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Abstract

Several models have been proposed for describing the formation of animal coat patterns.

We consider reaction–diffusion models due to Murray, which rely on a Turing instability for

the pattern selection. In this paper, we describe the early stages of the pattern formation

process for large domain sizes. This includes the selection mechanism and the geometry of the

patterns generated by the nonlinear system on one-, two-, and three-dimensional base

domains. These results are obtained by an adaptation of results explaining the occurrence of

spinodal decomposition in materials science as modeled by the Cahn–Hilliard equation. We

use techniques of dynamical systems, viewing solutions of the reaction–diffusion model in

terms of nonlinear semiflows. Our results are applicable to any parabolic system exhibiting a

Turing instability.
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1. Introduction

Understanding and explaining both the formation and the diversity of animal coat
patterns has intrigued biologists and mathematicians alike. Several mathematical
models have been proposed, relying on different biological and chemical processes.
One of the first models is an activator–inhibitor model due to Murray [18–20]. He
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suggests a reaction–diffusion system of the form

ut ¼ Du þ g � f ðu; vÞ in O;

vt ¼ d � Dv þ g � gðu; vÞ in O; ð1Þ

subject to homogeneous Neumann boundary conditions, where d and g are positive
constants modeling the ratio of diffusion coefficients and the effect of domain size,
respectively. As for the specific choice of the nonlinearities, Murray [20] suggests the
use of the Thomas system nonlinearities given by

f ðu; vÞ ¼ a � u � hðu; vÞ;

gðu; vÞ ¼ aðb � vÞ � hðu; vÞ;

hðu; vÞ ¼ ruv

1þ u þ Ku2
; ð2Þ

where a; b; a; r; and K are positive parameters. With these specific nonlinearities
system (1) was originally proposed as a model for chemical reactions involving
oxygen and uric acid in the presence of the enzyme uricase. See [26]. Roughly
speaking, the geometry of the function u in this model can be interpreted as
describing the coat pattern of a specific mammal, with O defining the normalized
shape of the animal’s coat and g being a measure of its actual size (obtained via
rescaling space and time). Similar models have also been used to explain shell
patterns [16,17].

For a large range of the above parameters, the reaction–diffusion system
(1) has an unstable spatially homogeneous equilibrium ð %u0; %v0Þ: Murray
suggests that due to fluctuations during the embryonic stage of a mammal,
one has to consider initial conditions ðu0; v0Þ close to this homogeneous
equilibrium ð %u0; %v0Þ; and study the evolution of the corresponding solution
of (1). In this way, randomness enters the otherwise deterministic pattern
formation process, which is commonly referred to as the Turing mechanism.
See [27]. A good model for this process must have the property that starting
at the random initial condition ðu0; v0Þ; the corresponding solution of (1) is
quickly driven away from the homogeneous equilibrium ð %u0; %v0Þ; thereby
developing a characteristic pattern. The fine structure of this pattern must
depend crucially on the specific initial condition ðu0; v0Þ: Nevertheless, the key
features of the generated patterns must remain the same for different initial
conditions close to ð %u0; %v0Þ: Such behavior reflects the fact that different species
exhibit different types of animal coats, while the patterns within a species show a
high level of individuality.

Numerical simulations of the Thomas system (1) and (2) in Murray [18–20]
indicate that the above heuristics are true and that the generated patterns
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qualitatively agree with observed animal coat patterns. See Figs. 1 and 2, which
depict simulations for one- and two-dimensional domains O:

How can these patterns—such as the complicated two-dimensional ones shown in
Fig. 2—be explained mathematically? In [20, Chapters 14 and 15], Murray gives a
heuristic explanation for the formation of animal coat patterns by analyzing the
linearization of the reaction–diffusion model (1) at the homogeneous equilibrium
ð %u0; %v0Þ: He proposes that only the eigenfunction corresponding to the largest
eigenvalue of the linearization determines the observed patterns. For one-
dimensional domains O this description of the observed patterns is qualitatively
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Fig. 1. Simulation of the Thomas system for the one-dimensional case O ¼ ð0; 1Þ with a ¼ 150; b ¼ 100;

a ¼ 1:5; r ¼ 13; K ¼ 0:05; d ¼ 500; and g ¼ 3500: The two figures show the u-component at times t ¼
0:002 and 0.003 of a solution originating at a random perturbation near the homogeneous equilibrium.

Notice that the qualitative form of u is the same for both times; only the amplitude grows.

Fig. 2. Simulation of the Thomas system for O ¼ ð0; 1Þ2 with the same parameters as in Fig. 1. The two

figures show the u-component at times t ¼ 0:002 and t ¼ 0:003 of a solution originating at a random

perturbation near the homogeneous equilibrium. Just as in the previous figure, the qualitative form of u is

the same for both times; only the amplitude grows.
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correct. Murray admits, however, that this method cannot explain the complicated
irregular patterns in two dimensions: ‘‘If the dominant eigenfunction is genuinely
two-dimensionaly; then the full nonlinear spatial pattern is not in general predicted
by the linear analysis: It depends on the initial conditions and the nonlinearities in
the reaction scheme’’ [18, p. 173f]. See also [20, p. 396]. In contrast to Murray’s
conjecture, we show here that the patterns in one, two, and three dimensions can be
explained by looking at linear behavior—not just corresponding to the largest
eigenvalue, but instead corresponding to a whole range of largest eigenvalues.

The above situation is reminiscent of a scenario occurring in the seemingly
unrelated field of materials science. We will show that the two situations are truly
analogous. After the sudden cooling of a high-temperature binary metal alloy one
can observe a phase separation process called spinodal decomposition, which
generates patterns very similar to the ones shown in Figs. 1 and 2. Mathematically,
spinodal decomposition is modeled by the Cahn–Hilliard equation [3,4]. This is a
fourth-order parabolic partial differential equation for an order parameter u

describing the local concentration of one of the two metallic components. Similar to
the case of animal coat patterns, the first mathematical treatment of spinodal
decomposition due to Grant [7] considered only one-dimensional domains O:
Grant’s method employs the same heuristics as described above and he derives
precise statements on both the dynamical behavior leading to phase separation and
the generated geometries for the nonlinear Cahn–Hilliard equation. Nevertheless, his
method cannot explain the complicated patterns which are generated on higher-
dimensional domains O: This higher-dimensional case was addressed in a series of
papers by Maier-Paape and Wanner [14,15], and Sander and Wanner [23,24]. See
also the survey paper [12]. These later results can be described as follows. During the
early stages of the decomposition process, the nonlinear pattern formation can be
fully understood by studying solutions to the linearized system. This is quantified in
detail in [14,15] and shows that the observed patterns arise as random superpositions
of a finite set of suitable eigenfunctions of the Laplacian on O; which form the so-
called dominating subspace. The subsequent stages of the decomposition process are
the subject of [23,24]. There it is shown that even though the solution of the
nonlinear Cahn–Hilliard equation is already far from equilibrium, its dynamics are
still determined by the linearization at the homogeneous equilibrium. This is due to
the fact that the initial decomposition process drives the solution into a region of
phase space where linear behavior prevails. This explains both the occurrence and
the geometry of the complicated higher-dimensional patterns during spinodal
decomposition.

In this paper, we show that the same mechanism which is responsible for spinodal
decomposition in the Cahn–Hilliard equation is responsible for the patterns seen in
the reaction–diffusion models for the formation of animal coat patterns. The
adaptation of the spinodal decomposition results is a powerful tool for under-
standing reaction–diffusion systems. It allows us in particular to identify the
complicated patterns as superpositions of certain eigenfunctions, and to draw
conclusions about their geometry. All of these results hold asymptotically for large
values of the parameter g; i.e., for large domain sizes. Moreover, our results are
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applicable to arbitrary parabolic systems of form (1) which exhibit a Turing
instability.

The remainder of the paper is organized as follows. In Section 2 we state
the precise assumptions and our main results. In particular, we recall the conditions
for the occurrence of a Turing instability in parabolic systems. In order to simplify
the presentation, we do not consider systems of form (1) for large values of g: Rather,
we rescale time and consider the new parameter e ¼ 1=g: Section 3 contains
properties of the linearized equation, in particular of its eigenfunctions and
eigenvalues. Section 4 describes the phase space in which the system generates a
nonlinear semiflow. The following two sections contain the proofs of our main
results. In Section 5 we show that the results of Maier-Paape and Wanner [14,15] can
be carried over to the case of parabolic systems. Even though the case of systems of
Cahn–Hilliard equations has already been treated in [13], the present situation is
more complicated due to the lack of self-adjointness of the linearization. These
results describe the early stages of the pattern formation process in domains of
arbitrary dimension. The subsequent stages are the subject of Section 6. Here, we
employ the methods of Sander and Wanner [23,24]. We conclude with some remarks
and open questions in Section 7.

2. Statement of the results

In order to simplify our presentation, we rescale the parabolic system (1) by

introducing the new time variable t̃ ¼ g � t: If we drop the tilde after rescaling and
introduce the new parameter

e ¼ 1

g
ð3Þ

then (1) is equivalent to the parabolic system

ut ¼ e � Du þ f ðu; vÞ in O;

vt ¼ d � e � Dv þ gðu; vÞ in O; ð4Þ

subject to homogeneous Neumann boundary conditions. As mentioned in the
introduction, we study (1) for large values of g; i.e., in view of (3) we are interested in
the behavior of (4) for small values of e40: Our basic assumptions on the domain O
and the nonlinearities f and g are as follows.

Assumption 2.1 (Domain). We assume that OCRn is a bounded domain with a
Lipschitz continuous boundary, where nAf1; 2; 3g: Furthermore, we make a
technical assumption on the growth of the eigenfunctions for the negative Laplacian,
satisfied for example for all rectangular domains. This is stated precisely in
Assumption 3.2.
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Assumption 2.2 (Smoothness of the nonlinearity). Let sAN be arbitrary. (When

applying this to the Thomas system, we choose s ¼ 1:) Assume that f ; g :R2-R are

C1þs-functions, and that there exists a point ð %u0; %v0ÞAR2 with f ð %u0; %v0Þ ¼ gð %u0; %v0Þ ¼
0: If sX2 we assume further that all partial derivatives of f and g of order 2; 3;y; s
at ð %u0; %v0Þ vanish.

Assumption 2.2 implies that the constant function ð %u0; %v0Þ is an equilibrium
solution of (4) for arbitrary e40: Furthermore, standard results show that under the
above assumptions, the parabolic system (4) generates a nonlinear semiflow in a
suitable phase space Xa [9,21]. See Section 4.

Recall that a system of form (4) exhibits a Turing instability, if it has a
homogeneous equilibrium solution which is stable in the absence of diffusion, but
unstable for e40: This is guaranteed by the following conditions.

Assumption 2.3 (Turing Instability). Let f and g be as in Assumption 2.2, and
assume that for some constant d40 we have

fu þ gvo0; ð5Þ

fugv � fvgu40; ð6Þ

dfu þ gv40; ð7Þ

ðdfu þ gvÞ2 � 4dðfugv � fvguÞ40 ð8Þ

as well as

fu40; ð9Þ

ðfu þ gvÞ2 � 4ðfugv � fvguÞ40: ð10Þ

All partial derivatives in these estimates are evaluated at the point ð %u0; %v0Þ: Notice
that due to (5), (7), and (9) we must have d41:

The first four inequalities in Assumption 2.3 are the standard conditions
for the occurrence of a Turing instability. Estimates (5) and (6) guarantee the
stability of the homogeneous equilibrium in the absence of diffusion, while (7) and
(8) are responsible for the instability of the homogeneous equilibrium. See the lemma
below. Inequality (9) can be assumed without loss of generality: Due to (5) and (7)
the partial derivatives fu and gv must have opposite sign, and therefore (9) can always
be achieved by possibly rescaling (4) and exchanging both u and v; as well as f

and g: Finally, estimate (10) implies that in the absence of diffusion the eigenvalues
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of the linearization are real. It is satisfied in particular for the Thomas system
nonlinearities (2).

Lemma 2.4. Suppose that system (4) satisfies Assumptions 2.1 and 2.3. Then there

exists an e040 such that for all 0oepe0 the homogeneous equilibrium ð %u0; %v0Þ is

unstable.

This lemma can be proved directly. However, we do not give a direct proof since it
follows readily from the results in Section 3. The lemma implies that if we choose an
initial condition ðu0; v0Þ close to the homogeneous equilibrium ð %u0; %v0Þ; then the
corresponding solution of (4) is likely to be driven away from the equilibrium. The
following two theorems are the main results of the paper. They describe in more
detail how this happens, as well as which solution patterns can be observed during
this process.

Our first result describes the early stages of the pattern formation process in the
spirit of [14,15]. The proof is in Section 5.3. See Theorem 5.7 for a more detailed
version. The result shows that up to a certain distance from the equilibrium, most
solutions of (4) originating near the homogeneous equilibrium exhibit patterns

similar to the ones in a dominating subspace Yþ
e : Distances are measured with respect

to the special norm jj � jj
*
on Xa described in Section 4, but closeness with respect to

this norm implies closeness with respect to the LN-norm. See Lemma 4.4. Functions

in the dominating subspace Yþ
e exhibit patterns similar to the ones depicted in

Figs. 1 and 2. See Section 5 for more details.

Theorem 2.5 (Early Pattern Formation). Assume that system (4) satisfies Assump-

tions 2.1–2.3. Choose any constant a with dimO=4oao1; and let 0od051 be

arbitrary, but fixed. Then there exists an e040; such that for every 0oepe0 there

exists a finite-dimensional subspace Yþ
e ; as well as radii 0oreoRe such that the

following is true. In the limit e-0 we have

dimYþ
e Be�dim O=2; reBeð2aþdim OÞ=ð2sÞ; and ReBeð2aþdim OÞ=ð2sÞ:

Furthermore, for most initial conditions ðu0; v0ÞAXa satisfying

jjðu0; v0Þ � ð %u0; %v0Þjj
*
ore;

the corresponding solution ðu; vÞ of (4) exits a ball around the homogeneous equilibrium

ð %u0; %v0Þ of radius Re; and upon exiting the ball the distance of ðu; vÞ to the subspace Yþ
e

is at most d0 � Re: In the above estimate, the norm jj � jj
*

denotes the norm on Xa which

is introduced in Definition 4.1 and Proposition 4.3.

Remark 2.6. Let us add a few comments on the precise meaning of ‘‘most initial
conditions’’ in the above theorem. It was pointed out by Hunt et al. [10] that there is
no canonical choice of probability measure on bounded subsets of infinite-
dimensional spaces, which corresponds to the Lebesgue measure in finite dimensions.
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Therefore, Maier-Paape and Wanner [14] used the following concept of
probability. In a small neighborhood of the homogeneous equilibrium ð %u0; %v0Þ
there exists a finite-dimensional inertial manifold for (4) which exponentially
attracts all nearby orbits. Thus, if we observe an orbit, we actually observe only its
projection onto this manifold. On this manifold however, a canonical probability
measure is induced by the finite-dimensional Lebesgue measure, and this is used to
quantify the probability statement in Theorem 2.5. For more details we refer the
reader to [14].

In one-, two-, and three-dimensional domains, the results in Theorem 2.5 can be
extended further from equilibrium by adapting the techniques in [24]. The following
theorem shows that up to large distances from the homogeneous equilibrium, the
behavior of the nonlinear system (4) is basically linear. Thus, the linear patterns
observed persist and only grow in amplitude. The proof of this result is contained in
Section 6.3. The result is in agreement with our simulations in Figs. 1 and 2.

Theorem 2.7 (Almost Linear Behavior). Consider the reaction–diffusion system (4),
assume that Assumptions 2.1–2.3 are satisfied, and let r40 be arbitrarily small, but

fixed. Let ðu0; v0Þ denote an initial condition close to the homogeneous equilibrium

ð %u0; %v0Þ; which is sufficiently close to the dominating subspace Yþ
e : Finally, let ðu; vÞ and

ðulin; vlinÞ be the solutions to (4) and its affine approximation at ð %u0; %v0Þ; respectively,
starting at ðu0; v0Þ: Then the solution ðu; vÞ remains close to ðulin; vlinÞ until the distance

from ðu; vÞ to the homogeneous equilibrium exceeds a certain threshold. More

specifically, as long as

jjðuðtÞ; vðtÞÞ � ð %u0; %v0Þjj
*
rC � e�ða�dim O=4Þþa=sþr � jjðu0; v0Þ � ð %u0; %v0Þjjr

*

we have

jjðuðtÞ; vðtÞÞ � ðulinðtÞ; vlinðtÞÞjj
*

jjðulinðtÞ; vlinðtÞÞ � ð %u0; %v0Þjj
*

pC � ea�dim O=4:

As shown in [24] it is possible to combine Theorems 2.5 and 2.7 in order to
show that at the end of the first pattern formation stage, most solutions of (4)
originating near the homogeneous equilibrium satisfy the assumptions of Theorem
2.7, i.e., they stay close to the corresponding solutions of the linearized equation
up to large distances from ð %u0; %v0Þ: For more details we refer the reader to [24,
Section 3.4].

3. Properties of the linearization

We start by describing the behavior of solutions of the linearization of (4)
at the homogeneous equilibrium ð %u0; %v0Þ: This linearization is given by the
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parabolic system

ut ¼ e � Du þ fuð %u0; %v0Þu þ fvð %u0; %v0Þv in O;

vt ¼ d � e � Dv þ guð %u0; %v0Þu þ gvð %u0; %v0Þv in O; ð11Þ

subject to homogeneous Neumann boundary conditions on @O: In order to
abbreviate our notation, let

D ¼
1 0

0 d

 !
and B ¼

fuð %u0; %v0Þ fvð %u0; %v0Þ
guð %u0; %v0Þ gvð %u0; %v0Þ

 !
:

Then using the abbreviation U ¼ ðu; vÞ; the linearized system (11) can be expressed
more concisely as

Ut ¼ e � DDU þ BU :

Notice that due to (5) and (6) we have both traceðBÞo0 and detðBÞ40: Thus the
equilibrium ð %u0; %v0Þ is stable in the absence of diffusion (i.e., for e ¼ 0). Eq. (10)
implies that the eigenvalues of B are real and distinct. In discussing the spectrum of
(11) for e40; we use the following notation for the spectrum of the negative
Laplacian acting on real-valued functions.

Definition 3.1 (Eigenvalues of the Negative Laplacian). Let OCRn be a domain as

in Assumption 2.1, and consider the self-adjoint linear operator �D : L2ðOÞ-L2ðOÞ
subject to homogeneous Neumann boundary conditions. We denote by 0 ¼
k1ok2o?-N the ordered sequence of eigenvalues of �D; and the corresponding

pairwise orthogonal L2ðOÞ-normalized real-valued eigenfunctions by fk; for kAN:

Under Assumption 2.1, the asymptotic growth of the eigenvalues kk is known
exactly. According to Courant and Hilbert [5, p. 442] or Edmunds and Evans [6] one
has

kkBk2=dim O as k-N: ð12Þ

We now formulate an additional technical assumption on the domain O: This
assumption will only be needed in Section 6, specifically in the proof of Proposition
6.2.

Assumption 3.2. Assume that the domain OCRn is such that the LNðOÞ-norm of the
eigenfunctions fk is uniformly bounded.

Remark 3.3. It can easily be verified that the above assumption is true for all
rectangular domains. Unfortunately, it fails to hold for arbitrary domains, one

counterexample being a disc in R2: It has been conjectured in Aurich et al. [2] that for
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a large class of domains the LNðOÞ-norm of the eigenfunctions fk grows
asymptotically like log kk for k-N: For domains exhibiting such logarithmic
growth our main result Theorem 6.3 continues to hold.

We now describe the spectrum of the right-hand side of (11). To this end,
we begin by considering the matrix MðsÞ ¼ B � s � D for sX0: As we later show, for
s ¼ ekk; the eigenvalues of this matrix are in the spectrum of the right-hand side of
the linearized system (11). In fact, Proposition 3.7 shows that this is the entire
spectrum.

The characteristic polynomial of the matrix MðsÞ above is given by

detððB � s � DÞ � l � IÞ ¼ l2 � c1ðsÞ � lþ c0ðsÞ; ð13Þ

where

c1ðsÞ ¼ ðfu þ gvÞ � s � ð1þ dÞ; ð14Þ

c0ðsÞ ¼ ðfugv � gufvÞ � ðdfu þ gvÞ � s þ d � s2: ð15Þ

As before, all the derivatives in (14) and (15) are evaluated at the point ð %u0; %v0Þ: The
following two lemmas contain results concerning the eigenvalues and eigenvectors of
the matrix B � s � D for sX0:

Lemma 3.4. Suppose that Assumption 2.3 is satisfied. Then for arbitrary sX0 the

characteristic polynomial (13) has two distinct real roots l�ðsÞolþðsÞ: The function

l�ð�Þ is strictly decreasing with l�ðsÞo0 for all sX0: Moreover, lþð�Þ satisfies

lþð0Þo0: It has a unique maximal value lþmax40 which is attained at some smax40: It

also has two zeros scosr:

The asymptotic behavior of the functions l7 is given by lims-NðlþðsÞ=sÞ ¼ �1 and

lim
s-N

ðl�ðsÞ=sÞ ¼ �d: See also Fig. 3.

Fig. 3. Behavior of the eigenvalues l7ðsÞ of the matrix B � s � D:
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Proof. A straightforward calculation shows that (5), (7), and (10) furnish the strict

inequality c1ðsÞ2 � 4c0ðsÞ40 for every sX0: Thus, (13) has two distinct real roots

given by l7ðsÞ ¼ ðc1ðsÞ7ðc1ðsÞ2 � 4c0ðsÞÞ1=2Þ=2: According to (5) we further have
c1ðsÞo0 for all sX0; and therefore l�ðsÞo0: On the other hand, it can easily be

verified that lþðsÞ40 is equivalent to c0ðsÞo0: Because of (6)–(8) this last inequality
is equivalent to scososr; where

sc=r ¼
1

2d
� ððdfu þ gvÞ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdfu þ gvÞ2 � 4dðfugv � fvguÞ

q
Þ:

Finally, a straightforward calculation shows the asymptotic limits for l7ðsÞ=s: This
completes the proof of the lemma. &

For a fixed s; the following lemma gives estimates on the angle between the
eigenvectors of MðsÞ: The operator given by the right-hand side of (11) is not self-
adjoint. The following lemma will be used later to show that it is close enough to self-
adjoint for us to be able to use standard estimates.

Lemma 3.5. Suppose that Assumption 2.3 holds. For sX0 let V7ðsÞAR2 denote the

normalized eigenvectors of the matrix B � s � D corresponding to the eigenvalues l7ðsÞ;
whose existence is due to Lemma 3.4. Then the angle between V�ðsÞ and VþðsÞ is

strictly bounded away from both 0 and p for all sX0: Moreover, as s approaches N the

angle approaches a right angle.

Proof. It can easily be shown that the eigenvectors V7ðsÞ can be chosen
continuously with respect to s: Furthermore, since the associated eigenvalues

l7ðsÞ are distinct for all sX0; we know that the eigenvectors V7ðsÞ are linearly
independent for all sX0: We only need to worry about the limit. Note that for a
nonzero constant c; the eigenvectors of any matrix A and the scaled matrix cA are
the same, even though their eigenvalues differ. Thus, the eigenvectors of B � s � D are
the same as the eigenvectors of the matrix B=s � D: As s-N; the latter eigenvectors
approach the eigenvectors of �D: Since D is a diagonal matrix, its eigenvectors are

the standard unit vectors in R2; thus orthogonal. &

Now we have gathered everything to describe the spectrum of the right-hand side
of (11).

Definition 3.6 (The Linear Operator Ae). Let L2ðOÞ ¼ L2ðOÞ 
 L2ðOÞ; and for
arbitrary s40 define HsðOÞ ¼ HsðOÞ 
 HsðOÞ; where HsðOÞ denotes the standard
fractional Sobolev space for real-valued functions. Define

X ¼ L2ðOÞ; ð16Þ

and let Ae :X-X be the linear operator given by the right-hand side of (11)
subject to homogeneous Neumann boundary conditions. In other words, we
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consider Ae on the domain DðAeÞ ¼ H2
NðOÞ; where H2

NðOÞ denotes the subspace of

H2ðOÞ which consists of all functions satisfying homogeneous Neumann boundary
conditions on @O:

Proposition 3.7 (Spectrum of Ae). Assume that Assumptions 2.1 and 2.3 are satisfied.

Then �Ae is a sectorial operator, and the spectrum of Ae consists of the eigenvalues

l7k;e ¼ l7ðe � kkÞ for kAN; where l7 is given as in the above Lemma 3.4. The

eigenfunctions corresponding to l7k;e are given by c7
k;e ¼ fk � V7

k;e; where V7
k;e ¼

V7ðe � kkÞ and V7ð�Þ was defined in Lemma 3.5. These eigenfunctions form a complete

set in X:

Proof. Standard results imply that the operator �Ae is sectorial and has a compact
resolvent. Thus, the spectrum of Ae consists completely of eigenvalues with finite

multiplicities. Due to Lemmas 3.4 and 3.5 the functions c7
k;e are eigenfunctions of Ae

with corresponding eigenvalues l7k;e: Moreover, since the vectors V7ðe � kkÞAR2 are

linearly independent and the functions fk; kAN; form a complete set in L2ðOÞ; the
eigenfunctions c7

k;e form a complete set in L2ðOÞ: &

4. Phase space

In this section, we show that there is a phase space on which the parabolic system
in Eq. (4) generates a nonlinear semiflow.

Proposition 3.7 above shows that the linearization Ae generates an analytic

semigroup on the spaceX ¼ L2ðOÞ: For every choice of aAð0; 1Þ the fractional power
space Xa;e ¼ DððaI � AeÞaÞCX (equipped with the graph norm) is defined for any

constant a4lþmax; where lþmax is as in Lemma 3.4. Spaces of this type play an

important role in the discussion of nonlinear equations. See for example Henry [9]
and Pazy [21].

At first glance it seems that the space Xa;e depends both on a and on e: While the
dependence on a is unavoidable (even desirable), the dependence on e would be an
obstacle to comparing our results for different values of the domain size g ¼ 1=e:
Fortunately, Proposition 4.3 implies that in fact the above fractional power space is
e-independent. First we need some auxiliary considerations.

Definition 4.1 (The space Hs

*
ðOÞ). Assume that Assumptions 2.1 and 2.3 are

satisfied, and consider the spaces HsðOÞCL2ðOÞ defined in Definition 3.6.
For sAð0; 2Þ; let Hs

*
ðOÞ denote the closure of the span of the set ffk: kANg with

respect to the norm jj � jjHsðOÞ of the fractional Sobolev space HsðOÞ; where the

functions fk are the eigenfunctions of Definition 3.1. Let Hs

*
ðOÞ ¼ Hs

*
ðOÞ 
 Hs

*
ðOÞ;

equipped with the norm jj � jjHsðOÞ defined by jjðu; vÞjj2HsðOÞ ¼ jjujj2HsðOÞ þ jjvjj2HsðOÞ:

According to Proposition 3.7 every function UAL2ðOÞ can be written uniquely as a
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series of the form

U ¼
XN
k¼1

ðaþk � Vþ
k;e þ a�k � V�

k;eÞ � fk: ð17Þ

When the following is finite, define jj � jj
*
by

jjU jj2
*
¼
XN
k¼1

ð1þ kkÞs � ððaþk Þ
2 þ ða�k Þ

2Þ: ð18Þ

The following lemma describes where jj � jj
*
makes sense as a norm.

Lemma 4.2 (Characterization of Hs

*
ðOÞ). Assume that Assumptions 2.1 and 2.3

are satisfied. Then UAL2ðOÞ of the form in (17) is contained in the space Hs

*
ðOÞ

if and only if jjU jj
*
oN: Furthermore, the jj � jj

*
norm is equivalent to the

standard norm jj � jjHsðOÞ; i.e., there exist e-independent positive constants C1 and C2

such that

C1 � jjU jjHsðOÞpjjU jj
*
pC2 � jjU jjHsðOÞ for all UAHs

*
ðOÞ:

Proof. Let wAHs

*
ðOÞ be scalar-valued. If we write w ¼

P
N

k¼1 akfk as a Fourier

series in L2ðOÞ; then standard results on fractional Sobolev spaces imply that the
definition

jjwjj2HsðOÞ ¼
XN
k¼1

ð1þ kkÞs � a2k

furnishes a norm on Hs

*
ðOÞ; which is equivalent to the usual one. See Lions

and Magenes [11] and Temam [25]. For convenience, we use only this norm

in the following. We now show the equivalence of norms. Consider UAL2ðOÞ
as in (17). Then the above discussion and the definition of the norm on
HsðOÞ imply

jjU jj2HsðOÞ ¼
XN
k¼1

ð1þ kkÞs � jjaþk � Vþ
k;e þ a�k � V�

k;ejj
2
R2 :

Moreover, we have

jjaþk � Vþ
k;e þ a�k � V�

k;ejj
2
R2 ¼ ðaþk Þ

2 þ ða�k Þ
2 þ 2aþk a

�
k � ðVþ

k;e;V�
k;eÞR2

for arbitrary kAN and e40: Due to the fact that the angle between Vþ
k;e and V�

k;e is

strictly bounded away from both 0 and p for all kAN and e40; which is a
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consequence of Lemma 3.5 and Proposition 3.7, the equivalence of norms follows
from the Cauchy–Schwarz inequality. &

The above characterization of the space Hs

*
ðOÞ allows us finally to describe the

fractional power spaces Xa;e of Ae:

Proposition 4.3 (Properties of Xa;e). Assume that both Assumption 2.1 and 2.3 are

satisfied, and consider the linear operator Ae from Proposition 3.7. Choose a constant

a4lþmax; with lþmax as in Lemma 3.4, and for some aAð0; 1Þ consider the fractional

power space Xa;e ¼ DððaI � AeÞaÞ: Let jj � jja;e denote the standard norm on Xa;e given

by jjU jja;e ¼ jjðaI � AeÞaU jjL2ðOÞ:
Then for every 0oep1 we have Xa;e ¼ H2a

*
ðOÞ; and the norm jj � jja;e is equivalent to

the norm jj � jj
*

introduced in Lemma 4.2 (with s ¼ 2a). More precisely, there exist e-

independent constants C1 and C2 such that

C1 � ea � jjU jj
*
pjjU jja;epC2 � jjU jj

*
for all UAXa;e ¼ H2a

*
ðOÞ:

Proof. For any function UAL2ðOÞ as in (17) we define

TeU ¼
XN
k¼1

ðaþk � e1 þ a�k � e2Þ � fk; ð19Þ

where e1 and e2 denote the standard unit vectors in R2: Using Lemma 3.5 one can

show that the mapping Te : L
2ðOÞ-L2ðOÞ is a bounded and invertible linear

operator, and that

c1 � jjU jjL2ðOÞpjjTeU jjL2ðOÞpc2 � jjU jjL2ðOÞ for all UAL2ðOÞ ð20Þ

with e-independent positive constants c1 and c2: This crucial observation is again due

to the fact that the angle between VþðsÞ and V�ðsÞ is strictly bounded away from
both 0 and p for all sX0—and it follows as in the proof of Lemma 4.2.

Now consider the unbounded operator Be ¼ TeAeT
�1
e : Using a result due to Riesz

and Sz.-Nagy [22, Section 120, Lemma, p. 314] it is not too hard to show that the
operator Be is self-adjoint. Furthermore, Theorem 4.6.7 in Amann [1, Chapter III]
can be used to obtain a characterization of the domain of the fractional power

ðaI � BeÞa in terms of Fourier coefficients. Together with the identity ðaI � AeÞa ¼
T�1
e ðaI � BeÞaTe this finally implies that a function UAL2ðOÞ with the series

representation (17) is contained in the fractional power space Xa;e ¼ DððaI � AeÞaÞ if
and only if TeU is contained in DððaI � BeÞaÞ; this in turn is equivalent to

jjU jj2# ¼
XN
k¼1

ðða � lþk;eÞ
2a � ðaþk Þ

2 þ ða � l�k;eÞ
2a � ða�k Þ

2ÞoN: ð21Þ
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Furthermore, the norm jjU jja;e for a function U as in (17) is given by

jjU jja;e ¼
XN
k¼1

ðða � lþk;eÞ
a � aþk � Vþ

k;e þ ða � l�k;eÞ
a � a�k � V�

k;eÞ � fk

�����
�����

�����
�����
L2ðOÞ

¼ T�1
e

XN
k¼1

ðða � lþk;eÞ
a � aþk � e1 þ ða � l�k;eÞ

a � a�k � e2Þ � fk

�����
�����

�����
�����
L2ðOÞ

;

and this implies with (20) and (21) that

c1 � jjU jja;epjjU jj#pc2 � jjU jja;e for all UAXa;e: ð22Þ

So far we have shown that a function UAL2ðOÞ with representation (17) is in the
fractional power space Xa;e if and only if (21) is satisfied. Moreover, we know that
jj � jj# and jj � jja;e are equivalent norms on Xa;e via (22), with e-independent positive
constants c1 and c2:

In order to complete the proof we have to relate these results to the space

H2a
*
ðOÞ from Lemma 4.2 and its norm jj � jj

*
: To this end, recall the

explicit representation of the eigenvalues l7k;e ¼ l7ðe � kkÞ due to Lemma 3.4 and

Proposition 3.7, which is given in terms of (13)–(15). Since the function c0ðsÞ is
quadratic in s; and c1ðsÞ is linear in s; it follows that for some positive constants c3
and c4 we have

0oc3p
a � l7ðsÞ

1þ s
pc4 for all sX0:

Using ep1 this immediately implies c3 � e � ð1þ kkÞpa � l7ðe � kkÞpc4 � ð1þ kkÞ:
Together with (18) and (21) this completes the proof of the proposition. &

Due to the above proposition, the fractional power space Xa;e is algebraically and
topologically independent of e; even though the norms jj � jja;e do depend on e:

Therefore, we omit the superscript e from now on and write simply Xa ¼ H2a
*
ðOÞ:

Furthermore, we always consider this space equipped with the norm jj � jj
*
defined in

Definition 4.1 (with s ¼ 2a). The next result provides more information on Xa in
terms of classical function spaces.

Lemma 4.4 (Embeddings of Xa). Assume that Assumptions 2.1 and 2.3 are

satisfied, and consider the fractional power space Xa as in Proposition 4.3,
equipped with the norm jj � jj

*
: Then for every a satisfying dimO=4oao1

we have

H2
NðOÞCXaCCð %OÞ ðcontinuous embeddingsÞ;
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where H2
NðOÞ was defined in Definition 3.6, and there exist e-independent constants C1

and C2 such that

C1 � jjU jjCð %OÞpjjU jj
*
pC2 � jjU jjH2ðOÞ for all UAXa:

Proof. According to Xa ¼ H2a
*
ðOÞCH2aðOÞ; this result follows immediately from

Sobolev’s embedding theorem for fractional Sobolev spaces. See [11,25]. &

5. The early pattern formation stages

In this section, we describe the behavior of solutions of the nonlinear system (4)
starting near the homogeneous equilibrium ð %u0; %v0Þ: Due to Lemma 2.4 we know that
they are likely to be driven away, and due to the numerical simulations presented in
the introduction we expect them to develop complicated geometric patterns. Based
on the results by Maier-Paape and Wanner [15] we prove Theorem 2.5, which was
formulated in Section 2. In order to apply the theory of [15] we have to formulate (4)
as an abstract evolution equation of the form

Ut ¼ AeU þ FðUÞ ð23Þ

on a suitable function space. To this end, consider the Hilbert space X defined in
(16), and let Ae :X-X be as in Definition 3.6. Then the results of the last two
sections imply that �Ae is a sectorial operator, and that the corresponding fractional

power space Xa is given by the space H2a
*
ðOÞ defined in Definition 4.1. As pointed

out after Proposition 4.3, we equip this space with the norm jj � jj
*
defined in (8). As

for the nonlinearity F ; we define the function h :R2-R2 to be the nonlinear part of
ðf ; gÞ: That is

ĥðu; vÞ ¼ ðf ðu; vÞ; gðu; vÞÞ

and

hðu; vÞ ¼ ĥðu; vÞ � ĥuð %u0; %v0Þ � ðu � %u0Þ � ĥvð %u0; %v0Þ � ðv � %v0Þ: ð24Þ

If we now set FðUÞ ¼ hðu; vÞ for U ¼ ðu; vÞAXa; then formally Eq. (4) is of form (23)
above.

In order to apply the results of [15] we have to verify hypotheses (H1) through
(H3) in [15]. In summary, we need to verify the following:

(H1) The operator �Ae is a sectorial operator on X:
(H2) There exists a decomposition X ¼ X��"X�"Xþ"Xþþ; such that all of

these subspaces are finite-dimensional except X��; and such that the
linear semigroup corresponding to Ut ¼ AeU satisfies several dichotomy
estimates.
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(H3) The nonlinearity F :Xa-X is continuously differentiable, and satisfies both
Fð %u0; %v0Þ ¼ 0 and DFð %u0; %v0Þ ¼ 0:

While (H1) has already been addressed in Proposition 3.7, we still have to verify (H2)
and (H3). This is done in the following two subsections. In Section 5.3, we prove
Theorem 2.5.

5.1. Decomposition of the phase space

We begin with the following lemma, which establishes the existence of certain
spectral gaps in the spectrum of Ae: Since the results of [15] rely on the theory of
invariant manifolds and foliations, the size of these spectral gaps has profound
implications for the size of the neighborhood on which the linear behavior
dominates. Thus, the gaps have to be carefully analyzed.

Lemma 5.1 (Spectral Gaps for Ae). Suppose that Assumptions 2.1 and 2.3 are

satisfied. Choose two arbitrary constants c
*
ocnplþmax; where lþmax is as in

Lemma 3.4. Then there exist positive constants e0 and d0 such that for arbitrary

0oepe0 the following is true. The linear operator Ae has eigenvalues l
*
ðeÞ and lnðeÞ

which satisfy c
*
pl

*
ðeÞolnðeÞpcn and such that the estimate lnðeÞ � l

*
ðeÞXd0 �

edim O=2 holds. Moreover, the interval ðl
*
ðeÞ; lnðeÞÞ is contained in the resolvent

set of Ae:

Proof. Let c1oc2plþmax be arbitrary. Then due to Lemma 3.4 and Proposition 3.7

there exist two nonempty compact subsets I7CRþ
0 such that l7k;eA½c1; c2� if

and only if kkAe�1 � I7: The subset I� consists of one compact interval,

and Iþ is the union of at most two compact intervals. In combination
with the asymptotic distribution of the eigenvalues kk given in (12) this
implies that as e-0; the number of eigenvalues of Ae in the interval ½c1; c2� is of

the order e�dim O=2:
Choose and fix two constants c

* *
and c* * such that c

*
oc

* *
oc* *ocn: As

above we can choose e040 small enough so that for all 0oepe0 both the interval

½c* * ; cn� and the interval ½c
*
; c

* *
� contains at least one eigenvalue of Ae: Let l* * ðeÞ

denote the smallest of these eigenvalues in the first interval, and l
* *

ðeÞ the largest

one in the second interval. Furthermore, there exists a constant C40 such that the

number of eigenvalues of Ae in the interval ðc
* *

; c* * Þ is bounded above by C �
e�dim O=2 � 1 for all 0oepe0:

The proof of the lemma now follows easily. Let d0 ¼ ðc* * � c
* *

Þ=C; and assume

that every two consecutive eigenvalues of Ae in ½l
* *

ðeÞ; l* * ðeÞ� are strictly less than

distance d0 � edim O=2 apart. This implies l* * ðeÞ � l
* *

ðeÞod0 � edim O=2 � C � e�dim O=2;

which contradicts the fact that l* * ðeÞ � l
* *

ðeÞXc* * � c
* *

¼ d0 � C: &
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The above lemma is used to define the decomposition of the phase space X; which
is necessary for establishing assumption (H2). Choose constants

%
c��o%c��

505
%
c�o%c�o

%
cþo %cþolþmax; ð25Þ

such that the differences %c�� �
%
c��; %c� �

%
c�; and %cþ �

%
cþ are small. The following

result is an easy consequence of Lemma 5.1—and leads directly to defining the
decomposition of the phase space X:

Corollary 5.2 (Decomposition of the Spectrum). Suppose that both Assumption 2.1
and 2.3 are satisfied. Then there exist intervals

J��
e ¼ ½a��

e ; b��
e �C½

%
c��; %c���;

J�
e ¼ ½a�

e ; b�
e �C½

%
c�; %c��;

Jþ
e ¼ ½aþ

e ; bþ
e �C½

%
cþ; %cþ�;

and an e-independent constant d40 such that for sufficiently small e40 the following

holds. The intervals J��
e ; J�

e ; and Jþ
e are contained in the resolvent set of Ae: Each of

them has length at least d � edim O=2; and each component of the complement of their

union contains at least one eigenvalue of Ae: Finally, the largest eigenvalue of Ae less

than a��
e is at least distance d � edim O=2 from a��

e :

Proof. First of all, apply Lemma 5.1 three times with the interval ½c
*
; cn� being

chosen as ½
%
c��; %c���; ½

%
c�; %c��; or ½

%
cþ; %cþ�; respectively. This furnishes corresponding e-

dependent intervals ½â��
e ; b��

e �; ½a�
e ; b�

e �; and ½aþ
e ; bþ

e �; as well as a (smallest) common

constant d0: If we now define a��
e ¼ ðâ��

e þ b��
e Þ=2 and let d ¼ d0=2; then the proof

of the corollary is complete. &

Definition 5.3 (Decomposition of the Phase Space). In the situation of Corollary

5.2, define the intervals I��
e ¼ ð�N; a��

e Þ; I�e ¼ ðb��
e ; a�

e Þ; Iþe ¼ ðb�
e ; aþ

e Þ; and Iþþ
e ¼

ðbþ
e ; l

þ
max�; and let X��

e ; X�
e ; X

þ
e ; and Xþþ

e denote the span of all eigenfunctions of

the operator Ae corresponding to eigenvalues in the intervals I��
e ; I�e ; Iþe ; and Iþþ

e ;
respectively.

According to Proposition 3.7, the operator Ae :X-X generates an analytic
semigroup SeðtÞ; tX0; on X: The next proposition describes the asymptotic behavior
of SeðtÞ on the subspaces defined above.

Proposition 5.4 (Dichotomy Estimates). Assume that Assumptions 2.1 and 2.3 are

satisfied, and let Ae :X-X be as in Definition 3.6. Let SeðtÞ; tX0; denote the analytic
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semigroup on X generated by Ae; and let Xa ¼ H2a
*
ðOÞ be the fractional power space of

Proposition 4.3, equipped with the norm jj � jj
*
:

Then, using the notation and definitions in Corollary 5.2 and Definition 5.3, for all

sufficiently small e40 the following hold:

(a) The spaces X�
e ; Xþ

e ; and Xþþ
e are finite-dimensional subspaces of Xa with

dimensions proportional to e�dim O=2: Furthermore, all of the spaces introduced in

Definition 5.3 are invariant under SeðtÞ; and we denote the restrictions of the

semigroup SeðtÞ to these spaces by the appropriate superscripts.
(b) The following estimates are satisfied for arbitrary UþþAXþþ

e ; UþAXþ
e ;

U�AX�
e ; and U��

*
AX��

e -Xa:

jjSþþ
e ðtÞUþþjj

*
pebþe t � jjUþþjj

*
for tp0;

jjSþ
e ðtÞUþjj

*
peaþe t � jjUþjj

*
for tX0;

jjSþ
e ðtÞUþjj

*
peb�e t � jjUþjj

*
for tp0;

jjS�
e ðtÞU�jj

*
pea�e t � jjU�jj

*
for tX0;

jjS�
e ðtÞU�jj

*
peb��

e t � jjU�jj
*

for tp0;

jjS��
e ðtÞU��

*
jj
*
pea��

e t � jjU��
*

jj
*

for tX0:

There exists a constant M��
e 40 such that for U��AX��

e ;

jjS��
e ðtÞU��jj

*
pM��

e � t�a � ea��
e t � jjU��jjL2ðOÞ for t40: ð26Þ

Moreover, for some e-independent constant C40 we have

M��
e pC � e�a�ð2þdim OÞ=2 as e-0:

Notice that due to the finite dimensions of X�
e ; Xþ

e ; and Xþþ
e the linear

semigroups S�
e ðtÞ; Sþ

e ðtÞ; and Sþþ
e ðtÞ can be extended to groups.

(c) There exists a constant Ma;eX1 which is proportional to e�a as e-0; as well as an

e-independent constant C40 such that for all UAX�
e "Xþ

e "Xþþ
e we have

C � jjU jjL2ðOÞpjjU jj
*
pMa;e � jjU jjL2ðOÞ:

Proof. The statements in (a) follow easily from (12), Lemma 3.4, Corollary 5.2, and
Definition 5.3. As for the proof of part (b), consider an arbitrary UAX in form (17).
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Then the image of U under the semigroup SeðtÞ is given by

SeðtÞU ¼
XN
k¼1

ðel
þ
k;e�t � aþk � Vþ

k;e þ el
�
k;e�t � a�k � V�

k;eÞ � fk for all t40:

In combination with the definition of jj � jj
*

in (18) and Definition 5.3 this

immediately furnishes the first six estimates.
In order to prove (26), let UAX��

e be arbitrary. Again we assume that the

function U is given as the Fourier series (17). For Z40 one can verify the inequality

e�ZtpZ�2a � ð2aÞ2a=ðe2a � t2aÞ for all tX0: Notice also that whenever a7k a0; we must

have a��
e � l7k;e40: Thus, applying the inequality with Z ¼ 2ða��

e � l7k;eÞ; we get that
for all t40

jjS��
e ðtÞU jj2

*
¼
XN
k¼1

ð1þ kkÞ2a � ðe2l
þ
k;e�t � ðaþk Þ

2 þ e2l
�
k;e�t � ða�k Þ

2Þ

p
XN
k¼1

ð1þ kkÞ2a � ðaþk Þ
2

ða��
e � lþk;eÞ

2a þ ð1þ kkÞ2a � ða�k Þ
2

ða��
e � l�k;eÞ

2a

 !

� a2a

e2a � t2a
� e2a��

e �t:

Assume for the moment that there exists an e-independent constant C40 such that

1þ kk

a��
e � l7k;e

pC � e�ð2þdim OÞ=2 whenever l7k;eoa��
e : ð27Þ

Then we can continue the previous estimate and obtain for all t40 the estimate

jjS��
e ðtÞU jj2

*
p

C � a
e

� 	2a

�e�a�ð2þdim OÞ � t�2a � e2a��
e �t �

XN
k¼1

ððaþk Þ
2 þ ða�k Þ

2Þ

¼ C � a
e

� 	2a

�e�a�ð2þdim OÞ � t�2a � e2a��
e �t � jjTeU jj2L2ðOÞ;

where Te :X-X was defined in (19). Together with (20) this furnishes the seventh

estimate of (b) with M��
e ¼ c2ðCa=eÞa � e�a�ð2þdim OÞ=2:

In order to complete the proof of (b) we still have to verify (27). Let sr be the

larger zero of the function lþð�Þ as in Lemma 3.4 and Fig. 3. Let s#4sr be the

unique number such that lþðs#Þ ¼
%
c�� � 1: Then according to the asymptotic

behavior of l7ð�Þ derived in Lemma 3.4 there exists an e-independent constant C

such that

0o
1þ s

%
c�� � l7ðsÞ

pC for all sXs#:
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Fix 0oep1: For ekkXs# (which furnishes l7k;eoa��
e ) we obtain the estimate:

1þ kk

a��
e � l7k;e

p
1þ ekk

%
c�� � l7ðekkÞ

� 1þ kk

1þ ekk

pC � 1
e
pC � e�ð2þdim OÞ=2:

Now assume ekkos# and that l7k;eoa��
e : According to Corollary 5.2 we then have

l7k;epa��
e � d � edim O=2: This furnishes

1þ kk

a��
e � l7k;e

¼ 1þ ekk

a��
e � l7k;e

� 1þ kk

1þ ekk

p
1þ s#

d � edim O=2
� 1
e
;

which completes the verification of (27).

As for part (c), let UAX�
e "Xþ

e "Xþþ
e be arbitrary. If we assume that U is given

as in (17), then (18) and (20) imply

c21 � jjU jj2L2ðOÞpjjTeU jj2L2ðOÞ ¼
XN
k¼1

ððaþk Þ
2 þ ða�k Þ

2ÞpjjU jj2
*
:

Furthermore, if we choose s# as above, then ekkXs# implies a7k ¼ 0 in the series

representation (17) of UAX�
e "Xþ

e "Xþþ
e : Thus, (18) and (20) imply

jjU jj2
*
p 1þ s#

e


 �2a
�jjTeU jj2L2ðOÞpc22 � 1þ s#

e


 �2a
�jjU jj2L2ðOÞ;

and (c) follows with Ma;e ¼ c2 � ðs# þ eÞa � e�a: &

5.2. Estimates for the nonlinearity

In this section we verify hypothesis (H3) which was stated in the
beginning of Section 5. The following lemma shows that the nonlinearity F in (23)
is a continuously differentiable function from Xa to X; provided a is sufficiently
large.

Lemma 5.5 (Properties of F ). Suppose that Assumptions 2.1–2.3 are satisfied, and let

h be defined as in (24). Furthermore, for arbitrary U ¼ ðu; vÞAXa let FðUÞ ¼ hðu; vÞ:
Then for every a satisfying dimO=4oao1 this defines a nonlinear mapping F :Xa-X

which is continuously Fréchet differentiable. Furthermore, there exist positive constants

C and R0 such that for any 0oRpR0 the following holds. For arbitrary U ;VAXa with

jjU � ð %u0; %v0Þjj
*
pR and jjV � ð %u0; %v0Þjj

*
pR;

we have

jjFðUÞ � FðVÞjjXpC � Rs � jjU � V jj
*
:
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Proof. Due to dimO=4oao1 we can apply Lemma 4.4, which shows that every

UAXa is almost everywhere equal to a continuous function on %O: Thus, the function
FðUÞ can be defined pointwise, is bounded on O; and therefore an element of the

space X ¼ L2ðOÞ: Standard results on Nemitskii operators then imply that the
nonlinear operator F :Xa-X is continuously differentiable with Fréchet derivative

DFðUÞ½H� ¼ Dhðu; vÞH for all U ¼ ðu; vÞAXa and HAXa:

(See for example [8, Section 4.3.1] for similar considerations in a one-dimensional
setting. Using Hale’s approach, one can easily compute the Gateaux derivative of F :
Together with Zeidler [28, Proposition 4.8(c)] this establishes the Frechet
differentiability, once the continuity of the Gateaux derivative has been verified.)

Because of Assumption 2.2 there exists a neighborhood of ð %u0; %v0Þ in R2 such that

for all ðu; vÞAR2 in this neighborhood we have jjDhðu; vÞjjpC � jjðu; vÞ � ð %u0; %v0Þjjs:
Thus, there exist positive constants R0 and C such that for all WAXa we have

jjDFðWÞjjXa;XpC � jjW � ð %u0; %v0Þjjs
*

for jjW � ð %u0; %v0Þjj
*
pR0;

again due to Lemma 4.4. Together with the mean value theorem for Fréchet
differentiable functions (see [28]) this completes the proof of the lemma. &

5.3. The main result on the early stages

Finally, we are in a position to describe the early pattern formation stages in the
nonlinear parabolic system (4). As mentioned before, we will show that the behavior
of most solutions of (4) originating near the homogeneous equilibrium ð %u0; %v0Þ is

determined by a dominating subspaceYþ
e ; and that functions in this subspace exhibit

the complicated geometries described in the introduction. The following definition
introduces the dominating subspace in more detail.

Definition 5.6 (Dominating Subspace Yþ
e ). Assume the situation of Definition 5.3.

Then we define the dominating subspace Yþ
e by

Yþ
e ¼ Xþ

e "Xþþ
e :

Due to Proposition 5.4 its dimension is proportional to e�dim O=2 as e-0:

The geometry of functions in the dominating subspace Yþ
e has been described by

Maier-Paape and Wanner [14]. In Section 4 of their paper it is shown that these

functions exhibit a common wavelength which is of the order of e1=2: (Notice that in

the application to the Cahn–Hilliard equation our parameter e is replaced by e2: This
is the only necessary change for applying the results of [14] to our situation.) More

precisely, let fAYþ
e be arbitrary. Then the level set fxAO : fðxÞ ¼ 0g divides O into

a set where f is positive, and a set where f is negative. These two sets are called
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nodal domains. Furthermore, let x0AO denote a ‘‘typical’’ point (see [14] for a
precise definition of this notion), and let GCO denote the nodal domain of f
containing x0: Then for any ball contained in G with radius r and center x0 we have

rpC � e1=2:
We are finally in a position to formally restate and prove Theorem 2.5. This is

analogous to Fig. 4 and [15, Section 3.4].

Theorem 5.7. Consider the reaction–diffusion system (4) and assume that Assumptions

2.1–2.3 are satisfied. Furthermore, assume that dimO=4oao1; let Xa be as in

Proposition 4.3, and choose and fix 0op51 and 0od051: Then there exists a positive

constant e0; so that for all 0oepe0 there exist 0oreoRe such that with re ¼ d0 � Re the

following is true:

(a) The constants re and Re are proportional to eð2aþdim OÞ=ð2sÞ as e-0:
(b) The ball BReð %u0; %v0ÞCXa contains a finite-dimensional inertial manifold Ne

passing through ð %u0; %v0Þ which exponentially attracts all solutions of (4)
originating near the homogeneous equilibrium. Furthermore, the manifold Ne

is of class C1; it is tangent to X�
e "Xþ

e "Xþþ
e at ð %u0; %v0Þ; and it carries a natural

Lebesgue measure induced by this tangent space.
(c) Let Mre denote the set of all initial conditions in Ne-Breð %u0; %v0Þ whose

corresponding solution of (4) either remains in the larger ball BReð %u0; %v0Þ for all

positive time, or has distance greater than re from ð %u0; %v0Þ þYþ
e upon exiting

BReð %u0; %v0Þ; i.e., the set Mre corresponds to all solutions originating close to the

homogeneous equilibrium which are not dominated by Yþ
e : Then

volðMreÞ
volðBreð %u0; %v0Þ-NeÞ

pp;

where vol denotes the canonical Lebesgue measure on Ne:

Fig. 4. The early stages of the pattern formation process.
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Proof. In order to apply the abstract theory of Section 2 in [15], one has to verify
hypotheses (H1)–(H3) mentioned in the beginning of Section 5. They have been
verified in Sections 5.1 and 5.2. The size of the radii re and Re can be determined as in
[15, Remark 3.1].

As it stands, the theory of Section 2 in [15] cannot be applied directly. This is due
to the fact that our operator Ae is not self-adjoint, and therefore the spaces
introduced in Definition 5.3 are not pairwise orthogonal. However, an inspection of
the proofs in [15] shows that this orthogonality is not necessary. It suffices to assume
that the angle between any two of the subspaces in Definition 5.3 is bounded away
from zero for all 0oepe0; since this implies the boundedness of the corresponding
projection operators. This lower bound on the angle is obtained using Lemma
3.5. &

6. Almost linear behavior

As mentioned in Section 1, the results of the last section only describe
the first stage of the pattern formation process. At the end of this stage,
most solutions of the reaction–diffusion system (4) originating near the homo-
geneous equilibrium ð %u0; %v0Þ leave the ball BReð %u0; %v0Þ close to the dominating

subspace Yþ
e : We will show in this section that in the subsequent pattern formation

stage, they will closely follow the corresponding solutions of the linearized equation,
even though they are not near equilibrium. This is because at the end of the first
stage, most solutions enter a region of phase space in which the effect of the
nonlinearity is small.

Specifically, we apply Lemma 2.8 and Theorem 2.10 from Sander and Wanner [24]
to bound the relative distance jjU � ð %u0; %v0Þ � Ulinjj

*
=jjUlinjj

*
between the solutions

U and Ulin to the nonlinear and linearized equations with initial conditions U0 near
ð %u0; %v0Þ and U0 � ð %u0; %v0Þ near ð0; 0Þ; respectively.

Lemma 2.8 in [24] shows that for arbitrary small constants d0 and q; a solution to
the nonlinear equation (23) starting in a cone of angle d0 stays in a slightly larger
cone of angle d (depending on d0 and q) as long as the relative distance is less than q:

Theorem 2.10 in [24] is as follows: Fix a relative distance z: Let Tmax be the
maximal time such that the linear and nonlinear solutions exist, that the operator
generating the semigroup satisfies certain estimates, and that there is a small
Lipschitz bound on the nonlinearity. Let R0 be a sufficiently small constant
depending on z; and let R14R0 be a constant depending on R0 and z: Finally, let the
initial condition U0 have *-norm between R0 and R1: Then until the solution reaches

*-norm R1 (or reaches time Tmax), the relative distance is less than z:
In Section 6.1, we set up conditions such that Ae satisfies the appropriate

semigroup estimates Theorem 2.10 in [24]. In Section 6.2, we define a cone around
the dominating subspace and show that in this cone the nonlinearity satisfies the
Lipschitz estimates of Theorem 2.10 in [24]. In Section 6.3, we state and prove our
main result. The result gives the specific e-dependence of R0; R1; and z: Further, we
use Lemma 2.8 in [24] to show that radius R1 is achieved before time Tmax is reached.
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6.1. Linear estimates

In this section, we derive estimates on the growth of the linear semigroup
analogous to the results obtained in Proposition 5.4.

Proposition 6.1 (Linear Growth). Assume that Assumptions 2.1 and 2.3 are satisfied,
and let Ae :X-X be as in Definition 3.6. Let SeðtÞ; tX0; denote the analytic semigroup

on X generated by Ae; and let Xa ¼ H2a
*
ðOÞ be the fractional power space of

Proposition 4.3, equipped with the norm jj � jj
*
: Furthermore, let b4lþmax be an e-

independent constant, with lþmax as in Lemma 3.4. Then there exists an e-independent

constant C40 such that for all 0oep1 we have

jjSeðtÞU jj
*
pC � e�a � t�a � eb�t � jjU jjL2ðOÞ for t40; UAX;

jjSeðtÞU jj
*
pel

þ
max�t � jjU jj

*
for tX0; UAXa:

Proof. The proof of the above estimates follows easily using an argument similar to
the proof of the last inequality in Proposition 5.4(b). In this case, replace estimate
(27) by

1þ kk

b� l7k;e
¼ 1þ ekk

b� l7ðekkÞ
� eþ ekk

1þ ekk

� e�1pC � e�1:

The proof of the proposition follows. &

6.2. Estimates for the nonlinearity

The main ingredient for describing the second stage of the pattern formation
process is the fact that the influence of the nonlinearity remains extremely small in
certain regions of phase space. In other words, the bound obtained in Lemma 5.5 can

be improved considerably if we are close to the dominating subspace Yþ
e : In order to

describe this region in more detail, we use Definitions 5.3 and 5.6 once again and
define

Yþ
e ¼ Xþ

e "Xþþ
e CXa; Y�

e ¼ ðX��
e -XaÞ"X�

e CXa: ð28Þ

With respect to this decomposition we consider cones ð %u0; %v0Þ þKdCXa; where

Kd ¼ fUAXa : jjU�jj
*
pd � jjUþjj

*
;U ¼ Uþ þ U�AYþ

e "Y�
e g ð29Þ

for d40: The following proposition shows that on these translated
cones the nonlinearity remains small, even relatively far from the homogeneous
equilibrium.
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Proposition 6.2 (Smallness of F ). Suppose that Assumptions 2.1–2.3 are satisfied, and

let h be defined as in (24). For U ¼ ðu; vÞAXa define FðUÞ ¼ hðu; vÞ: Finally, let

dimO=4oao1 and d040 be arbitrary, and set

de ¼ d0 � ea�dim O=4: ð30Þ

Then there exist e-independent constants M1;M240 such that for every 0oep1 and

every UAKde with

jjU jj
*
pM1 � e�aþdim O=4 ð31Þ

we have

jjFðð %u0; %v0Þ þ UÞjjL2ðOÞpM2 � eða�dim O=4Þ�ðsþ1Þ � jjU jjsþ1

*
: ð32Þ

The constants M1 and M2 depend only on h; d0; and O:

Proof. According to Assumption 2.2 and the definition of h :R2-R2 in (24) there

exist constants M̃140 and M̃240 such that for ðu; vÞAR2 we have

jjhðð %u0; %v0Þ þ ðu; vÞÞjjR2pM̃1 � jjðu; vÞjjsþ1
R2 for all jjðu; vÞjjR2pM̃2: ð33Þ

Furthermore, we verify below that for de as in (30) there exists a constant M̃340
such that for all 0oep1 and arbitrary UAKde we have

jjU jjCð %OÞpM̃3 � ea�dim O=4 � jjU jj
*
: ð34Þ

Now let 0oep1 be arbitrary, define M1 ¼ M̃2=M̃3; and let UAKde be such that (31)

is satisfied. Then (34) implies jjU jjCð %OÞpM̃2; and (33) furnishes

jjhðð %u0; %v0Þ þ UÞjjCð %OÞp M̃1 � jjU jjsþ1
Cð %OÞ

p M̃1M̃
sþ1
3 � eða�dim O=4Þ�ðsþ1Þ � jjU jjsþ1

*
:

This immediately implies the desired estimate (32).
In order to complete the proof of the proposition we only have to verify (34). Let

UAKde be arbitrary, and let U ¼ Uþ þ U�AYþ
e "Y�

e : Then Uþ is given as a finite

sum of the form

Uþ ¼
Xk2

k¼k1

aþk � Vþ
k;e � fk;

where Vþ
k;eAR2 and fkAL2ðOÞ with jjfkjjL2ðOÞ ¼ 1 as in (17). Using Assumption 3.2,

the maximum norms of the L2ðOÞ-normalized eigenfunctions of the Laplacian are
uniformly bounded, and followed by Hölder’s inequality for sequences, this
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immediately furnishes

jjUþjjCð %OÞpC �
Xk2

k¼k1

ð1þ kkÞ2a � ðaþk Þ
2

 !1=2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼jjUþjj

*

�
Xk2

k¼k1

1

ð1þ kkÞ2a

 !1=2

: ð35Þ

Lemma 3.4 and Proposition 3.7, in combination with Definition 5.6, show that kk1
is

bounded below by sc=e as e-0: Together with the asymptotic growth of the kk given
in (12) we therefore obtain the following estimates. Note that in these estimates and
throughout this proof C indicates a constant, but not all C’s represent the same
constant.

Xk2

k¼k1

1

ð1þ kkÞ2a
pC �

Xk2

k¼k1

k�4a=dim OpC �
Z k2

k1�1

t�4a=dim O dt

pC � ðk1 � 1Þ1�4a=dim OpC � eð4a�dim OÞ=2;

and in view of (35)

jjUþjjCð %OÞpC � ea�dim O=4 � jjUþjj
*
: ð36Þ

According to Lemma 4.4 and UAKde there exists an e-independent constant C such
that jjU�jjCð %OÞpC � jjU�jj

*
pC � de � jjUþjj

*
; and (36) furnishes with (30) the

estimate

jjU jjCð %OÞp jjUþjjCð %OÞ þ jjU�jjCð %OÞpC � ea�dim O=4 � jjUþjj
*

pC � ea�dim O=4 � jjU jj
*
:

For the last estimate we use the fact that the operator norm of the projection onto

Yþ
e can be bounded by an e-independent constant. This completes the proof of the

proposition. &

6.3. The main result on the later stages

The result of the previous section shows that the influence of the
nonlinearity of (4) remains small up to large distances from the homogeneous
equilibrium, provided we stay in a certain cone around the dominating

subspace Yþ
e : This fact is used in the next result, which describes the second

stage of the pattern formation process in (4). The proof of the theorem uses the
abstract theory in [24], which was developed there for the case of the Cahn–Hilliard
equation.
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Theorem 6.3. Consider the reaction–diffusion system (4) and assume that Assumptions

2.1–2.3 are satisfied. Assume that dimO=4oao1; let Xa be as in Proposition 4.3, and

choose and fix d0Að0; 1
2
Þ and 0or51: Then there exist constants D40 and

05
%
c�o%c�olþmax such that for the splitting of Xa defined in (28) and Definition 5.3,

and for all eAð0; 1� the following is true. If U0Að %u0; %v0Þ þKde ; with de ¼ d0 � ea�dim O=4;
is any initial condition satisfying

0ojjU0 � ð %u0; %v0Þjj
*
pminf1; ðD � e�ða�dim O=4Þþa=sþrÞ1=ð1�rÞg; ð37Þ

and if U and Ulin denote the solutions of the nonlinear equation (4) and the linearized

equation (11) originating at U0 and U0 � ð %u0; %v0Þ; respectively, then there exists a time

T40 such that the following first occurs:

jjUðTÞ � ð %u0; %v0Þjj
*
¼ D � e�ða�dim O=4Þþa=sþr � jjU0 � ð %u0; %v0Þjjr

*
: ð38Þ

For all tA½0;T � we have

jjUðtÞ � ð %u0; %v0Þ � UlinðtÞjj
*

jjUlinðtÞjj
*

p
d0
2
� ea�dim O=4: ð39Þ

Proof. The proof uses the theory developed in [24]. The reader is referred to this
reference for more details; see especially the proof of Theorem 3.4 in [24]. Choose a
constant m40 small enough such that

m

m þ s
pr and

a� sða� dimO=4Þ
m þ s

p� a� dimO
4

� 	
þ a
s
þ r: ð40Þ

Furthermore, choose the constants
%
c� and %c� such that

lþmax

m þ 1
o

%
c�o%c

�olþmax:

Using the constants defined in Corollary 5.2, we let b ¼ ðlþmax þ ðm þ 1Þ �
%
c�Þ=2 and

ge ¼ ða�
e þ b�

e Þ=2: Note that
%
c�ogeo%c�: For the above choice of b; we now denote

the factor C � e�a in the first estimate of Proposition 6.1 by Ke: Then there exists an e-
independent constant N0 such that for all 0oep1 we have

Ke � dðaÞ
ðb� lþmaxÞ

1�a � ð1� aÞ
pN0 � e�a;

where dðaÞ is a constant depending only on a; as defined in [24, Lemma 2.4]. Let

Me ¼M2 � eða�dim O=4Þ�ðsþ1Þ;

Ne ¼N0 � e�a � Me ¼ N0 � M2 � eas�ðsþ1Þdim O=4;
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with M2 as in (32), but for the larger cone K2de : Consider the e-dependent
constant

Re ¼
2a�1 � ððm þ 1Þ �

%
c� � lþmaxÞ

1�a

Ke � Me � Gð1� aÞ

 !1=s

;

which is proportional to e�ða�dim O=4Þþdim O=ð4sÞ in the limit e-0: Choose the constant

D40 in such a way that the expression D � e�ða�dim O=4Þþa=sþr is strictly less than Re

and ðde=ð2NeÞÞ1=ðmþsÞ � 2�m=ðmþsÞ � ð1þ d2e Þ
�ðmþ1Þ=ð2mþ2sÞ; as well as less than M1 �

e�aþdim O=4 in (5) for K2de ; for arbitrary eAð0; 1�: This is possible due to the second
estimate in (40). Finally, let ze ¼ de=2; and fix an arbitrary initial condition
U0Að %u0; %v0Þ þKde satisfying (37).

We now turn to establishing the existence of the time T mentioned in the
formulation of the theorem. Since this has to be done in several steps, we outline the
remainder of the proof briefly. Our proof is based on Theorem 2.10 in [24]. Since the
assumptions of this theorem will not be satisfied for all times tX0; we first define a
(maximal) interval ½0;Tmax� on which they are met. (The crucial step consists in
verifying the validity of (2.12) in [24].) Theorem 2.10 in [24] then furnishes a radius
R1 and an interval ½0;T1�C½0;Tmax�; on which the relative distance between U �
ð %u0; %v0Þ and Ulin remains small and the norm of U � ð %u0; %v0Þ is at most R1: This radius
R1 is larger than the radius R given by the right-hand side of (38). We therefore
denote by T0pT1 the maximal time such that jjUðtÞ � ð %u0; %v0Þjj

*
oR for all

tA½0;T0Þ: Our theorem is proven as long as T0oTmax; since this guarantees that the
norm of U � ð %u0; %v0Þ actually reaches R at time T0: In this case we have T ¼ T0: On
the other hand, for T0 ¼ T1 ¼ Tmax we could not draw this conclusion, and we
therefore show separately that this equality is impossible.

The detailed arguments are as follows. Choose TmaxX0 maximal such that for all
tA½0;TmaxÞ the solution UðtÞ is contained in ð %u0; %v0Þ þK2de and jjUðtÞ �
ð %u0; %v0Þjj

*
oRe: Note that by Proposition 6.2 for all tA½0;TmaxÞ we have

jjFðUðtÞÞjjL2ðOÞpLe � jjUðtÞ � ð %u0; %v0Þjj
*
with Le ¼ Me � Rs

e : This, the lower bound

on ge; and the definition of Tmax imply that estimate (2.12) in [24] holds for all
tA½0;Tmax�: Notice also that due to (37) we have

jjU0 � ð %u0; %v0Þjj
*
pD � e�ða�dim O=4Þþa=sþr � jjU0 � ð %u0; %v0Þjjr

*

pD � e�ða�dim O=4Þþa=sþroRe;

which implies Tmax40: Define

R1 ¼ jjU0 � ð %u0; %v0Þjjm=ðmþsÞ
*

� de
2Ne

� 	1=ðmþsÞ

� 2�m=ðmþsÞ � ð1þ d2e Þ
�ðmþ1Þ=ð2mþ2sÞ;
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and let T1A½0;Tmax� be the maximal time such that jjUðtÞ � ð %u0; %v0Þjj
*
oR1 for all

tA½0;T1Þ: Due to the choice of D and the first estimate in (40) we have

R1XR ¼ D � e�ða�dim O=4Þþa=sþr � jjU0 � ð %u0; %v0Þjjr
*
XjjU0 � ð %u0; %v0Þjj

*
:

Finally, let T0A½0;T1� denote the maximal time such that jjUðtÞ � ð %u0; %v0Þjj
*
oR for

all tA½0;T0Þ: Then according to [24, Theorem 2.10], (39) holds for all tA½0;T0�; and
in order to finish the proof we only have to verify jjUðT0Þ � ð %u0; %v0Þjj

*
¼ R:

Since this is satisfied if T0oTmax; assume T0 ¼ Tmax and jjUðT0Þ � ð %u0; %v0Þjj
*
oR:

We have already seen that RoRe; so the definition of Tmax shows that UðT0Þ has to
lie on the boundary of the cone ð %u0; %v0Þ þK2de : On the other hand, estimate (39) is
satisfied for all tA½0;Tmax�: Since the cone Kde is positively invariant for linear
solutions, UlinðT0ÞAKde : Lemma 2.8 in [24] shows that UðT0ÞAð %u0; %v0Þ þKc�de for
some co2; i.e., it cannot be contained in the boundary of ð %u0; %v0Þ þK2de : Thus we
have a contradiction, and T0oTmax: This completes the proof. &

7. Conclusions

We end with a few observations based on our simulations for the
Thomas equation. This paper shows that the initial pattern selection in
certain systems with Turing instabilities is determined by the linearized
equation. This initial behavior is important for understanding longer-time
behavior. In one dimension, we have observed numerically that solutions
converge to an equilibrium with the same qualitative features as the initial
selection. That is, for a fixed set of parameters there can be many coexisting
stable equilibria; different initial conditions lead to convergence to different
equilibria. It is the initial pattern selection described here which determines which
of these equilibria is ultimately observed. For two-dimensional domains, our
simulations indicate that the initial linear pattern selection gives qualitative
information for the solutions for a long time. As in one dimension, as time goes
to infinity, solutions will converge to an equilibrium. However, we suspect that these
equilibria are not what is observed in animal coats. Since the pattern selection for
animal coats is a finite time process, the ‘‘large’’ time rather than infinite time
behavior is relevant for the pattern selection. We intend to address this issue further
in the future.
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