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Validated Saddle-Node Bifurcations and Applications
to Lattice Dynamical Systems∗
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Abstract. The use of rigorous verification methods is a powerful tool which permits progress in the analysis of
dynamical processes that is not possible using purely analytical techniques. In this paper we develop
a set of tools for branch validation, which allows for the rigorous verification of branch behavior,
bifurcation, and solution index on branches generated through a saddle-node bifurcation. While the
presented methodology can be applied in a variety of settings, we illustrate the use of these tools in
the context of materials science. In particular, lattice models have been proposed as a more realistic
reflection of the behavior of materials than traditional continuum models. For example, unlike their
continuum counterparts, lattice models can account for phenomena such as pinning, and a significant
body of work has been developed to study traveling waves. However, in a variety of other contexts
such as bifurcation theory, questions about lattice dynamical systems are significantly harder to
answer than those for continuum models. In the present paper, we show that computer-assisted
proof techniques can be used to answer some of these questions. We apply these tools to the discrete
Allen–Cahn equation, giving us results on the existence of branches of mosaic solutions and their
robustness as it relates to grain size. We also demonstrate that there are situations in which classical
continuation methods can fail to identify the correct branching behavior.
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1. Introduction. In the study of high-dimensional systems of ordinary differential equa-
tions varying with a parameter, it is often the case that numerical continuation methods yield
interesting results, but rigorously proving the observed behavior is intractable. Much recent
work therefore seeks to address this problem through the use of rigorous computational meth-
ods, which provide computer-assisted proofs of dynamical questions through a combination of
fixed point arguments and interval arithmetic; see, for example, [2, 10, 13, 25, 26, 27, 29, 33, 34]
and the references therein. We develop a method using a constructive version of the implicit
function theorem and use it to develop rigorous validation methods for proving the existence
of branches of equilibrium solutions containing a saddle-node bifurcation, the location of the
bifurcation point, and the index of the solutions on the branch.

This paper fits into a rich and thriving literature, stretching back for decades, of rigorous
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methods for validation of dynamical structures. Our approach is closely related to previous
work with some key differences. We orient our development around the most fundamental tool
in bifurcation theory, the implicit function theorem [19]. This result forms the basis of most
bifurcation theory results, yet in its original formulation it is unsuitable for computer-assisted
proofs. On the one hand, the classical implicit function theorem requires knowledge of an
exact solution of a parameter-dependent nonlinear algebraic problem, which is usually not
readily available in concrete nonlinear situations. On the other hand, it only establishes the
existence of a small uniquely determined branch of solutions as a function of the parameter,
without providing detailed information on the exact size of this branch segment. To overcome
these issues, we present a constructive implicit function theorem in Theorem 1 which gives
quantitative size information on the guaranteed solution branch and which only requires an
approximative solution of the underlying nonlinear problem as input. A constructive implicit
function theorem was formulated in Chierchia [5] for the Banach space of continuous functions.
Our version of the result is a direct extension of a result of Plum [27] and is also related to
other works by the same author [25, 26]; a preliminary form of our current formulation first
appeared in a recent paper by Wanner [33]. All of these results fall into the category of
Newton–Kantorovitch theorems, which are also referred to as a posteriori implicit function
theorems. See [3] for statements and a brief history of such theorems in the context of
numerical bifurcation theory (without validation). Our methods make use of contraction
mapping arguments such as was done in the classical book of Ortega and Rheinboldt [24]. In
the context of validation methods, this type of approach can be found, for example, in the
work of Yamamoto and coworkers [36, 37].

The present paper is devoted to a new approach to computer-assisted bifurcation diagram
validation. While our approach is certainly related to the many works described above, it
differs in some essential points, which we now highlight as follows:

• We provide general results which are valid in arbitrary Banach spaces, and thereby
isolate four main hypotheses which have to be established for a computer-assisted
proof. These assumptions do not depend on specific solution approximations such as
the finite-element approach developed in [25, 26, 27].

• By separating out the main assumptions, different techniques can be used to establish
each of them. In contrast, in the radii-polynomial approach developed in [10, 13] all in-
gredients are incorporated into one statement involving interconnected estimates, and
this can make it harder to accommodate modifications in the problem setup. In addi-
tion, two of our four main assumptions consist of Lipschitz-type nonlinearity estimates.
These estimates can be derived using standard mean value theorem type results, i.e.,
in a coordinate-free and high-level setting. For example, in the context of partial dif-
ferential equations, standard Sobolev embedding theorems can be employed. This also
implies that our approach can deal equally easily with any kind of nonlinearity; i.e.,
there is no special advantage to considering polynomial nonlinearities.

• In the context of branch segment verification, our approach establishes a validated
branch segment based on one solution approximation and a branch direction. It is not
necessary to perform estimates along a parameterized curve of solution approximations
as in [13]. Moreover, we obtain an explicit criterion for the appropriateness of the
validation direction, as well as explicit bounds on the size of the validated branch. In
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this way, our method can easily be used in an iterative way to validate large branch
pieces, all starting from one solution approximation, and it is not necessary to find a
sequence of numerical approximations along the branch.

• We provide two results which allow for branch validation away from and in a neighbor-
hood of saddle-node bifurcation points, respectively. In this way, all branches which
contain only bifurcation points of this type can be validated. Our method does not
require the implementation of more involved approaches, such as pseudo-arclength
continuation. We emphasize that our validation of saddle-node bifurcation points uses
the exact same framework of the constructive implicit function theorem as the con-
tinuation method. In contrast, the methods in [10, 13] only consider continuation of
branches away from bifurcations and do not address bifurcation points at all. We are
not the first to validate bifurcation points. Reference [39] validates bifurcation points
using dynamical systems/Conley index-type arguments. The method relies on having
coordinate-specific information. Reference [2] is much more closely related to the ideas
of the current paper in that it contains validations of saddle-node and pitchfork bi-
furcations via contraction mapping principle based arguments. However, the method
requires the use of a Fourier series, and it is restricted to solutions with analyticity.
The framework developed in this paper allows us to work with solutions with much
lower regularity.

• Our modular approach allows us to identify exactly which steps provide the bottlenecks
which have to be approached with careful analysis, and which steps give sufficiently
good results to allow the computer’s interval arithmetic and automatic differentiation
algorithms to take care of things. In this way, we are able to make changes in our
setup without performing a new set of computations. For example, in our application,
we have done the majority of our calculations in the case of dimension n = 10, but we
are able to change to n = 100 with just a few adjustments to the code. In contrast
to [10, 13], we are able to compute continuous branches of equilibria through our
framework rather than computing individual points on branches and using a separate
argument to justify that these points fit together in a continuous branch. We are able
to compute saddle-node bifurcation points using the same framework as we use to
compute nonbifurcating branches. Furthermore, we have built this modular framework
so that it can be easily adapted to apply to a wide variety of dynamical contexts,
including different types of bifurcations, infinite-dimensional settings, and a variety of
different types of Banach spaces. Depending on the specific context, the bottlenecks
will change. By thinking through each hypothesis separately, our framework allows
for the discovery of which analytical estimates need to be made sharp, and which will
not significantly affect the results if they are done automatically.

• We have chosen to restrict the current paper to a finite-dimensional application so
as to avoid some of the technical parts of implementing the method in an infinite-
dimensional context. A preliminary version of this method has been applied in an
infinite-dimensional context in [33, 34], in a case where the norm embeddings worked
out nicely. However, making this method more general for infinite-dimensional prob-
lems requires constructive versions of Sobolev embedding theorems. This is a topic of
ongoing research.
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Based on these observations, we believe that the approach developed in the current paper can
serve as the backbone of a more modular approach to bifurcation diagram validation.

Throughout this paper, our approach is illustrated in the context of a specific lattice
dynamical system. More precisely, we apply our method to the spatially discrete Allen–Cahn
equation, a system for the study of phase boundaries in crystalline solids. We are able to
validate branches of equilibrium solutions containing a saddle-node bifurcation, find the index
of solutions in the branches, and establish the location of bifurcation points. We use our
method to validate a statement on the robustness of solutions as a function of their minimum
grain size. We would like to point out that in our study of the discrete Allen–Cahn model,
we consider examples in high dimensions, as well as different nonlinearities, to illustrate the
relative simplicity of our modular approach.

The paper proceeds as follows. In section 2, we present the constructive implicit function
theorem, an adaptation of the classical implicit function theorem which is ideally suited for
validation methods. We show how the constructive implicit function theorem is used to
validate branches of solutions with saddle-node bifurcations. We would like to point out that
the results of this section are formulated in general Banach spaces and can easily be applied in
the infinite-dimensional context as well. See, for example, [33, 34]. For the present paper, we
decided to demonstrate the applicability of the developed methods in the finite-dimensional
setting, since in this way we do not have to deal with the additional issues arising in the context
of partial differential equations. However, we are planning to extend this work in the future; see
also [32]. Following the setup of this framework, in section 3 we apply our abstract results on
branches of solutions to the discrete Allen–Cahn equation with dimension n = 10. Our results
apply to solutions known as mosaic solutions for which the resulting branch has a saddle-
node bifurcation. In particular, for the stable mosaic solutions, we validate the existence and
uniqueness of the entire branch (unbounded in λ) for almost 94% of the 1024 = 210 mosaic
solutions. We validate branches of solutions, their bifurcations points, and the number of
unstable eigenvalues after bifurcation. This allows us to establish a relationship between the
geometry of a stable mosaic solution and the location of its bifurcation. We demonstrate
the flexibility of our method by validating, without much extra work, solution branches for
a different nonlinearity for n = 100. In particular, we give precise implementation details
on how these abstract methods are applied to the lattice Allen–Cahn equation in order to
validate the branch, bifurcation point, and index of solutions.

2. Computer-assisted bifurcation diagram validation. We now turn our attention to
presenting the theoretical underpinnings of our numerical validation approach. In the interest
of future applications, all of these results are presented in the setting of general Banach spaces.
We begin by proving a constructive implicit function theorem, which applies when the usual
assumptions of the implicit function theorem are satisfied only approximately. This result is
then used to establish the existence of solution branches of parameter-dependent problems.
After this, we show how the constructive implicit function theorem can be used to enclose the
solution branch in a neighborhood of saddle-node bifurcation points.

2.1. A constructive implicit function theorem. In classical bifurcation theory, the im-
plicit function theorem is arguably the most versatile and important tool. While it provides
a necessary condition for bifurcation, it also lies at the heart of a number of results which
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establish certain bifurcation points. See, for example, the extensive discussions in [6, 38].
Despite its importance, the implicit function theorem is an inherently theoretical result, since
its application requires the a priori knowledge of an exact solution of a nonlinear problem. In
most applied problems such exact solutions are out of reach, and the best one can hope for
are numerically computed approximations.

In the current section, we demonstrate that in many cases it suffices to know a solution
approximation in order to still deduce a result which captures the essence of the implicit
function theorem. The result is formulated for parameter-dependent problems of the form

(1) G(α, x) = 0 ,

where G : P × X → Y is a Fréchet differentiable nonlinear operator between two Banach
spaces X and Y, and the parameter α is taken from a Banach space P. The norms on
these Banach spaces are denoted by ‖ · ‖P , ‖ · ‖X , and ‖ · ‖Y , respectively. Our approach is
based on the work of Plum [27] and the recent paper [33]; we extend this work to provide a
more applicable result. Iteratively applied, our result leads to a versatile and fast rigorous
continuation method.

We now list our principal hypotheses under which we are able to prove an implicit function
theorem. The hypotheses specify in detail what is needed to prove the existence of a curve (in
the special case P = R) of actual solutions of the nonlinear problem (1) if all that is available
is an approximation.
(H1) Assume that we are given a pair (α∗, x∗) ∈ P × X which is an approximate solution

of the nonlinear problem (1). More precisely, the residual of the nonlinear operator G
at the pair (α∗, x∗) is small; i.e., there exists a constant � > 0 such that

(2) ‖G(α∗, x∗)‖Y ≤ � .

(H2) We assume that the operator DxG(α∗, x∗) is invertible and not very close to being sin-
gular. That is, the Fréchet derivative DxG(α∗, x∗) ∈ L(X ,Y), where L(X ,Y) denotes
the Banach space of all bounded linear operators from X into Y, is one-to-one and
onto, and its inverse DxG(α∗, x∗)−1 : Y → X is bounded and satisfies

(3)
∥∥DxG(α∗, x∗)−1

∥∥
L(Y ,X )

≤ K ,

where ‖ · ‖L(Y ,X ) denotes the operator norm in L(Y,X ).
(H3) For (α, x) close to (α∗, x∗), the Fréchet derivative DxG(α, x) is locally Lipschitz contin-

uous in the following sense. There exist positive real constants L1, L2, �x, and �α ≥ 0
such that for all pairs (α, x) ∈ P × X with ‖x − x∗‖X ≤ �x and ‖α − α∗‖P ≤ �α we
have

(4) ‖DxG(α, x) −DxG(α∗, x∗)‖L(X ,Y) ≤ L1 ‖x− x∗‖X + L2 ‖α− α∗‖P .

(H4) For α close to α∗, the Fréchet derivative DαG(α, x∗) satisfies a Lipschitz-type bound.
More precisely, there exist positive real constants L3 and L4 such that for all α ∈ P
with ‖α− α∗‖P ≤ �α one has

(5) ‖DαG(α, x∗)‖L(P,Y) ≤ L3 + L4 ‖α− α∗‖P ,

where �α is the constant that was chosen in (H3).
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Figure 1. Visualization of the constructive implicit function theorem. The left image illustrates the general
statement of the theorem; i.e., in a window around the approximative solution (α∗, x∗) all solutions of G(α, x) =
0 lie on the curve α �→ x(α). The size of the window is determined by the pair (δα, δx), and the shape of the
admissible region from which the pair can be chosen is illustrated in the right image. The point (δoptα , δoptx )
determines the largest parameter jump which still satisfies the theorem. The dashed blue line shows the slope of
the lower blue curve at δα = 0.

Notice that all of the constants �, K, Lk, as well as both �x and �α, depend on the choice of the
pair (α∗, x∗). However, while the first two hypotheses (H1) and (H2) put definite constraints
on the admissible approximations (α∗, x∗), the remaining two hypotheses are usually satisfied
and can be verified easily. Furthermore, in specific applications one has to be able to determine
explicit values for these constants. This is accomplished through a combination of rigorous
estimates and interval computations.

The next result shows that under certain conditions on the constants �, K, and L1, one
can always find a “branch” of solutions parameterized by the parameter α.

Theorem 1 (constructive implicit function theorem). Let P, X , and Y be Banach spaces,
suppose that the nonlinear parameter-dependent operator G : P × X → Y is Fréchet differ-
entiable, and assume that (α∗, x∗) ∈ P × X satisfies hypotheses (H1)–(H4). Finally, suppose
that

(6) 4K2�L1 < 1 and 2K� < �x .

Then there exist pairs of constants (δα, δx), with 0 ≤ δα ≤ �α and 0 < δx ≤ �x, as well as

(7) 2KL1δx + 2KL2δα ≤ 1 and 2K�+ 2KL3δα + 2KL4δ
2
α ≤ δx ,

and for each such pair the following holds. For every α ∈ P with ‖α− α∗‖P ≤ δα there exists
a uniquely determined element x(α) ∈ X with ‖x(α) − x∗‖X ≤ δx such that G(α, x(α)) = 0.
In other words, if we define

BX
δ = {ξ ∈ X : ‖ξ − x∗‖X ≤ δ} and BP

δ = {p ∈ P : ‖p− α∗‖P ≤ δ} ,

then all solutions of the nonlinear problem G(α, x) = 0 in the set BP
δα

× BX
δx

lie on the graph
of the function α �→ x(α). This statement is visualized in the left image of Figure 1, and the
right panel in this figure depicts the admissible region of all pairs (δα, δx) for which the result
holds. In addition, the following two statements are satisfied:
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• For all pairs (α, x) ∈ BP
δα

× BX
δx

the Fréchet derivative DxG(α, x) ∈ L(X ,Y) is a
bounded invertible linear operator, whose inverse is in L(Y,X ).

• If the mapping G : P × X → Y is k-times continuously Fréchet differentiable, then so
is the solution function α �→ x(α).

The constructive implicit function theorem will be crucial for all of the following results in
this paper, and therefore prior to giving the proof, we spend a few paragraphs discussing its
assumptions and statements with an eye towards practical and efficient implementation. The
central assumptions are the two inequalities 4K2�L1 < 1 and 2K� < �x stated in (6), which
in some sense quantify that the approximation (α∗, x∗) is indeed close to an actual solution
of (1). Of these estimates, the second is usually minor and automatically satisfied. The first
estimate, however, relates the size of the residual � of the approximation, the bound K on
the operator norm of the inverse of the Fréchet derivative at the approximation, as well as
the Lipschitz constant L1 for the Fréchet derivative at the approximation. Since the latter
two constants will have values which are essentially beyond our control, assumption (6) states
that for small enough values of the residual, the implicit function theorem applies.

Theorem 1 guarantees that under assumption (6) one can always find bounds δx > 0
and δα ≥ 0 which satisfy the inequalities given in (7); see also the right panel in Figure 1.
For the special case δα = 0 the theorem establishes the existence of a unique solution at the
fixed parameter value α∗ which is contained in the neighborhood Bδx of x∗ for radius values δx
satisfying

(8) 2K� < δx < min

{
1

2KL1
, �x

}
.

In other words, the lower bound in (8) is a measure of the approximation error of (α∗, x∗),
while the upper bound captures the level of isolation of the actual solution.

If, on the one hand, we pick an admissible pair (δα, δx) with δα > 0, then we can establish
the existence of a manifold of solutions over an α-ball of radius δα. Not surprisingly, this
leads to a reduced range of possible values of δx. The largest possible α-range for the solution
graph occurs at the intersection point of the blue parabola and the blue solid line in the right
image of Figure 1, which can be computed explicitly as

(9) δoptα =
2(C − 2K�)

D + 2KL3 +
√

(D + 2KL3)2 + 8KL4(C − 2K�)
and δoptx = C −Dδoptα ,

with the constants C and D given by

C =
1

2KL1
and D =

L2

L1
.

For this admissible pair, the possible δx-range shrinks to the singleton δoptx , and the parameter
range over which solutions can be established has the maximal radius δoptα . Notice that of the
constants we have control over, the location of this optimal pair is affected most significantly
by the constant L3 in hypothesis (H4). This constant influences the slope of the dashed blue
line in the right image of Figure 1, which is the tangent line to the blue parabola at δα = 0. If



EVELYN SANDER AND THOMAS WANNER 1697

this slope is large, the optimal pair moves upwards, thereby decreasing the optimal α-range.
If, on the other hand, L3 is close to zero, the tangent is basically horizontal, and the α-range
is larger. This will be crucial for the results of the following sections. Finally, note that the
theorem’s assumptions require sufficiently large values for �x and �α. In practice, the required
values occur without significant extra hypotheses.

With this preliminary discussion completed, we now proceed with the proof of the con-
structive implicit function theorem.

Proof. The proof follows along the lines of [33, Theorem 2.2], with some slight but crucial
extensions. Consider the parameter-dependent Newton-like operator defined by

T : P × X → X with T (α, x) = x−DxG(α∗, x∗)−1G(α, x) ,

and let δα ≥ 0, δx > 0, BX
δx
, and BP

δα
be as in the formulation of the theorem. Then hypothe-

ses (H2) and (H3) imply for all α ∈ BP
δα

and arbitrary x ∈ BX
δx

the estimate

‖DxT (α, x)‖L(X ,X ) =
∥∥DxG(α∗, x∗)−1 (DxG(α∗, x∗)−DxG(α, x))

∥∥
L(X ,X )

≤ K ‖DxG(α, x) −DxG(α∗, x∗)‖L(X ,Y)

≤ KL1 ‖x− x∗‖X +KL2 ‖α− α∗‖P

≤ KL1δx +KL2δα ≤ 1

2
,

where we have also used the first estimate in (7). Furthermore, an application of the mean
value theorem [38, Theorem 4.A] yields

(10) ‖T (α, x) − T (α, x̄)‖X ≤ 1

2
‖x− x̄‖X for all α ∈ BP

δα , x, x̄ ∈ BX
δx .

Now let α ∈ BP
δα

be arbitrary. Then due to (H1), (H2), and (H4) we have

‖T (α, x∗)− x∗‖X ≤
∥∥DxG(α∗, x∗)−1

∥∥
L(Y ,X )

‖G(α, x∗)‖Y

≤ K ‖G(α, x∗)− G(α∗, x∗)‖Y +K ‖G(α∗, x∗)‖Y
≤ K ‖α− α∗‖P sup

‖α̃−α∗‖P≤δα

‖DαG(α̃, x∗)‖L(P,Y) +K�

≤ Kδα (L3 + L4δα) +K� ,

and in combination with (10) one obtains for all (α, x) ∈ BP
δα

× BX
δx

the estimate

‖T (α, x) − x∗‖X ≤ ‖T (α, x) − T (α, x∗)‖X + ‖T (α, x∗)− x∗‖X

≤ 1

2
‖x− x∗‖X +Kδα (L3 + L4δα) +K�

≤ δx
2

+KL3δα +KL4δ
2
α +K� ,
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and the second estimate in (7) finally implies

‖T (α, x)− x∗‖X ≤ δx for all α ∈ BP
δα , x ∈ BX

δx .

Together with (10) this establishes T : BP
δα

× BX
δx

→ BX
δx

as a uniform contraction, and the
statement of the theorem follows from the uniform contraction mapping principle.

In order to complete the proof of the theorem we need only show that there actually exist
admissible pairs (δα, δx) with 0 ≤ δα ≤ �α and 0 < δx ≤ �x, which also satisfy both estimates
in (7). For this, we refer the reader to the right image of Figure 1. One can easily see that
the region bounded by the inequalities in (7) in combination with δα ≥ 0 is qualitatively
of the form depicted in blue in the image. This is due to the fact that the first inequality
in (6) implies 1/(2KL1) > 2K�; i.e., we obtain a nontrivial interval of admissible δx values
for δα = 0. Moreover, the additional constraint δx ≤ �x cannot destroy this, since the second
inequality in (6) gives 2K� < �x. Finally, since both inequalities in (6) are strict, this implies
that one can also find admissible pairs (δα, δx) with δα > 0.

It only remains to verify the last two statements of the theorem. For the first of these,
let α ∈ BP

δα
and x ∈ BX

δx
be arbitrary. It was shown earlier in the proof that then

‖DxT (α, x)‖L(X ,X ) =
∥∥I −DxG(α∗, x∗)−1DxG(α, x)

∥∥
L(X ,X )

≤ 1

2
< 1 ,

and a standard Neumann series argument implies that DxG(α∗, x∗)−1DxG(α, x) ∈ L(X ,X ) is
one-to-one and onto, with continuous inverse; see also Lemma 4 below. Together with (H2),
this completes the proof of the first statement. For the second statement, note that if G is k-
times continuously Fréchet differentiable, then so is the uniform contraction T . The statement
now follows from the uniform contraction principle [6, Theorem 2.2]. This completes the proof
of the theorem.

For the sake of later reference, we close this section with the following remarks and lemma.

Remark 2 (additional window constraints). In the formulation of Theorem 1 we concen-
trated on the simplest possible external restrictions for the validation constants δα and δx,
namely δα ≤ �α and δx ≤ �x. These conditions are a reflection of the fact that the estimates
assumed in (H3) and (H4) usually only hold locally around the point (α∗, x∗), and we chose
to concentrate on a rectangular window with side lengths �α and �x, as shown in the left panel
of Figure 1. In this simple form, the constructive implicit function theorem is (theoretically)
ideally suited for a rigorous version of parameter continuation, in which the parameter is
iteratively varied by a fixed value, followed by finding an approximate solution at the new
parameter value. However, from a numerical standpoint it is known to be more flexible and
more efficient to be able to use arclength continuation, in which both the parameter and the
function are iteratively varied. For example, this allows for a continuation method that is
able to continue at a saddle-node bifurcation point. In order to develop a rigorous method
which has these same speedups and flexibilities, in some of the applications below, it will
be more convenient to consider windows which are not parallel to the α- and x-axes. In
these cases, hypotheses (H3) and (H4) will be satisfied as long as we have ‖x − x∗‖X ≤ δx
and ‖α−α∗‖P ≤ δx, where the thresholds δα and δx satisfy (one or more) additional estimates
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of the form

(11) C1δx + C2δα ≤ C3

for certain positive constants C1, C2, and C3. One can easily see that if we add the con-
straints (11), the proof of Theorem 1 remains unaffected. All it does is potentially restrict the
set of admissible pairs (δα, δx), which can now be found by intersecting the blue region in the
right panel of Figure 1 with the half-spaces defined in (11).

Remark 3 (parameter-independent constructive implicit function theorem). In certain sit-
uations, it is desirable to apply Theorem 1 in a parameter-independent version; i.e., one is
only interested in establishing a solution for fixed α∗. By choosing δα = 0, it can readily be
seen from the proof of the theorem that in this case hypothesis (H4) is not necessary, and
that (H3) only has to be established with �x > 0 and �α = 0. In other words, only Lipschitz
constant L1 has to be determined.

In order to verify hypothesis (H2), we need to be able to estimate the norm of the inverse
of a linear operator. The following lemma gives a useful estimate of this norm. Its proof
is based on a standard Neuman series argument, but the result is quite general and can be
applied in a variety of settings; see also [23, Proposition 2.4.2] and [30, Lemma 2.1].

Lemma 4 (linear operator norm estimate). Consider two Banach spaces X and Y, and
let A ∈ L(X ,Y) denote a bounded linear operator. In addition, let B ∈ L(Y,X ) denote a
bounded linear operator which is one-to-one and onto, and assume that

(12) ‖I −BA‖L(X ,X ) ≤ �1 < 1 as well as ‖B‖L(Y ,X ) ≤ �2

for two constants 0 ≤ �1 < 1 and �2 > 0. Then the linear operator A is one-to-one and onto
as well, and its bounded inverse A−1 satisfies

(13)
∥∥A−1

∥∥
L(Y ,X )

≤ �2
1− �1

.

Proof. According to (12), the Neumann series C =
∑∞

k=0(I −BA)k converges in L(X ,X ),
and the operator C satisfies ‖C‖L(X ,X ) ≤ 1/(1 − �1); see [18, sections I.4.4 and III.3.2]. This
implies the identities

(BA)C = (I − (I − BA)) C = I = C (I − (I − BA)) = C (BA) ,

which show that the operators C and BA are one-to-one and onto, as well as (BA)−1 = C.
But then A = B−1C−1 is one-to-one and onto with A−1 = CB, and together with (12) this
finally implies

∥∥A−1
∥∥
L(Y ,X )

= ‖CB‖L(Y ,X ) ≤ ‖C‖L(X ,X ) ‖B‖L(Y ,X ) ≤
�2

1− �1
.

This completes the proof of the lemma.
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2.2. Validation of branches of equilibria. Beginning with this section we apply the con-
structive implicit function theorem in a variety of contexts, whose combination allows us to
establish the results on the lattice Allen–Cahn equation in section 3. As Theorem 1 is now
considered a tool which will be applied in several different ways, we change our notation.
From now on, we will study parameter-dependent problems of the form

(14) F(λ, u) = 0 ,

where F : R × U → V is a Fréchet differentiable parameter-dependent nonlinear operator
between two Banach spaces U and V. The norms on these Banach spaces are denoted by ‖ ·‖U
and ‖ · ‖V , respectively. In all of the following results, we will study (14) in the neighborhood
of a pair (λ∗, u∗) ∈ R× U which is an approximate solution.

The goal of the present section is to establish the existence of solution branch pieces for the
nonlinear problem (14). While this question has already been addressed by the constructive
implicit function theorem, this result has limited direct applicability in its stated simple form.
To see this, recall that Theorem 1 guarantees the existence of positive constants δα and δx such
that for every α ∈ P with ‖α−α∗‖P ≤ δα there exists a uniquely determined element x(α) ∈ X
with ‖x(α) − x∗‖X ≤ δx such that G(α, x(α)) = 0. In other words, the solutions x(α) are
constructed in balls of radius δx and with center x∗, and the latter is kept fixed even as the
parameter α is varied. In practice, this approach will lead to severe restrictions on the size of
the α-ball on which Theorem 1 applies. This is of course due to the fact that the graph of the
solution map α �→ x(α) usually is not parallel to the x-axis; i.e., depending on the tangent
directions of the map, restrictions on δx will affect and severely limit the size of the radius δα.
In particular, in the constructive implicit function theorem in the case P = R, the value of L3

is basically given by the norm of DλF(λ∗, u∗), which could be quite large. As we pointed out
earlier, the value of L3 affects the slope of the dashed blue line in the right panel of Figure 1,
and thus would lead to extremely small values of δoptα .

This shortcoming of Theorem 1 is addressed by the following theorem for the special case
P = R, i.e., for branches of solutions. In the new result, it is not enough to specify just the
approximative solution (λ∗, u∗), but one also has to provide a direction v∗ which (ideally)
approximates the actual solution curve. If one chooses v∗ close to the tangent direction of the
solution branch and focusing on a parallelogram of possible equilibria, as shown in the left
panel of Figure 2, then with respect to the direction of v∗, the constant L3 will be extremely
close to zero. This implies that the same will be true for the slope of the dashed blue line in
the right panel of Figure 2, which leads to considerably larger values of δoptλ . This comes at
the price of an additional constraint, stated in (20), which is indicated in green in the right
panel of Figure 2. In applications, this constraint does not usually impose any additional
condition—and even if it does, one can easily determine the new value of the optimal λ-
interval using Remark 1. Even though this leads to a slightly more complicated formulation
of the theorem, the later numerical payoff will be significant.

While the method presented in this section bears a close resemblance to an arclength
continuation method in that our rigorous predictor step is chosen in the approximate tangent
direction to the solution curve, the method is not a true arclength continuation, since the
rigorous corrector step does not use an extended system. Unlike the speedup for the standard
numerical method, in practice we find that the computational time of our rigorous method
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Figure 2. Visualization of the regular branch validation theorem. The left image illustrates the general
statement of the theorem; i.e., in a slanted window around the approximative solution (λ∗, u∗) all solutions of
F(λ, u) = 0 lie on the curve λ �→ u(λ). The size of the window is determined by the pair (δλ, δu), and the
shape of the admissible region from which these pairs can be chosen is illustrated in the right image. Notice that
if ‖v∗‖U � 0, then the last constraint in (20), which is indicated in green, might further restrict the admissible
region. In practice, this usually does not happen.

is lengthened if we have to create rigorous estimates in a new coordinate system on each
step. In the next section, we use the constructive implicit function theorem to give a rigorous
continuation method in the region of a saddle-node bifurcation. Combining the methods in
this and the next section then provides a rigorous validation method for the continuation of
solution branches containing a fold.

In order to carry out the above procedure, we will use the constructive implicit function
theorem as a tool and apply it to problem (14) after a suitable transformation. For this, we
need to make the following assumption on the function F :

(A) For (λ, u) close to (λ∗, u∗), the two Fréchet derivatives DuF(λ, u) and DλF(λ, u) are
locally Lipschitz continuous in the following sense. There exist real constants Mk ≥ 0
for k = 1, . . . , 4, as well as du > 0 and dλ > 0, such that for all pairs (λ, u) ∈ R × U
with ‖u− u∗‖U ≤ du and |λ− λ∗| ≤ dλ we have

‖DuF(λ, u) −DuF(λ∗, u∗)‖L(U ,V) ≤ M1 ‖u− u∗‖U +M2 |λ− λ∗| ,(15)

‖DλF(λ, u)−DλF(λ∗, u∗)‖V ≤ M3 ‖u− u∗‖U +M4 |λ− λ∗| ,(16)

where ‖ · ‖L(U ,V) denotes the operator norm in L(U ,V), and as usual we identify V
with L(R,V).

Assumption (A) is a quantified Lipschitz continuity requirement for the Fréchet derivatives
of F . It will be used in Theorem 5 to guarantee (H3) from the first equation in (A), and (H4)
from the second equation. In this way, we will be able to derive the constants Lk in the
constructive implicit function theorem directly from the constants in (A).

Theorem 5 (regular branch segment validation). Let U and V be Banach spaces, and suppose
that the nonlinear parameter-dependent operator F : R×U → V is both Fréchet differentiable
and satisfies (A). Assume that (λ∗, u∗) ∈ R× U satisfies the estimates

(17) ‖F(λ∗, u∗)‖V ≤ � and
∥∥DuF(λ∗, u∗)−1

∥∥
L(V ,U)

≤ K
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for some positive constants � and K, which will be used to show (H1) and (H2), and let v∗∈ U
be given with

(18) ‖DλF(λ∗, u∗) +DuF(λ∗, u∗)[v∗]‖V ≤ σ

for some constant σ ≥ 0, which will indicate the slant of the box containing the solution
branch. Finally, assume that the estimates

(19) 4K2�M1 < 1 and 2K� < du

hold, which will be used to show (6). Then there exist pairs of constants (δλ, δu) which satisfy

(20) 0 < δλ ≤ dλ , 0 < δu ≤ du , and δλ ‖v∗‖U + δu ≤ du ,

and satisfy the two inequalities

(21) 2KM1δu + 2K (M1 ‖v∗‖U +M2) δλ ≤ 1

and

(22) 2K�+ 2Kσδλ + 2K
(
M1 ‖v∗‖2U + (M2 +M3) ‖v∗‖U +M4

)
δ2λ ≤ δu ,

which will be used to show (7), and for each such pair the following holds. For every parameter
value λ ∈ R with |λ − λ∗| ≤ δλ there exists a uniquely determined element u(λ) ∈ U which
satisfies ‖u(λ)−(u∗+(λ−λ∗)v∗)‖U ≤ δu, and for which the nonlinear equation F(λ, u(λ)) = 0
holds. In other words, all solutions of the nonlinear problem F(λ, u) = 0 in the slanted set

{(λ, u) ∈ R× U : |λ− λ∗| ≤ δλ and ‖u− (u∗ + (λ− λ∗) v∗)‖U ≤ δu}

lie on the branch λ �→ u(λ). In addition, if the mapping F : R × U → V is k-times contin-
uously Fréchet differentiable, then so is the solution function λ �→ u(λ). This statement is
illustrated in the left image of Figure 2, while the right image depicts the admissible region of
all pairs (δλ, δu) for which the result holds.

Prior to giving the proof of this theorem, we note that if we choose v∗ = 0, then Theorem 5
reduces to the constructive implicit function theorem. However, by choosing v∗ �= 0, we
can gain improvements on the optimal δα, but at the expense of an additional constraint
determined by (18). As mentioned earlier, this often does not lead to any actual restriction.
When it does lead to an additional constraint, one can easily find it by using (9) with the
constants C = du and D = ‖v∗‖U to compute the intersection point with the parabolic curve
given by (22), as long as the constants Lk are chosen as in Theorem 5. We now proceed with
the proof of the theorem.

Proof. In order to prove the theorem, we reduce its more refined approach to the con-
structive implicit function theorem. For this, define P = R, X = U , and Y = V, and consider
the nonlinear operator G : P × X → Y given by

G(α, x) = F (λ∗ + α, u∗ + αv∗ + x) .



EVELYN SANDER AND THOMAS WANNER 1703

Then G is Fréchet differentiable with DxG(α, x) = DuF (λ∗ + α, u∗ + αv∗ + x), and one can
easily see that DαG(α, x) = DλF (λ∗ + α, u∗ + αv∗ + x) + DuF (λ∗ + α, u∗ + αv∗ + x) [v∗].
These formulas imply that at the point (α∗, x∗) = (0, 0) we have G(0, 0) = F(λ∗, u∗), as well
as both

DxG(0, 0) = DuF (λ∗, u∗) and DαG(0, 0) = DλF (λ∗, u∗) +DuF (λ∗, u∗) [v∗] ,

and therefore the estimates in (17) imply hypotheses (H1) and (H2). We now verify hypothe-
ses (H3) and (H4). For this, suppose that the constants 0 < δλ ≤ dλ and 0 < δu ≤ du
satisfy (20), and let α ∈ R be arbitrary with |α| ≤ δλ. Then ‖αv∗‖U = |α|‖v∗‖U ≤ du implies,
together with (A), the estimate

‖DαG(α, 0)‖V ≤ ‖DλF (λ∗, u∗) +DuF (λ∗, u∗) [v∗]‖V
+ ‖DλF (λ∗ + α, u∗ + αv∗)−DλF (λ∗, u∗)‖Y
+ ‖DuF (λ∗ + α, u∗ + αv∗) [v∗]−DuF (λ∗, u∗) [v∗]‖Y

≤ σ +M3 ‖v∗‖U |α| +M4|α|

+ ‖DuF (λ∗ + α, u∗ + αv∗)−DuF (λ∗, u∗)‖L(U ,V) ‖v∗‖U
≤ σ +M3 ‖v∗‖U |α| +M4|α|+ (M1 ‖v∗‖U |α|+M2|α|) ‖v∗‖U .

Similarly, if we assume that α and x satisfy both |α| ≤ δλ and ‖x‖U ≤ δu, then we obtain the
inequality ‖αv∗ + x‖U ≤ |α|‖v∗‖U + ‖x‖U ≤ du, and assumption (A) yields the estimate

‖DxG(α, x) −DxG(0, 0)‖L(U ,V) ≤ M1‖x‖U + (M1 ‖v∗‖U +M2) |α| .

In other words, if we define �α = dλ and �x = du, and if we assume in addition that δλ and δu
satisfy (20), then both hypotheses (H3) and (H4) are satisfied with L1 = M1 and L3 = σ, and
satisfy both

L2 = M1 ‖v∗‖U +M2 and L4 = M1 ‖v∗‖2U + (M2 +M3) ‖v∗‖U +M4 .

Now an application of Theorem 1 completes the proof if we take into account Remark 2.
Notice in particular that while the last constraint in (20) might make the set of admissible
pairs (δλ, δu) smaller, it will not render it empty; see also Figure 2.

To close this section we briefly comment on how the branch segment validation theorem
can be applied successively to establish large branch segments.

Remark 6 (linking branch segments). While Theorem 5 is able to validate significantly
larger branch segments than the original version of the constructive implicit function theorem,
in nearly all applications it has to be used successively to cover large branches. For this, one
has to make sure that the small branch segments are properly linked.

Suppose that we have applied the branch segment validation theorem to an approximative
solution (λ∗

k, u
∗
k) ∈ R × U , using the direction v∗k ∈ U . Theorem 5 then provides validation

constants δmin
u,k , δ

opt
u,k , and δoptλ,k such that the following holds:
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• At λ = λ∗
k, there exists a unique solution of (14) which has distance at most δmin

u,k

from the solution approximation u∗k. In fact, we have δmin
u,k = 2Kk�k, where �k and Kk

denote the constants from (H1) and (H2) at the pair (λ∗
k, u

∗
k).

• For every parameter λ with |λ− λ∗
k| ≤ δoptλ,k , the problem (14) has a unique solution u

which satisfies ‖u− (u∗k + (λ− λ∗
k)v

∗
k)‖U ≤ δoptu,k . In other words, there is an explicitly

given slanted cylinder which contains a uniquely determined solution branch.
Assume now that we want to extend this validated branch piece to the right. While u∗k+δoptλ,kv

∗
k

is an approximation of the solution of (14) for λ = λ∗
k+1 = λ∗

k + δoptλ,k , it is usually not
good enough for an efficient application of Theorem 5. We therefore first determine a new
numerical approximation (λ∗

k+1, u
∗
k+1) by applying a few steps of Newton’s method to the

operator F(λ∗
k+1, ·) starting at the above approximation u∗k + δoptλ,kv

∗
k. If the branch segment

validation theorem can be applied successfully at the new point (λ∗
k+1, u

∗
k+1), we obtain new

validation constants δmin
u,k+1, δ

opt
u,k+1, and δoptλ,k+1 as above. Assume now that

(23) δmin
u,k+1 +

∥∥∥u∗k+1 −
(
u∗k + δoptλ,kv

∗
k

)∥∥∥
U

≤ δoptu,k

is satisfied. Then a straightforward application of the triangle inequality implies that the
branch segment validated near the approximation (λ∗

k+1, u
∗
k+1) is connected with the segment

validated near (λ∗
k, u

∗
k). If, on the other hand, the inequality (23) is violated, then we cannot

link the branches. This usually is an indication that one is too close to a bifurcation point.
The above procedure is illustrated in the left image of Figure 3.

2.3. Resolving the neighborhood of a saddle-node bifurcation. The regular branch seg-
ment validation theorem from the last section can be used to validate long pieces of solution
branches. For this, all one has to do is apply it iteratively, thereby covering a larger range
of λ values. This is illustrated in the left image of Figure 3, where for each piece of the red
solution curve of the equation F(λ, u) = 0 one uses a possibly different direction vector v∗ for
the validation. In each validation region, the approximative solution at its center is indicated
by a blue dot. However, the image also shows something else. If the solution branch contains
a saddle-node bifurcation point, such as the one indicated by a black dot, Theorem 5 cannot
in principle be used to validate the complete branch—locally near the bifurcation point the
solution curve is not a graph over λ.

In the present section, we demonstrate that even though Theorem 5 does not apply near
saddle-node bifurcations, we can still use the constructive implicit function theorem to validate
the branch in a neighborhood of the bifurcation point. This time, however, Theorem 1 has to
be applied in combination with a suitable change of variables. To motivate the latter, assume
for the moment that (λ0, u0) is a saddle-node bifurcation point for (14). Then the Fréchet
derivative DuF(λ0, u0) has to have a nontrivial kernel. In the generic case, one would expect
that this kernel is one-dimensional, spanned by some nonzero element v0 ∈ U . Moreover, at
the saddle-node bifurcation, the solution curve should be tangent to v0. It therefore seems
reasonable to expect that if U⊥ ⊂ U denotes a subspace which is complementary to the kernel
of DuF(λ0, u0), and if we decompose u ∈ U as

u = u0 + αv0 + w with α ∈ R and w ∈ U⊥ ,
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Figure 3. Visualization of the saddle-node branch validation theorem. The left image illustrates how
successive applications of Theorem 5 can be used to validate solution branches away from saddle-node bifurcation
points. In order to validate the branch close to the bifurcation point, one has to employ Theorem 7, whose setup
is illustrated in the right image. The vector v∗ is an approximation for the kernel element of the Fréchet
derivative DuF at the saddle-node bifurcation point. The α-axis is parallel to v∗, and the w-axis represents a
complementary subspace in U.

then locally near the saddle-node bifurcation point (λ0, u0) the solution curve can be param-
eterized by α.

In practice, of course, we do not know the saddle-node bifurcation point exactly; i.e., we
only have an approximation (λ∗, u∗) ≈ (λ0, u0) which satisfies F(λ∗, u∗) ≈ 0. Generically,
this implies that the Fréchet derivative DuF(λ∗, u∗) at the approximative bifurcation point
is actually invertible, so there is no natural candidate for the tangent direction v∗. Rather,
we will pick any nonzero element v∗ ∈ U for which DuF(λ∗, u∗)[v∗] ≈ 0. Similarly, the
construction of the complementary space U⊥ has to be done in an approximative way, and we
choose to model it as a bounded linear one-to-one operator of the form w �→ Hw, where the
range R(H) satisfies U = span[v∗]⊕R(H). Using these preparations, it is then indeed possible
to apply the constructive implicit function theorem to validate the branch. This leads to the
following theorem, which is illustrated in the right image of Figure 3.

Theorem 7 (saddle-node branch validation). Let U and V be Banach spaces, and suppose
that the nonlinear parameter-dependent operator F : R×U → V is both Fréchet differentiable
and satisfies (A). Assume that (λ∗, u∗) ∈ R× U and v∗ ∈ U \ {0} satisfy the estimates

(24) ‖F(λ∗, u∗)‖V ≤ � and ‖DuF(λ∗, u∗)[v∗]‖V ≤ σ

for some nonnegative constants � ≥ 0 and σ ≥ 0, which are needed to show (H1) and a
verticality condition similar to the slant condition in (18). In addition, let W denote another
Banach space with norm ‖ · ‖W , and let H : W → U be an injective bounded linear operator
with the properties

(25) R(H) is closed and U = span[v∗]⊕R(H) ,

and assume that there exists a constant K > 0 such that

(26) K
∥∥DλF(λ∗, u∗)λ̄+DuF(λ∗, u∗) [Hw̄]

∥∥
V ≥ max

{∣∣λ̄∣∣ , ‖w̄‖W}
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holds for all λ̄ ∈ R and w̄ ∈ W, which will be used to show (H2). Finally, define the constant L1

as
L1 = M1 ‖H‖2L(W ,U) + (M2 +M3) ‖H‖L(W ,U) +M4

and suppose that

(27) 4K2�L1 < 1 and 2K� < �x = min

{
dλ ,

du
‖H‖L(W ,U)

}

hold, which will be used to establish (H3) and (6). If, in addition to the definition of �x in (27),
we also define �α = du/‖v∗‖U , then there exist pairs of constants (δα, δx) which satisfy

(28) 0 < δα ≤ �α , 0 < δx ≤ �x , and δα ‖v∗‖U + δx ‖H‖L(W ,U) ≤ du ,

and satisfy the two conditions

(29) 2KL1δx + 2K
(
M1 ‖H‖L(W ,U) +M3

)
‖v∗‖U δα ≤ 1

and

(30) 2K�+ 2Kσδα + 2KM1 ‖v∗‖2U δ2α ≤ δx ,

which are needed to satisfy (7), and for each such pair the following holds. For every α ∈ R

with |α| ≤ δα there exist uniquely determined elements λ(α) ∈ R and w(α) ∈ W with

|λ(α)− λ∗| ≤ δx and ‖w(α)‖W ≤ δx ,

for which the nonlinear equation F(λ(α), u∗ + αv∗ +Hw(α)) = 0 is satisfied. In other words,
all solutions of the nonlinear problem F(λ, u) = 0 in the vertical set

{(λ, u) ∈ R× U : |λ− λ∗| ≤ δx and u = u∗ + αv∗ +Hw with |α| ≤ δα , ‖w‖W ≤ δx}

lie on the branch α �→ (λ(α), u(α)), where u(α) = u∗ + αv∗ + Hw(α). In addition, if the
mapping F : R×U → V is k-times continuously Fréchet differentiable, then so is the solution
function α �→ (λ(α), u(α)). The statement of the theorem is illustrated in the right image of
Figure 3.

At first glance, the formulation of Theorem 7 might seem overwhelming. However, its
underlying assumptions are straightforward to verify. All we need is a parameter-dependent
mapping F which satisfies (A), and satisfy bounds of the form

‖F(λ∗, u∗)‖V ≤ � and ‖DuF(λ∗, u∗)[v∗]‖V ≤ σ ,

where usually we will have ‖v∗‖U ≈ 1. In these bounds, our goal has to be the smallness of
both � and σ, as it will ensure that we are close to a candidate for a saddle-node bifurcation.
Beyond these two estimates, one also needs the invertibility condition (26), which leads to the
inverse bound K. Based on this information, the theorem usually applies as long as

4K2�
(
M1 ‖H‖2L(W ,U) + (M2 +M3) ‖H‖L(W ,U) +M4

)
< 1 ,
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which is similar to Theorem 5. In other words, the basic assumptions will always guarantee
a small solution branch. In practice, of course, we would like this branch to be as large as
possible, and for this we would like to choose the constant δα as large as possible. The crucial
constraint in this context is (30), and it contains the small constant σ in the linear δα-term.
As discussed at the end of section 2.2, larger branch pieces are obtained for smaller values
of σ, and this in turn can be achieved by producing accurate approximations of the kernel
function at the saddle-node bifurcation point. We now proceed with the proof of the theorem.

Proof. As in the regular branch segment validation theorem, we reduce the current result
to the constructive implicit function theorem. Define P = R and Y = V, and consider the
product Banach space X = R × W with norm ‖(λ,w)‖X = max{|λ| , ‖w‖W}. In addition,
define the nonlinear operator G : P × X → Y via

G(α, x) = F (λ, u∗ + αv∗ +Hw) , where x = (λ,w) ∈ X = R×W .

Our goal is to establish the existence of a branch of solutions of the problem G(α, x) = 0 close
to the point (α∗, x∗) = (0, (λ∗, 0)). Since G(α∗, x∗) = F(λ∗, u∗), hypothesis (H1) follows from
the first estimate in (24). Moreover, one can easily verify that G is Fréchet differentiable at
every pair (α, x), where x = (λ,w) ∈ R×W, and we have both

DαG(α, x) = DuF (λ, u∗ + αv∗ +Hw) [v∗]

and

DxG(α, x)
[(
λ̄, w̄

)]
= DλF (λ, u∗ + αv∗ +Hw) λ̄+DuF (λ, u∗ + αv∗ +Hw) [Hw̄]

for all elements x̄ = (λ̄, w̄) ∈ X = R ×W. At the specific pair (α∗, x∗) defined above, these
formulas simplify to

DαG(α∗, x∗) = DuF (λ∗, u∗) [v∗]

and
DxG(α∗, x∗)

[(
λ̄, w̄

)]
= DλF (λ∗, u∗) λ̄+DuF (λ∗, u∗) [Hw̄] ,

and hypothesis (H2) follows readily from (26). We now verify hypotheses (H3) and (H4). For
this, assume that �α and �x are defined as in the formulation of the theorem, and consider a
pair (δα, δx) satisfying (28). Furthermore, let α ∈ R, λ ∈ R, and w ∈ W be arbitrary with

|α| ≤ δα , |λ− λ∗| ≤ δx , and ‖w‖W ≤ δx .

These last estimates imply both |λ− λ∗| ≤ dλ and ‖αv∗ +Hw‖U ≤ du, and therefore we can
apply assumption (A) to obtain the estimates

‖DuF (λ, u∗ + αv∗ +Hw)H−DuF (λ∗, u∗)H‖L(W ,V)

≤ M1 ‖v∗‖U ‖H‖L(W ,U) |α| +M1 ‖H‖2L(W ,U) ‖w‖W +M2 ‖H‖L(W ,U) |λ− λ∗| ,

‖DλF (λ, u∗ + αv∗ +Hw)−DλF (λ∗, u∗)‖V
≤ M3 ‖v∗‖U |α| +M3 ‖H‖L(W ,U) ‖w‖W +M4 |λ− λ∗| .
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Assume now that (λ̄, w̄) ∈ R × W is given with |λ̄| ≤ 1 and ‖w̄‖W ≤ 1. Then the last two
estimates imply

∥∥(DxG(α, x) −DxG (α∗, x∗))
[(
λ̄, w̄

)]∥∥
V

≤ ‖DuF (λ, u∗ + αv∗ +Hw)H−DuF (λ∗, u∗)H‖L(W ,V) ‖w̄‖W

+ ‖DλF (λ, u∗ + αv∗ +Hw)−DλF (λ∗, u∗)‖V
∣∣λ̄∣∣

≤ M1 ‖v∗‖U ‖H‖L(W ,U) |α|+M1 ‖H‖2L(W ,U) ‖w‖W +M2 ‖H‖L(W ,U) |λ− λ∗|

+ M3 ‖v∗‖U |α|+M3 ‖H‖L(W ,U) ‖w‖W +M4 |λ− λ∗|

≤ |α|
(
M1 ‖H‖L(W ,U) +M3

)
‖v∗‖U

+ ‖x− x∗‖X
(
M1 ‖H‖2L(W ,U) + (M2 +M3) ‖H‖L(W ,U) +M4

)
,

as well as

‖DαG(α, x∗)‖V = ‖DuF (λ∗, u∗ + αv∗) [v∗]‖V
≤ ‖DuF (λ∗, u∗) [v∗]‖V + ‖DuF (λ∗, u∗ + αv∗) [v∗]−DuF (λ∗, u∗) [v∗]‖V
≤ σ + ‖DuF (λ∗, u∗ + αv∗)−DuF (λ∗, u∗)‖L(U ,V) ‖v∗‖U

≤ σ + |α|M1 ‖v∗‖2U .

In other words, with the above definitions of �α and �x, and if we assume in addition that δα
and δx satisfy (28), both hypotheses (H3) and (H4) are satisfied with L1 as defined in the
formulation of the theorem, L2 = (M1‖H‖L(W ,U) + M3)‖v∗‖U , as well as with L3 = σ and

L4 = M1 ‖v∗‖2U . Now an application of Theorem 1 completes the proof if we take into account
Remark 2. Notice in particular that while the last constraint in (28) might make the set of
admissible pairs (δα, δx) smaller, it will still be nonempty.

To close this section we briefly comment on how the above theorem can be applied suc-
cessively to cover larger branch segments close to a saddle-node bifurcation point, and how
one can switch from applications of Theorem 7 to using Theorem 5.

Remark 8 (linking branch segments near saddle-node bifurcations). Just as with Theorem 5,
one can apply the saddle-node branch validation theorem successively to cover larger branch
pieces. While the basic procedure described in Remark 6 still applies, the specifics are a little
more involved due to the nontrivial coordinate change used in Theorem 7.

Similarly to Remark 6, suppose we have applied Theorem 7 at an approximative solu-
tion (λ∗

k, u
∗
k) ∈ R × U , using the kernel element approximation v∗k ∈ U . Then the theorem

provides validation constants δmin
x,k , δoptx,k , and δoptα,k, which cover the new parameter α and

unknown x = (λ,w) in the nonlinear problem

G(α, x) = F (λ, u∗k + αv∗k +Hw) = 0 .
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Assume we want to extend the solution branch in the direction of positive α. For this,
choose a step size 0 < δstepα,k < δoptα,k, and compute an improved numerical approximation for

the transformed problem G(δstepα,k , x) = 0 using Newton’s method starting at x = 0. If the

resulting approximation is denoted by x̄k = (λ̄k, w̄k), we can determine the updated point in
the λ-u-coordinate system as

(31) λ∗
k+1 = λ̄k and u∗k+1 ≈ u∗k + δstepα,k v∗k +Hw̄k .

We would like to point out that the second identity is in fact only an approximation, due to
the inevitability of roundoff errors in computing its right-hand side. Write this new solution
approximation in the form u∗k+1 = u∗k + αk+1v

∗
k +Hwk+1, and assume that both

(32)
∣∣∣αk+1 − δstepα,k

∣∣∣ ≤ δoptα,k − δstepα,k

and

(33) δmin
x,k+1 +

∥∥∥x̄k −
(
δstepα,k , 0

)∥∥∥
X
+ ‖wk+1 − w̄k‖W < δoptx,k

hold, where δmin
x,k+1 is the corresponding validation constant from the application of Theorem 7

to the new pair (λ∗
k+1, u

∗
k+1). Then a straightforward application of the triangle inequality

shows that the two validated branch segments connect. We would like to point out that on the
right-hand side of (32), one can usually choose δstepα,k = 0.9 δoptα,k , which should suffice to account
for the deviation in the α value generated by the evaluation of the rightmost expression in (31).
Moreover, the three terms on the left-hand side of (33) account for the error tolerance of the
next validation, the approximation error incurred by the Newton refinement, and the roundoff
error generated by the evaluation of the rightmost expression in (31), respectively.

Remark 9 (transitioning from saddle-node to regular branches). We close this section by
noting that a similar technique can be used to make sure that the validated branch segments
connect if one switches from successive applications of Theorem 7 to applying Theorem 5. For
this, assume that we are given an approximative solution (λ∗, u∗) ∈ R× U such that

• Theorem 7 can be successfully applied using the kernel element approximation v∗ ∈ U ,
leading to the validation constants δmin

x , δoptx , and δoptα ; and
• Theorem 5 can be successfully applied using the direction v∗ = 0, leading to the
validation constants δmin

u , δoptu , and δoptλ .
According to the first result, applied in the parameter-independent version, there exists a
solution (ᾱ, x̄) of G(α, x) = 0 with ᾱ = 0 and ‖x̄‖X ≤ δmin

x , where x̄ = (λ̄, w̄). This implies
both ∣∣λ̄− λ∗∣∣ ≤ δmin

x and ‖w̄ − 0‖W ≤ δmin
x .

Then one can easily see that this solution lies on the branch segment established by Theorem 5,
as long as the inequalities

δmin
x ≤ δoptλ and ‖H‖L(W ,U) δ

min
x ≤ δoptu

are satisfied. This can easily be checked using interval arithmetic, and it shows that the two
validated branches are indeed connected.
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3. Application to the lattice Allen–Cahn equation. One of the fundamental models for
the motion of interfaces in two-phase materials is the second-order partial differential equation

(34) ut = Δu+ λf(u)

due to Allen and Cahn [1]. While this model has been successful at explaining a variety
of phenomena, it cannot explain the pinning of fronts, i.e., fronts which get stuck and stop
moving as time increases. In order to remedy this shortcoming, a spatially discrete analogue
of the Allen–Cahn equation has been proposed. In its simplest form, this model is given by
the system of ordinary equations

(35) u̇k = uk+1 − 2uk + uk−1 + λf(uk) for all k = 1, . . . , n ,

where we set u0 = u1 and un+1 = un, and the nonlinearity is defined as

(36) f(u) =
(
1− u2

)
(u− μ) .

In our analysis, we will keep the parameter μ ∈ (−1, 1) fixed and consider only λ as a bi-
furcation parameter. While the more celebrated continuum Allen–Cahn model (34) has been
studied without ceasing since it was first presented in 1979 [1], the discrete version has a much
shorter, but also sparser, history, in part due to the intractability of many basic results due
to the discrete nature of the system. See [4, 7, 8, 9, 12, 14, 15, 16, 17, 20, 31]. (Note that
compared to the formulations in these papers, we have rescaled time, and our bifurcation
parameter λ > 0 is such that 1/

√
λ is the interaction length.) In these previous works, it

was shown that for u ∈ R
n, for sufficiently large λ, there are exactly 3n equilibria, known as

mosaic solutions, such that for each index k we have either uk ≈ 0 or uk ≈ −1 or uk ≈ +1.
Of these mosaic solutions, 2n equilibria are stable, exactly when for every index k one has
uk ≈ ±1. However, this does not explain the way in which the bifurcation diagram changes as
a function of λ, and much work has gone into trying to understand the structure of the bifur-
cation diagram for this equation and how it compares to the limiting case of the continuum
Allen–Cahn partial differential equation. In order to make rigorous headway, these papers are
forced to consider a simplified version of the nonlinearity f . In contrast, we are able to study
the bifurcation structure numerically and rigorously verify our results, all without having to
simplify the nonlinear term f .

In this section, we demonstrate how the abstract results of section 2 can be used to obtain
validation of paths of mosaic solutions as the parameter λ is varied. These results are pre-
sented in sections 3.1 through 3.3. This validation is accomplished by applying Theorems 5
and 7 to the discrete Allen–Cahn equation, which in return leads to the numerical validation
of branches of mosaic solutions as the parameter λ is varied. We would like to point out
that this application mainly rests on establishing rigorous bounds on the Jacobian matrix of
the right-hand side of (35), which—as well as the remaining computations—can be obtained
using interval arithmetic. After the branches have been established, we address two more
topics. On the one hand, we demonstrate in section 3.5 how the constructive implicit function
theorem can be used to rigorously verify the actual saddle-node bifurcation points on the
above-mentioned solution curves, since their existence is only implied indirectly in section 3.3.
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On the other hand, section 3.6 is devoted to rigorously establishing the index of equilibrium
solutions together with their unstable eigendirections. This is accomplished using a combina-
tion of eigenvalue exclusion and eigenfunction-eigenvalue validation. All of these results are
established using the constructive implicit function theorem. The discussions in the present
section provide an example of how the abstract results of section 2 can easily be applied in
the context of high-dimensional ordinary differential equations, and lead to rigorous results
which are beyond the scope of classical methods.

3.1. Classification of mosaic solutions. Consider the discrete Allen–Cahn equation (35)
introduced above. For sufficiently large values of the parameter λ there are 3n mosaic solutions,
2n of which are stable. Each stable mosaic solution lies on a smooth curve of mosaic solutions
in the product R× R

n of the parameter and the phase space. Whereas all of these solutions
exist for large λ, for small positive λ values, only very few mosaic solutions remain. Indeed,
most solution branches undergo a unique saddle-node bifurcation. To specify their notation,
let u(λ) represent a stable mosaic solution branch for sufficiently large values of λ. Let the

bifurcation value λ0(u) > 0

be the parameter value at which this branch first undergoes a bifurcation. If the branch con-
tains a unique saddle-node bifurcation, it contains two equilibrium solutions for λ > λ0(u).
One of these is the stable mosaic solution u(λ), while the other is an unstable mosaic solu-
tion w = w(λ). The fact that w = (w1, . . . , wn) is an unstable mosaic solution implies that for
large values of λ, we have wk ≈ ±1 or wk ≈ 0, and the fact that w is unstable implies wk ≈ 0
for at least one value of the subscript k.

The goal of this paper is rigorous computer-assisted validation, but no validation is possi-
ble without a good initial numerical approximation. Therefore, in this section we describe how
our numerical approximations were obtained, and we then give a detailed account of their sub-
sequent validation. In the course of this, we will see that sometimes numerical computations
can prove to be somewhat misleading.

As mentioned previously, for sufficiently large λ and n = 10, any stable mosaic solution
satisfies uk ≈ ±1 for each index k and can therefore be uniquely described using a binary
representation of an integer between 0 and 1023. In particular, for fixed 0 ≤ N ≤ 1023, we
use the binary representation N =

∑9
k=0(ak 2k) with ak ∈ {0, 1}. Let g = (g1, . . . , g10) ∈ R

10,
where

(37) gk =

{
+1 if ak−1 = 1
−1 if ak−1 = 0

for k = 1, . . . , 10 .

Since the solutions are completely symmetric, we need only consider the solutions with N
ranging from 0 to 511—the other half of the solutions are equivalent. More precisely, the
behavior of the solution associated withN is identical to the behavior of the solution associated
with 1023−N . In fact, it is also unnecessary to consider the case N = 0, since it corresponds
to an identically constant solution, which is an equilibrium for all values of λ. Thus, we restrict
our attention to the integers 1 ≤ N ≤ 511.

For λ = 300, we use Newton’s method with initial guess g. Without exception, this
method yielded a numerical approximation for the stable mosaic solution u corresponding
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Table 1
Solution validation. For each solution of the discrete Allen–Cahn equation with dimension n = 10, we

specify the solution type and whether the branch and bifurcation point are validated. We find that all nonvalidated
solutions have either even or odd symmetry. Most nonvalidated branches are validated in one direction but not
in the other. We observe numerically that this is due to a secondary pitchfork bifurcation along the branch in
one direction.

Type Solution number N Total Valid

Saddle-node All others 422 Yes
Number index jump of 2 11, 12, 20, 23, 24, 36, 40, 43, 46, 68, 80, 81, 84, 92, 94,

95, 96, 97, 105, 116, 136, 144, 160, 161, 163, 165, 168,
174, 175, 184, 185, 188, 190, 191, 192, 213, 214, 232, 235,
244, 339, 346, 362, 363, 395, 406, 422, 423, 428, 464, 468,
471, 487, 488, 491, 500

56 Yes

Number index jump of 4 361, 421 2 Yes
Even symmetry 48, 120, 180, 204, 252, 258, 378, 390, 462, 510 10 No
Odd symmetry 47, 87, 103, 155, 171, 211, 227, 285, 301, 341, 357, 409,

425, 465, 481
15 No

No saddle-node Odd symbol: 31; Even symbol: 72, 132, 306, 330, 438 6 No

to N . Starting with this numerical approximation, we employ numerical continuation using
Auto [11] to locate a bifurcation point for each of the equilibria. In all but six cases, Auto

locates a numerical saddle-node bifurcation point. In the remaining six cases, the branch only
contained a numerical pitchfork bifurcation, and since the method in this paper is designed
for validation of saddle-node bifurcations, we do not attempt validation. With all other cases,
we then apply our validation method to get a rigorously validated bifurcation point, branch,
and index for the corresponding approximate solution. We show later in the paper that if
we can validate the bifurcation branch up to λ = 114, then the solution will persist without
bifurcations for all λ > 114 as well. Therefore, by rigorously validating our solution up to
the parameter value λ = 114, we are able to validate the entire branch of solutions for all λ
values. This validation is successful for the entire branch in 480 out of the 511 cases.

Table 1 displays a full list of which N values correspond to stable mosaic solutions for
which we have validated the full branch of solutions. The solutions that do not validate are
precisely the solutions with either even or odd symmetry. These symmetric solutions include
the six solutions which do not have any numerical saddle-node bifurcation point. In the
other 25 symmetric cases, there is a saddle-node bifurcation point, but there is also a secondary
bifurcation, which from the numerics appears to be a pitchfork bifurcation. In most cases the
solution branch validates in one direction, where there is no secondary bifurcation, but it does
not validate in the other direction. In addition to validation information, in Table 1 we list 58
solutions whose branches could be validated, but for which Auto computations indicated
even index jumps along the branch. More precisely, for 56 of these solutions the numerical
Auto branch computation included a jump in index from 0 to 2, and for two solutions the
computed branch includes a jump from 0 to 4. In these 58 cases, the Auto computation
proceeds without any bifurcation being detected. In the next paragraph, we describe how our
validation allows us to uncover more details of these 58 index jumps.

For the most part, obtaining the above results is merely a matter of taking the numerical
approximations given by Auto and feeding them into the validation code, which will be
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Figure 4. Validated local bifurcation structure for N = 40. The top left iamge shows the result of an Auto

continuation of the branch corresponding to the N = 40 mosaic solution. In contrast, the validated branch,
shown in the top right image, shows significantly different behavior. The two images in the bottom row give the
complete validated picture. The original branch does indeed perform a sharp right turn, since nearby there is a
second saddle-node bifurcation. The lower right image is a blowup of the lower left one.

described in more detail in the following sections. However, in a number of cases the results
are surprising at first sight. Consider for example the mosaic solution encoded by N = 40.
The original Auto simulation produces the branch shown in the top left image of Figure 4.
The computation found one saddle-node bifurcation point and gives no other indications for
bifurcations. We then used our validation code to establish the existence of the saddle-node
point and followed the two half-branches out to λ = 114 using computer-assisted validation.
Very much to our surprise, this leads to the image depicted in the upper right of Figure 4. As
it turns out, the complete bifurcation diagram is as shown in the two images in the bottom
row of the figure. Some distance away from the primary saddle-node bifurcation point, there
is a second, disconnected branch generated by a distinct second saddle-node point. At this
new bifurcation point, the branches are close enough so that Auto jumps directly from one to
the other, without any indication of the associated index change from 0 to 2. Similar behavior
can be observed in the case N = 144, which is shown in Figure 5. In this case, Auto does find
two saddle-node points close to each other, but jumps again from one branch to the other.



1714 VALIDATED SADDLE-NODE BIFURCATIONS

7.5 8 8.5 9 9.5
λ

2.74

2.75

2.76

2.77

2.78

2.79

2.8

2.81

2.82

||u
|| 2

7.5 8 8.5 9 9.5
λ

2.74

2.75

2.76

2.77

2.78

2.79

2.8

2.81

2.82

||u
|| 2

7.5 8 8.5 9 9.5
λ

2.74

2.75

2.76

2.77

2.78

2.79

2.8

2.81

2.82

||u
|| 2

7.428 7.429 7.43 7.431 7.432
λ

2.7678

2.768

2.7682

2.7684

2.7686

2.7688

2.769

Figure 5. Validated local bifurcation structure for N = 144. The top left image shows the result of an Auto

continuation of the branch corresponding to the N = 144 mosaic solution. As was seen in the previous figure,
the validated branch, shown in the top right image, shows significantly different behavior. The two images in the
bottom row give the complete validated picture, which consists of two separate saddle-node bifurcation points.

While the correct behavior can probably be computed by changing the Auto parameters, this
is to be expected, since Auto is designed to use the smoothness of the curve in order to follow
the curve, meaning that close to the bifurcation, this problem will inevitably occur, whereas
the actual branches are disjoint and smooth on a small level; from afar the first branch almost
appears to have a point of nondifferentiability. On the other hand, our numerical validation
code computes the appropriate step size along the branch, and therefore automatically takes
care of the branch following in these near-bifurcation cases, either by faithfully following the
branch or, if too close to the bifurcation, by returning a flag to the user that the branch cannot
be validated. While we have given only two examples in the figures and our description, this
same explanation is true of all 58 branches with the index jump. We also observe that without
exception, in the cases where Auto has an index jump of two or four, the branch that it jumps
on has an unstable solution w̃ with the property that w̃k ≈ 0 for two or four , respectively,
different values of k.
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Figure 6. The bifurcation parameter for dimension n = 10 for each of the 960 solutions with a saddle-node
bifurcation, plotted with respect to the solution number N . The color bar indicates the size of the smallest grain.
The black star at N = 21 indicates the solution branch shown in Figure 9.

3.2. Robustness and bifurcation of equilibria. In this section, we present a result for
the discrete Allen–Cahn equation for the specific dimension n = 10, which is similar in spirit
to [15]. In particular, we characterize the branches of all the stable mosaic solutions which
have a unique saddle-node bifurcation and can be validated by the methods discussed in the
previous section and appearing in Table 1.

Recall from our description in the previous section that the stable mosaic solutions are of
the form u = (u1, . . . , u10) with uk ≈ ±1, giving us a convenient way of indexing these solutions
through the one-to-one and onto correspondence between the stable mosaic solutions and the
10-digit binary numbers. Figure 6 shows the bifurcation parameter λ0(u) for each of the
stable mosaic solutions as a function of the integer N associated with the mosaic solution u.
Figure 7 shows the actual solutions along a branch for two different branches, associated
with different binary integers N . These values do not appear random but seem to follow a
pattern. For example, there are several clear gaps in the λ0 values. In fact, there appear to
be four distinct types of behavior. A large-λ0 set with 6 < λ0 < 8, a medium-λ0 set with
3 < λ0 < 3.5, a small-λ0 set with 1.0 < λ < 2.5, and four solutions in an extremely small-λ0

set with λ0 ≈ 0.778. We are able to relate the geometry of these stable mosaic solutions to
the location of the corresponding bifurcation point λ0(u) for the rigorously validated solutions
listed in Table 1.

Before presenting our results, we need to introduce some notation. Consider two stable
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Figure 7. Left: For dimension n = 10, the stable mosaic solution u corresponding to N = 7 computed
for λ = 300 is shown in blue. The solution consists of values close to −1 and +1 encoded by the binary
representation of 7 = 1 · 20 + 1 · 21 + 1 · 22, and the minimum grain size is 3 and the number of grains is 2.
The solution at bifurcation value λ0 is shown in red. The unstable solution w on the same branch at λ = 300
is shown in yellow, with wk ≈ ±1 for k �= 3, and w3 ≈ 0. Middle: Stable, bifurcation, and unstable solutions
for the branch which corresponds to N = 4 = 1 · 22 with the same color scheme as in the left image. The
stable solution u has minimum grain size of 1, and the number of grains is 3. The unstable solution w has
the almost zero w3 ≈ 0. Right: Solutions for N = 95. The stable solution has again a minimum grain size
of 1. The unstable solution w̃ that Auto jumps on has two almost zero entries, which are adjacent to each
other. Adjacent double almost zeros with w̃k∗−1 and w̃k∗+2 of opposite sign occur 24 times, all with very close
bifurcation values 6.1 < λ0 < 6.2. Such a case, but with w̃k∗−1 and w̃k∗+2 of the same sign, occurs six times,
all with very close bifurcation values near 3.4.

mosaic solutions u and v. We say that u is more robust than v if λ0(u) < λ0(v). Define a
grain of a solution u to be a largest set of consecutive sites k such that uk always has the
same sign. The grain size is the number of sites within the grain. Grant [15] shows that in the
case of a particular piecewise linear set-valued nonlinearity, the stable equilibria with smaller
sized grains are less robust than equilibria possessing only larger sized grains. Similarly, we
consider the structure of robust and nonrobust equilibria in the case of a smooth nonlinearity.
We get the following result.

Theorem 10 (grain size and robustness). Let u denote a stable mosaic solution of the discrete
Allen–Cahn equation (35) with μ = 0 and n = 10, and let λ0(u) denote the parameter value of
the associated saddle-node bifurcation. If λ0 < 3, then the size of the smallest grain is greater
than 1 and the number of grains is equal to 2 or 3. If λ0 > 3.5, then the size of the smallest
grain is equal to 1 and the number of grains is at least 3.

We now proceed to make some further observations that are based on a combination
of our rigorous validation and the numerics done in Auto. To make this clear, we label
these results observations rather than theorems. At this point, we have only developed our
validation methods for saddle-node points. In future work, we plan to also develop validation
for pitchfork methods, at which point it will be possible to reconsider these statements using
validation techniques.

Observation 11 (further robustness and grain size). Assume the situation of the above the-
orem. For all but four solutions, λ0 < 2.5 if and only if the smallest grain size is at least 2
and the number of grains is at most 3. Furthermore, each of the four exceptional solutions
has an index jump of 2 in the Auto simulation, as denoted in Table 1, and the corresponding
unstable solution has adjacent almost zeros. We believe that the fact that the branch is close
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to another solution branch alters the behavior of solutions. For all four of these exceptional
solutions, the bifurcation point λ0 is almost identical, with a value between 3.3 and 3.5.

We pointed out in the previous section that exactly the 58 validated solutions with nu-
merical index jumps of 2 or 4 had the property that for the Auto-computed unstable mosaic
solution w̃ one has w̃k ≈ 0 for two or four values of k. In addition, for 30 of these 58 cases,
the mosaic solution w̃ had two adjacent almost zeros occur at indices k∗ and k∗ + 1. For ex-
ample, all four of the exceptional branches in the previous observation have w̃ with adjacent
almost zeros. We now make an observation that applies to the 450 validated branches without
adjacent almost zeros.

Let w be the unstable mosaic solution in the same branch as stable mosaic solution u. We
know that there exists k∗ such that wk∗ ≈ 0. We say that this zero is contained in a transition
layer if wk∗−1 ≈ ±1 and wk∗+1 ≈ ±1 are of opposite sign, or if either k∗ = 1 or k∗ = 10.

Observation 12 (robustness and transition layers). Let u denote a stable mosaic solution
of the discrete Allen–Cahn equation (35) with μ = 0 and n = 10, and let λ0(u) denote
the parameter value of the associated saddle-node bifurcation. Furthermore, let w denote an
unstable solution on the same branch for large values of λ. Then a nonadjacent almost zero
of w is contained in a transition layer if and only if λ0 < 3.5.

We now proceed with an observation about the 30 cases with adjacent almost zeros. It is
in a sense also about transition layers, but the conclusions are quite different in these cases.
In 6 of the 30 cases, the components w̃k∗−1 and w̃k∗+2 close to ±1 are of the same sign, and
in 24 cases they have opposite signs; see, for example, the branch 95 solution depicted in
Figure 7.

Observation 13 (adjacent almost zeros). Assume the situation of the last two observations
and the theorem. For the 30 branches with an associated w̃ with adjacent almost zeros, there
are two possible sets of behavior. In the first case, a branch of solutions has bifurcation value
6.1 < λ0 < 6.2, and the unstable solution w has two adjacent almost zeros w̃k∗ ≈ 0 and
w̃k∗+1 ≈ 0, and w̃k∗−1 and w̃k∗+2 are close to ±1 and have opposite signs. Among all 480
validated solutions, these 24 are the only solutions with λ0 in this parameter range. In the
second case, 3.3 < λ0 < 3.5, where w̃k∗ , w̃k∗+1 ≈ 0, and w̃k∗−1 and w̃k∗+2 have the same sign.
In this second case, the bifurcation points are not isolated. That is, there are other validated
solutions out of the full 480 with a bifurcation point in this same parameter range.

The above results apply to just one specific example which demonstrates that for a fixed
smooth nonlinearity and fixed dimension n, computer-assisted proofs can be used to make
rigorous statements about the relation between grain sizes and bifurcations in lattice dynam-
ical systems. We would like to point out, however, that this result was selected as a proof of
concept. Nevertheless, the methods described in the following sections are extremely flexible.
One can easily exchange the nonlinearity f , and choose considerably larger dimensions n. For
example, we validated branches of solutions for two mosaic solutions in dimension n = 100
with nonlinearity f(u) = sin(πu)/π. This merely required a small change of the validation
code—one has to exchange the function definition and adapt certain nonlinearity estimates
for f ; see (39). After these changes, validation succeeded as easily as in the previous situation.
In Figure 8, we show two solutions at different locations along branches of the new model,
along with the validated saddle-node points and branches.
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Figure 8. The top two images show mosaic solutions for the 100-dimensional discrete Allen–Cahn equation.
In blue are the stable mosaic solutions at λ = 200. In red are solutions on the same branch at the bifurcation
point, and in yellow are the resulting unstable mosaic solutions on the same branch when the solutions once
again reach the parameter value λ = 200. Note that the blue stable solutions are barely visible since they only
vary at a few places from the other two solutions along the branch. The bottom two images show the validated
branches of the corresponding solutions shown in the top row.

3.3. Branch validation for mosaic solutions. Now that we have established our discrete
Allen–Cahn validation results in the previous two sections, we consider the details of how
we validate branches for the discrete Allen–Cahn model (35) with nonlinearity f(u) = (1 −
u2)(u−μ) given in (36), where μ ∈ (−1, 1) is a fixed value and λ is our bifurcation parameter.
For the purposes of this section, it will be convenient to rewrite the equation satisfied by
equilibrium solutions in the form

(38) F(λ, u) = Au+ λf(u) = 0 with λ ∈ R and u ∈ R
n ,
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where from the form of the discrete Laplacian, the matrix A ∈ R
n×n is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

As before, we use the notation u = (u1, . . . , un)
t for the components of the vector u, and we

define f(u) = (f(u1), . . . , f(un))
t componentwise. Finally, we use the abbreviation diag(u)

for the diagonal matrix in R
n×n with diagonal entries u1, . . . , un. Throughout this section, we

use the maximum norm in R
n to measure the length of vectors, as well as the induced matrix

norm; i.e., for all v ∈ R
n and B ∈ R

n×n we denote

‖v‖ = max
i=1,...,n

|vi| and ‖B‖ = max
i=1,...,n

n∑
j=1

|Bi,j| ,

dropping the usual subscript ∞ for the sake of brevity.
In order to apply Theorems 5 and 7 from section 2 we need only establish the validity of

assumption (A). This is the subject of the following lemma.

Lemma 14. Let μ ∈ (−1, 1) be a fixed value, consider the nonlinearity f(u) = (1−u2)(u−μ)
from (36), let n ∈ N, and define the nonlinear operator F : R × R

n → R
n as in (38). In

addition, let λ∗ ∈ R and u∗ ∈ R
n be arbitrary, but fixed, and let du > 0 be a given constant.

Then for all λ ∈ R and u ∈ R
n with ‖u− u∗‖ ≤ du, we have

‖DuF(λ, u) −DuF(λ∗, u∗)‖ ≤ M1 ‖u− u∗‖+M2 |λ− λ∗| ,

‖DλF(λ, u) −DλF(λ∗, u∗)‖ ≤ M3 ‖u− u∗‖+M4 |λ− λ∗| ,

where

(39) M1 = |λ∗| max
|ξ|≤‖u∗‖+du

∣∣f ′′(ξ)
∣∣ , M2 = M3 = max

|ξ|≤‖u∗‖+du

∣∣f ′(ξ)
∣∣ , and M4 = 0 .

In other words, the nonlinear mapping F satisfies (A) from section 2.2 with du as above
and dλ = ∞. Recall that in all of the above estimates, we use the maximum norm for vectors
as well as the induced matrix norm.

Note that with this lemma, we are in a position to apply the branch validation results from
the previous section to the specific application of the discrete Allen–Cahn equation. However,
we have stated the lemma such that it is by no means limited to this particular case. Indeed,
the estimates in Lemma 14 hold for arbitrary matrices A ∈ R

n×n and nonlinearities f : R → R.
For our specific choice of f(u) = (1 − u2)(u − μ) = u − u3 + μu2 − μ one can easily see that
in the notation of the above proof, we have

(40) f (1)
max ≤ 1 + 2|μ| (‖u∗‖+ du) + 3 (‖u∗‖+ du)

2 and f (2)
max ≤ 2|μ|+ 6 (‖u∗‖+ du) ,
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since f ′(u) = 1−3u2+2μu and f ′′(u) = 2μ−6u. Similarly, for our second choice of nonlinearity

f(u) = sin(πu)/π + μ, we get f
(1)
max = 1 and f

(2)
max = π. We now proceed with the proof of the

lemma.

Proof. For p ∈ N we use the abbreviations

(41) f (p)
max = max

{∣∣∣f (p)(ξ)
∣∣∣ : |ξ| ≤ ‖u∗‖+ du

}
.

Let u ∈ R
n be arbitrary with ‖u− u∗‖ ≤ du. Then |f ′(uk)| ≤ f

(1)
max for each k = 1, . . . , n, and

the mean value theorem further implies for some ξk between uk and u∗k the estimate

∣∣f ′(uk)− f ′(u∗k)
∣∣ = ∣∣f ′′(ξk)

∣∣ |uk − u∗k| ≤ f (2)
max ‖u− u∗‖ .

One can easily see that the mapping F defined in (38) is smooth, and that its Jacobian matrix
with respect to u is given by DuF(λ, u) = A+ λdiag(f ′(u)). Now the above estimates yield

‖DuF(λ, u) −DuF(λ∗, u∗)‖ ≤
∥∥λdiag(f ′(u))− λ∗ diag(f ′(u∗))

∥∥
≤ |λ− λ∗|

∥∥diag(f ′(u))
∥∥ + |λ∗|

∥∥diag(f ′(u)− f ′(u∗))
∥∥

≤ |λ− λ∗| f (1)
max + ‖u− u∗‖ |λ∗| f (2)

max .

We now turn our attention towards the derivative DλF(λ, u) = f(u). Using the mean value

theorem one more time, one obtains |f(uk)− f(u∗k)| ≤ f
(1)
max|uk − u∗k|, and this finally implies

‖DλF(λ, u) −DλF(λ∗, u∗)‖ = ‖f(u)− f(u∗)‖ ≤ f (1)
max ‖u− u∗‖ .

This completes the proof of the lemma.

Using the above lemma, both the regular branch segment validation theorem and the
saddle-node branch validation theorem can easily be applied, and this will be described in the
remainder of this section.

Regular branch validation. Applying Theorem 5 to the discrete Allen–Cahn equation is
now straightforward. For this, assume we have found a numerical approximation (λ∗, u∗) to
a solution of F(λ, u) = 0. The constants M1, . . . ,M4 are known from (39) and (40), and we
need only establish the estimates in (17) and (18). This will be done in a computational way
by taking into account all occurring roundoff errors through the use of interval arithmetic [22].
For our applications, we use the MATLAB toolbox INTLAB [28] in the following way:

• In order to satisfy the left side of (17), using the numerical approximation (λ∗, u∗) one
can use interval arithmetic to find an enclosing interval for the value of ‖F(λ∗, u∗)‖.
If we denote the right endpoint of this interval by �, we have

‖F(λ∗, u∗)‖ ≤ � .

Usually if one starts with a good enough solution approximation, the constant � will
be only slightly larger than machine precision.
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• Next, for (18) one has to decide on a tangent direction v∗ ∈ R
n for the branch con-

tinuation. While in principle one could use v∗ = 0, significantly larger branch pieces
can be validated if we let v∗ denote a numerical approximation of the solution v of
the tridiagonal linear system DuF(λ∗, u∗)[v] = −DλF(λ∗, u∗), which for the discrete
Allen–Cahn equation gives Av+λ∗ diag(f ′(u∗))v = −f(u∗). Proceeding as in the first
point, one can then compute a constant σ such that

‖DλF(λ∗, u∗) +DuF(λ∗, u∗)[v∗]‖ ≤ σ ,

and also the constant σ will usually be close to machine precision.
• Finally, to satisfy the right side of (17), we need to determine a rigorous upper bound

on the induced∞-norm of the inverse of the matrix DuF(λ∗, u∗) = A+λ∗ diag(f ′(u∗)).
If we pass to interval enclosures for both λ∗ and u∗, INTLAB can be used to compute
an interval matrix which contains the true linearization DuF(λ∗, u∗). In other words,
if we let Ξ denote the set of all matrices whose entries are contained in the respective
interval entries of this interval matrix, then the inclusion DuF(λ∗, u∗) ∈ Ξ holds.
We now proceed as in [33] to establish the invertibility of all matrices in Ξ, and to
determine a common upper bound K on the ∞-norms of the inverses of all of these
matrices. Following [29, 30], let B ∈ R

n×n be the numerically computed inverse of an
arbitrary matrix in Ξ, for example, of the linearization DuF(λ∗, u∗). Then interval
computations can be used to find rigorous bounds 0 < �1 < 1 and �2 > 0 with

‖I −BC‖ ≤ �1 for all C ∈ Ξ as well as ‖B‖ ≤ �2 ,

and Lemma 4 implies that every matrix in Ξ is invertible with

∥∥C−1
∥∥ ≤ �2

1− �1
for all C ∈ Ξ .

If we let K be the right endpoint of the interval enclosure of �2/(1 − �1), then we
finally have ∥∥DuF(λ∗, u∗)−1

∥∥ ≤ K .

This time, the constant K will not necessarily be small. In fact, its size determines
whether or not validation is possible.

For each of the results in sections 3.1 and 3.2, the above three steps were performed iteratively
to cover the large portions of solution branches away from the saddle-node bifurcation points.

Saddle-node branch validation. In order to describe the solution branch close to the saddle-
node bifurcation point, we need to apply Theorem 7. While in principle this is not more
complicated than the procedure above, a few modifications are necessary. These are outlined
in the following. Our starting point now is a numerical approximation (λ∗, u∗) to a saddle-node
bifurcation point for F(λ, u) = 0, and we still can use the constants M1, . . . ,M4 from (39)
and (40). As for the remaining assumptions of Theorem 7, we proceed as follows:

• As in the first step of the regular branch validation, in order to ensure the left side of
(24), we use the numerical approximation (λ∗, u∗) and interval arithmetic to rigorously
compute a small constant � > 0 with ‖F(λ∗, u∗)‖ ≤ �.
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• For the right side of (24) in the application of Theorem 7, the vector v∗ now has to be an
approximation to the kernel function of the linearization at the saddle-node bifurcation
point. Note that usually the matrix DuF(λ∗, u∗) will be invertible, since (λ∗, u∗) is
only an approximation. Therefore, we choose v∗ as a numerical approximation to
an eigenvector of DuF(λ∗, u∗) which corresponds to the eigenvalue closest to zero.
By normalizing v∗, and then using interval arithmetic to find an enclosure for its
maximum norm, we obtain a rigorous bound for ‖v∗‖, which is only slightly larger
than 1. Furthermore, proceeding as before one can compute a constant σ such that
‖DuF(λ∗, u∗)[v∗]‖ ≤ σ, and the constant σ will be close to machine precision.

• To verify (25), we need to choose the operator H. In our application, we useW = R
n−1

and construct the matrix H ∈ R
n×(n−1) as follows. Let k ∈ {1, . . . , n} denote the index

for which we have

|v∗k| = ‖v∗‖ = max
�=1,...,n

|v∗� | > 0 ,

and let H denote the matrix which is obtained from the identity matrix in R
n×n by

removing the kth column. Then the range of H is just the orthogonal complement
of the kth standard unit vector in R

n, and due to v∗k �= 0 this immediately implies
that R(H) is closed and provides the necessary identity R

n = span[v∗] ⊕ R(H). Fur-
thermore, since all of the columns of H are different standard unit vectors in R

n, the
∞-norm of H is exactly 1, and the matrix H has trivial kernel.

• In order to verify the inequality in (26), we first determine a constant K such that for
all λ̄ ∈ R and w̄ ∈ W one has

K
∥∥( DλF(λ∗, u∗) DuF(λ∗, u∗)H

)
(λ̄, w̄)t

∥∥ ≥
∥∥(λ̄, w̄)t∥∥

or, equivalently,

∥∥∥( DλF(λ∗, u∗) DuF(λ∗, u∗)H
)−1

∥∥∥ ≤ K .

In other words, we bound the induced ∞-norm of the inverse of a matrix whose first
column is given by the vector DλF(λ∗, u∗) = f(u∗), and whose remaining columns are
determined by the matrix product DuF(λ∗, u∗)H = (A+ λ∗ diag(f ′(u∗)))H. This can
be accomplished as above using Lemma 4, and it establishes (26).

Theorem 7 can be applied iteratively, and in this way one can rigorously verify the remaining
part of the equilibrium branch close to the saddle-node bifurcation point.

We now demonstrate the applicability of the above approach in a specific example.
Consider the discrete Allen–Cahn equation (38) with μ = 0 and n = 10. Then regular nu-
merical path-following computations using Auto [11] indicate the existence of a saddle-node
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Figure 9. Rigorously validated branch of equilibrium solutions for the discrete Allen–Cahn equation (38)
with μ = 0 and n = 10. While the left image shows the validated branch, the right image depicts the neighborhood
of the saddle-node bifurcation point. The numerical approximation (λ∗, u∗) given in (42) of the saddle-node
bifurcation point is indicated by a black dot in both images. The green part of the branch was validated using
Theorem 7, and the red and blue parts were validated by Theorem 5. This solution branch is denoted by a black
star in Figure 6.

bifurcation point close to the pair (λ∗, u∗) ∈ R× R
10 given by

(42) λ∗ = 6.8330142962 and u∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.87393566065
−0.53677750139
0.66351174478

−0.67399510947
0.50181564902

−0.88782171323
−0.99274089040
−0.99953444484
−0.99997015142
−0.99999796478

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that this solution is associated with N = 21, depicted by a black star in Figure 6. At
this pair, the Jacobian matrix DuF(λ∗, u∗) has a simple eigenvalue close to zero, and we
let v∗ denote the approximation of an associated eigenvector with ‖v∗‖ = 1. We then applied
Theorem 7 iteratively 10 times in the direction v∗ and 10 times in the direction of −v∗. In
all cases, the theorem succeeded to validate branch segments, whose union is shown in green
in the right image of Figure 9. Starting at each of the endpoints, we then used Theorem 5
iteratively to follow the two halves of the branch until the parameter λ exceeded λ = 10. Also
in this case, validation succeeded in every iteration, and the resulting validated branches are
shown in red and blue in the two images of Figure 9. For the validation, we needed 55 and 50
iterations, respectively.

3.4. Validating branches for large parameter values. The branch validation in the pre-
vious section is based on an iterative approach, meaning that by its nature we can only ever
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use it to validate a finite portion of the solution branch, i.e., up to some finite λ value. While
previous work has shown that these mosaic solutions exist for all sufficiently large values of λ,
it does not provide explicit bounds as to what “sufficiently large” means in practice. In this
section we show that the parameter-independent version of the constructive implicit function
theorem can be used without any numerical assistance to furnish such bounds. More precisely,
it will be shown below that for μ = 0 all branches of mosaic solutions exist as long as λ ≥ 114,
and we will obtain explicit bounds on the size of the neighborhood in which these stationary
states exist. In view of the previous section, this implies that if we can use Theorems 5 and 7
to validate the branches over intervals of the form [λ0, 114], then we have in fact validated the
entire branches for λ ∈ [λ0,∞).

In order to apply the constructive implicit function theorem directly, we consider again
the equilibrium equation associated with the discrete Allen–Cahn equation (35), yet rewritten
in the form

(43) G(u) = 1

λ
Au+ f(u) = 0 with λ ∈ R

+ and u ∈ R
n ,

where the matrix A ∈ R
n×n and the nonlinearity f : Rn → R

n are defined as before. In
addition, let u∗ ∈ {−1, 0, 1}n be arbitrary and μ = 0. Our goal is to use Theorem 1 to
find an equilibrium solution of (43) for sufficiently large λ > 0, i.e., we need to establish
hypotheses (H1) and (H2), as well as (H3) in the reduced form discussed in Remark 3. To
begin with, notice that due to the form of f and choice of u∗ one has f(u∗) = 0 ∈ R

n, and we
see that, together with

‖G (u∗)‖ =

∥∥∥∥1λAu∗ + f(u∗)
∥∥∥∥ ≤ ‖A‖‖u∗‖

λ
≤ 4

λ
,

(H1) holds with � = 4/λ. As for (H2), one can easily compute the Jacobian matrix DuG(u∗)
as

DuG(u∗) =
1

λ
A+ diag f ′(u∗) ,

where the diagonal entries of the matrix diag f ′(u∗) are contained in the set {1,−2}n, since
for μ = 0 we have f ′(u) = 1− 3u2. If we let B ∈ R

n×n denote the inverse of diag f ′(u∗), then
one obtains with ‖B‖ ≤ 1 the estimate

‖I − BDuG(u∗)‖ =

∥∥∥∥I − 1

λ
BA−B diag f ′(u∗)

∥∥∥∥ =

∥∥∥∥1λBA
∥∥∥∥ ≤ ‖B‖‖A‖

λ
≤ 4

λ
,

which together with Lemma 4 shows that (H2) is satisfied with K = λ/(λ − 4) for λ > 4.
Finally, if we let �u > 0 be arbitrary, then an application of the standard mean value theorem
furnishes for all u ∈ R

n with ‖u− u∗‖ ≤ �u the estimate

‖DuG(u) −DuG(u∗)‖ ≤ max
|ξ|≤‖u∗‖+�u

∣∣f ′′(ξ)
∣∣ ‖u− u∗‖ ≤ 6 (1 + �u) ‖u− u∗‖ ,

which establishes hypothesis (H3) with L1 = 6(1 + �u).
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We now restrict ourselves to finding solutions in a 0.1-neighborhood of u∗; i.e., we consider
the case �u = 0.1, which implies L1 = 6.6. Then the conditions of the constructive implicit
function theorem in (6) are equivalent to

105.6λ

(λ− 4)2
< 1 and

8

λ− 4
< 0.1 which hold for all λ > 113.459 .

Thus, Theorem 1 implies that for all λ ≥ 114, there exists a unique equilibrium solution uλ
of (43) which satisfies

‖uλ − u∗‖ ≤ 2K� =
8

λ− 4
,

and this solution is unique within a neighborhood of radius

1

2KL1
=

λ− 4

13.2λ
→ 1

13.2
≈ 0.07575 for λ → ∞ .

While the above estimates are clearly not best possible, they do demonstrate that the construc-
tive implicit function theorem can be applied to obtain explicit existence proofs for equilibrium
solutions. In fact, one can easily see that Theorem 1 does in fact establish smooth branches
of solutions for all λ ≥ 114.

3.5. Locating saddle-node bifurcation points. The approach described in the previous
two sections allows us to validate complete solution branches for the discrete Allen–Cahn
equation, even at saddle-node bifurcation points. In this way, one can deduce the existence
of such bifurcation points indirectly. However, in many situations it is desirable to provide a
computer-assisted existence proof for the bifurcation point itself, including error tolerances.
The purely numerical aspects of this have been addressed in [21]. In this paper it is shown
that every nondegenerate solution (λ0, u0, v0) of the extended system

F (λ0, u0) = 0 ,

DuF (λ0, u0) [v0] = 0 ,(44)

v̂tv0 − 1 = 0

gives rise to a saddle-node bifurcation for the problem F(λ, u) = 0 at the point (λ0, u0),
where the nonzero vector v̂ is used for normalizing the kernel element v0. In the next result,
we demonstrate that one can use the constructive implicit function theorem to rigorously solve
the extended system (44). In particular, we let G denote the nonlinear mapping associated
with the extended system G : Rn ×R

n × R → R
n × R

n × R defined by

(45) G(x) =
(
F (λ, u) , DuF (λ, u) [v] , v̂tv − 1

)
, where x = (u, v, λ).

We view x as the unknown variable vector, implying that the function G is parameter-
independent. Then we can use the parameter-independent version of the constructive implicit
function theorem to prove the existence of a zero of G, as formulated in the following result.
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Proposition 15 (saddle-node bifurcation point validation). Let F : R × R
n → R

n be given
by F(λ, u) = Au+ λf(u) as in (38). Let μ ∈ (−1, 1) be a fixed constant, consider the specific
nonlinearity f(u) = (1 − u2)(u − μ), and let v̂ ∈ R

n be a fixed normalization vector. In
addition, let λ∗ ∈ R, u∗ ∈ R

n, and v∗ ∈ R
n be such that for some constant � > 0 we have

‖F (λ∗, u∗)‖ ≤ � , ‖DuF (λ∗, u∗) [v∗]‖ ≤ � , and
∣∣v̂tv∗ − 1

∣∣ ≤ � .

Let du > 0, define f
(p)
max as in (41), and let

L = 2f (1)
max + f (2)

max (2 |λ∗|+ 2 ‖v∗‖+ du) + f (3)
max |λ∗| ‖v∗‖ .

Finally, let K > 0 be such that∥∥∥∥∥∥∥

⎛
⎝ A+ λ∗ diag(f ′(u∗)) 0 f(u∗)

λ∗ diag(f ′′(u∗)) diag(v∗) A+ λ∗ diag(f ′(u∗)) diag(f ′(u∗))v∗

0 v̂t 0

⎞
⎠

−1
∥∥∥∥∥∥∥
≤ K ,

and suppose that
4K2�L < 1 and 2K� < du .

Then for every constant δ which satisfies

2K� ≤ δ ≤ min

{
1

2KL
, du

}

there exists a unique triple (λ0, u0, v0) ∈ R × R
n × R

n which solves the extended system (44)
and satisfies the estimates

|λ0 − λ∗| ≤ δ , ‖u0 − u∗‖ ≤ δ , and ‖v0 − v∗‖ ≤ δ .

In other words, the maximum norm ball of radius 2K� centered at the triple (λ∗, u∗, v∗) con-
tains a unique saddle-node bifurcation point for F(λ, u) = 0, and this bifurcation point is
unique up to distance min{1/(2KL), du}.

Proof. Let F be as in the statement of the theorem. Let G be the extended system defined
in (45). Then one can see that its Jacobian matrix is given by

DxG(x) =

⎛
⎝ DuF (λ, u) 0 DλF (λ, u)

DuuF (λ, u) [v, ·] DuF (λ, u) DλuF (λ, u) [v]

0 v̂t 0

⎞
⎠ .

Specifically for the discrete Allen–Cahn equation, this Jacobian takes the concrete form

DxG(x) =

⎛
⎝ A+ λdiag(f ′(u)) 0 f(u)

λdiag(f ′′(u)) diag(v) A+ λdiag(f ′(u)) diag(f ′(u))v
0 v̂t 0

⎞
⎠ .

The assumptions of the proposition directly imply hypotheses (H1) and (H2) of the con-
structive implicit function theorem. We now show that hypothesis (H3) holds with �α = 0
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and �x = du. In order to bound the norm of the difference DxG(x) −DxG(x∗) we first recall
from the proof of Lemma 14 that for ‖u− u∗‖ ≤ du the estimates

∥∥λdiag(f ′(u))− λ∗ diag(f ′(u∗))
∥∥ ≤ f (1)

max |λ− λ∗|+ f (2)
max |λ∗| ‖u− u∗‖ and

‖f(u)− f(u∗)‖ ≤ f (1)
max ‖u− u∗‖

hold, where f
(p)
max was defined in (41). Similarly, one can show that as long as ‖u − u∗‖ ≤ du

we have

∥∥λdiag(f ′′(u)) diag(v)− λ∗ diag(f ′′(u∗)) diag(v∗)
∥∥

≤
∥∥diag(f ′′(u)) diag(λv − λ∗v∗)

∥∥+ ∥∥λ∗ diag(f ′′(u)− f ′′(u∗)) diag(v∗)
∥∥

≤ f (2)
max ‖λv − λ∗v∗‖+ f (3)

max |λ∗| ‖v∗‖ ‖u− u∗‖

≤ f (2)
max‖v‖ |λ− λ∗|+ f (2)

max |λ∗| ‖v − v∗‖+ f (3)
max |λ∗| ‖v∗‖ ‖u− u∗‖

as well as

∥∥diag(f ′(u))v − diag(f ′(u∗))v∗
∥∥ ≤

∥∥diag(f ′(u)) (v − v∗)
∥∥+ ∥∥diag(f ′(u)− f ′(u∗))v∗

∥∥
≤ f (1)

max ‖v − v∗‖+ f (2)
max ‖v∗‖ ‖u− u∗‖ .

Now let x̄ = (ū, v̄, λ̄) be arbitrary with maximum norm ‖x̄‖ ≤ 1. These estimates imply both

‖(DuF (λ, u)−DuF (λ∗, u∗)) ū‖+ ‖ (DλF (λ, u)−DλF (λ∗, u∗)) λ̄‖

≤
∥∥λdiag(f ′(u))− λ∗ diag(f ′(u∗))

∥∥ ‖ū‖+ ‖f(u)− f(u∗)‖ |λ̄|

≤ f (1)
max |λ− λ∗|+ f (2)

max |λ∗| ‖u− u∗‖+ f (1)
max ‖u− u∗‖

≤
(
2f (1)

max + f (2)
max |λ∗|

)
max {|λ− λ∗| , ‖u− u∗‖} ≤

(
2f (1)

max + f (2)
max |λ∗|

)
‖x− x∗‖

and

‖DuuF (λ, u) [v, ū]−DuuF (λ∗, u∗) [v∗, ū]‖+ ‖DuF (λ, u) [v̄]−DuF (λ∗, u∗) [v̄]‖

+
∥∥DλuF (λ, u) [v]λ̄+DλuF (λ∗, u∗) [v∗]λ̄

∥∥
≤
(
f (2)
max‖v‖ |λ− λ∗|+ f (2)

max |λ∗| ‖v − v∗‖+ f (3)
max |λ∗| ‖v∗‖ ‖u− u∗‖

)
‖ū‖

+
(
f (1)
max |λ− λ∗|+ f (2)

max |λ∗| ‖u− u∗‖
)
‖v̄‖

+
(
f (1)
max ‖v − v∗‖+ f (2)

max ‖v∗‖ ‖u− u∗‖
)
|λ̄|

≤
(
2f (1)

max + f (2)
max (2 |λ∗|+ 2 ‖v∗‖+ du) + f (3)

max |λ∗| ‖v∗‖
)
‖x− x∗‖ ,
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and since the operator norm ‖DxG(x)−DxG(x∗)‖ equals the maximum of the right-hand sides
of the last two estimates, one finally obtains

‖DxG(x)−DxG(x∗)‖ ≤ L ‖x− x∗‖ ,

with L as defined in the formulation of the theorem. In other words, hypothesis (H3) holds
with �α = 0 and �x = du and with Lipschitz constants L1 = L and L2 = 0. Since we are only
interested in the parameter-independent version of Theorem 1, hypothesis (H4) does not have
to be verified according to Remark 3, and the result follows.

Using the above result, one can establish the existence of the saddle-node bifurcation
points which were described in sections 3.1 and 3.2. One can proceed exactly as outlined in
section 3.3 using the interval arithmetic toolbox INTLAB.

As a numerical example, we return to the pair (λ∗, u∗) defined in (42), which approximates
a saddle-node bifurcation point. Using Proposition 15 one can then rigorously establish the
existence of the saddle-node within a maximum norm ball of radius δmin = 2.95 · 10−7, and
this bifurcation point is unique within a ball of radius δmax = 2.84 · 10−4. Tighter bounds can
be achieved if one first refines the solution approximation through a few Newton iterations
of the extended system (44). This leads to an improved bifurcation point approximation
less than 10−9 away from the pair in (42), and another application of Proposition 15 now
furnishes δmin = 3.68 · 10−14 and δmax = 2.84 · 10−4. This change is mostly due to the
resulting smaller value of the residual �, which drops from about 10−8 to 10−15, while the
constants K ≈ 11.8 and L ≈ 148.6 remain basically unchanged.

3.6. Eigenvalue exclusion and index validation. As our final topic, we turn our attention
to rigorously determining the index of an equilibrium solution, i.e., to computing the number
of positive eigenvalues of the linearization at the equilibrium. Once we have found a numerical
approximation of the equilibrium and established a true solution in a small neighborhood, one
can use the resulting region to find an interval matrix which contains the linearization—and
our task is to count the number of all positive eigenvalues for all matrices described by the
interval matrix. To do this, we first focus on a specific matrix B ∈ R

n×n and on the problem
of validating an eigenvalue η ∈ R and associated eigenvector v ∈ R

n. If we pick a fixed suitable
normalization vector v̂ ∈ R

n \ {0}, then such a pair has to solve the system

(46) Bv − ηv = 0 and v̂tv − 1 = 0 ,

where the second equation is added to isolate the solution. In fact, one can show that if η
is a simple eigenvalue, and if v is an eigenvector with v̂tv = 1, then the pair (v, η) is the
only solution of (46). Such isolated solutions can be validated using the constructive implicit
function theorem applied to the parameter-independent function G(v, η) = (Bv− ηv, v̂tv− 1)
as follows.

Proposition 16 (eigenvalue and eigenvector validation). Let B ∈ C
n×n be a given matrix.

Furthermore, let η∗ ∈ C and v∗ ∈ C
n be given in such a way that for some � > 0 we have

‖Bv∗ − η∗v∗‖ ≤ � and
∣∣v̂tv∗ − 1

∣∣ ≤ � ,
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let K > 0 be such that ∥∥∥∥∥
(

B − η∗I −v∗

v̂t 0

)−1
∥∥∥∥∥ ≤ K ,

and assume that the inequality 8K2� < 1 holds. Then for every 2K� ≤ δ ≤ 1/(4K) there
exists a unique pair (v, η) ∈ C

n × C which solves the system (46) and which satisfies both
of the estimates |η − η∗| ≤ δ and ‖v − v∗‖ ≤ δ. In other words, the maximum norm ball of
radius 2K� centered at the pair (v∗, η∗) contains a unique normalized eigenvector/eigenvalue
pair for the matrix B, and this pair is unique up to distance 1/(4K). The analogous result is
valid for real eigenvalues of real matrices.

Proof. Let x∗ = (v∗, η∗) and consider the mapping G : Cn × C → C
n ×C defined by

G(x) =
(
Bv − ηv , v̂tv − 1

)
, where x = (v, η) ,

whose Jacobian matrix is given by

DxG(x) =
(

B − ηI −v

v̂t 0

)
.

Now let x̄ = (v̄, η̄) ∈ C
n × C be arbitrary with maximum norm ‖x̄‖ ≤ 1. Then one obtains

‖(DxG(x)−DxG(x∗)) x̄‖ ≤ |η − η∗| ‖v̄‖+ ‖v − v∗‖ |η̄|

≤ |η − η∗|+ ‖v − v∗‖ ≤ 2 ‖x− x∗‖ ;

i.e., we have ‖DxG(x)−DxG(x∗)‖ ≤ 2‖x− x∗‖. This implies that hypothesis (H3) is satisfied
with L1 = 2 and �u = ∞, as well as �α = 0. Since the assumptions of the proposition clearly
imply hypotheses (H1) and (H2), the result now follows in view of Remark 3.

Note that the above proposition cannot be used to locate eigenvalues of multiplicity two
and higher, since in such cases the pair (v, η) is never an isolated solution of (46).

In principle, we can now use numerical approximations for all positive eigenvalues of the
linearization of (38) at an equilibrium and validate them one by one. However, this does not
yet imply the index of the equilibrium. We also have to make sure that there are no other
positive eigenvalues. For this, we need the following lemma.

Lemma 17 (eigenvalue exclusion). Let B ∈ C
n×n be a given matrix. Furthermore, let η ∈ C

be arbitrary, and suppose that the induced ∞-norm of the inverse of the matrix B−ηI satisfies∥∥∥(B − ηI)−1
∥∥∥ ≤ K

for some K > 0. Then the matrix B has no eigenvalue in the open disk with radius 1/K
centered at the point η in the complex plane.

Proof. Let κ ∈ C denote an arbitrary eigenvalue of B, and let v ∈ C\{0} be an associated
eigenvector. Then the norm bound on (B − ηI)−1 implies the estimate ‖v‖ ≤ K‖(B − ηI)v‖,
which in turn leads to

|κ− η| =
‖(κ− η)v‖

‖v‖ =
‖(B − ηI)v‖

‖v‖ ≥ 1

K
,

and this completes the proof of the lemma.
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At first glance, one might be tempted to think that the above two results suffice to establish
the index of an equilibrium solution. After all, all positive eigenvalues have to be contained
in the interval (0, ‖B‖], and after validating the eigenvalues which determine the index using
Proposition 16, we just have to exclude the remainder of the interval using Lemma 17. Note,
however, that while Proposition 16 proves the existence of an eigenvalue η, it does not provide
an interval around η in which this eigenvalue is unique. The uniqueness assertion involves the
pair (v, η); i.e., in principle there could be another eigenvalue pair (ṽ, η̃) which is reasonably
far away, but for which η ≈ η̃.

Fortunately, it is possible to obtain an interval of uniqueness around a validated eigenvalue
by investing a little more work. For this, we make use of the eigenvalue deflation technique
described in [35, pp. 596ff].

Lemma 18 (eigenvalue deflation). Let B ∈ C
n×n be a given complex matrix with eigen-

values η1, . . . , ηk ∈ C and associated eigenvectors v1, . . . , vk ∈ C
n. Furthermore, let w ∈ C

n

denote a vector such that wtv1 = 1. Then the matrix

C = B − v1w
tB

has the eigenvalue 0 with eigenvector v1, and for � = 2, . . . , k it still has the eigenvalue η�, but
now with associated eigenvector v� − (wtv�)v1.

Proof. One can easily see that Cv1 = η1v1 − v1w
tη1v1 = η1v1 − η1v1

(
wtv1

)
= 0, and for

arbitrary � = 2, . . . , k we further have

C
(
v� − (wtv�)v1

)
= Cv� = η�v� − v1w

tη�v� = η�
(
v� −

(
wtv�

)
v1
)
.

This completes the proof of the lemma.

With the above results, we can now proceed as follows to validate the index of an equilib-
rium solution of the discrete Allen–Cahn equation:

• First, we need to compute an interval enclosure (λ∗, u∗) for an equilibrium solution
of (38). Using this enclosure, one can then compute an interval matrix B which
contains the true linearization at the equilibrium.

• We then find numerically all positive eigenvalues for one of the matrices enclosed by B.
We also find all of the associated eigenvectors. These can then be validated for the
interval matrix B using Proposition 16.

• Now let η∗ be an interval which contains a verified eigenvalue for all matrices in B, and
let v∗ denote an interval vector which contains the associated eigenvector. We now
determine an interval matrix C which contains all matrices of the form B − v∗wtB,
where w is an interval vector such that wtv∗ contains 1. Using Lemma 17, one can
then determine an interval around η∗ in which none of the matrices enclosed by C has
an eigenvalue. According to Lemma 18, this means that all of the matrices in B have
exactly one eigenvalue in this interval—namely the one enclosed by η∗.

• As a last step, Lemma 17 is applied iteratively to exclude eigenvalues in the remaining
intervals of [0, ‖B‖].

Notice that this index validation has to be performed only for one solution on each verified
solution branch in the bifurcation diagram. Due to the last assertion in the constructive
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implicit function theorem, the linearization of (38) at any stationary state on a verified branch
piece is invertible; i.e., since these linearizations are symmetric, the index can only change
at bifurcation points. We would like to also point out that while the above procedure might
seem somewhat involved at first sight, in practice it usually is pretty straightforward. Most
solutions of interest will have fairly small index, even if the dimension n of the problem is
large, and by using the above approach we need only validate a handful of eigenvalues. In
fact, in many cases some of the negative eigenvalues might be fairly close to each other and
form clusters, and in such a situation they would be more difficult to validate.

To demonstrate the above approach, we consider two specific stationary solutions on the
branch of equilibria shown in Figure 9. The branch originates from a saddle-node bifurcation
point close to the pair (λ∗, u∗) defined in (42). For the solution on the blue branch piece
at parameter value λ = 10, the numerical index computation reveals no positive eigenvalues.
Using an upper bound on the maximum norm of the linearization at the equilibrium point, one
can see that in order to prove the asymptotic stability of the equilibrium, it suffices to exclude
eigenvalues in the interval [0, 24]. This can be achieved using three iterative applications of
Lemma 17. As a second solution, we consider the solution on the red branch piece in Figure 9
at parameter value λ = 10. This time, standard numerical routines find one possible positive
eigenvalue at η ≈ 6.411297. Using Proposition 16 this eigenvalue can be validated, and
both eigenvalue and eigenvector can be determined up to an error bound of 4 · 10−14. Using
Lemma 18 it can be shown that the eigenvalue is unique in the interval (6.9 · 10−13, 12.822),
and the maximum norm of the linearization at the equilibrium point is again bounded by 24.
Eigenvalues in the remaining intervals [0, 6.9 · 10−13] and [12.822, 24] can then be excluded
using one and two iterations of Lemma 17. This shows that all equilibria on the blue branch
piece in Figure 9 are asymptotically stable, while those on the red piece have index one.

The above two examples are typical in many situations, since frequently the index of
solutions of interest is low. Nevertheless, the approach also works extremely well in more
degenerate situations. To demonstrate this, we determined a numerical approximation of an
equilibrium solution at the parameter value λ = 50 through a Newton iteration starting at the
point (1,−1, 1,−1, 0,−1, 0,−1, 0,−1)t . This leads to a nearby equilibrium solution which can
be validated as above. In this case, the linearization of the discrete Allen–Cahn equation has
three positive eigenvalues η1 > η2 > η3 > 0, all of which can be verified using Proposition 16.
Moreover, Lemma 18 produces the following uniqueness intervals:

η3 ≈ 47.75322 ∈ (47.74738 , 47.75907) ,

η2 ≈ 47.76341 ∈ (47.75807 , 47.76875) ,

η1 ≈ 47.77367 ∈ (47.76776 , 47.77958) .

Notice that both the first and the third interval overlap with the second, so one only has to
exclude eigenvalues in the two intervals [0, 47.74738] and [47.77958, 98.87545], where the last
number is a bound on the induced maximum norm of the linearization. Using Lemma 17,
these intervals can be shown to be devoid of eigenvalues in 3 and 14 iterations, respectively.
Note that our method is precise enough to even resolve these clustered single eigenvalues.

Acknowledgments. We thank the referees for their careful reading of our paper and their
constructive suggestions for improvements.
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