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Abstract. In the study of equilibrium solutions for partial differential equa-

tions there are so many equilibria that one cannot hope to find them all.
Therefore one usually concentrates on finding individual branches of equilib-

rium solutions. On the one hand, a rigorous theoretical understanding of these

branches is ideal but not generally tractable. On the other hand, numerical
bifurcation searches are useful but not guaranteed to give an accurate struc-

ture, in that they could miss a portion of a branch or find a spurious branch

where none exists. In a series of recent papers, we have aimed for a third
option. Namely, we have developed a method of computer-assisted proofs to

prove both existence and isolation of branches of equilibrium solutions. In the
current paper, we extend these techniques to the Ohta-Kawasaki model for the

dynamics of diblock copolymers in dimensions one, two, and three, by giving a

detailed description of the analytical underpinnings of the method. Although
the paper concentrates on applying the method to the Ohta-Kawasaki model,

the functional analytic approach and techniques can be generalized to other

parabolic partial differential equations.

1. Introduction. The goal of this paper is to present the theoretical underpin-
nings for computer-assisted branch validation using functional analytic techniques
including the constructive implicit function theorem and Neumann series methods,
such that pointwise estimates result in solution branch validation. While the indi-
vidual proof techniques presented here are not novel, we present this approach in a
modular way such that it is flexible, adaptable, and as computationally feasible as
possible in more than one space dimension. In particular, we apply this methodol-
ogy in the case of the Ohta–Kawasaki model for diblock copolymers [24]. Diblock
copolymers are formed by the chemical reaction of two linear polymers (known
as blocks) which contain different monomers. Whenever the blocks are thermody-
namically incompatible, the blocks are forced to separate after the reaction, but
since the blocks are covalently bonded they cannot separate on a macroscopic scale.
The competition between these long-range and short-range forces causes microphase
separation, resulting in pattern formation on a mesoscopic scale.
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We study the Ohta-Kawasaki equation in the case of homogeneous Neumann
boundary conditions on rectilinear domains Ω in dimensions one, two, and three,
which is given by

wt = −∆(∆w + λf(w))− λσ(w − µ) in Ω ,

∂w

∂ν
=
∂(∆w)

∂ν
= 0 on ∂Ω .

The notation ν denotes the unit outward normal on the boundary of Ω — corre-
sponding to homogeneous Neumann boundary conditions. The quantity w(t, x) is
the local average density of the two blocks. The parameter µ is the space average
of w, meaning it is a measure of the relative total proportion of the two polymers,
which we tersely refer to as the mass of the system. The equation obeys a mass
conservation, implying that µ is time-invariant. A large value of parameter λ cor-
responds to a large short-range repulsion, while a large value of the parameter σ
corresponds to large long-range elasticity forces. We refer the reader to [16] for a
detailed description of how λ and σ are defined. The nonlinear function f : R→ R
is often assumed to be f(u) = u − u3, but the results in this paper still apply as
long as f is a C2-function. Finally, note that the second boundary condition is nec-
essary since this is a fourth order equation. In this paper, we focus on equilibrium
solutions w = w(x).

For notational convenience, we reformulate our equation slightly. For a solution w
of the diblock copolymer equation, we define u = w − µ. Since the space average
of w is µ, the average of the shifted function u is zero. Therefore the equilibrium
equation becomes

−∆(∆u+ λf(u+ µ))− λσu = 0 in Ω ,

∂u

∂ν
=
∂(∆u)

∂ν
= 0 on ∂Ω , (1)∫

Ω

u dx = 0 .

We will use this version of the equation for the rest of the paper. We focus on
solutions to this equation as we vary any of the three parameters: the degree of
short-range repulsion λ, the mass µ, and the degree of long-range elasticity σ. Our
main goal is to establish bounds that make it possible to use a functional analytic
approach to rigorous validation using the point of view of the constructive implicit
function theorem which we have already developed in previous work [30, 35, 36,
37]. Our bounds are developed mostly using theoretical techniques, but in the
case of Sobolev embeddings, the bounds themselves are developed using computer-
assisted means. This method is designed for validated continuation of branches of
solutions which depend on a parameter, in the spirit of the numerical method of
pseudo-arclength continuation, such as seen in the software packages AUTO [13] and
Matcont [12]. Successive application of this theorem allows us to validate branches
of equilibrium solutions by giving precise bounds on both the branch approximation
error and isolation. This is much more powerful than only validating individual
solutions along a branch, since it allows us to guarantee that a set of solutions lie
along the same connected branch component.
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In order to establish what is new in this paper, we give a brief discussion of
previous results. A number of papers have previously considered numerical compu-
tation of bifurcation diagrams for the Ohta-Kawasaki and Cahn-Hilliard equations,
such as for example [5, 6, 7, 8, 11, 16, 19, 20]. There are also several decades
of results on computer validation for dynamical systems and differential equations
solutions which combine fixed point arguments and interval arithmetic; see for ex-
ample [2, 10, 14, 25, 26, 27, 29, 35, 36]. A constructive implicit function theorem
was formulated in the work of Chierchia [4]. Our approach follows most closely the
work of Plum [23, 25, 26, 27], in which functional analytic approaches are given
for establishing needed apriori bounds. Such methods have also been applied by
Yamamoto [41, 42]. In our previous work on the constructive implicit function theo-
rem, our goal has been to give a systematic procedure for adapting these works to the
context of parameter continuation. There are several papers that have already con-
sidered rigorous validation of parameter-dependent solutions for the Ohta-Kawasaki
model [3, 9, 18, 30, 32, 33, 34, 35, 36, 37]. Many of these papers also include meth-
ods of bounding the terms in a generalized Fourier series, and the estimates on the
tail. However, it was necessary to make quite substantial ad hoc calculations in
order to establish needed bounds before it is possible to proceed with numerical
validation.

Our goal in the current paper is to establish a set of flexible bounds on the
size of the inverse of the derivative, the required truncation dimension, Lipschitz
bounds on the equations with respect to all parameters, as well as constructive
Sobolev embedding constant bounds for comparison to the L∞-norm, meaning that
equilibrium verifications along branch segments can be done without having to
resort to ad hoc calculations which crucially depend on the specific nonlinearity.
More precisely, we obtain the following:

• The approach of this paper derives general estimates that work in one, two,
and three space dimensions, and under the natural homogeneous Neumann
boundary conditions. This is in contrast to [3] and [36], which only consid-
ered the case of one-dimensional domains, or to [33, 34], which considered the
three-dimensional case only under periodic boundary conditions and symme-
try constraints.

• Our approach uses the natural functional analytic setting for the diblock
copolymer evolution equation, which is based on the Sobolev space of twice
weakly differentiable functions. This is in contrast to [33, 34], which seek the
equilibria in spaces of analytic functions.

• As part of our approach, we obtain accurate upper bounds for the operator
norm of the inverse of the diblock copolymer Fréchet derivative. For this
estimate, we use the natural Sobolev norms of the underlying problem. In
contrast to [17, 39, 40] our method is based on Neumann series.

Throughout this paper, we focus on the theoretical underpinnings which allow one
to apply the constructive implicit function theorem [30]. Due to space constraints,
we leave the practical application of these results to path-following with slanted
boxes as in [30], as well as extensions to pseudo-arclength continuation, for future
work. Nevertheless, while this paper is focussed only on the Ohta-Kawasaki model,
the general approach can be used for other parabolic partial differential equations
as well.
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The remainder of this paper is organized as follows. In Section 2, we introduce
the necessary functional analytic framework, while Section 3 is devoted to find-
ing bounds on the operator norm of the inverse of the linearized operator. After
that, Section 4 establishes Lipschitz bounds on the diblock copolymer operator for
continuation with respect to any of the three parameters λ, σ, and µ, before in
Section 5 we give a brief numerical illustration of how this method rigorously es-
tablishes a variety of equilibrium branch pieces for the Ohta-Kawasaki model in
multiple dimensions. Finally, in Section 6 we wrap up with conclusions and future
plans.

2. Basic definitions and setup. In this section, we establish notation and cru-
cial auxiliary bounds. In Section 2.1 we recall the constructive implicit function
theorem, before in Section 2.2 we define the function spaces that will be used in our
computer-assisted proofs. These spaces are particularly adapted for the use with
Fourier series expansions to represent functions with Neumann boundary conditions
and zero average. In Section 2.3, we collect a set of Sobolev embedding results giving
precise rigorous bounds on the similarity constants for passing between equivalent
norms on these function spaces. Finally, in Section 2.4 we introduce the necessary
finite-dimensional spaces and associated projection operators that are used in our
computer-assisted proofs.

2.1. The constructive implicit function theorem. In this section we state a
constructive implicit function theorem that makes it possible to validate a branch of
solutions changing with respect to a parameter. This theorem appears in [30], where
we demonstrated the validation of solutions for the lattice Allen-Cahn equation.
The theorem is based on previous work of Plum [27] and Wanner [36]. To put
this in context, our overarching goal is to find a connected curve of values (α, x)
in the zero set for a specific nonlinear operator G(α, x). In this paper, the zero set
consists of the equilibria of the Ohta-Kawasaki equation. Starting at a point for
which the operator G is close to zero, we use the theorem as the iterative step in
a validated continuation. That is, we iteratively validate small portions along the
solution curve, each time using the constructive implicit function theorem which
is stated below. We also validate that these portions combine to create a piece
of a single connected solution curve, and show that it is isolated from any other
branch of the solution curve. Rather than getting bogged down in the details of the
iterative process, we first concentrate on the single iterative step and the estimates
needed in order to perform it. Specifically, we consider solutions to the equation

G(α, x) = 0 , (2)

where G : P × X → Y is a Fréchet differentiable nonlinear operator between two
Banach spaces X and Y, and the parameter α is taken from a Banach space P. The
norms on these Banach spaces are denoted by ‖ · ‖P , ‖ · ‖X , and ‖ · ‖Y , respectively.
One possible choice of G would be to directly use the nonlinear operator associated
with (1), but this is not a numerically viable option for validation of a branch of
solutions. Instead we will introduce an extended system which gives a validated
version of pseudo-arclength continuation. The system contains not only the Ohta-
Kawasaki model equilibrium equation, but is in a way designed to optimize the
needed number of validation steps.

In order to present the constructive implicit function theorem in detail, we begin
by making the following hypotheses. For the classical implicit function theorem,
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the existence of constants satisfying the hypotheses given below is sufficient. In
contrast, since we wish to use a computer assisted proof to validate existence of
equilibria with specified error bounds, we require explicit values for each of the
constants in (H1)–(H4).

(H1) Unlike the traditional implicit function theorem, we assume only an ap-
proximate solution to the equation. That is, assume that we are given a
pair (α∗, x∗) ∈ P × X which is an approximate solution of the nonlinear
problem (2). More precisely, the residual of the nonlinear operator G at the
pair (α∗, x∗) is small, i.e., there exists a constant % > 0 such that

‖G(α∗, x∗)‖Y ≤ % .

(H2) Assume that the operator DxG(α∗, x∗) is invertible and not very close to
being singular. That is, the Fréchet derivative DxG(α∗, x∗) ∈ L(X ,Y),
where L(X ,Y) denotes the Banach space of all bounded linear operators
from X into Y, is one-to-one and onto, and its inverse DxG(α∗, x∗)−1 : Y → X
is bounded and satisfies∥∥DxG(α∗, x∗)−1

∥∥
L(Y,X )

≤ K ,

where ‖ · ‖L(Y,X ) denotes the operator norm in L(Y,X ).
(H3) For (α, x) close to (α∗, x∗), the Fréchet derivative DxG(α, x) is locally Lips-

chitz continuous in the following sense. There exist positive real constants L1,
L2, `x, and `α ≥ 0 such that for all pairs (α, x) ∈ P ×X with ‖x− x∗‖X ≤ `x
and ‖α− α∗‖P ≤ `α we have

‖DxG(α, x)−DxG(α∗, x∗)‖L(X ,Y) ≤ L1 ‖x− x∗‖X + L2 ‖α− α∗‖P .

To verify this condition, as well as the next one, we will give specific Lipschitz
bounds on the Ohta-Kawasaki operator. We will then show the precise way
to combine these bounds in order to get the constants Lk.

(H4) For α close to α∗, the Fréchet derivative DαG(α, x∗) satisfies a Lipschitz-type
bound. More precisely, there exist positive real constants L3 and L4, such
that for all α ∈ P with ‖α− α∗‖P ≤ `α one has

‖DαG(α, x∗)‖L(P,Y) ≤ L3 + L4 ‖α− α∗‖P ,

where `α is the constant that was chosen in (H3).

Keeping these hypotheses in mind, the constructive implicit function theorem can
then be stated as follows.

Theorem 2.1 (Constructive Implicit Function Theorem). Let P, X , and Y be
Banach spaces, suppose that the nonlinear operator G : P × X → Y is Fréchet
differentiable, and assume that the pair (α∗, x∗) ∈ P ×X satisfies hypotheses (H1),
(H2), (H3), and (H4). Finally, suppose that

4K2%L1 < 1 and 2K% < `x . (3)

Then there exist pairs of constants (δα, δx) with 0 ≤ δα ≤ `α and 0 < δx ≤ `x, as
well as

2KL1δx + 2KL2δα ≤ 1 and 2K%+ 2KL3δα + 2KL4δ
2
α ≤ δx , (4)

and for each such pair the following holds. For every α ∈ P with ‖α − α∗‖P ≤ δα
there exists a uniquely determined element x(α) ∈ X with ‖x(α)− x∗‖X ≤ δx such
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that G(α, x(α)) = 0. In other words, if we define

BXδ = {ξ ∈ X : ‖ξ − x∗‖X ≤ δ} and BPδ = {p ∈ P : ‖p− α∗‖P ≤ δ} ,

then all solutions of the nonlinear problem G(α, x) = 0 in the set BPδα × B
X
δx

lie on
the graph of the function α 7→ x(α). In addition, the following two statements are
satisfied.

• For all pairs (α, x) ∈ BPδα × B
X
δx

the Fréchet derivative DxG(α, x) ∈ L(X ,Y)
is a bounded invertible linear operator, whose inverse is in L(Y,X ).

• If the mapping G : P ×X → Y is k-times continuously Fréchet differentiable,
then so is the solution function α 7→ x(α).

Throughout the remainder of this paper, we concentrate on finding computation-
ally accessible versions of hypotheses (H2), (H3), and (H4) for the Ohta-Kawasaki
model.

2.2. Function spaces. Throughout this paper, we let Ω = (0, 1)d denote the unit
cube in dimension d = 1, 2, 3, and define the constants

c0 = 1 and c` =
√

2 for ` ∈ N .

If k ∈ Nd0 denotes an arbitrary multi-index of the form k = (k1, . . . , kd), then let

ck = ck1 · . . . · ckd .
If we then define

ϕk(x) = ck

d∏
i=1

cos(kiπxi) for all x = (x1, . . . , xd) ∈ Ω , (5)

then the function collection {ϕk}k∈Nd0 forms a complete orthonormal basis for the

space L2(Ω). Any measurable and square-integrable function u : Ω → R can be
written in terms of its Fourier cosine series

u(x) =
∑
k∈Nd0

αkϕk(x) , (6)

where αk ∈ R are the Fourier coefficients of u. Finally, we define

|k| = (k2
1 + · · ·+ k2

d)1/2 and |k|∞ = max(k1, . . . , kd) .

Each function ϕk(x) is an eigenfunction of the negative Laplacian. The correspond-
ing eigenvalue is given by κk, defined via the equation

−∆ϕk(x) = κkϕk(x) with κk = π2
(
k2

1 + k2
2 + · · ·+ k2

d

)
= π2|k|2 .

A straightforward direct computation shows that each ϕk(x) satisfies the homoge-
neous Neumann boundary condition ∂ϕk/∂ν = 0. In addition, as a result of being
an eigenfunction of −∆, each function ϕk(x) also satisfies the second boundary
condition in (1), since the identity ∂(∆ϕk)/∂ν = −κk∂ϕk/∂ν = 0 holds. Therefore
any finite Fourier series as above automatically satisfies both boundary conditions
of the diblock copolymer equation.

Based on our construction, the family {ϕk}k∈Nd0 is a complete orthonormal basis

for the space L2(Ω). Thus, if u is given as in (6) one can easily see that

‖u‖L2 =

∑
k∈Nd0

α2
k

1/2

.
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For our application to the diblock copolymer model, we need to work with suitable
subspaces of the Sobolev spaces Hk(Ω) = W k,2(Ω), see for example [1]. These
subspaces have to reflect the required homogeneous Neumann boundary conditions
and they can be introduced as follows. For ` ∈ N consider the space

H` =

u =
∑
k∈Nd0

αkϕk : ‖u‖H` <∞

 ,

where

‖u‖H` =

∑
k∈Nd0

(
1 + κ`k

)
α2
k

1/2

.

One can easily verify that this is equivalent to the definition

‖u‖2H` = ‖u‖2L2 +
∥∥∥(−∆)`/2u

∥∥∥2

L2
,

where ‖·‖L2 denotes the standard L2(Ω)-norm on the domain Ω as mentioned above,
and the fractional Laplacian for odd ` is defined using the spectral definition. We
note that we have incorporated the boundary conditions of (1) into our definition
of the spaces H`. For example,

H1 = H1(Ω),

H2 =

{
u ∈ H2(Ω) :

∂u

∂ν
= 0

}
, and

H4 =

{
u ∈ H4(Ω) :

∂u

∂ν
=
∂∆u

∂ν
= 0

}
,

where the boundary conditions in the second and third equations are considered
in the sense of the trace operator. The first identity follows as a special case from
the results in [15, 22], the second identity has been established in [21, Lemma 3.2],
and also the third identity can be verified as in [21, Lemma 3.2]. For the sake of
simplicity we further define H0 = L2(Ω).

While the spaces H` incorporate the boundary conditions of (1), recall that
we have reformulated the diblock copolymer equation in such a way that solutions
satisfy the integral constraint

∫
Ω
u dx = 0, since the case of nonzero average has been

absorbed into the placement of the parameter µ. In order to treat this additional
constraint, we therefore need to restrict the spaces H` further. Consider now an
arbitrary integer ` ∈ Z and define the space

H` =

u =
∑

k∈Nd0 , |k|>0

αkϕk : ‖u‖H` <∞

 , (7)

where we use the modified norm

‖u‖H` =

 ∑
k∈Nd0 , |k|>0

κ`kα
2
k

1/2

. (8)

Notice that for ` = 0 this definition reduces to the subspace of L2(Ω) of all functions
with average zero equipped with its standard norm, since we removed the constant
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basis function from the Fourier series. For ` > 0 one can easily see that H` ⊂ H`,
and that the new norm is equivalent to our norm on H`. We still need to shed some
light on the new definition (7) for negative integers ` < 0. In this case, the series

in (6) is interpreted formally, i.e., the element u ∈ H` for ` < 0 is identified with the
sequence of its Fourier coefficients. Moreover, one can easily see that in this case u

acts as a bounded linear functional onH−`. In fact, for all ` < 0 the spaceH` can be
considered as a subspace of the negative exponent Sobolev space H`(Ω) = W `,2(Ω),

see again [1]. Finally, for every ` ∈ Z the space H` is a Hilbert space with inner
product

(u, v)H` =
∑

k∈Nd0 , |k|>0

κ`kαkβk ,

where

u =
∑

k∈Nd0 , |k|>0

αkϕk ∈ H
`

and v =
∑

k∈Nd0 , |k|>0

βkϕk ∈ H
`
.

The above spaces form the functional analytic backbone of this paper, and they
allow us to reformulate the equilibrium problem for (1) as a zero finding problem.
Note first, however, that the functions ϕk can also be used to obtain an orthonormal

basis in H`. In fact, we only have to drop the constant function ϕ0 and apply the
following rescaling.

Lemma 2.2. The set
{
κ
−`/2
k ϕk(x)

}
k∈Nd0 , |k|>0

forms a complete orthonormal set

for the Hilbert space H`.

We close this section by briefly showing how the diblock copolymer equilibrium
problem can be stated as a zero set problem in our functional analytic setting. For
this, consider the operator

F : R3 ×X → Y , with X = H2
and Y = H−2

,

which is defined as

F (λ, σ, µ, u) = −∆ (∆u+ λf(u+ µ))− λσu . (9)

The problem is now formulated weakly, and in particular, the second boundary
condition ∂(∆u)/∂ν = 0 is no longer explicitly stated in this weak formulation.
Note, however, that the first boundary condition ∂u/∂ν = 0 has been incorporated

into the space X = H2
. The fact that f is C2 is sufficient to guarantee that the

function F maps X to Y , since we only consider domains up to dimension three.
Then for fixed parameters, an equilibrium solution u to the diblock copolymer
equation (1) is a function which satisfies the identity F (λ, σ, µ, u) = 0. Moreover,
the Fréchet derivative of the operator F with respect to u at this equilibrium is
given by

DuF (λ, σ, µ, u)[v] = −∆ (∆v + λf ′(u+ µ)v)− λσv . (10)

In our formulation, the boundary and integral conditions which are part of (1)

have been incorporated into the choice of the domain X = H2
of the nonlinear

operator F .
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Dimension d 1 2 3

Sobolev Embedding Constant Cm 1.010947 1.030255 1.081202

Sobolev Embedding Constant Cm 0.149072 0.248740 0.411972
Banach Algebra Constant Cb 1.471443 1.488231 1.554916

Table 1. These values are rigorous upper bounds for the embed-
ding constants in (11).

2.3. Constructive Sobolev embedding and Banach algebra constants. For
classical Sobolev embedding theorems, it is sufficient to write statements such as
“the Sobolev space H2 can be continuously embedded into L∞(Ω),” without wor-
rying about the specific constants needed to do so. However, for the purpose of
computer-assisted proofs, such statements are insufficient. Instead we need specific
numerical bounds to compare the norms of a function or product of functions when
considered in different spaces. Parallel to the name constructive implicit function
theorem, we refer to the bounds on the constants as constructive Sobolev embedding
constants. In addition, we will need a constructive Banach algebra estimate on the
relationship between ‖uv‖H2 and the product ‖u‖H2‖v‖H2 . In particular, we re-
quire the exact values of Cm, Cm, and Cb in one, two, and three dimensions given
in the following equations:

‖u‖∞ ≤ Cm ‖u‖H2 , for all u ∈ H2 ,

‖u‖∞ ≤ Cm ‖u‖H2 , for all u ∈ H2
, (11)

‖uv‖H2 ≤ Cb ‖u‖H2‖v‖H2 , for all u, v ∈ H2 .

The values of Cm and Cb in dimensions 1, 2, and 3 were established in [38] using
rigorous computational techniques. The values of Cm can be obtained by adapting
the approach in this paper, as outlined in the next lemma. Table 1 summarizes the
values of all necessary constants.

Lemma 2.3 (Sobolev embedding for the zero mass case). For all functions u ∈ H2

we have the estimate

‖u‖∞ ≤ ‖u‖H2 ·

 ∑
k∈Nd0 , |k|>0

c2kκ
−2
k

1/2

≤ Cm‖u‖H2 , (12)

where the value of the constant Cm is given in Table 1.

Proof. Suppose that u ∈ H2
is given by u =

∑
k∈Nd0 , |k|>0 αkϕk. According to the

definition of the functions ϕk we have ‖ϕk‖∞ = ck, which immediately implies for
all x ∈ Ω the estimate

|u(x)| ≤
∑

k∈Nd0 , |k|>0

|αk| |ϕk(x)| ≤
∑

k∈Nd0 , |k|>0

|αk| ck =
∑

k∈Nd0 , |k|>0

|αk|κk ·
ck
κk

≤

 ∑
k∈Nd0 , |k|>0

α2
kκ

2
k

1/2

·

 ∑
k∈Nd0 , |k|>0

c2kκ
−2
k

1/2

,
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and together with (8) this immediately establishes the first estimate in (12).
In order to complete the proof one only has to find a rigorous upper bound on

the second factor in the last line of the above estimate. For this, one can first use
the proof of [38, Corollary 3.3] to establish the tail bound

∑
k∈Nd0 , |k|≥N

c2kκ
−2
k ≤ 2d

π4
· γd(N) ,

where γd(N) is explicitly defined in [38, Equation (16)]. This in turn yields the
estimate ∑

k∈Nd0 , |k|>0

c2kκ
−2
k ≤

∑
k∈Nd0 , 0<|k|<N

c2kκ
−2
k +

2d

π4
· γd(N) .

Evaluating the finite sum and the tail bound using interval arithmetic and N = 1000
then furnishes the constant in Table 1.

The next lemma derives explicit bounds for the norm equivalence of the norms

on the Hilbert spaces H2
and on H2, which contain functions of zero and nonzero

average, respectively.

Lemma 2.4 (Norm equivalence between zero and nonzero mass). For all u ∈ H2

we have

‖u‖H2 ≤ ‖u‖H2 ≤
√

1 + π4

π2
‖u‖H2 .

Proof. The first inequality is clear from the definitions of the two norms in the last
section, since κ2

k ≤ 1 + κ2
k. For the second inequality, note that for |k| > 0 one has

the inequality κk = π2|k|2 ≥ π2, and therefore

1 + κ2
k = κ2

k

(
1 +

1

κ2
k

)
≤ κ2

k

(
1 +

1

π4

)
= κ2

k

1 + π4

π4
.

This in turn implies

‖u‖2H2 =
∑

k∈Nd0 , |k|>0

(1 + κ2
k)α2

k ≤
1 + π4

π4

∑
k∈Nd0 , |k|>0

κ2
kα

2
k =

1 + π4

π4
‖u‖2H2 ,

which completes the proof of the lemma.

Note that from the above lemma one could conclude Cm ≤ (
√

1 + π4/π2)Cm,
but the results given in Lemma 2.3 are around an order of magnitude better.

Our specific norm choice on the spaces H` has some convenient implications for

its relation to the Laplacian operator ∆. Clearly for any function u ∈ H` we have

both ∆u ∈ H`−2
and ∆−1u ∈ H`+2

. Furthermore, if u is of the form

u =
∑

k∈Nd0 , |k|>0

αkϕk , then −∆u =
∑

k∈Nd0 , |k|>0

κkαkϕk ,
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and we obtain the representation for −∆−1u if we replace κk in the last sum by κ−1
k .

This immediately yields

‖∆u‖2
H`−2 =

∑
k∈Nd0 , |k|>0

κ`−2
k κ2

kα
2
k ,

‖u‖2
H`

=
∑

k∈Nd0 , |k|>0

κ`kα
2
k ,

‖∆−1u‖2
H`+2 =

∑
k∈Nd0 , |k|>0

κ`+2
k κ−2

k α2
k ,

and altogether we have verified the following lemma.

Lemma 2.5 (The Laplacian is an isometry). For every ` ∈ Z the Laplacian oper-

ator ∆ is an isometry from H` to H`−2
, i.e., we have

‖∆−1u‖H`+2 = ‖u‖H` = ‖∆u‖H`−2 .

To close this section we present a final result which relates the standard norm in

the Hilbert space H` to the norm in Hm if ` ≤ m. This inequality will turn out to
be useful later on.

Lemma 2.6 (Relating the norms in H` and Hm). For all u ∈ Hm and all ` ≤ m
we have the estimate

‖u‖H` ≤
1

πm−`
‖u‖Hm .

Furthermore, note that in the special case ` = 0 ≤ m we have ‖u‖H0 = ‖u‖L2 .

Proof. Suppose that u ∈ Hm is given by u =
∑
k∈Nd0 , |k|>0 αkϕk. Then we have

‖u‖2
H`

=
∑

k∈Nd0 , |k|>0

κmk α
2
k

κm−`k

≤ 1

π2(m−`)

∑
k∈Nd0 , |k|>0

κmk α
2
k =

1

π2(m−`) ‖u‖
2
Hm ,

since for all |k| > 0 one has κk ≥ π2.

2.4. Projection operators. In order to establish computer-assisted existence
proofs for equilibrium solutions of (1) one needs to work with suitable finite-
dimensional approximations. In our framework, we use truncated cosine series,
and this is formalized in the current section through the introduction of suitable
projection operators.

For this, let N ∈ N denote a positive integer, and consider u ∈ H` for ` ∈ N0, or

alternatively u ∈ H` for ` ∈ Z, of the form u =
∑
k∈Nd0

αkϕk, where in the latter

case α0 = 0. Then we define the projection

PNu =
∑

k∈Nd0 , |k|∞<N

αkϕk . (13)

Note that in this definition we use the ∞-norm of the multi-index k, since this
simplifies the implementation of our method. The so-defined operator PN is a
bounded linear operator on H` with induced operator norm ‖PN‖ = 1, and one

can easily see that it leaves the space H` invariant if ` ∈ Z. Furthermore, it is
straightforward to show that for any N ∈ N we have

dimPNH` = Nd and dimPNH
`

= Nd − 1 .
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For all ` ∈ N0 we would like to point out that (I − P1)H` = H`. Since this is an
especially useful operator, we introduce the abbreviation

P = I − P1 . (14)

The operator P satisfies the following useful identity.

Lemma 2.7. For arbitrary u ∈ H0 and v ∈ H0
we have the equality(

Pu, v
)
L2 = (u, v)L2 .

Proof. This result can be established via direct calculation. Note that(
Pu, v

)
L2 = (u− α0ϕ0, v)L2 = (u, v)L2 − α0(ϕ0, v)L2

= (u, v)L2 − α0

∫
Ω

v(x) dx = (u, v)L2 − 0 ,

where for the last step we used the fact that v ∈ H0
.

We close this section by deriving a norm bound for the infinite cosine series part
that is discarded by the projection PN in terms of a higher-regularity norm. More
precisely, we have the following.

Lemma 2.8 (Projection tail estimates). Consider two integers ` ≤ m and let the

function u ∈ Hm be arbitrary. Then the projection tail (I − PN )u satisfies

‖(I − PN )u‖H` ≤
1

πm−`Nm−` ‖(I − PN )u‖Hm ≤
1

πm−`Nm−` ‖u‖Hm .

Proof. Suppose that u ∈ Hm is given by u =
∑
k∈Nd0 , |k|>0 αkϕk. Then we have

‖(I − PN )u‖2
H`

=
∑

k∈Nd0 , |k|∞≥N

κ`kα
2
k =

∑
k∈Nd0 , |k|∞≥N

κmk α
2
k

κm−`k

≤
∑

k∈Nd0 , |k|∞≥N

κmk α
2
k

(π2N2)m−`
=

1

(π2N2)m−`
‖(I − PN )u‖2Hm ,

since the estimate |k|∞ ≥ N yields |k| ≥ N .

3. Derivative inverse estimate. This section is devoted to establishing deriv-
ative inverse bound in hypothesis (H2), which is required for Theorem 2.1, the
constructive implicit function theorem. More precisely, our goal in the following is
to derive a constant K such that∥∥(DuF )−1

∥∥
L(Y,X)

≤ K ,

i.e., we need to find a bound on the operator norm of the inverse of the Fréchet
derivative of F with respect to u. We divide the derivation of this estimate into
four parts. In Section 3.1 we give an outline of our approach, introduce neces-
sary definitions and auxiliary results, and present the main result of this section.
This result will be verified in the following three sections. First, we discuss the
finite-dimensional projection of DuF in Section 3.2. Using this finite-dimensional
operator, we then construct an approximative inverse to the Fréchet derivative in
Section 3.3, before everything is assembled to provide the desired estimate in the
final Section 3.4.
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3.1. General outline and auxiliary results. For convenience of notation in the
subsequent discussion, for fixed parameters and u we abbreviate the Fréchet deriv-
ative of F by

Lv = DuF (λ, σ, µ, u)[v] , L ∈ L(X,Y ) , with X = H2
, Y = H−2

. (15)

Standard results imply that L is a bounded linear operator L ∈ L(H2
,H−2

), which
explicitly is given by

Lv = −∆(∆v + λ f ′(u+ µ)v)− λσv . (16)

More precisely, note that since the nonlinearity f is twice continuously differen-
tiable, and in view of Sobolev’s imbedding recalled in (11), the function f ′(u + µ)
is continuous on Ω, which makes the product λf ′(u + µ)v an L2(Ω)-function, and

therefore −∆(λf ′(u+ µ)v) ∈ H−2
. We will also use the abbreviation

q(x) = λf ′(u(x) + µ) . (17)

As mentioned earlier, the constructive implicit function theorem crucially relies
on being able to find a bound K such that ‖L−1‖ ≤ K. Our goal is to do so
by using a finite-dimensional approximation for L, since that can be analyzed via
rigorous computational means. Our finite-dimensional approximation for L is given
as follows. For fixed N ∈ N define the finite-dimensional spaces

XN = PNX and YN = PNY ,

where the projection operator is given in (13). Define LN : XN → YN by

LN = PNL|XN . (18)

Let KN be a bound on the inverse of the finite-dimensional operator LN , i.e.,
suppose that ∥∥L−1

N

∥∥
L(YN ,XN )

≤ KN , (19)

where the spaces XN and YN are equipped with the norms of X and Y , respectively.
We will discuss further details on appropriate coordinate systems and the actual
computation of both LN and KN in Section 3.2. Our main result for this section is
as follows.

Theorem 3.1 (Derivative inverse estimate). Assume there is a constant τ > 0 and
an integer N ∈ N such that

1

π2N2

√
K2
N ‖q‖2∞ + C2

b

1 + π4

π4
‖q‖2H2 ≤ τ < 1 ,

where KN and q are defined in (19) and (17), respectively. Then the derivative
operator L in (16) satisfies∥∥L−1

∥∥
L(X,Y )

≤ max(KN , 1)

1− τ
.

Before we begin to prove this main theorem, we state a necessary result which is
based on a Neumann series argument to derive bounds on the operator norm of an
inverse of an operator. This is a standard functional-analytic technique, which we
state here for the reader’s convenience. A proof can be found in [30, Lemma 4].
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Proposition 3.2 (Neumann series inverse estimate). Let A ∈ L(X,Y ) be an arbi-
trary bounded linear operator between two Banach spaces, and let B ∈ L(Y,X) be
one-to-one. Assume that there exist positive constants %1 and %2 such that

‖I − BA‖L(X,X) ≤ %1 < 1 and ‖B‖L(Y,X) ≤ %2 .

Then A is one-to-one and onto, and

‖A−1‖L(Y,X) ≤
%2

1− %1
.

In subsequent discussions, we will refer to B as an approximate inverse.

We are now ready to proceed with the proof of the main result of the section,

Theorem 3.1. For this, we fix all parameters, as well as u ∈ H2
. Our goal is to prove

that L is one-to-one, onto, and has an inverse whose operator norm is bounded by
the value K = max(KN , 1)/(1− τ).

3.2. Finite-dimensional projections of the linearization. In this section, we
consider LN , the finite dimensional projection of the operator L. The linear
map LN is tractable using rigorous computational methods, since calculating a
finite-dimensional inverse is something that can be done using numerical linear
algebra. To derive LN in more detail, we recall the definitions of the following
projection spaces, all of which are Hilbert spaces:

X = H2
, XN = PNX , X∞ = (I − PN )X ,

Y = H−2
, YN = PNY , Y∞ = (I − PN )Y .

Recall that in (18) we defined LN : XN → YN via LN = PNL|XN . In order to work
with this operator in a straightforward computational manner, we need to find its
matrix representation. Since both XN and YN have the basis ϕk for all k ∈ Nd0
with 0 < |k|∞ < N , one obtains such a matrix B = (bk,`) ∈ R(Nd−1)×(Nd−1) via
the definition

bk,` = (Lϕ`, ϕk)L2 = (LNϕ`, ϕk)L2 ,

where k, ` ∈ Nd0 satisfy 0 < |k|∞ < N and 0 < |`|∞ < N .
The above matrix representation characterizes LN on the algebraic level in the

following sense. If we consider a function vN ∈ XN , introduce the representations

vN =
∑

k∈Nd0 , 0<|k|∞<N

αkϕk(x) and LNvN =
∑

k∈Nd0 , 0<|k|∞<N

βkϕk(x) ,

and if we collect the numbers αk and βk in vectors α and β in the straightforward
way, then we have

β = Bα .

This natural algebraic representation has one drawback. We would like to use the
regular Euclidean norm on real vector spaces, as well as the induced matrix norm,
to study the L(XN , YN )-norm of LN . To achieve this, we recall Lemma 2.2 which
shows that the collection {κ−1

k ϕk(x)} with k as above is an orthonormal basis in
XN ⊂ X, and {κkϕk(x)} is an orthonormal basis in YN ⊂ Y . Thus, we need to use
the representations

vN =
∑

k∈Nd0 , 0<|k|∞<N

α̃kκ
−1
k ϕk(x) and LNvN =

∑
k∈Nd0 , 0<|k|∞<N

β̃kκkϕk(x)
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instead of the ones given above. In order to pass back and forth between these two
representations we define the diagonal matrix

D =


κ1 0 · · · 0

0 κ2
. . .

...
...

. . .
. . . 0

0 · · · 0 κN−1

 .

One can easily see that on the level of vectors we have

α = D−1α̃ and β = Dβ̃ , and therefore β̃ = D−1BD−1α̃ .

In view of Lemma 2.2 one then obtains

‖LN‖L(XN ,YN ) = ‖B̃‖2 with B̃ = D−1BD−1 ,

where ‖ · ‖2 denotes the regular induced 2-norm of a matrix. Moreover, one can
verify that we also have the identity∥∥L−1

N

∥∥
L(YN ,XN )

=
∥∥∥B̃−1

∥∥∥
L2

. (20)

In other words, using this formula, we can use interval arithmetic to establish a
rigorous upper bound on the norm of this finite-dimensional inverse.

So far our considerations applied to any bounded linear operator between the
spaces X and Y . Specifically for the linearization of the diblock copolymer equation
we can derive an explicit formula for the matrix entries bk,`. Recall that ϕk as
defined in (5) is an eigenfunction for the negative Laplacian −∆ with eigenvalue κk.
Therefore, for all multi-indices k, ` ∈ Nd0 with 0 < |k|∞ < N and 0 < |`|∞ < N one
obtains

bk,` = (Lϕ`, ϕk)L2 = (−κ2
k − λσ)(ϕk, ϕ`)L2 − (∆(λf ′(u+ µ)ϕ`), ϕk)L2

= (−κ2
k − λσ)δk,` − (∆(qϕ`), ϕk)L2

= (−κ2
k − λσ)δk,` − (qϕ`,∆ϕk)L2

= −
(
κ2
k + λσ

)
δk,` + κk (qϕ`, ϕk)L2 . (21)

The above formula explicitly gives the entries of the matrix B. For our computer-
assisted proof, we are however interested in the scaled matrix B̃ = D−1BD−1. One
can immediately verify that its entries b̃k,` are given by

b̃k,` = −
(

1 +
λσ

κ2
k

)
δk,` +

1

κ`
(qϕ`, ϕk)L2 with q(x) = λf ′(µ+ u(x)) . (22)

In view of (20), this formula will allow us to bound the operator norm of the inverse
of the finite-dimensional projection LN using techniques from interval arithmetic.

3.3. Construction of an approximative inverse. The crucial part in the deriva-
tion of our norm bound for the inverse of L is the application of Proposition 3.2. For
this, we need to construct an approximative inverse of this operator. Since this con-
struction has to be explicit, we will approach it in two steps. The first has already
been accomplished in the last section, where we considered a finite-dimensional
projection of L, which can easily be inverted numerically. In this section, we com-
plement this finite-dimensional part with a consideration of the infinite-dimensional
complementary space. For this, we refer the reader again to the definition of the
matrix representation B in (21). As N → ∞, this representation leads to better
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and better approximations of the operator L. Note in particular that the entry bk,`
is the sum of two terms. The first of these is a diagonal matrix, and its entries
clearly dominate the second term in (21). We therefore use the inverse of the first
term in order to complement the inverse of LN .

To describe this procedure in more detail, suppose that the function v ∈ Y is
given by

v =
∑

k∈Nd0 , |k|∞>0

αkϕk(x) = vN + v∞ ∈ YN ⊕ Y∞ ,

where we define

YN = PNY and Y∞ = (I − PN )Y .

Using this representation the approximative inverse S ∈ L(Y,X) of L ∈ L(X,Y ) is
defined via the formula

Sv = L−1
N vN −

∑
k∈Nd0 , |k|∞≥N

αk
κ2
k + λσ

ϕk .

In addition, consider the operator T = S|Y∞ , i.e., let

T
∑

k∈Nd0 , |k|∞≥N

αkϕk = −
∑

k∈Nd0 , |k|∞≥N

αk
κ2
k + λσ

ϕk .

One can easily see that T : Y∞ → X∞ = (I − PN )X is one-to-one and onto, and in
fact we have the identity

T−1
∑

k∈Nd0 , |k|∞≥N

αkϕk = −
∑

k∈Nd0 , |k|∞≥N

(
κ2
k + λσ

)
αkϕk ,

which can be rewritten in the form

T−1v∞ = −
(
∆2v∞ + λσv∞

)
. (23)

Also, from the definition of S we get the alternative representation

Sv = L−1
N vN + Tv∞ . (24)

To close this section, we now derive a bound on the operator norm of S, since this
will be needed in the application of Proposition 3.2. As a first step, we show that
‖Tv∞‖X ≤ ‖v∞‖Y for all y∞ ∈ Y∞, which follows readily from∥∥∥∥∥∥T

∑
k∈Nd0 , |k|∞≥N

αkϕk

∥∥∥∥∥∥
2

X

=

∥∥∥∥∥∥
∑

k∈Nd0 , |k|∞≥N

αk
κ2
k + λσ

ϕk

∥∥∥∥∥∥
2

H2

=
∑

k∈Nd0 , |k|∞≥N

α2
kκ

2
k

(κ2
k + λσ)2

≤
∑

k∈Nd0 , |k|∞≥N

α2
kκ

2
k

(κ2
k)2

=
∑

k∈Nd0 , |k|∞≥N

κ−2
k α2

k

=

∥∥∥∥∥∥
∑

k∈Nd0 , |k|∞≥N

αkϕk

∥∥∥∥∥∥
2

H−2

=

∥∥∥∥∥∥
∑

k∈Nd0 , |k|∞≥N

αkϕk

∥∥∥∥∥∥
2

Y

.
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This estimate in turn implies for all v = vN + v∞ ∈ YN ⊕ Y∞ the estimate

‖Sv‖2X = ‖L−1
N vN‖2X + ‖Tv∞‖2X

≤ ‖L−1
N ‖

2
L(YN ,XN )︸ ︷︷ ︸
≤K2

N

‖vN‖2Y + ‖v∞‖2Y ≤ max(KN , 1)2‖v‖2Y ,

where we used the definition of KN from (19). Altogether, we have shown that

‖S‖L(Y,X) ≤ max(KN , 1) . (25)

In other words, the operator norm of the approximate inverse S given in (24) can be
bounded in terms of the inverse bound for the finite-dimensional projection given
in (19). Furthermore, it follows directly from the definition of S that this operator
is one-to-one.

3.4. Assembling the final inverse estimate. In the last section we addressed
two crucial aspects of Proposition 3.2. On the one hand, we provided an explicit
construction for the approximative inverse S ∈ L(Y,X) of the Fréchet derivative L
defined in (15). On the other hand, we derived an upper bound on the operator norm
of S, which can be computed using the finite-dimensional projection LN of L. This
in turn provides the constant %2 in Proposition 3.2. In this final subsection, we focus
on the constant %1, i.e., we derive an upper bound on the norm ‖I−SL‖L(X,X), and
show how this bound can be made smaller than one. Altogether, this will complete
the proof of the estimate for the constant K in the constructive implicit function
theorem, which was given in Theorem 3.1.

Before we begin, recall the abbreviation q(x) = λf ′(u(x) + µ). From our
definitions of the operators L ∈ L(X,Y ), S ∈ L(Y,X), LN ∈ L(XN , YN ),
and T ∈ L(Y∞, X∞), as well as the projection PN , and using the additive rep-
resentation v = vN + v∞ ∈ YN ⊕ Y∞, we have the identity

Lv = (LNvN − PN∆(qv∞)) +
(
T−1v∞ − (I − PN ) ∆(qv)

)
, (26)

which will be derived in detail in the following calculation. Notice that the first
parentheses contain only terms in the finite-dimensional space YN , while the second
parentheses contain terms in Y∞. With this in mind, we have

Lv = −∆ (∆v + qv)− λσv

= −∆2vN −∆2v∞ − PN∆(qvN )− (I − PN )∆(qvN )

−∆(qv∞)− λσvN − λσv∞

=
(
−∆2vN − PN∆(qvN )− λσvN

)
−
(
∆2v∞ + λσv∞

)
−(I − PN )∆(qvN )−∆(qv∞)

= LNvN + T−1v∞ − (I − PN )∆(qvN )− PN∆(qv∞)− (I − PN )∆(qv∞)

= LNvN + T−1v∞ − PN∆(qv∞)− (I − PN )∆(qv) .

The first two lines follow just from the definitions, projections, and rearrangements
of terms. The third line is a consequence of (26) and (23). Finally, the fourth and
fifth lines involve only rearrangements using the projection operator.

Using the above representation (26) of the operator L which is split along the
subspaces YN and Y∞, we can now derive an expression for I − SL ∈ L(X,X).
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More precisely, we have

(I − SL)v = L−1
N PN∆(qv∞) + T (I − PN )∆(qv) , (27)

and this will be verified in detail below. Notice that in this representation, the
first term of the right-hand side lies in the finite-dimensional space XN , while the
second term is contained in the complement X∞. The identity in (27) now follows
from (24) and

SLv = L−1
N (LNvN − PN∆(qv∞)) + T

(
T−1v∞ − (I − PN )∆(qv)

)
= vN − L−1

N PN∆(qv∞) + v∞ − T (I − PN )∆(qv)

= Iv − L−1
N PN∆(qv∞)− T (I − PN )∆(qv) .

After these preparation, we can now show that the operator norm of I −SL can be
expected to be small for sufficiently large N . This will provide an estimate for the
constant %1 in Proposition 3.2, and conclude the proof of Theorem 3.1. In order
to show that ‖I − SL‖L(X,X) is indeed small, we separately bound the two terms
in (27) as∥∥L−1

N PN∆(qv∞)
∥∥
X
≤ A‖v‖X with A :=

KN‖q‖∞
π2N2

,

‖T (I − PN )∆(qv)‖X ≤ B‖v‖X with B :=
Cb
√

1 + π4 ‖q‖H2

π4N2
.

The first of these inequalities is established in the following calculation, which makes
liberal use of Sobolev embeddings and other established inequalities:∥∥L−1

N PN∆(qv∞)
∥∥
X
≤

∥∥L−1
N

∥∥
L(YN ,XN )

‖PN∆(qv∞)‖Y

≤ KN ‖PN∆(qv∞)‖H−2 ≤ KN ‖∆(qv∞)‖H−2

≤ KN‖qv∞‖H0 ≤ KN‖q‖∞ ‖(I − PN )v‖H0

≤ KN‖q‖∞
‖v‖H2

π2N2
=

KN‖q‖∞
π2N2

‖v‖X = A‖v‖X ,

where for the last inequality we used Lemma 2.8. The second estimate, the one
involving the constant B, is verified as follows, again with help from our previously
derived inequalities, in particular the fact that ‖T‖L(Y∞,X∞) ≤ 1 and Lemmas 2.4
and 2.8:

‖T (I − PN )∆(qv)‖X ≤ ‖(I − PN )∆(qv)‖H−2 ≤
‖∆(qv)‖H0

π2N2

=

∥∥P (qv)
∥∥
H2

π2N2
≤ ‖qv‖H

2

π2N2
≤ Cb‖q‖H2‖v‖H2

π2N2

≤ Cb‖q‖H2

π2N2
·
√

1 + π4

π2
· ‖v‖H2 = B‖v‖X .

Now that we have established these two inequalities, the proof of Theorem 3.1
can easily be completed using an application of Proposition 3.2. Specifically, the
inequalities which involve the constants A ands B combined with (27) imply that

‖I − SL‖L(X,X) ≤
√
A2 +B2 =

1

π2N2

√
K2
N‖q‖2∞ + C2

b

1 + π4

π4
‖q‖2H2 .
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We also know from (25) that ‖S‖X ≤ max(KN , 1). Therefore, we can directly apply

Proposition 3.2 with the constants %1 =
√
A2 +B2 ≤ τ < 1 and %2 = max(KN , 1),

and this immediately implies that the operator L ∈ L(X,Y ) is one-to-one, onto,
and the norm of its inverse operator is bounded via∥∥L−1

∥∥
L(Y,X)

≤ %2

1− %1
=

max(KN , 1)

1− τ
.

This completes the proof of Theorem 3.1.

4. Lipschitz estimates. In this section, our goal is to establish the Lipschitz
constants needed in hypotheses (H3) and (H4) required for Theorem 2.1, the con-
structive implicit function theorem. Namely, we need to establish Lipschitz bounds
for the derivatives of F with respect to both u and with respect to the continua-
tion parameter. We are considering single-parameter continuation, meaning that
we have three separate situations to discuss, corresponding to the three different
parameters λ, σ, and µ. Specifically, for p being one of these three parameters, for
a fixed parameter-function pair (p∗, u∗) ∈ R×X, and for fixed values of dp and du,
we assume that |p− p∗| ≤ dp, and ‖u− u∗‖X ≤ du. Furthermore, by a slight abuse
of notation we drop the parameters different from p from the argument list of F
in (9). Our goal in the current section is to obtain tight and easily computable
bounds on the constants M1 through M4 in the following two formulas:

‖DuF (p, u)−DuF (p, u)‖L(X,Y ) ≤ M1 ‖u− u∗‖X +M2 |p− p∗| ,
‖DpF (p, u)−DpF (p, u)‖L(R,Y ) ≤ M3 ‖u− u∗‖X +M4 |p− p∗| .

(28)

These bounds will be determined using standard Sobolev embedding theorems and
the constants from the previous section, for each of the three parameters λ, σ, and µ.
Notice that throughout this section, we always assume λ > 0 and σ ≥ 0, while the
mass µ could be a real number of either sign.

4.1. Variation of the short-range repulsion. We now state the Lipschitz es-
timates for the constructive implicit function theorem in the case where λ, the
short-range repulsion term, varies and the remaining parameters µ and σ are held
fixed.

Lemma 4.1 (Lipschitz constants for variation of λ). Let λ∗ ∈ R and u∗ ∈ H2
be

arbitrary, and consider fixed positive constants dλ and du. Finally let λ and u be
such that

|λ− λ∗| ≤ dλ and ‖u− u∗‖H2 ≤ du .
Then the Lipschitz constants in (28) can be chosen as

M1 =
Cmf

(2)
max(λ∗ + dλ)

π2
, M2 =

‖f ′(u∗ + µ)‖∞
π2

+
σ

π4
,

M3 =
f

(1)
max

π2
+

σ

π4
, M4 = 0 ,

where f
(1)
max and f

(2)
max are defined as

f (p)
max = max

|%|≤‖u∗‖∞+Cmdu

|f (p)(%+ µ)| . (29)

These are well-defined since f is a C2-function.
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Proof. For our choice of constants dλ, du, reference parameter λ∗ ∈ R and func-

tion u∗ ∈ H2
, and for arbitrary v ∈ H2

, assume that |λ − λ∗| ≤ dλ and
‖u − u∗‖H2 ≤ du. We start by deriving expressions for both M1 and M2. No-
tice that we have

‖DuF (λ, u)[v]−DuF (λ∗, u∗)[v]‖H−2

≤ ‖∆(λf ′(u+ µ)v − λ∗f ′(u∗ + µ)v)‖H−2 + σ |λ− λ∗|‖v‖H−2

≤ ‖P (λf ′(u+ µ)v − λ∗f ′(u∗ + µ)v)‖H0 + σ |λ− λ∗| 1

π4
‖v‖H2

≤ ‖λf ′(u+ µ)v − λ∗f ′(u∗ + µ)v‖L2 +
σ

π4
|λ− λ∗| ‖v‖H2

≤ ‖λf ′(u+ µ)− λ∗f ′(u∗ + µ)‖∞ ‖v‖L2 +
σ

π4
|λ− λ∗| ‖v‖H2

≤
(

1

π2
‖λf ′(u+ µ)− λ∗f ′(u∗ + µ)‖∞ + |λ− λ∗| σ

π4

)
‖v‖H2 .

The first estimate follows straightforwardly from the definition of the Fréchet deriv-
ative (10), while the second one uses the fact that the Laplacian is an isometry (cf.

Lemma 2.5) and the Banach scale estimate between H−2
and H2

(cf. Lemma 2.6).

The third estimate follows from ‖P‖ = 1, as well as the fact that H0
and L2(Ω) are

equipped with the same norm. Finally, the fourth estimate is straightforward, and

the factor 1/π2 in the fifth estimate follows from v ∈ H2 ⊂ H0
and the estimate in

Lemma 2.6.
The above estimate shows that the operator norm of the difference of the two

Fréchet derivatives is bounded by the expression in parentheses. The first of these
two terms will now be estimated further. For this, note first that

‖λf ′(u+ µ)− λ∗f ′(u∗ + µ)‖∞

≤ |λ| ‖f ′(u+ µ)− f ′(u∗ + µ)‖∞ + |λ− λ∗| ‖f ′(u∗ + µ)‖∞ .

For fixed x ∈ Ω, we know from the mean value theorem that there exists a num-
ber ξ(x) between u(x) and u∗(x) such that

|f ′(u(x) + µ)− f ′(u∗(x) + µ)| ≤ |f ′′(ξ(x) + µ)| |u(x)− u∗(x)| .

Since ξ(x) is contained between u(x) and u∗(x) for all x ∈ Ω, the function ξ is
bounded. Combining this fact with the definition of Cm in (11) we get

‖ξ‖∞ ≤ ‖u∗‖∞ + ‖u− u∗‖∞ ≤ ‖u∗‖∞ + Cm‖u− u∗‖H2 ≤ ‖u∗‖∞ + Cmdu ,

and therefore

‖λf ′(u+ µ)− λ∗f ′(u∗ + µ)‖∞

≤ |λ| f (2)
max ‖u− u∗‖∞ + |λ− λ∗| ‖f ′(u∗ + µ)‖∞

≤ |λ| f (2)
max Cm ‖u− u∗‖H2 + |λ− λ∗| ‖f ′(u∗ + µ)‖∞ ,



EQUILIBRIUM VALIDATION BASED ON SOBOLEV EMBEDDINGS 623

where f
(2)
max is defined in (29). Incorporating this into the previous estimate, we see

that

‖DuF (λ, u)−DuF (λ∗, u∗)‖L(H2
,H−2

)

≤

(
Cm f

(2)
max (λ∗ + dλ)

π2

)
‖u− u∗‖H2 +

(
‖f ′(u∗ + µ)‖∞

π2
+

σ

π4

)
|λ− λ∗| .

This equation directly gives the values of the Lipschitz constants M1 and M2 given
in the statement of the lemma.

We now turn our attention to the remaining constants M3 and M4. The Fréchet
derivative of F with respect to λ is given by

DλF (λ, u) = −∆f(u+ µ)− σu .

Using almost identical steps as the calculation of M1 and M2, we get

‖DλF (λ, u)−DλF (λ∗, u∗)‖H−2

≤ ‖∆(f(u+ µ)− f(u∗ + µ))‖H−2 + |σ| ‖u− u∗‖H−2

≤ ‖f(u+ µ)− f(u∗ + µ)‖L2 +
σ

π4
‖u− u∗‖H2

≤ f (1)
max ‖u− u∗‖L2 +

σ

π4
‖u− u∗‖H2

≤

(
f

(1)
max

π2
+

σ

π4

)
‖u− u∗‖H2 .

Notice that in estimating the norm of this difference of Fréchet derivatives we use

the standard identification of L(R,H−2
) with H−2

. Furthermore, in the above
inequalities, we have made liberal use of the constructive Sobolev embedding re-
sults from the previous section. This gives the constants M3 and M4 given in the
statement of the lemma.

4.2. Variation of the long-range elasticity. We now establish Lipschitz con-
stants for the case when the parameter σ varies and both λ and µ are held fixed.

Lemma 4.2 (Lipschitz constants for variation of σ). Let σ∗ ∈ R and u∗ ∈ H2
be

arbitrary, and consider fixed positive constants dσ and du. Finally let σ and u be
such that

|σ − σ∗| ≤ dσ and ‖u− u∗‖H2 ≤ du .

Then the Lipschitz constants in (28) can be chosen as

M1 =
λ f

(2)
max Cm
π2

, M2 = M3 =
λ

π4
, M4 = 0 ,

where the value of f
(2)
max is defined in (29).

Proof. We start by computing the constants M1 and M2. Holding µ and λ > 0
fixed in the equation for DuF , we are able to follow very similar arguments as in
the λ-varying case, including the use of the Sobolev embedding formulas and the
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mean value theorem. The resulting estimate is given by

‖DuF (σ, u)[v]−DuF (σ∗, u∗)[v]‖H−2

≤ ‖∆(λ(f ′(u+ µ)− f ′(u∗ + µ))v)‖H−2 + λ |σ − σ∗| ‖v‖H−2

≤ λ ‖f ′(u+ µ)− f ′(u∗ + µ)‖∞ ‖v‖L2 + λ |σ − σ∗| ‖v‖H−2

≤

(
λ f

(2)
max Cm
π2

)
‖u− u∗‖H2 ‖v‖H2 +

(
λ

π4

)
|σ − σ∗| ‖v‖H2 .

This establishes constants M1 and M2 given in the lemma. We now turn our
attention to the constants M3 and M4. The derivative of F with respect to σ is
given by

DσF (σ, u) = −λu .

Therefore, once again Lemma 2.6, we get

‖DσF (σ, u)−DσF (σ∗, u∗)‖H−2 ≤ λ ‖u− u∗‖H−2 ≤ λ

π4
‖u− u∗‖H2 ,

which gives the constants M3 and M4 stated in the lemma.

4.3. Varying the relative proportion of the two polymers. In this final sub-
section we now consider the third parameter variation, namely that of µ.

Lemma 4.3 (Lipschitz constants for variation of µ). Let µ∗ ∈ R and u∗ ∈ H2
be

arbitrary, and consider fixed positive constants dµ and du. Finally let µ and u be
such that

|µ− µ∗| ≤ dµ and ‖u− u∗‖H2 ≤ du .

Then the Lipschitz constants in (28) can be chosen as

M1 =
λ f

(2)
max,µ Cm
π2

, M2 = M3 =
λ f

(2)
max,µ

π2
, M4 = λ f (2)

max,µ ,

where the constant f
(2)
max,µ is defined as

f (2)
max,µ = max

|%|≤‖u∗+µ∗‖∞+Cmdu+dµ

|f ′′(%)| . (30)

Proof. Using a similar format to the last two proofs, we consider λ > 0 and σ ≥ 0
to be fixed constants and only allow µ to vary. The we have

‖DuF (µ, u)[v]−DuF (µ∗, u∗)[v]‖H−2

≤ ‖∆(λ(f ′(u+ µ)− f ′(u∗ + µ∗))v)‖H−2

≤ λ‖f ′(u+ µ)− f ′(u∗ + µ∗)‖∞ ‖v‖L2

≤ λ

π2
‖f ′(u+ µ)− f ′(u∗ + µ∗)‖∞ ‖v‖H2 .

As in the previous calculations, we use the mean value theorem to bound the value
of the maximum norm ‖f ′(u + µ) − f ′(u∗ + µ∗)‖∞. To do so, note that if a real
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value % is between the two numbers u∗(x) + µ and u(x) + µ∗ for some x ∈ Ω, then
one has

|%| ≤ ‖u+ µ∗‖∞ + |µ− µ∗|

≤ ‖u∗ + µ∗‖∞ + ‖u− u∗‖∞ + |µ− µ∗|

≤ ‖u∗ + µ∗‖∞ + Cm‖u− u∗‖H2 + |µ− µ∗| ≤ ‖u∗ + µ∗‖∞ + Cmdu + dµ .

Thus, by the mean value theorem, followed by the use of our Sobolev embedding
results, one further obtains

‖f ′(u+ µ)− f ′(u∗ + µ∗)‖∞ ≤ f (2)
max,µ ‖(u+ µ)− (u∗ + µ∗)‖∞

≤ f (2)
max,µ

(
Cm‖u− u∗‖H2 + |µ− µ∗|

)
,

and combining this with our previous estimate we finally deduce

‖DuF (µ, u)−DuF (µ∗, u∗)‖L(H−2
,H2

)
≤ λ f

(2)
max,µ

π2

(
Cm‖u− u∗‖H2 + |µ− µ∗|

)
.

This gives the constants M1 and M2. We now look at the bounds for M3 and M4.
The derivative of F with respect to µ is given by

DµF (µ, u) = −∆(λf ′(u+ µ)) .

By similar reasoning as before, we then get

‖DµF (µ, u)−DµF (µ∗, u∗)‖H−2 = λ ‖∆(f ′(u+ µ)− f ′(u∗ + µ∗))‖H−2

≤ λ ‖f ′(u+ µ)− f ′(u∗ + µ∗)‖L2

≤ λ f (2)
max,µ ‖(u+ µ)− (u∗ + µ∗)‖L2

≤ λ f (2)
max,µ

(
1

π2
‖u− u∗‖H2 + |µ− µ∗|

)
.

This gives the constants M3 and M4 and completes the proof of the lemma.

With the above lemma we have completed the discussion of all of the Lipschitz
constant bounds for all three equation parameters.

5. Illustrative examples. In this section, we present some examples of validated
equilibrium solutions in order to illustrate the power of our theoretical validation
method. In particular, the theoretical methods developed above can be used to
produce a validated region in parameter cross phase space. We emphasize that this
section is only intended to present proof of concept. We have not made any attempt
to optimize our results or to add computational methods to speed up the code. For
example, the interval arithmetic package INTLAB [28] that we have used is not
written in parallel, and we have not attempted to parallelize any of our algorithms.
As another example, in the past we have found that careful preconditioning can
speed up the computation time significantly. Rather than add any of these tech-
niques at this stage, we have chosen to reserve numerical considerations for a future
paper, in which we will also address additional questions such as how to use these
methods iteratively to validate branches of solutions.

Under the hypotheses of Theorem 2.1, the constructive implicit function theorem,
for each δα and δx satisfying both parts of (4), we are guaranteed that the solution
is uniquely contained in the corresponding (δα, δx)-box, where α is the chosen of
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Figure 1. Ten sample validated one-dimensional equilibrium so-
lutions. For all solutions we choose λ = 150 and σ = 6. Three of
the solutions have total mass µ = 0, three are for mass µ = 0.1,
three for µ = 0.3, and finally one for µ = 0.5.

µ K N P δα δx

0 6.2575 89 λ 0.0016 0.0056
σ 2.9259e-04 0.0056
µ 2.8705e-06 0.0044

0.1 6.4590 104 λ 0.0011 0.0050
σ 2.5369e-04 0.0050
µ 2.5579e-06 0.0041

0.5 3.1030 74 λ 0.0052 0.0107
σ 0.0011 0.0106
µ 1.2871e-05 0.0092

Table 2. A sample of the one-dimensional solution validation
parameters for three typical solutions. In each case, we use σ = 6
and λ = 150. If we had chosen a larger value of N , we could
significantly improve the results.

the three parameters. In fact, if we fix δα small enough, then there are a range
of values of δx bounded below by the quadratic second equation and above by the
linear first equation. We can view the region bounded by the lower limit of δx
as an accuracy region, within which the equilibrium is guaranteed to lie; and the
region bounded by the upper limit of δx is a uniqueness region, which contains the
accuracy region, within which the solution is guaranteed to be unique. If δα is chosen
to be the point for which the line and curve in (4) intersect, then this is the largest
possible value of δα for which the theorem holds, and the accuracy and uniqueness
regions coincide. In our calculations we have validated using this maximal interval
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Figure 2. There is a tradeoff between high-dimensional calcula-
tions and optimal results. The top left figure shows how the bound
of K varies with the dimension of the truncated approximation
matrix used to calculate KN . These calculations are for dimension
one, but a similar effect occurs in higher dimensions as well. The
top right figure shows the corresponding estimate for δx, and the
bottom panel shows the estimate for δα, where α is each of the
three parameters. The size of the validated interval grows larger as
the truncation dimension grows, but with diminishing returns on
the computational investment.

in parameter space, and we have done the calculation of the interval size for each
of the three parameters.

We have validated ten different equilibrium solutions in one dimension, shown in
Figure 1. Some examples of the associated validation parameters are presented in
Table 2. Ideally, we are able to validate the largest possible (δα, δx)-box in which
we can guarantee that the solution exists. However, there is a tradeoff between
computational cost and optimal bounds. The most computationally costly part of
our estimates is the calculation of KN , the bound on the inverse of the linearization
of the truncated system. As depicted in Figure 2, the bounds on K, and corre-
spondingly on δx and δα, depend significantly on the value of N that is chosen for
the truncation dimension. Since our goal is to use these validations iteratively for
path following, we will not be able to refine our calculations each time. Therefore
as a rule of thumb for a starting point, we used the equation in Theorem 3.1 to
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Figure 3. Six of the seventeen validated two-dimensional equi-
librium solutions. For all seventeen solutions we use σ = 6. Five
of these solutions are for λ = 75 and µ = 0 (top left). The rest of
them use λ = 150 and µ = 0 (top middle and top right), µ = 0.1
(bottom left), µ = 0.3 (bottom middle), and µ = 0.5 (bottom
right).

(λ, µ) K N P δα δx

(75, 0) 21.1303 28 λ 1.6124e-04 0.0020
σ 6.1338e-05 0.0020
µ 5.9914e-07 0.0016

(150, 0.1) 30.1656 72 λ 1.1833e-05 4.7710e-04
σ 5.1514e-06 4.7858e-04
µ 4.4558e-08 4.2316e-04

Table 3. A sample of the two-dimensional validation parameters
for a couple of typical solutions. In all cases, we use σ = 6. Again as
in the previous table, we could improve results by choosing a larger
value of N , but in this case since N is only the linear dimension,
the dimension of the calculation varies with N2.

guess that we would have a successful validation for N ≈ C‖q‖1/2H2 , where C is
a fixed order one constant. In our calculations for the ten solutions, this results
in a dimension that varies. For these calculations we chose N values ranging be-
tween 50 and 200. The values of Mi become progressively larger as you go from λ
to σ to µ. This means that the corresponding values of δα are worse (i.e., smaller),
respectively, often by one or two orders of magnitude. However, the values of δx
for the three cases are of the same order. While we could increase N to improve
the estimates, Figure 2 shows that there are diminishing returns on computational
investment, and eventually at some N , we could not have done much better even
with a significantly larger value of N .

In two dimensions, we have validated seventeen different solutions for varying
parameter values. A representative sample are given in Figure 3, with some sample
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Figure 4. A three-dimensional validated solution for the param-
eter values λ = 75, σ = 6, and µ = 0.

(λ, σ, µ) K N P δα δx

(75, 6, 0) 22.6527 22 λ 0.1143e-04 0.5917e-03
σ 0.1707e-04 0.5955e-03
µ 0.0010e-04 0.4901e-03

Table 4. Validation parameters for a three-dimensional sample solution.

validation parameters presented in Table 3. Again here, there is a tradeoff between
computational speed and optimal results, but with all of the computations being
significantly longer due to the increased dimension; if the function u is encoded by a
Fourier coefficient array of size N×N , then the derivative matrix is of size (N2−1)2,
where the −1 is due to the fact that we have removed the constant term. As
in one dimension, the resulting δα values vary significantly, but the δx values do
not. Figure 4 and Table 4 show the details of a solution which is validated in
three dimensions, with much the same observed behavior. Three-dimensional result
validation requires a much larger computational effort, since if the function u is
given by a Fourier coefficient array of size N ×N ×N , then the derivative matrices
with inverse being approximated are of size (N3 − 1)2.

6. Conclusions. As outlined in more detail in the introduction, in this paper we
presented the theoretical foundations for validating branch segments of equilibrium
solutions for the diblock copolymer model. Our approach is based on using the natu-
ral Sobolev norms which are used in the study of the underlying evolution equation,
and they have been derived in all three relevant physical dimensions. As a side re-
sult, we obtained a method based on Neumann series to determine rigorous upper
bounds on the inverse Fréchet derivative of the diblock copolymer operator which
are of interest in their own right, as they are connected to the pseudo-spectrum of
this non-self-adjoint operator, see [31]. Moreover, we have demonstrated briefly in
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the last section how these results can be used to obtain computer-assisted proofs
for selected diblock copolymer equilibrium solutions.

While the present paper is a first step towards a complete path-following frame-
work for the diblock copolymer model in dimensions up to three, there are still a
number of issues that have to be addressed. On the theoretical side, one has to
develop a pseudo-arclength continuation method with associated linking conditions
which operates in an automatic fashion. This can be done by using the construc-
tive implicit function theorem as a tool, similar to the applications to slanted box
continuation and limit point resolution which were presented in [30, Sections 2.2
and 2.3]. In addition, the bottleneck in the current validation step is the estimation
of the norm bound for the inverse. Especially in two, and even more so in three
dimensions, one has to implement path-following in such a way that the estimate
does not have to be validated at every step. This can be accomplished via pertur-
bation arguments, and further speedups are possible by using the sparseness of the
involved matrices. However, all of these issues are nontrivial and lie beyond the
scope of the current paper — they will therefore be presented elsewhere.
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