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Abstract. This paper gives theoretical results on spinodal decomposition for the Cahn–Hillard
equation. We prove a mechanism which explains why most solutions for the Cahn–Hilliard equation
starting near a homogeneous equilibrium within the spinodal interval exhibit phase separation with
a characteristic wavelength when exiting a ball of radius R. Namely, most solutions are driven into
a region of phase space in which linear behavior dominates for much longer than expected.

The Cahn–Hilliard equation depends on a small parameter ε, modeling the (atomic scale) in-
teraction length; we quantify the behavior of solutions as ε → 0. Specifically, we show that most
solutions starting close to the homogeneous equilibrium remain close to the corresponding solution
of the linearized equation with relative distance O(ε2−n/2) up to a ball of radius R in the H2(Ω)-
norm, where R is proportional to ε−1+�+n/4 as ε → 0. Here, n ∈ {1, 2, 3} denotes the dimension
of the considered domain, and � > 0 can be chosen arbitrarily small. Not only does this approach
significantly increase the radius of explanation for spinodal decomposition, but it also gives a clear
picture of how the phenomenon occurs.

While these results hold for the standard cubic nonlinearity, we also show that considerably
better results can be obtained for similar higher order nonlinearities. In particular, we obtain R ∼
ε−2+�+n/2 for every � > 0 by choosing a suitable nonlinearity.
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1. Introduction. A particularly intriguing phenomenon in the study of binary
alloys is spinodal decomposition [8]; namely, if a homogeneous high-temperature
mixture of two metallic components is rapidly quenched below a certain lower tem-
perature, then a sudden phase separation sets in. The mixture quickly becomes
inhomogeneous and forms a fine-grained structure, more or less alternating between
the two alloy components. Figure 1.1 shows a typical example of such a pattern.

In order to describe this phase separation process (as well as other phenomena)
Cahn [6] and Cahn and Hilliard [9] proposed the fourth-order parabolic partial differ-
ential equation

ut = −∆(ε2∆u+ f(u)) in Ω,

∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂Ω.

(1.1)

Here Ω ⊂ R
n is a bounded domain in R

n with sufficiently smooth boundary, n ∈
{1, 2, 3}, and the function −f is the derivative of a double-well potential F, the stan-
dard example being the cubic function f(u) = u − u3. Furthermore, ε is a small
positive parameter modeling interaction length. In this formulation, the variable u
represents the concentration of one of the two components of the alloy, subject to an
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Fig. 1.1. Spinodal decomposition in two dimensions for ε = 0.02.

affine transformation such that the concentration 0 or 1 corresponds to u being −1
or 1, respectively. The Cahn–Hilliard equation is mass-conserving, i.e., the total con-
centration

∫
Ω
u(t, x) dx remains constant along any solution u. Moreover, (1.1) is an

H−1(Ω)-gradient system with respect to the Van Der Waals free energy functional

Eε[u] =

∫
Ω

(
ε2

2
· |∇u|2 + F (u)

)
dx,

where F is the above-mentioned primitive of −f ; see Fife [19].
Every constant function ūo ≡ µ is a stationary solution of (1.1). Furthermore, this

equilibrium is unstable if µ is contained in the spinodal interval. This is the (usually
connected) set of all µ ∈ R such that f ′(µ) > 0. Thus, if µ lies in the spinodal interval,
any orbit originating near ūo is likely to be driven away from ūo. In this paper, we
prove the exact mechanism which explains precisely how this driving away process
occurs. Basically, solutions starting near the equilibrium are driven into a region of
phase space in which the linear terms dominate the behavior.
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Fig. 1.2. Eigenvalues of the linearization Aε.

There have been many works in the physics literature dealing with spinodal de-
composition and how it is modeled by the Cahn–Hilliard equation. We refer the
reader, for example, to Cahn [7, 8], Hilliard [22], Langer [25], Elder and Desai [15],
Elder, Rogers, and Desai [16], and Hyde et al. [24]. There also exist numerous papers
on numerical simulations of the Cahn–Hilliard equation; see, for example, Elliott and
French [18], Elliott [17], Copetti and Elliott [11], Copetti [10], Bai et al. [2, 3], as well
as our recent paper [31].

Mathematical treatments of spinodal decomposition in the Cahn–Hilliard equa-
tion have appeared in Grant [20] and Maier-Paape and Wanner [26, 28, 27]. Since
spinodal decomposition is concerned with solutions of (1.1) originating near the ho-
mogeneous equilibrium ūo ≡ µ, it is not surprising that both of the above approaches
crucially rely on the properties of the linearization of (1.1) at ūo, given as follows:

vt = Aεv = −∆(ε2∆v + f ′(µ)v) in Ω ,

∂v

∂ν
=

∂∆v

∂ν
= 0 on ∂Ω.

(1.2)

Introducing

X =

{
v ∈ L2(Ω) :

∫
Ω

vdx = 0

}
,(1.3)

we can consider the operator Aε : X → X with domain

D(Aε) =

{
v ∈ X ∩H4(Ω) :

∂v

∂ν
(x) =

∂∆v

∂ν
(x) = 0 , x ∈ ∂Ω

}
.(1.4)

It can be shown that this operator is self-adjoint. The spectrum of Aε consists of real
eigenvalues λ1,ε ≥ λ2,ε ≥ · · · → −∞ with corresponding eigenfunctions ϕ1,ε, ϕ2,ε, . . ..
To further describe these eigenvalues, let 0 < κ1 ≤ κ2 ≤ · · · → +∞ and ψ1, ψ2, . . .
denote the eigenvalues and eigenfunctions of the operator −∆ : X → X subject
to Neumann boundary conditions. Then the eigenvalues λi,ε of Aε are obtained by
ordering the numbers

λ̃i,ε = κi(f
′(µ)− ε2κi), i ∈ N.(1.5)

See Figure 1.2. The eigenfunctions ϕi,ε are obtained from the eigenfunctions ψi

through this ordering process in the obvious way and form a complete L2(Ω)-



UNEXPECTEDLY LINEAR BEHAVIOR 2185

orthonormal set in X. Moreover, the largest eigenvalue λ1,ε is of the order

λ1,ε ∼ λmax
ε =

f ′(µ)2

4ε2
, and λ1,ε ≤ λmax

ε .(1.6)

See Maier-Paape and Wanner [26].
The strongest unstable directions are the ones corresponding to κi ≈ f ′(µ)/(2ε2),

and one would expect that most solutions of (1.2) originating near ūo ≡ µ will be
driven away in some unstable direction(s).

In order to deduce results about the dynamics of the nonlinear Cahn–Hilliard
equation from the above linearization, Grant [20] and Maier-Paape and Wanner [26,
28] employed a dynamical approach. Equation (1.1) generates a nonlinear semiflow
Tε(t), t ≥ 0, on the affine space µ+X1/2, where X1/2 denotes the Hilbert space

X1/2 =

{
v ∈ H2(Ω) ∩X :

∂v

∂ν
= 0 on ∂Ω

}
.(1.7)

The constant function ūo ≡ µ is an equilibrium point for Tε, and the linearization
of Tε at ūo is given by the analytic semigroup Sε generated by Aε.

For the above setting, Grant [20] described spinodal decomposition for one-
dimensional domains Ω by showing the following. For generic small ε,most solutions of
(1.1) starting in a specific neighborhood Uε of ūo ≡ µ stay close to the one-dimensional
strongly unstable manifold of the equilibrium. This unstable manifold is tangent to
the eigenfunction ϕ1,ε of the largest eigenvalue λ1,ε. Furthermore, the two branches
of the strongly unstable manifold converge to two equilibrium points of (1.1) which
are periodic in space, and whose L∞-norm is bounded away from 0 as ε → 0. These
equilibria can be interpreted as spinodally decomposed states. Thus over time, most
solutions originating in Uε grow near the spinodally decomposed states.

Grant’s approach is not sufficient to explain spinodal decomposition in more than
one dimension. His approach predicts evolution of orbits towards regular patterns
which are not observed in practice. Maier-Paape and Wanner [26, 28] pointed out
that this discrepancy is due to the fact that the size of the neighborhood Uε in Grant’s
result is of the order exp(−c/ε). They proposed a different approach for explaining
spinodal decomposition in all (physically relevant) dimensions. Their results consider
solutions of (1.1) starting in a neighborhood Uε with size proportional to εdim Ω.
They prove that most solutions of (1.1) originating in Uε exit a larger neighborhood
Vε ⊃ Uε, also of the order εdim Ω, close to a dominating linear subspace, spanned
by the eigenfunctions corresponding to a small percentage of the largest eigenvalues
of Aε. Its dimension is proportional to ε− dim Ω.

The approach of Maier-Paape and Wanner is more successful than that of Grant
in describing observed patterns. However, the result is not optimal. The size of
the neighborhood Vε is proportional to εdim Ω � 1 with respect to the H2(Ω)-norm,
whereas the patterns they predict are observed even when the sup norm of the solution
is of order 1. Moreover, according to Maier-Paape and Wanner [28, Remark 3.6],
functions in the dominating subspace generally exhibit a sup norm of order 1 only if
their H2(Ω)-norm is of the order ε−2, which is increasing as ε → 0. This difference in
the orders is due to the fact that functions in the dominating subspace are oscillatory,
i.e., exhibit large second derivative terms.

In this paper, we give an improved result to explain spinodal decomposition, using
a new approach. For f(u) = u − u3 and µ = 0 our explanation applies to balls Uε

which are polynomial in ε, and Vε of size proportional to ε−1+�+dim Ω/4, where " > 0
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is arbitrarily small. Note that this is a remarkable improvement over the previous
two estimates, since the size of our starting domain is physically visible, and our
explanation applies for an exit domain which is growing as ε → 0. Furthermore, it
gives more precise information about the behavior of solutions. Namely, we are able to
show that spinodal decomposition is not merely a result of the dominance of a linear
subspace; it is a result of the fact that most solutions are driven into a region of phase
space in which the behavior is essentially linear. This is completely unexpected, as
the nature of the equation throughout most of Vε is highly nonlinear. Many solutions
which stay in Vε for some time show clearly nonlinear behavior during this time. It
is only solutions starting near the equilibrium which are very likely to exhibit linear
behavior while they remain in Vε. This has been described in more detail in Sander
and Wanner [31].

We are able to precisely quantify this linear regime in terms of the relative distance
between the solutions to the linear and nonlinear equations. Neglecting technical
details for the moment, our main result can be described as follows. For the precise
version, see Theorem 3.6.

Theorem 1.1. Consider (1.1) for f(u) = u − u3 and µ = 0, and let " > 0 be
arbitrary, but fixed. If we randomly choose an initial condition uo satisfying

||uo||H2(Ω) ≤ C · εk,
where k > 0 depends on " and dimΩ, then with high probability (independent of ε),
the solution u of (1.1) originating at uo will closely follow the solution of the linearized
equation as long as

||u(t)||H2(Ω) ≤ C · ε−1+�+dim Ω/4.(1.8)

The above result shows that if a solution of the nonlinear Cahn–Hilliard equation
starts sufficiently close to the homogeneous equilibrium ūo ≡ µ, then it will almost
certainly follow the corresponding solution of the linearized equation up to an un-
expectedly large distance from the equilibrium. (The notion of probability is subtle,
since this is an infinite-dimensional problem. See the end of subsection 3.4.) Thus, the
patterns observed during spinodal decomposition are precisely the patterns generated
by the linearized evolution. See Figure 1.1 for an example in two space dimensions.
The pictures in this figure are snapshots of the function v(t) at various times t. The
shading represents the values of v(t, x), with black and white corresponding to −1
and 1, respectively.

With Theorem 1.1 we partially answer a question raised in our previous paper [31].
There, numerical simulations in one space dimension indicate that the relative distance
||u − v||H2(Ω)/||v||H2(Ω) between the nonlinear solution u and the linear solution v
remains bounded by some small ε-independent threshold, as long as the norm of the
nonlinear solution is bounded by Cε−2. While our above result does not reproduce
the exponent −2, it furnishes a better threshold for the relative distance, namely of
the order O(ε2−dim Ω/2). This can be seen from our main theorem, Theorem 3.4 of
section 3. Leaving out technical details, it can be restated as follows.

Theorem 1.2. Again, consider the Cahn–Hilliard equation (1.1) with f(u) =
u − u3 and µ = 0. Let " > 0 be arbitrarily small, but fixed. Let uo denote an initial
condition close to ūo ≡ µ, which is sufficiently close to the subspace of dominating
eigenfunctions. Finally, let u and v be the solutions to (1.1) and (1.2), respectively,
starting at uo. Then as long as

||u(t)||H2(Ω) ≤ C · ε−1+�+dim Ω/4 · ||uo||�H2(Ω)(1.9)
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Fig. 1.3. Double-well potentials Fσ for σ = 2, 4, 6, 10, 100.

we have

||u(t)− v(t)||H2(Ω)

||v(t)||H2(Ω)
≤ C · ε2−dim Ω/2.

In other words, u remains extremely close to v until ||u(t)||H2(Ω) exceeds the threshold
given in (1.9).

Combined with the results of Maier-Paape and Wanner [26, 28], Theorem 1.2
immediately implies Theorem 1.1.

For the sake of simplicity, we consider only the two results above for the special
case of (1.1) with f(u) = u−u3 and µ = 0. This can easily be generalized. In fact, by
choosing different nonlinearities f, better values for the radii given in (1.8) and (1.9)
can be obtained. Consider, for example, the case fσ(u) = u−u1+σ, where σ ≥ 1. The
corresponding double-well potentials Fσ are given by Fσ(u) = u2+σ/(2+σ)−u2/2, as
shown for various σ in Figure 1.3. Notice that for σ → ∞ these potentials approach
the nonsmooth free energy which has been discussed by Blowey and Elliott [4, 5]. We
show in section 3 that for µ = 0 and a nonlinearity of this form, the radius in (1.8)
can be replaced by

C · ε(−2+dim Ω/2)·(1−1/σ)+�.

A similar statement is valid for the radius given in (1.9). Thus, by choosing a suitable
double-well potential Fσ, we can get as close to the order estimate ε−2+dim Ω/2 as we
wish. Furthermore, the case µ �= 0 can be reduced to the case µ = 0 by a change of
variables, which results in a change of the nonlinearity f . This may, however, lead to
a quadratic nonlinearity, i.e., to σ = 1, and therefore reduce the order of the radius
in (1.8).

This paper is organized as follows. Section 2 contains estimates for the relative
distance in an abstract setting. After collecting some definitions and assumptions
in subsection 2.1, we derive a bound on the absolute distance between solutions of a
nonlinear and linear equation in subsection 2.2 originating at the same initial condition
uo. In order to obtain a bound on the relative distance in subsection 2.4, we use a cone
condition for the initial condition uo. This cone condition is presented in subsection
2.3, together with some auxiliary results.

The abstract results are applied to the Cahn–Hilliard equation in section 3. We
begin in subsection 3.1 to describe the specific operators that have to be considered.
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Furthermore, we present the necessary estimates on the linearized Cahn–Hilliard equa-
tion. Sharp estimates on the nonlinearity lie at the heart of our result. These estimates
are contained in subsection 3.2. They require a technical condition on the domain Ω,
which is, for example, satisfied for generic rectilinear domains. In subsection 3.3 we
collect everything to prove our main theorem, Theorem 3.4. The precise version of
Theorem 1.1 is formulated and proven in subsection 3.4. Finally, section 4 contains a
discussion of our results and points towards further applications and improvements.

2. Results for abstract evolution equations. The following results give pre-
cise bounds on how long solutions of a nonlinear equation remain close to solutions
of an associated linear equation. For ease of discussion and applicability to other
situations, we consider abstract evolution equations. The specific bounds for the
Cahn–Hilliard equation are derived in the next section. We rely heavily on the results
of Henry [21]. In a different context, his methods have previously been applied to the
Cahn–Hilliard equation by Novick-Cohen [30].

2.1. Definitions and assumptions. Let X denote a Hilbert space with scalar
product (·, ·) and norm || · ||. Assume that −A is a sectorial operator on X. Then
for α ∈ (0, 1) and suitable a ∈ R we get the fractional power spaces Xα = D((−A+
aI)α) ⊂ X. These spaces are Hilbert spaces with scalar product (·, ·)α and cor-
responding norm || · ||α; see Henry [21]. We consider evolution equations on these
spaces.

For the entire section, we assume the following notation: Let A be as above,
and let F : Xα → X denote a Lipschitz continuous mapping. Then, according to
Henry [21, Theorem 3.3.3] and Miklavčič [29], the initial value problem

ut = Au+ F (u), u(0) = uo ∈ Xα(2.1)

has a unique local solution. Besides this nonlinear evolution equation and its solution u
we consider the linear initial value problem

vt = Av , v(0) = uo ∈ Xα,(2.2)

with the same initial condition uo. We use the following definition.

Definition 2.1 (existence of solutions). For some initial condition uo ∈ Xα

and some (not necessarily maximal) time Tmax > 0, let u : [0, Tmax] → Xα denote the
unique solution to the initial value problem (2.1). Furthermore, we denote the globally
defined solution to the linear initial value problem (2.2) by v : [0,∞) → Xα. Note
that if {S(t) : t ≥ 0} denotes the analytic semigroup generated by A, then we have
v(t) = S(t)uo for all t ≥ 0.

Our goal is to study by how much the nonlinear solution u differs from the linear
solution v. We quantify this using the relative distance

||u(t)− v(t)||α
||v(t)||α(2.3)

between the solutions u and v of the nonlinear and linear equations.

For our abstract results to hold we need the following assumptions on the analytic
semigroup generated by A. The linearized Cahn–Hilliard equation satisfies this set of
assumptions, as is shown in the next section.
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Assumption 2.2 (linear semigroup). Let S(t) denote the analytic semigroup
generated by A. We assume that the estimates

||S(t)ϕ||α ≤ K · t−α · eβt · ||ϕ|| for t > 0, ϕ ∈ X, and

||S(t)ϕ||α ≤ eλt · ||ϕ||α for t ≥ 0, ϕ ∈ Xα

are satisfied for some constants K ≥ 1, β ∈ R, and λ < β.
Note that the above assumptions are automatically satisfied if A is a self-adjoint

operator whose eigenvalues are bounded above by λ.
The last assumption of this subsection is concerned with the nonlinearity F . We

assume the following polynomial growth bound along a specific solution u.
Assumption 2.3 (nonlinearity). Let uo ∈ Xα and let u denote a solution of

(2.1) as in Definition 2.1. We assume that for some constant M > 0 and some σ > 0
we have

||F (u(t))|| ≤ M · ||u(t)||1+σ
α

for all t ∈ [0, Tmax].

2.2. A bound on the absolute distance. The following lemma provides a
first estimate on the deviation of the nonlinear and the linear solutions, provided the
nonlinearity satisfies a rather restrictive estimate.

Lemma 2.4. Consider the initial value problems (2.1) and (2.2) for some uo ∈
Xα, and let u and v be given as in Definition 2.1. Furthermore, let Assumption 2.2
be satisfied and assume that there exist constants L ≥ 0 and T ∈ [0, Tmax] such that

||F (u(t))|| ≤ L||u(t)||α for all t ∈ [0, T ].(2.4)

Then for all t ∈ [0, T ] the absolute distance of u and v satisfies

||u(t)− v(t)||α ≤ KL · d(α)
(β − λ)1−α · (1− α)

· e(β+θ)t · ||uo||α,(2.5)

where

θ = (KL · Γ(1− α))1/(1−α),(2.6)

and d(α) depends only on α ∈ (0, 1). In particular, we have d(1/2) = 2.
Proof. Let w = u− v. Then w satisfies the integral equation

w(t) =

∫ t

0

S(t− s)F (w(s) + v(s))ds,

and the hypotheses of the lemma imply

e−βt||w(t)||α ≤ KL

∫ t

0

(t− s)−αe−βs||w(s)||αds+KL||uo||α
∫ t

0

(t− s)−αe(λ−β)sds.

A straightforward calculation shows that for all t ≥ 0 we have

e−t ·
∫ t

0

s−αesds ≤ 1

1− α
.
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In addition, by changing the variable of integration, one can see that∫ t

0

(t− s)−αe(λ−β)sds = (β − λ)α−1 · e−(β−λ)t ·
∫ (β−λ)t

0

s−αesds.

Therefore,

e−βt||w(t)||α ≤ M +KL

∫ t

0

(t− s)−αe−βs||w(s)||αds,

where M = KL · ||uo||α/((β − λ)1−α · (1− α)). A result of Henry [21, Lemma 7.1.1]
finally yields

e−βt||w(t)||α ≤ M · E1−α(θt),

where θ = (KL ·Γ(1−α))1/(1−α) and Eσ(x) =
∑∞

k=0 xkσ/Γ(kσ+1). Henry also shows
that E1−α(x) ≤ d(α)ex, where d(α) is a constant depending only on α. Particularly,
for α = 1/2 it is not hard to verify directly that

E1/2(x) = ex ·
(
1 +

2√
π
·
∫ √

x

0

e−s2ds

)
,

so we have d(1/2) = 2 as claimed. This completes the proof.
The above lemma is only a first step towards estimating the relative distance

between u and v. In order to obtain estimates on the relative distance we also need
good lower bounds on the growth of the linear solution v. This calls for introducing
certain cone conditions for the initial condition.

2.3. Consequences of the cone condition. In order to derive good lower
bounds on the exponential growth of a linear solution v(t) = S(t)uo, we have to
make sure that the initial condition uo possesses a sufficiently nontrivial projection
on specific subspaces of Xα, namely, those where S(t) is expanding. For this, we need
an additional assumption.

Assumption 2.5 (splitting of Xα). Let S(t) and λ be as in Assumption 2.2.
Assume that we can decompose the Hilbert space Xα into an orthogonal sum Xα =
X+ ⊕X− of subspaces which are invariant with respect to S(t). Suppose that X+ is
finite-dimensional. Then we assume further that the estimates

||S(t)ϕ+||α ≥ eγt · ||ϕ+||α for all t ≥ 0, ϕ+ ∈ X+,(2.7)

||S(t)ϕ−||α ≤ eγt · ||ϕ−||α for all t ≥ 0, ϕ− ∈ X−

are satisfied for some constant 0 < γ < λ.
The above splitting will normally be induced by a decomposition of the spectrum

of the generator A of the semigroup S(t). The spaces X+ and X− then correspond
to the linear hull of all eigenvectors corresponding to eigenvalues greater than or less
than γ, respectively. Note that (2.7) immediately implies

||S(t)uo||α ≥ eγt · ||u+
o ||α for all t ≥ 0.(2.8)

We use this fact by imposing cone conditions on the initial conditions uo. Let δ > 0.
For the splitting Xα = X+ ⊕ X− introduced in Assumption 2.5 denote the unstable
cone with opening δ by Cδ, i.e., define

Cδ =
{
u = u+ + u− ∈ X+ ⊕X− = Xα : ||u−||α ≤ δ · ||u+||α

}
.
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Fig. 2.1. Points within relative distance q of Cδo must be in Cδ. Here q̃ = q||ϕo||α.

For nontrivial uo ∈ Cδ, estimate (2.8) implies an exponential lower bound on the
growth of the linear solution S(t)uo.

The remainder of this subsection contains two simple consequences of the cone
condition which are needed later. The first lemma provides lower and upper bounds on
the growth of the nonlinear solution u, assuming that the initial condition uo is inside
a fixed unstable cone and the relative distance between u and the linear solution v
can be controlled.

Lemma 2.6. Let u and v be given as in Definition 2.1, and assume that Assump-
tions 2.2 and 2.5 hold. For constants δ > 0 and q ∈ (0, 1), let uo ∈ Cδ, and suppose
that for all t ∈ [0, T ] the relative distance between u and v is at most q, i.e.,

||u(t)− v(t)||α
||v(t)||α ≤ q.(2.9)

Then for every t ∈ [0, T ] the inequality

(1− q) · 1√
1 + δ2

· ||uo||α · eγt ≤ ||u(t)||α ≤ (1 + q) · ||uo||α · eλt(2.10)

is satisfied.
Proof. Due to uo ∈ Cδ and the orthogonality of the splitting Xα = X+ ⊕X− we

get ||u+
o ||α ≥ (1 + δ2)−1/2 · ||uo||α. Together with (2.7) and (2.9) this yields the first

inequality in (2.10). The second one follows from Assumption 2.2 and (2.9).
Remark 2.7. Similar to the above proof, the fact that uo ∈ Cδ implies, with (2.8),

the lower bound ||v(t)||α ≥ ||uo||α · eγt/√1 + δ2 for all t ≥ 0.
The next lemma shows that if we can control the relative distance between two

points, one of which is contained in some cone Cδo , then the other point will be
contained in a somewhat larger cone Cδ.

Lemma 2.8. Let δo > 0 and 0 < q < 1/
√
1 + δ2

o. Define

δ = δo +
q · (1 + δ2

o

)√
1− q2 − q · δo

.

Then for any ϕo ∈ Cδo and ϕ ∈ Xα such that ||ϕ−ϕo||α/||ϕo||α ≤ q we have ϕ ∈ Cδ.
Proof. Since we are working with a splitting of a Hilbert space, the result reduces

to a fact about planar geometry. See Figure 2.1.
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2.4. A bound on the relative distance. In this subsection we combine Lem-
ma 2.4 with the results of the last subsection to obtain precise upper bounds on the
relative distance between u and v from Definition 2.1. In order to abbreviate the
presentation, we introduce new constants.

Definition 2.9 (introduction of m and N). With the notation of Definition 2.1,
Assumptions 2.2, 2.3, and 2.5, and Lemma 2.4, let N > 0 be such that

K · d(α)
(β − λ)1−α · (1− α)

·M ≤ N.(2.11)

Moreover, let θ be defined as in (2.6) and let m > 0 be such that

β + θ − γ ≤ m · γ.(2.12)

Introducingm andN in the above way might seem strange at first sight. However,
in our application to the Cahn–Hilliard equation the constants on the left-hand sides
of (2.11) and (2.12) will exhibit various dependencies on ε, and it is convenient to
incorporate these dependencies into the constants m and N .

Now we have gathered everything to derive our main result of this section. Assume
for the moment that all of the above assumptions hold for some initial condition uo

with Tmax = ∞. Choose R1 > 0 so that R1 > ||uo||α, and let

T = sup {τ > 0 : ||u(t)||α < R1 for all 0 ≤ t ≤ τ} ,(2.13)

i.e., let T denote the first exit time of the nonlinear solution u from the ball BR1(0).
We want to estimate the relative distance (2.3) between u(t) and v(t) for t ∈ [0, T ].
Due to Assumption 2.3 and (2.13) we can bound the Lipschitz constant L in (2.4) by
M ·Rσ

1 . Then combining (2.5) with (2.11) and (2.12) shows that for all t ∈ [0, T ] we
have

||u(t)− v(t)||α ≤ KL · d(α)
(β − λ)1−α · (1− α)

· e(β+θ)t · ||uo||α
≤ N ·Rσ

1 · emγt · eγt · ||uo||α.(2.14)

From Remark 2.7, we see that to bound the relative distance between u and v starting
in a cone, we need an estimate of the form

||u(t)− v(t)||α ≤ ζ · eγt · ||uo||α,(2.15)

where ζ > 0 is some small constant. Due to (2.14) this can be achieved if we choose R1

small enough. However, in order to bound the exponential term emγt ≤ emγT we
need an upper bound on the time T defined in (2.13). This is closely tied to obtaining
lower bounds on the growth of u, which in turn leads to a cone condition on the initial
condition uo.

All of this is put together in the following theorem, resulting in an estimate of
the form (2.15), as well as a bound on the relative distance between u and v. In
particular, the result gives the maximal value for the end radius R1 in terms of ζ.

Theorem 2.10. Let u and v be given as in Definition 2.1 and m and N be as in
Definition 2.9, and suppose that Assumptions 2.2, 2.3, and 2.5 are satisfied. Fix two
positive constants δ > 0 and ζ ∈ (0, 1/2), choose a constant Ro > 0 with

Ro <

(
ζ

N

)1/σ

· 2−m/σ · (1 + δ2
)−(m+1)/(2σ)

,(2.16)
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and define

R1 = Rm/(m+σ)
o ·

(
ζ

N

)1/(m+σ)

· 2−m/(m+σ) · (1 + δ2
)−(m+1)/(2m+2σ)

.(2.17)

Finally, assume that the initial condition satisfies uo ∈ Cδ and Ro ≤ ||uo||α < R1,
and define

T = sup {τ ∈ [0, Tmax] : ||u(t)||α < R1 for all 0 ≤ t ≤ τ} .(2.18)

Then for all t ∈ [0, T ] we have

||u(t)− v(t)||α
||v(t)||α ≤ ζ .(2.19)

Remark 2.11. If we define R1 as in (2.17), then R1 > Ro is satisfied if and only
if (2.16) holds.

Proof. Let T0 ∈ (0, Tmax] be the maximal time such that for all 0 ≤ t < T0 the
relative distance ||u(t) − v(t)||α/||v(t)||α is strictly less than 1/2. Then Lemma 2.6
implies

||u(t)||α ≥ 1

2
√
1 + δ2

· eγt · ||uo||α for all 0 ≤ t ≤ T0.

Now choose T1 ∈ (0, T0] maximal so that for all t ∈ [0, T1) we have ||u(t)||α < R1.
Together with ||uo||α ≥ Ro the above inequality then yields

eγt ≤ 2
√
1 + δ2 · R1

Ro
for all 0 ≤ t ≤ T1.

Combining this estimate with (2.14), we obtain

||u(t)− v(t)||α ≤ N ·Rσ
1 · emγt · eγt · ||uo||α

≤ N ·Rσ
1 ·
(
2
√
1 + δ2

)m
· R

m
1

Rm
o

· eγt · ||uo||α
for all 0 ≤ t ≤ T1. Finally, the definition (2.17) of R1 implies

||u(t)− v(t)||α ≤ ζ√
1 + δ2

· eγt · ||uo||α for all 0 ≤ t ≤ T1.

Combining the above with Remark 2.7 proves (2.19) for all t ∈ [0, T1].
In order to finish the proof of Theorem 2.10 we have only to verify T1 = T . This

is obvious if T0 = Tmax. If T0 < Tmax, then by the continuity of u and v we know
that the relative distance between u and v at time T0 is exactly 1/2. On the other
hand, we already showed that at time T1 this relative distance is at most ζ < 1/2.
Therefore, T1 < T0 and ||u(T1)||α = R1, i.e., T1 = T for T0 < Tmax as well.

Remark 2.12. In the above proof we applied Lemma 2.4 once with L = M ·Rσ
1 ,

and this resulted in the maximal radius R1 given by (2.17). However, the nonlin-
earity F varies polynomially with ||u||α. It therefore seems plausible that applying
Lemma 2.4 several times with growing values of L would improve the results. Al-
though there are several technical issues that have to be addressed in such an iterative
method, it can be done. The main difference in the resulting improved radius R1 is
that the exponent 1/(m + σ) of ζ/N can be replaced by 1/σ. While this might be
important in certain applications, it provides only a negligible improvement for the
Cahn–Hilliard equation, as in this case the constant m > 0 can be chosen arbitrarily
small. We have decided not to present the iterative proof, since it would come at the
cost of simplicity.
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3. The Cahn–Hilliard equation. In this section, we apply the abstract re-
sults to the Cahn–Hilliard equation in dimension n = 1, 2, and 3, linearized at the
homogeneous equilibrium solution ūo ≡ µ. We assume that −f is the derivative of a
sufficiently smooth double-well potential F and that µ lies in the spinodal interval,
i.e., we assume f ′(µ) > 0. As we pointed out in the introduction, the Cahn–Hilliard
equation (1.1) generates a nonlinear semiflow in the space µ + X1/2, where X1/2 is
defined in (1.7).

In order to simplify the presentation, we perform a change of variables and con-
sider the equation

ut = −∆(ε2∆u+ f(µ+ u)) in Ω,

∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂Ω,∫

Ω

udx = 0;

(3.1)

see Maier-Paape and Wanner [28, section 3.1], Novick-Cohen [30], and Zheng [32].
For any solution u of (3.1), the sum µ+ u solves the original Cahn–Hilliard equation
(1.1) in the affine space µ+X1/2. In other words, by redefining the nonlinearity f in a
suitable way, we may assume µ = 0 without loss of generality and we do this from now
on. Thus, we apply the abstract results of the last section to (3.1), which generates
a semiflow in the Hilbert space X1/2. Furthermore, we consider only nonlinearities f
of the form f(u) = u−u1+σ for an even integer σ ≥ 2. This can easily be generalized
to other nonlinearities.

3.1. Abstract setting and linear estimates. Let X be defined as in (1.3).
We consider the linear operator Aε : X → X given by

Aεu = −∆(ε2∆u+ f ′(µ)u),

with domain D(Aε) as in (1.4). The corresponding fractional power space for α = 1/2
is given by the Hilbert space X1/2 from (1.7), equipped with a norm || · ||1/2. In the

following, instead of || · ||1/2 we use the norm ||u||∗ = (||u||2L2 + ||∆u||2L2)1/2, which is
equivalent to both || · ||1/2 and the H2(Ω)-norm; see Maier-Paape and Wanner [28].

The following lemma shows that the analytic semigroup Sε(t) generated by the
linear operator Aε defined above satisfies all the conditions of our abstract result. In
particular, it gives the exact ε-dependence of the constants.

Lemma 3.1. Let Aε, X, and X1/2 be defined as above, and let Sε(t) denote the
analytic semigroup generated by Aε. Let α = 1/2 and λmax

ε = f ′(µ)2/(4ε2) from (1.6).
Finally, choose an arbitrary βo > 0. Then all the estimates in Assumption 2.2 are
satisfied if we choose λ = λmax

ε ,

β = (1 + βo) · λmax
ε ,

and

K =
1

ε
·
√

1 + βo + 4ε4/f ′(µ)2

2e · βo
.

Proof. By Lemma 3.4 in [28, p. 210], we have ||Sε(t)u||∗ ≤ eλt||u||∗, with λ as
above. Furthermore, for any β > λ, Lemma 3.4 in [28, p. 210] implies that

||Sε(t)u||∗ ≤ K · t−1/2 · eβt · ||u||,
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as long as

K ≥ sup
s≥0

√
1 + s2

2e(β − f ′(µ)s+ ε2s2)
.

A tedious but straightforward calculation shows that this inequality is satisfied for
the K and β specified in the statement of this lemma.

3.2. Growth estimates for the nonlinearity. Next we have to verify the
assumptions on the nonlinearity F : X1/2 → X, which is defined as

F (u) = −∆(g(u)), where g(u) = f(µ+ u)− f ′(µ)u.(3.2)

In order to achieve the desired sharp estimates we have to restrict our attention
to a specific part of the phase space, defined in terms of the eigenfunctions of Aε.
Furthermore, we need a condition on the domain Ω in order for our results to hold.

Recall from the introduction that the operator −∆ : X → X subject to Neumann
boundary conditions has a complete L2(Ω)-orthonormal set of eigenfunctions ψ1, ψ2,
ψ3, . . . , with corresponding eigenvalues 0 < κ1 ≤ κ2 ≤ κ3 ≤ · · · → ∞. We need the
following assumptions on the eigenfunctions ψk and eigenvalues κk, which is in fact
an assumption on the domain Ω.

Assumption 3.2 (properties of the domain Ω). Let Ω ⊂ R
n be a bounded domain,

where n ∈ {1, 2, 3}. We assume that the eigenvalues κk satisfy

κk ∼ k2/n as k → ∞.(3.3)

Moreover, assume that there are positive constants C1 and C2 such that the following
L∞(Ω)-estimates hold: for all k ∈ N we have both

||ψk||L∞ ≤ C1(3.4)

and

||∇ψk||L∞ ≤ C2 · √κk.(3.5)

In order to simplify notation we write ||∇ψk||L∞ instead of || |∇ψk| ||L∞ . Furthermore,
recall that the eigenfunctions ψk are normalized with respect to the L2(Ω)-norm.

The above assumptions are automatically satisfied for one-dimensional domains.
Also, (3.3) holds for n = 2 and n = 3 if all the eigenvalues of −∆ are simple. This is
an immediate consequence of the asymptotic distribution of the eigenvalues of −∆;
see, for example, Courant and Hilbert [12, p. 442] or Edmunds and Evans [14]. Since
it can easily be verified that both (3.4) and (3.5) are true for rectangular domains,
Assumption 3.2 is therefore satisfied for generic rectangular domains. Although we
do not know of any more general geometric condition on Ω which implies our above
assumptions, these assumptions are also frequently used elsewhere; see, for example,
Da Prato and Zabczyk [13, p. 139].

As mentioned above, we can only obtain useful estimates on the growth of the
nonlinearity F (u) in portions of the phase space X1/2. For the sake of simplicity of
our presentation, we chose this region to be a cone around a dominating subspace
of Maier-Paape and Wanner [26]. This already considerably improves known results
while at the same time rendering a technically simple discussion. Recall that if we
define

ϕ̃k =
1√

1 + κ2
k

· ψk for k ∈ N,
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then the ϕ̃k form a complete orthonormal set of eigenfunctions of Aε with respect to
the scalar product induced by || · ||∗. The corresponding eigenvalues λ̃k,ε are given by
(1.5). Fix some constant γo ∈ (0, 1) and let

X+
ε = span

{
ϕ̃k : λ̃k,ε ≥ γo · λmax

ε

}
⊂ X1/2,(3.6)

X−
ε = span

{
ϕ̃k : λ̃k,ε < γo · λmax

ε

}
⊂ X1/2.(3.7)

See Figure 1.2. Then X+
ε is a dominating subspace with dimension proportional

to ε−n asymptotically as ε goes to zero; see Maier-Paape and Wanner [26, p. 442].
We consider cones Kδ ⊂ X1/2 with respect to the decomposition X1/2 = X+

ε ⊕ X−
ε

defined as

Kδ =
{
u ∈ X1/2 : ||u−||∗ ≤ δ · ||u+||∗, u = u+ + u− ∈ X+

ε ⊕X−
ε

}
,

for some δ > 0. The following lemma contains the desired estimate on the L2(Ω)-norm
of the nonlinearity F (u) = −∆(f(u)− f ′(µ)u) = −∆(g(u)); see (3.2).

Lemma 3.3.Let Ω be such that Assumption 3.2 is satisfied, and consider a func-
tion g : R → R given by g(u) = u1+σ · g̃(u), where σ ≥ 1 and g̃ is C2 on an open
interval containing 0. Finally, define F (u) = −∆(g(u)), let δo > 0 be arbitrary, and
set

δε = δo · ε2−n/2.(3.8)

Then there exist ε-independent positive constants M1 and M2, such that for every
ε ∈ (0, 1) and every function u ∈ Kδε with

||u||∗ ≤ M1 · ε−2+n/2(3.9)

we have

||F (u)||L2 ≤ M2 · ε(2−n/2)·σ · ||u||σ+1
∗ .(3.10)

The constants M1 and M2 depend only on g, δo, and Ω.
Proof. Since g̃ is C2 on an open interval containing 0 there exist constants M̃1 > 0

and M̃2 > 0 such that

|g′(s)| ≤ M̃1 · |s|σ and |g′′(s)| ≤ M̃1 · |s|σ−1 for all |s| ≤ M̃2.(3.11)

We show below that for δε given in (3.8) there exist numbers M̃3 and M̃4 such that
for arbitrary ε ∈ (0, 1) and every u ∈ Kδε the estimates

||u||L∞ ≤ M̃3 · ε2−n/2 · ||u||∗ and(3.12)

||∇u||L4 ≤ M̃4 · ε1−n/4 · ||u||∗(3.13)

hold. (In order to simplify notation we write ||∇u||L4 instead of || |∇u| ||L4 .)
Let ε ∈ (0, 1) and M1 = M̃2/M̃3. Choose u ∈ Kδε satisfying (3.9). Then (3.12)

implies ||u||L∞ ≤ M̃2, and (3.11) yields

||g′(u)||L∞ ≤ M̃1 · ||u||σL∞ and ||g′′(u)||L∞ ≤ M̃1 · ||u||σ−1
L∞ .

Together with F (u) = −g′(u)∆u− g′′(u)|∇u|2, (3.12), and (3.13), this implies

||F (u)||L2 ≤ ||g′(u)||L∞ · ||∆u||L2 + ||g′′(u)||L∞ · ||∇u||2L4

≤ M̃1M̃
σ
3 · ε(2−n/2)·σ · ||u||σ+1

∗ + M̃1M̃
σ−1
3 M̃2

4 · ε(2−n/2)·σ · ||u||σ+1
∗ ,
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which is the desired estimate (3.10).
It remains to prove (3.12) and (3.13). To that end, we have to use a further

splitting of X−
ε . Namely, since the eigenvalues κk of the negative Laplacian are

increasing, we can choose ks to be the smallest integer such that ϕ̃ks ∈ X+
ε . In

addition, let kl be the largest integer such that ϕ̃kl
∈ X+

ε . Now we decompose X−
ε into

the space X�
ε, spanned by {ϕ̃k : k < ks} and the space X�

ε, spanned by {ϕ̃k : k > kl}.
(a) A bound on ||u||L∞ for arbitrary u ∈ Kδε . Due to the continuity of the em-

bedding of H2(Ω) into L∞(Ω), it suffices to prove (3.12) for functions of the form

u =
∑k2

k=k1
αkϕ̃k, for arbitrary integers 0 < k1 ≤ k2, since functions of this type are

dense in X1/2. Then Hölder’s inequality and (3.4) immediately yield

||u||L∞ ≤
k2∑

k=k1

|αk| · ||ϕ̃k||L∞ ≤ C1 ·
(

k2∑
k=k1

α2
k

)1/2

︸ ︷︷ ︸
=||u||∗

·
(

k2∑
k=k1

1

1 + κ2
k

)1/2

.(3.14)

We begin with considering the two cases u ∈ X+
ε ⊕X�

ε and u ∈ X�
ε separately.

If u ∈ X+
ε ⊕ X�

ε we have k1 = ks. Moreover, according to Maier-Paape and
Wanner [26] the constant k1 is proportional to ε−n as ε → 0. Employing (3.3) this
furnishes

k2∑
k=k1

1

1 + κ2
k

≤ C ·
k2∑

k=k1

k−4/n ≤ C ·
∫ k2

k1−1

τ−4/ndτ

≤ C · (ks − 1)1−4/n ≤ C · ε4−n .

Note that here and in what follows, in order to simplify notation C is taken to mean a
constant independent of ε, though not always the same constant. Together with (3.14)
this implies

||u||L∞ ≤ C · ε2−n/2 · ||u||∗ for all u ∈ X+
ε ⊕X�

ε .(3.15)

Now consider u ∈ X�
ε, i.e., assume k1 = 1 and k2 = ks − 1 in (3.14). Due to Sobolev’s

embedding theorem there exists a constant C which depends only on the domain Ω
such that

||Υ||L∞ ≤ C||Υ||∗ for all Υ ∈ H2(Ω).(3.16)

Finally, let u ∈ Kδε be arbitrary with δε as in (3.8). Then we can write u = u++u�+
u� ∈ X+

ε ⊕X�
ε ⊕X�

ε, and

||u�||∗ ≤ ||u� + u�||∗ ≤ δε · ||u+||∗ ≤ δo · ε2−n/2 · ||u||∗.
Together with (3.15) and (3.16) this readily implies (3.12).

(b) A bound on ||∇u||L4 for arbitrary u ∈ Kδε . Let u ∈ Kδε be arbitrary, and
assume u = u+ +u− ∈ X+

ε ⊕X−
ε . Due to the Sobolev embedding H2(Ω) ↪→ W 1,4(Ω)

(see Adams [1]) there exists a constant C which depends only on the domain Ω such
that

||∇Υ||L4 ≤ C||Υ||∗ for all Υ ∈ H2(Ω).

Because of u ∈ Kδε and ε ∈ (0, 1) we further deduce

||∇u−||L4 ≤ C · ||u−||∗ ≤ C · ε2−n/2 · ||u+||∗ ≤ C · ε1−n/4 · ||u+||∗.(3.17)
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Now consider u+ ∈ X+
ε . We can write this as u+ =

∑kl

k=ks
αkϕ̃k. Due to the

Neumann boundary condition of the ϕ̃k, integration by parts yields

||∇u+||2L2 = (−∆u+, u+)L2 =

kl∑
k=ks

κkα
2
k||ϕ̃k||2L2 =

kl∑
k=ks

α2
k · κk

1 + κ2
k

.(3.18)

According to Maier-Paape and Wanner [26] the index ks is proportional to ε−n, and
together with assumption (3.3) we get

κk

1 + κ2
k

≤ κ−1
ks

≤ Cε2 for all k = ks, . . . , kl.

Thus (3.18) implies

||∇u+||L2 ≤ C · ε ·
(

kl∑
k=ks

α2
k

)1/2

= C · ε · ||u+||∗.(3.19)

Next we want to obtain an estimate on the L∞(Ω)-norm of |∇u+|. Using Hölder’s
inequality and (3.5) we get

||∇u+||L∞ ≤
kl∑

k=ks

|αk| · ||∇ϕ̃k||L∞ ≤ C2 ·
kl∑

k=ks

|αk| ·
√
κk√

1 + κ2
k

≤ C2 · ||u+||∗ ·
(

kl∑
k=ks

κk

1 + κ2
k

)1/2

.

Since both ks and kl are proportional to ε−n we deduce with (3.3) the estimate

kl∑
k=ks

κk

1 + κ2
k

≤ kl − ks + 1

κks

≤ C · ε2−n,

and therefore

||∇u+||L∞ ≤ C · ε1−n/2 · ||u+||∗.

Together with (3.19) the last estimate yields

||∇u+||4L4 =

∫
Ω

|∇u+|4dx ≤ ||∇u+||2L∞ · ||∇u+||2L2 ≤ C · ε4−n · ||u+||4∗.

In view of (3.17) this completes the proof of (b).

3.3. Unexpectedly linear behavior. We are finally in a position to put ev-
erything together. The following main theorem of our paper gives conditions on the
initial condition uo of the nonlinear Cahn–Hilliard equation (1.1) which imply that
its solution u originating at uo closely follows the corresponding solution of the lin-
earized equation (1.2) up to an unexpectedly large distance from the equilibrium.
For a detailed discussion as to why this is unexpected, see [31]. In view of the fact
that the estimates on the nonlinearity F derived in the last subsection hold only in
certain unstable cones around a dominating subspace X+

ε , we have to assume that
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the initial condition uo is contained in such a cone. Recall that the definition of X+
ε

given in (3.6) depends on a constant γo ∈ (0, 1), which determines the cut-off for the
dominating eigenvalues.

Theorem 3.4. Consider the Cahn–Hilliard equation (1.1) with f(u) = u− u1+σ

for some σ ≥ 1, let µ = 0, and suppose that Assumption 3.2 holds. Furthermore,
choose and fix constants δo ∈ (0, 1/2) and " ∈ (0, 1).

Then there exist constants D > 0 and γo = γo(", σ, n) ∈ (0, 1) such that for
the splitting defined in (3.6), (3.7) and arbitrary ε ∈ (0, 1), the following holds. If
uo ∈ Kδε with δε = δo · ε2−n/2 is any initial condition satisfying

0 < ||uo||∗ ≤ min

{
1,
(
D · ε(−2+n/2)·(1−1/σ)+�

)1/(1−�)
}

,(3.20)

and if u and v denote the solutions of (1.1) and (1.2), respectively, then there exists
a first time T > 0 such that

||u(T )||∗ = D · ε(−2+n/2)·(1−1/σ)+� · ||uo||�∗,(3.21)

and for all t ∈ [0, T ] we have

||u(t)− v(t)||∗
||v(t)||∗ ≤ δo

2
· ε2−n/2.(3.22)

Proof. Choose m > 0 constant such that both

m

m+ σ
≤ " and

(
−2 + n

2

)
· σ − 1

σ +m
≤
(
−2 + n

2

)
·
(
1− 1

σ

)
+ "(3.23)

are satisfied, and fix γo such that

1

m+ 1
< γo < 1

holds. Let α = 1/2, γ = γo · λmax
ε , βo = γo · (m + 1 − 1/γo)/2 > 0, and define λ, β,

K as in Lemma 3.1. Then there is an ε-independent constant No such that for all
ε ∈ (0, 1) we have

K · d(α)
(β − λ)1−α · (1− α)

≤ No.

Set

N = No ·M2 · ε(2−n/2)·σ, M = M2 · ε(2−n/2)·σ,

with M2 as in Lemma 3.3, but for the larger cone K2δε . Choose Tmax > 0 maximal
such that for all t ∈ [0, Tmax) we have u(t) ∈ K2δε and

||u(t)||∗ <

(
(βo · λmax

ε )
1−α

K ·M · Γ(1− α)

)1/σ

.(3.24)

Notice that the right-hand side of (3.24) is proportional to ε−2+n/2 for ε → 0. Let
the spaces X+ and X− be defined as in (3.6) and (3.7), respectively.
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With the above definitions it is straightforward to verify that Assumptions 2.2,
2.3, and 2.5 are satisfied. Finally, choose the constant D > 0 in such a way that the
expression D · ε(−2+n/2)·(1−1/σ)+� is bounded above by both the right-hand side in
(3.24) and by (δε/(2N))1/(m+σ) · 2−m/(m+σ) · (1 + δ2

ε)
−(m+1)/(2m+2σ), for ε ∈ (0, 1).

This is possible due to (3.23). Let ζ = δε/2, and let uo ∈ Kδε satisfy (3.20). Define

R1 = ||uo||m/(m+σ)
∗ ·

(
δε
2N

)1/(m+σ)

· 2−m/(m+σ) · (1 + δ2
ε

)−(m+1)/(2m+2σ)
,

and let T1 ∈ [0, Tmax] be defined as in (2.18). Due to our choice of uo and D we have

R1 ≥ R = D · ε(−2+n/2)·(1−1/σ)+� · ||uo||�∗.

Let To ∈ [0, T1] denote the maximal time such that ||u(t)||∗ < R for all t ∈ [0, To).
Then by Theorem 2.10, (3.22) holds for all t ∈ [0, To], and in order to finish the proof
of the theorem we have only to verify ||u(To)||∗ = R.

Since this is obviously satisfied if To < Tmax, let us assume To = Tmax and
||u(To)||∗ < R, and arrive at a contradiction. Due to our choice of D and ||uo||∗ ≤ 1,
the norm ||u(To)||∗ is strictly less than the right-hand side of (3.24); the definition of
Tmax shows that u(To) has to lie on the boundary of the cone K2δε . On the other hand,
the estimate (3.22) is satisfied for all t ∈ [0, Tmax]. Since the cone Kδε is positively
invariant for linear solutions, v(To) ∈ Kδε . Lemma 2.8 shows that u(To) ∈ Kc·δε for
some c < 2, i.e., it cannot be contained in the boundary of K2δε . Thus we have a
contradiction, and To < Tmax. This completes the proof.

Remark 3.5 (ε-dependence of the time T ). If the initial conditions uo are chosen
in such a way that ||uo||∗ depends polynomially on ε, then it is not hard to show that
the time T in (3.21) is proportional to ε2 · | ln ε| as ε → 0.

3.4. Entering the cone. As it stands, our main result does not make any
statement about how likely it is to find an appropriate initial condition uo. The
following theorem is a corollary to Theorem 3.4 showing that most solutions starting
near the equilibrium solution enter the regime of linearity.

Theorem 3.6. Consider the Cahn–Hilliard equation (1.1) with f(u) = u− u1+σ

for some σ ≥ 1, let µ = 0, and suppose that Assumption 3.2 holds. Furthermore,
choose and fix constants δo ∈ (0, 1/2) and " ∈ (0, 1). Then there exists k > 0 such
that with high probability (independent of ε), solutions of (1.1) starting at an initial
condition uo satisfying

||uo||∗ ≤ C · εk

enter the region of unexpectedly linear behavior as in Theorem 3.4. The value of k
depends on ". Namely, " → 0 implies k → ∞.

Proof. This follows immediately from Theorem 3.4 above and the results in Maier-
Paape and Wanner [28]. Notice that the latter results have to be slightly modified in
order to treat the ε-dependent cone opening. See [28, Corollary 2.1].

Similar to Remark 3.5, one can easily show that if the initial conditions uo in
Theorem 3.6 are chosen in such a way that ||uo||∗ depends polynomially on ε, then
the time it takes the solutions to enter the region of unexpectedly linear behavior is
again proportional to ε2 · | ln ε|.

Let us close this section with some remarks on the notion of high probability
mentioned in the above theorem. It was pointed out by Hunt, Sauer, and Yorke [23]
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that there is no canonical choice of a probability measure on bounded subsets of
an infinite-dimensional space, which corresponds to the Lebesgue measure in finite
dimensions. Therefore, Maier-Paape and Wanner [26] used the following concept of
probability. In a small neighborhood of the homogeneous equilibrium there exists a
finite-dimensional inertial manifold of the Cahn–Hilliard equation which exponentially
attracts all nearby orbits. Thus, if we observe an orbit, we actually observe only
its projection onto this manifold. On this manifold, however, we have a canonical
probability measure induced by the finite-dimensional Lebesgue measure, and this is
used to quantify the probability statement in Theorem 3.6. For more details we refer
the reader to [26].

4. Conclusions and open questions. The large size of the radius for which
we can explain spinodal decomposition is considerably better than in the results of
Maier-Paape and Wanner; their results gave both a starting and ending radius of
order εn. Our result even gives an end radius which is nondecreasing as ε → 0. More
importantly, our result is qualitatively more illuminating. We show that spinodal
decomposition is a result of the fact that most nonlinear solutions are forced into
a region of phase space in which the nonlinearity has little effect. These results are
supported by numerical simulations; see Sander and Wanner [31]. We end this section
with some questions which remain open.

As motivated in the introduction, the H2(Ω)-norm is the mathematically relevant
norm to consider for the Cahn–Hilliard equation. The relationship between this norm
and the L∞(Ω)-norm is subtle. However, our numerical results in [31] indicate that
in one space dimension, solutions starting near equilibrium and measured at some
specified H2(Ω)-end radius have an L∞(Ω)-norm proportional to ε−2.

Aside from the slight improvement of the iterative method mentioned in Re-
mark 2.12, our estimate appears to be as good as possible for solutions restricted to
cones Kδε with respect to the described splitting X1/2 = X+

ε ⊕ X−
ε . We believe we

can improve these results by adapting (reducing) the dimension of the dominating
subspace X+

ε as the radius increases. Another potential way to improve on this order
is to come up with another appropriate almost linear region, into which most solutions
of small radius are driven. However, even without these modifications, the method is
both powerful and general. We are optimistic that it can be applied to a variety of
other equations.
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