov indicator), MEGNO1,12 (mean exponential

growth of nearby orbits), frequency analysis,13 SALI14 (smaller alignment index), GALI15,16

(generalized alignment index), the 0-1 test for chaos,17 etc.

We too have developed a categorical test: we showed18,19 that the WBA (weighted Birkhoff

average20) of a function on phase space can efficiently distinguish between regular and chaotic

orbits by its convergence rates. We argued that—if this is the only goal—it would be more

efficient to compute the WBA than the Lyapunov exponent or its categorical variants, since

in this case only iterates of the map f and not those of its derivatives are needed. We

compared the convergence of the WBA to that of conventional Lyapunov exponents18 as

well as to the 0-1 test.17 More recently, Bazzani et al. 21 compared the WBA to many of the

other categorical tests.

However, these techniques are categorical ; they do not try to compute accurate Lyapunov

exponents. While classification can be valuable, the exponent itself is an important quan-

tification of chaotic motion; for example, its inverse defines an effective prediction horizon,
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and invariant sets with larger exponents are quantifiably “more” chaotic. In addition, it

is important to distinguish the case of hyper-chaos where there is more than one positive

exponent.

Can one develop new methods to accurately compute the Lyapunov spectrum? Our

goal in this paper is to investigate such computations using the WBA. As we will see,

for smooth maps and nonchaotic orbits, C∞-smooth weighted averages can compute (non-

positive) Lyapunov exponents with super-polynomial convergence: the error decreases faster

than 1/T k for all k ∈ N. On the other hand, just as for functions on phase space,18 we

will see that a weighted average usually does not improve the rate of convergence of the

exponents when the orbit is chaotic.

Even though our result is largely negative in this regard, we believe it is valuable to

quantify the accuracy of various methods. Moreover, since our technique requires essentially

the same computational effort as the standard method, and does converge more rapidly in

some cases, we propose that it should be used whenever a quantitative estimate for the

Lyapunov exponents is desired. Moreover, we will show that the MEGNO method12 can be

reformulated as a weighted average, and as such gives an improved estimate for µ.

The context we consider is a discrete-time dynamical system, i.e., a differentiable map

f : M →M on an n-dimensional phase space M . We let x0 ∈M denote an initial point and

v0 ∈ Tx0M ∼= Rn a deviation vector. These evolve under the system

xt+1 = f(xt),

vt+1 = Df(xt)vt,
(1)

for t ∈ N. The Lyapunov exponent for (x0, v0) ∈ TM is then the growth rate of the norm of

vt:

µT (x0, v0) =
1

T
ln

(
‖vT‖
‖v0‖

)
,

µ(x0, v0) = lim sup
T→∞

µT (x0, v0).

(2)

A system is “regular” if the lim sup can be replaced by lim.22 Convergence of µT as T →∞

almost everywhere with respect to an invariant measure was proven in Oseledec’s multiplica-

tive ergodic theorem under certain restrictions.23–26

3
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As is well known, the time-T exponent can also be written as the time average of the

exponential stretching factors

µT (x0, v0) =
1

T

T−1∑
t=0

st,

st ≡ ln

(
‖vt+1‖
‖vt‖

)
,

(3)

since the sum is telescoping. Note that (3) is the time average of the stretching function

S : TM → R on the tangent bundle, defined by

S(x, v) ≡ ln

(
‖Df(x)v‖
‖v‖

)
. (4)

so that st = S(xt, vt).

A similar process can be used to compute the spectrum of exponents. A standard tech-

nique is repeated application of Gram-Schmidt orthogonalization.22,27–30 Given an initial

orthonormal basis Q0 = (q
(1)
0 , q

(2)
0 , . . . q

(n)
0 ), one iterates and then orthogonalizes:

p(j) = Df(xt)q
(j)
t

z(j) = p(j) −
∑j−1

k=1
〈p(j),z(k)〉
‖z(k)‖2 z(k)

, j = 1, . . . n.

Normalization of the orthogonal basis Z = (z(1), . . . , z(n)) then gives the scaling factors and

a new orthonormal basis

r
(j)
t+1 = ‖z(j)‖, q

(j)
t+1 =

z(j)

r
(j)
t+1

.

Iterating this process along an orbit {xt} gives a sequence Qt of orthogonal matrices and

growth factors r
(j)
t . The spectrum of Lyapunov exponents then becomes

µ
(j)
T (x0) =

1

T

T−1∑
t=0

ln(r
(j)
t+1),

µ(j)(x0) = lim sup
T→∞

µ
(j)
T (x0).

(5)

We define the stretching for the jth exponent by

R(j)(xt) ≡ ln(r
(j)
t ), and let R = (R(1), . . . , R(n)) . (6)

4
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The paper proceeds as follows. Section II recalls the weighted Birkhoff average. In §II B

we show that the “mean exponential growth of nearby orbits” (MEGNO) method1 can be

reformulated as a weighted average method, but not with a weight that is C∞ smooth at

the endpoints. In §III, we compare five weight functions for estimating the time average

in (5). Several example maps that we think of as “typical” are discussed in §III A. Finally,

in §III B we discuss some outliers; maps which have unexpected speed-up or slow-down of

convergence. These examples include maps that have shear, that are noninvertible, and

those with constant Jacobian. Our conclusions appear in §IV.

II. WEIGHTED AVERAGE METHODS

In this section, we review weighted average methods. Since (3) is a dynamical time

average, its convergence is related to that implied by Birkhoff’s ergodic theorem, which states

that time averages equal space averages for L1(M,R) functions on an ergodic invariant set,

see e.g., Billingsley.31 Unfortunately, the convergence of such averages is typically slow, i.e.,

no faster than 1/T .32 A technique for accelerating converge of time averages is the method

of the weighted Birkhoff average developed by Das et al. 20 . In this work, an average like

that in (3) for the stretching function (6) is replaced by

WBT (R)(x0) =
T−1∑
t=0

wT (t)R(xt). (7)

Here wT : [0, T ]→ R is a normalized weight, which we write in the form

wT (t) =
1

NT

g
(
t
T

)
, NT =

T−1∑
t=0

g
(
t
T

)
, (8)

for an unnormalized weight function g : [0, 1]→ R+.

The acceleration of the convergence of WBT for functions on phase space relies on the

fact that g(τ) is a bump function: it vanishes at 0 and 1 and is smooth on the closed interval

[0, 1]. In particular it has been proven that when the orbit lies on an invariant torus on

which the dynamics is conjugate to a rigid rotation with incommensurate frequency, and

5
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the map and conjugacy are sufficiently smooth, then such a bump function improves the

convergence of the Birkhoff average of a sufficiently smooth function on phase space.20,33,34

In the best cases, the convergence is super-polynomial (faster than 1/T k for any k ∈ Z) or

even exponential.

Our goal in the current paper is to investigate when this improvement extends to com-

putations of the Lyapunov spectrum (5).

A. Bump Functions

In this paper we will test several weight functions g (8) to see how they influence the

convergence of the time average (7) for the Lyapunov spectrum.

The standard choice for g is the following C∞ bump function,20 given by 1

gwba(τ) =

 e−(τ(1−τ))
−1

τ ∈ (0, 1)

0 τ = 0, 1
. (9)

We also consider the skewed bump function

gskew(τ) =

 e−(τ2(1−τ2))
−1

τ ∈ (0, 1)

0 τ = 0, 1
. (10)

This is still C∞, but is no longer symmetric about τ = 1
2
—it has a maximum at τ = 1√

2
. As

a third example, we will use the function

gleft(τ) =

 e
−
(
τ(1−1

2
τ)

)−1

τ ∈ (0, 1)

0 τ = 0, 1
, (11)

which is C∞ and monotone increasing on [0, 1) but has a discontinuity at τ = 1. This will

test whether the computations of µT are more sensitive to initial transient behavior in the

stretching of the vector vt. These functions are shown in Fig. 1.

1 Other possibilities with varying “widths” were explored by Duignan and Meiss.33 For time averages of

functions on phase space, (9) was found to have the best convergence properties.
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WBA
(2,0)  MEGNO
Skew
Left

t/T

w

0 0.2 0.4 0.6 0.8 1
0

1

2

3

FIG. 1. Normalized exponential bump (9), (2, 0) MEGNO (15), “skew” (10) and “left” (11) weight functions.

The weights are normalized to have unit area, instead of using the sum as in (8).

B. MEGNO

Cincotta and Simo 12 presented a modification of the average (3), introduced to give

a chaos indicator that they entitle the “mean exponential growth rate for nearby orbits”

(MEGNO). As reviewed by Cincotta and Giordano 1 , a generalized MEGNO, labeled by a

pair integers (m,n), can be formulated. It is obtained by first computing a weighted average

of the stretching factor (4) for the first t iterates: 2

Ym,n(t) = (m+ 1)tn
t∑

j=0

jmS(xj, vj).

The (m,n) MEGNO is obtained as an additional time average of this quantity:

Ȳ(m,n)(T ) =
1

Tm+n+1

T−1∑
t=0

Ym,n(t).

2 To be consistent with the definition of the stretch (4), and the concept of a bump function, we shift the

indices by one step from the notation of Cincotta and Giordano 1, Eqs. 4.38-39.

7
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Note that we can reorder this double sum to obtain an expression that closely resembles the

weighted average (7):

Ȳ(m,n)(T ) =
T−1∑
t=0

Wmeg
T (t)S(xt, vt),

where the MEGNO “weight” is effectively

Wmeg
T (t) =

m+ 1

Tm+n+1
tm

T−1∑
j=t

jn . (12)

Though Ȳ(m,n) now has a form similar to (7), the weight function is not normalized: MEGNO

does not attempt to compute an accurate value for µT . We propose that a normalized weight

function would be more appropriate, so we rescale (12) to define

wmegT (t) =
1

NT

(
t

T

)m
1

T

T−1∑
j=t

(
j

T

)n
, (13)

where NT is the normalization constant as in (8). Then the MEGNO-weighted average for

the Lyapunov exponent is defined using this weight in (7).

According to Cincotta and Giordano 1 , the most useful cases of MEGNO correspond to

(m,n) = (1,−1) and (2, 0). We will compare our results only with the second case since

it was shown to converge more rapidly. When n = 0 the sum in (13) is trivial: each term

(j/T )0 = 1 and so the sum is simply T − t. For m = 2, the normalization factor becomes

NT =
1

T 3

T−1∑
t=0

t2(T − t) =
T 2 − 1

12T
,

which then gives

wmegT (t) = 12
t2(T − t)
T 2(T 2 − 1)

. (14)

Note that this function vanishes at t = 0 and T : it is a bump function like those in §II A.

To compare more directly with these, we rescale time and set the interval to [0, 1] to obtain

gmeg(τ) = τ 2(1− τ) , (15)

and then wmegT is given by the normalization (8). This weight is C1 at the endpoint τ = 0,

but only C0 at τ = 1. This function is the orange curve in Fig. 1.
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III. NUMERICAL RESULTS

In this section, we compare the performance of the averages defined in §II by computing

the Lyapunov spectrum for several example maps with regular and chaotic orbits. The first

case, in §III A, exemplifies what we believe is the “typical” behavior. We then describe in

§III B cases where the behavior is atypical due to special properties of the dynamics.

We first compute Lyapunov exponents using the Gram-Schmidt method and standard,

unweighted average (5). Then we compute the exponents using the four weighting functions:

exponential (9), skew (10), left (11), and (2, 0)-MEGNO (15). In each case our goal is to

understand how the averages converge as T →∞. The errors at time T could be computed

if we knew the theoretical values of the exponents, µ(j); however, in most cases these are not

known.

Instead, we estimate the exponents by using the values µ
(j)
T ∗ at a fixed, large T ∗ to give an

estimate of the “true” answer. In order to avoid bias, rather than choosing a fixed “truth”,

each method produces its own estimate. Nevertheless, we have verified that using the skew

weighting as our “absolute truth” (since as we will see below, it has the best convergence

rates) does not change any of our convergence results. We will say that a Lyapunov exponent

converges as T−k if

|WBT (R(j))− µ(j)
T ∗ | ∼ T−k for 1� T � T ∗,

i.e., if a log-log plot of the error has slope −k over some interval.

A. Typical Convergence

Recall that the weighted Birkhoff average WBT (h) for a function h ∈ C∞(M,R) on phase

space converges slowly when an orbit is chaotic but for “regular” orbits (those smoothly

conjugate to incommensurate rotations) it converges at a rate determined by the smoothness

of the weight function—for a C∞ weight, such as (9), this can be super-polynomial.18–20,34

By contrast, the standard unweighted average nominally convergences at best32 as T−1.

9
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Here we similarly observe that the Lyapunov spectrum also converges slowly whenever

the orbit is chaotic, regardless of the method used. However for a regular orbit, the weighted

averages do typically enhance the convergence of the Lyapunov spectrum.

As a first example, consider the three-dimensional “discrete Lorenz map”35

x′ = y

y′ = −0.85x+ ν2y + yz

z′ = 0.95z − y2 .

(16)

Here we fix two of the parameters (ν1 = −0.85 and ν3 = 0.95, in the notation of Gonchenko

and Gonchenko 35) and allow only the parameter ν2 to vary. For (16), the determinant of

the Jacobian is independent of the point: det(Df) = ν1ν3 = −0.8075. This implies that the

sum of the exponents should be

d∗ = ln(| det(Df)|) ≈ −0.2138122238853254.

However, in the computations below, we do not use this since we want to test convergence

of the individual exponents (5).

Figure 2 shows the three Lyapunov exponents for this map as a function of ν2, computed

using the standard WBA weight (9) with the iterative Gram-Schmidt method (5). The

orbit is arbitrarily chosen to start at (0,−0.01, 0.0001), and we discard the first 4000 iterates

to remove transients. The exponents are computed using (7) for the next T = 2(10)4

iterates. In all cases, |µ(1) + µ(2) + µ(3) − d∗| < 10−14, consistent with the constant Jacobian

determinant. This excellent convergence follows from the fact that, up to floating point

error, ln(r
(1)
t ) + ln(r

(2)
t ) + ln(r

(3)
t ) = d∗ for each t, so the sum of the averages is the average

of the sum, with or without a weight function.

As shown in Gonchenko at al.35, the fixed point (x, y, z) = (0, 0, 0) of the map (16) is

stable up to ν2 = 1.85 where it undergoes a pitchfork bifurcation—at this point the largest

exponent (blue in Fig. 2) hits zero. The newly created pair of fixed points lose stability

at ν2 ≈ 1.8645 in Neimark-Sacker bifurcations. The resulting pair of attracting circles or

periodic orbits have basins of attraction limited by the stable and unstable manifolds of the

10
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1.921.84 1.88

1.87 1.8785

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

1.96ν2

λ

FIG. 2. The three Lyapunov exponents for the discrete Lorenz map for 1000 values of ν2 ∈ [1.83, 1.95].

These were computed using WBA weight (9) with T = 2(10)4. The dashed lines mark the values of ν2 used

for Figs. 3-4.

origin, and there can be additional attractors. At ν2 = 1.87 there is a chaotic, Lorenz-like

attractor, as shown in Fig. 3(a). This attractor has a single positive Lyapunov exponent and

a tangential exponent of zero. Using the exponential weight (9) with T ∗ = 2(10)6 gives the

exponents

µ ' (0.0039858, 0.0000000,−0.2177981). (17)

As ν2 varies, the Lorenz-like attractor can collapse onto an attracting circle; for example

this occurs at ν2 = 1.8785, see Fig. 4(a). For this attracting circle the maximal Lyapunov

exponent is zero, and again using the exponential weight (9), we find (to higher accuracy)

µ '


0.000000000000000

−0.000160991051261

−0.213651232834031

 , (18)

for the same T ∗. These cases are marked with vertical dashed lines in Fig. 2.
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The convergence of the three exponents using the five weight functions of §II is shown

in Fig. 3 for ν2 = 1.87 and Fig. 4 for ν2 = 1.8785. These plots show the errors for 100

logarithmically spaced values of T ∈ [900, 1.5(10)6]. In each case the first 4000 iterates of

the initial condition are discarded to remove transients. The error is estimated by comparing

to µ
(j)
T ∗ with T ∗ = 2(10)6.

For the chaotic attractor at ν2 = 1.87, Fig. 3(b)-(d) show that the values for each µ
(j)
T

appear to converge as T−1 for all of the weights. Quantitatively, the unweighted and left

weighted methods typically have the largest error, while—especially for the second and third

exponents—the smoothly weighted methods do appear to have some reduction in error.

Consistent with this, one might believe the results to 5 or 6 digits at T = 106.

By contrast, when the attractor is an invariant circle, Fig. 4(b)-(d) show that the C∞

WBA and skew weights far outperform the other methods. The best convergence is for

the skew weight; it reaches machine precision for all three exponents by T = 3(10)5. The

MEGNO weight (15) also gives increased convergence at a rate nearing T−2. The left and

constant (regular) weights still converge as T−1: even though the orbit is regular, there is

no improvement since these weight functions are not continuous.

The behavior seen in Figs. 3-4 appears to be typical: we have seen similar performance for

convergence of the Lyapunov spectrum in many other simulations for chaotic and nonchaotic

orbits for various maps including the discrete Lorenz map for other parameter values, the

classic Hénon map, the Derived from Anosov (DA) map,36 and the 2D torus map studied

in20 (Sec. 3.7.3).

B. Outliers

We now describe several cases where the convergence does not follow the pattern seen in

§III A.

Dynamics with Shear: Integrable symplectic maps have families of invariant tori whose

rotation vectors generically vary across tori: they have shear. This results in the linear growth

12
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FIG. 3. Panel (a): a chaotic attractor for the discrete Lorenz map (16) with ν2 = 1.87. Panels (b)-(d):

corresponding errors for the three Lyapunov exponents (17) as a function of T . The curves correspond to

the unweighted average (regular), exponential bump (WBA) (9), (2, 0)-MEGNO (15), left (11), and skew

(10) weights as labeled in (b). All methods appear to converge as T−1, though quantitative errors for the

WBA, MEGNO and skew weights are smaller.

of the length of vectors transverse to the tori, and this gives the slow convergence

µT ∼
ln(T )

T
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FIG. 4. Panel (a): an invariant circle attractor for the discrete Lorenz map (16) with ν2 = 1.8785. Panels

(b)-(d): corresponding errors for the three Lyapunov exponents (18) as a function of T . The curves for the

different weights are labeled as in Fig. 3; however, note that the vertical scale is different here. The smoothly

weighted methods converge much more quickly.

to zero for (3). It has long been known37 that shear causes a similar slow convergence even

when the map is not integrable, whenever the orbit lies on an invariant torus.9 The weighted

averages, as we describe below and see in Fig. 5, also exhibit this problem.
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For example, consider the 3D volume-preserving map19 for (x, y, z) ∈ T2 × R:

x′ = x+ z′ + 1
2
(
√

5− 1) mod 1

y′ = y + 2(z′)2 + 0.4 mod 1

z′ = z − 0.02 (sin(2πx) + sin(2πy) + sin(2π(x− y)) .

(19)

The initial point (x, y, z) = (0, 0,−0.05) appears to lie on an invariant two-torus that is a

graph over (x, y) on which the dynamics was shown19 to have the incommensurate rotation

vector ω ' (0.544519, 0.411571). All three of the Lyapunov exponents for this orbit are

zero: the two tangential exponents vanish because the invariant set is a two-torus, and the

transverse exponent is then zero because of volume-preservation. Nevertheless, since the

rotation vector varies with z, the map has shear and the length of a vector transverse to the

torus will grow linearly. This should result in slow convergence of the exponents.

The convergence of a Birkhoff average of the function h = cos(2πx) and of the largest

Lyapunov exponent are compared in Fig. 5 for the five weight functions of §II. The figure

shows the averages for 100 values of T ∈ [800, 1.5(10)7]. Since the map is volume preserving,

no transient removal is needed. For the C∞ weight functions the convergence rate of the

Birkhoff average is excellent, as we would expect for a quasiperiodic orbit.19 The errors for the

Lyapunov exponents in panels (b)-(d) were computed by comparing to µ(j) = 0. Note that

this convergence is very slow—even though the orbit is nonchaotic—though the weighted

methods do exhibit some error reduction. As for the discrete Lorenz map, the sum of the

three exponents is always near zero, to machine precision.

We observe similar behavior for other parameters and orbits of the map (19) as well as

for nonchaotic orbits of the 2D Chirikov standard and the 4D Froeschlé maps.

Weak Chaos: A dynamical system has weak chaos when the Lyapunov exponents are

not positive, but it still has sensitive dependence on initial conditions. Such dynamics can

lead to strange nonchaotic attractors (SNA), where the orbit lies on a geometrically strange

(fractal) set, but the Lyapunov exponent is not positive.38–44 In this case we have previously

observed that averages converge slowly for both Lyapunov exponents and functions on phase

space, and adding a weight function does not improve convergence.33,44
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FIG. 5. Convergence of weighted averages for an invariant torus of the map (19). Panel (a): time averages

of cos(2πx). For the C∞ weights this average converges to machine precision by T ≈ 3(10)5. Panel (b)-(d):

convergence of the three Lyapunov exponents to zero. The errors appear to be smaller for the weighted

averages, though–with the exception of µ(2)—the convergence rates are similar.

Noninvertible maps: Noninvertibility makes the computation of Lyapunov exponents

more delicate. Denote the set of points where the Jacobian of the map is singular by

J0 = {x : det(Df(x)) = 0}.

If an invariant set intersects J0, it may be nonsmooth and even self-intersecting.45–47 If an
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ergodic component intersects J0, even if it is smooth, some of the exponents will be undefined,

since a zero determinant implies that r
(j)
t = 0 for some j, so that ln r

(j)
t is infinite. Moreover,

the average (5) will also be undefined for initial conditions on the dense, countably infinite

set of preimages of J0. Of course it is still possible for the Lyapunov exponents to exist

almost everywhere. However, from the numerical standpoint, if an orbit nears the dense set

of singular points, then at least one r
(j)
t ≈ 0, and this will lead to significant floating point

errors.

This phenomenon is shown in Fig. 6 for a so-called Tinkerbell map29

x′ = 0.33x− 0.6y + x2 − y2

y′ = 2x+ 0.5y + 2xy .
(20)

In this case J0 is a circle centered at (−0.2,−0.65) with radius 1/
√

8 that intersects the

attractor, see Fig. 6(a). The Lyapunov exponents for this attractor are nonpositive, µ '

(0,−0.14292), and as seen in Fig. 6(b), the convergence of µ(1) for the C∞ bump functions

is excellent: since J0 intersects the orbit transversally, r
(1)
t is never near zero. However, r

(2)
t

does get arbitrarily close to zero infinitely often on the orbit. As seen in Fig. 6(c), this results

in slow convergence of the second Lyapunov exponent for all methods. For this case, the

attractor is smooth, and we observe that the convergence of WBT (h) using (9) for functions

on phase space (such as h = cos(2πx) and the rotation number) is excellent (not shown).

The implication is that for this case, the numerical difficulities are restricted to the smaller

Lyapunov exponent.

Constant Jacobian: When the map f has a constant, hyperbolic Jacobian, the conver-

gence rates of WBT (S), (7) are enhanced for smooth weight functions. Indeed, when Df = A

is constant, the method given in (5) is equivalent to a computing the singular values σj of A

via normalized simultaneous power iteration. As long as 0 ≤ σj+1 < σj < · · · < σ1 (the strict

inequality is the generic case), we have r
(j)
t → σj with error O(|σj+1/σj|t).48 As a result, the

errors in the weighted average (5), occur only for the initial transients. The implication is

that the left (11) and skew (10) weights perform better than the others, since they sup-

press the initial portion of the average. In contrast, when the orbit is chaotic, WBT (h) for
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FIG. 6. For the Tinkerbell map, the left panel depicts the attractor, the set of points with a singular

Jacobian (J0), and the first iterate of these points (J1). The right panels show the errors for µ
(1)
T and µ

(2)
T as

a function of T (note the difference in vertical scales). The second exponent converges slowly for all methods.

functions h converges slowly for any weight function.

We have verified this improved convergence of µ
(j)
T and slow convergence of other averages

for examples including Arnold’s cat map and the skinny baker map,29 both of which are

uniformly hyperbolic.

IV. CONCLUSIONS

Lyapunov exponents are regarded not just as a categorical test but also as a quantita-

tive estimate for chaos. For example, Fig. 2 shows more than a binary partition—it also

gives detailed information on the onset of chaos. As is well-known, the computation of the

Lyapunov exponent for orbits of a dynamical system can be formulated as a time average

of the stretching function S(xt, vt) (4) along a trajectory. It has been noted20 that these
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averages can be computed using bump functions, similar to those used to compute Birkhoff

averages of functions on phase space. An advantage of this smoothing is that the results can

be super-polynomially convergent when the trajectory is regular. We extended these ideas

to compute the full Lyapunov spectrum (5) using weighted averages (7).

In §III A we showed that a C∞ weight function typically gives super-convergence of the

Lyapunov spectrum on nonchaotic orbits, just as it does for functions on phase space. Thus a

weighted averaging enhances the ability of a Lyapunov exponent computation to distinguish

between regular an chaotic orbits, and in particular we showed that a C∞ weight is best. As

we saw in §III B, there are exceptions, including invariant sets that are tori with transverse

shear; these are common in the Hamiltonian or symplectic case. Moreover, having nonposi-

tive Lyapunov spectrum is not sufficient for super-convergence, as the example of weak-chaos

shows. In addition, attractors of non-invertible maps, even if they are non-chaotic, can have

slow convergence of some exponents due to singularities. Finally, convergence of exponents

can be enhanced by a smooth weight for the simplest of chaotic systems: those that are

uniformly hyperbolic with constant Jacobian.

As we showed in §II, the MEGNO chaos detection method of Cincotta et al.1,12 can be

reformulated as a weighted time average which gives the maximal Lyapunov exponent. This

reformulation shows that our scaled version of MEGNO is not just a detector of chaos, but

gives a quantitative estimate of the exponent. The weight function in this case, however, is

not C∞ and this results in slower convergence of the average. Since C∞ weight functions

have essentially the same computational cost as less smooth functions, there seems to be no

reason to use a less smooth weight.

The results in this paper still leave several open questions. Do these results extend

to higher dimensional systems? Do similar results occur for the case of flows? Finally,

is it possible to devise a technique for efficiently and accurately computing the Lyapunov

spectrum for a typical, chaotic invariant set? As a final warning for the many computations

of Lyapunov exponents: errors should be computed!
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de Mathématiques Pures et Appliquées 188, 470–492 (2024).

35S. Gonchenko and A. Gonchenko, “On discrete Lorenz-like attractors in three-dimensional

maps with axial symmetry,” Chaos 33, 123104 (2023).

36Y. Coudene, “Pictures of Hyperbolic Dynamical Systems,” Notices of the AMS 53, 8–13

(2006).

37G. Casati, B. Chirikov, and J. Ford, “Marginal local instablitiy of quasi-periodic motion,”

Phys. Lett. A 77, 91–94 (1980).

38M. Ding, C. Grebogi, and E. Ott, “Evolution of attractors in quasiperiodically forced

systems: From quasiperiodic to strange nonchaotic to chaotic,” Phys. Rev. 39A, 2593–

2598 (1989).
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