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Abstract. Edward Lorenz is best known for one specific three-
dimensional differential equation, but he actually created a variety of
related N -dimensional models. In this paper, we discuss a unifying
principle for these models and put them into an overall mathematical
framework. Because this family of models is so large, we are forced to
choose. We sample the variety of dynamics seen in these models, by
concentrating on a four-dimensional version of the Lorenz models for
which there are three parameters and the norm of the solution vector is
preserved. We can therefore restrict our focus to trajectories on the unit
sphere S3 in R4. Furthermore, we create a type of Poincaré return map.
We choose the Poincaré surface to be the set where one of the variables
is 0, i.e., the Poincaré surface is a two-sphere S2 in R3. Examining dif-
ferent choices of our three parameters, we illustrate the wide variety
of dynamical behaviors, including chaotic attractors, period doubling
cascades, Standard-Map-like structures, and quasiperiodic trajectories.
Note that neither Standard-Map-like structure nor quasiperiodicity has
previously been reported for Lorenz models.

1 Three Lorenz systems

Edward Lorenz introduced polynomial systems of differential equations in a series
of papers [1–7]. These equations all are dissipative, in the sense that all trajectories
eventually end up in a finite size ball. The dynamics are chaotic for some parameter
choices. While Lorenz justified these systems in terms of their being highly simplified
meteorological or fluid-flow models, they are so severely simplified as to have lit-
tle concrete practical use in meteorology. Regardless, in the intervening time, Lorenz
equations have had a significant scientific impact, and their importance resides largely
in their interesting dynamical behaviors. In this paper, we develop an overlying frame-
work for the Lorenz systems which additionally produces a whole family of related
differential equations. We call systems that fit into this framework generalized Lorenz
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Fig. 1. Quasiperiodicity and chaos in the Poincaré Map on S2 for GLE-4 with section X1 =
0. Here we investigate trajectories of the 4-dimensional Generalized Lorenz Equation GLE-4,
(given in Eq. (1) shown in this image for β = 6, ρ = 8, and γ = 0). We use initial conditions
for which ‖X‖ = 1. Since the norm ‖X(t)‖ remains constant, trajectories remain on the unit
sphere, denoted S3. To reduce the dimension by one, we only plot trajectories at those times
when X1(t) = 0, giving us a type of Poincaré map on the two-dimensional sphere S

2 shown
here, given by X22 +X

2
3 +X

2
4 = 1. We plot a Poincaré map point (X2, X3) in a lighter color

(red online) when the derivative X ′1 is positive and darker color (blue online) when negative.
The colors are brighter (red and blue online) on the upper hemisphere X4 > 0 and dull when
X4 < 0. Ten trajectories are shown here, nine of which are quasiperiodic. The full trajectory
of each of the nine is a torus and here we show only the smooth curves where the torus
intersectsX1 = 0. There is also one chaotic trajectory which can be seen wrapping around S

2

where X3 ≈ 0.

equations or Lorenz-like models. We start by developing the family of generalized
Lorenz equations.
A generalized Poincaré map. The trajectories can be viewed using a Poincaré

return map; see Figure 1. Using a Poincaré map reduces the dimension by 1, reducing
the 3-sphere to a 2-sphere when we use the Poincaré surface such as X1 = 0. Of course
it is possible that even if a trajectory has its initial point on this surface, it may never
return to the surface, such as might occur if there is an attractor that does not
intersect the surface. In fact, an example of this phenomenon occurs for Poincaré’s
original return map, which was created for the circular restricted three-body problem.
That surface of section only captures trajectories that cross the line between the two
major bodies. The Lagrange Points L4 and L5 are equilibria that form equilateral


