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Abstract. A discontinuous change in the size of an attractor is the most easily observed type
of global bifurcation. More generally, an explosion is a discontinuous change in the set of
recurrent points. An explosion often results from heteroclinic and homoclinic tangency
bifurcations. We prove that, for one-dimensional maps, explosions are generically the
result of either tangency or saddle-node bifurcations. Furthermore, we give necessary and
sufficient conditions for generic tangency bifurcations to lead to explosions.

1. Introduction
For continuously varying one-parameter families of iterated maps in Rn , discontinuous
changes in the size of an attractor are the most easily observed type of global bifurcations,
including changes in the basin boundary (metamorphosis). These changes can occur as
the result of a change in stability of the recurrent set. A more general situation occurs
when discontinuous changes in attractors occur as the result of a discontinuous change in
the size of the recurrent set itself. Such a global bifurcation is called an explosion. For
the last several years, we have been studying explosions and their properties, including a
classification of explosions at heteroclinic tangencies for planar diffeomorphisms [1], and
more recently a numerical study of the statistical properties of a certain kind of explosion
that occurs in dimension three and higher [2]. The first major result in this paper is a full
classification of which types of tangencies give rise to explosions for interval maps, a result
which we think is important and new.

Our research, as well as that of many others [14, 24], has been guided by a 1976
conjecture of Newhouse and Palis [19]. (See also the restatements in [10, 21].) For
over thirty years, this conjecture has managed to elude proof. The conjecture says that
a first bifurcation of a Morse–Smale system is generically either the result of a non-
hyperbolic periodic orbit, or the result of a tangency between stable and unstable manifolds
of fixed or periodic orbits. We make the following reformulation of this conjecture for
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global bifurcations: for generic planar diffeomorphisms, all explosions occur through the
following two local bifurcations: saddle-node bifurcations and tangency bifurcations. The
second major result of this paper is that the the analogous conjecture is true for generic
smooth interval maps. This is in contrast with a recent result of Horita et al [14], showing
that in a probabilistic sense, the Newhouse–Palis conjecture is not true for circle maps. In
a broader sense, we are hopeful that the insight gained from the one-dimensional case will
give rise to insights leading to a better understanding of explosions in two dimensions.

It is clear that an isolated saddle-node bifurcation for either a fixed point or periodic
orbit gives rise to a local explosion, since new periodic points appear. However, in many
cases in both one and higher dimensions, a saddle-node bifurcation also gives rise to a
global bifurcation. The set of recurrent points changes discontinuously as the parameter is
varied at points not contained in the saddle-node periodic orbit. For example, the period
three window in the chaotic attractor for the logistic map corresponds to an explosion: for
parameter values less than a bifurcation value, there is a global attractor which comprises
the full recurrent set. It consists of an interval. After the bifurcation parameter, the global
attractor consists only of a period three orbit, and the full recurrent set is a nowhere dense
Cantor set within the attractor interval. An explosion occurs at the bifurcation parameter,
and it is due to a saddle-node bifurcation at a point inside the global attractor. Saddle-node
bifurcations on invariant circles are another well-studied example of this phenomenon.

In all dimensions, explosions due to a homoclinic or a heteroclinic bifurcation
essentially occur due to the creation of a homoclinic tangle when stable and unstable
manifolds intersect transversally. In one and two dimensions, the transition between
no intersection and transverse intersections involve tangencies between the stable and
unstable manifolds of fixed or periodic points (cf. [10]). For example, the Hénon map and
Ikeda map contain well-studied examples of explosions which are a result of homoclinic
bifurcations. In higher dimensions, such bifurcations can occur without tangencies [13].
Such a bifurcation leads to unstable dimension variability [2].

In our previous work for planar maps, we gave a precise classification for which types
of tangencies for heteroclinic cycles will result in explosions. We called this class of cycles
crossing cycles, because the different stable and unstable manifolds involved in the cycle
lie across the tangency from each other. We show here that the same results hold for
interval maps. Our main results are as follows.

THEOREM 1. (Explosions at tangencies) For generic one-parameter families of smooth
maps of the interval with homoclinic or heteroclinic tangencies (hypotheses H1–H6),
explosions occur if and only if there is an isolated crossing orbit.

THEOREM 2. (General explosion classification) Explosions within generic one-parameter
families of smooth maps of the interval (hypotheses H1–H3) are the result of either a
tangency between stable and unstable manifolds of fixed or periodic points or a saddle-
node bifurcation of a fixed or periodic point.

The paper proceeds as follows: in §2, we give basic definitions of explosions and
homoclinic tangencies. We are considering the particular recurrence class of chain
recurrent points, defined in this section. A motivation for the choice of setting is given in
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the section as well. In §3, we prove the explosions at tangencies theorem. In §4, we prove
the General explosion classification theorem. Our results rely on a very sophisticated and
well-developed theory for the dynamics of interval maps. We briefly state the necessary
background and results in the course of the proof.

2. Basic definitions
We now give some formal definitions of concepts described in the introduction. Let
f : (I × J )⊂ (R× R)→ R be a smooth one-parameter family of maps. We
exchangeably write two types of notation: f (x, λ)= fλ(x). For the definition of an
explosion it is more natural to use the concept of chain recurrence rather than recurrence.
The relationship between chain recurrence and other types of recurrence is discussed in
Remark 1 and in [10].

Definition 1. For an iterated function g, there is an ε-chain from x to y when there is
a finite sequence (z0, z1, . . . , zN ) such that z0 = x , zN = y, and d(g(zn−1), zn) < ε for
all n.

If there is an ε-chain from x to itself for every ε > 0 (where N > 0), then x is said to
be chain recurrent [11, 12]. The chain-recurrent set is the set of all chain-recurrent points.
For a one-parameter family fλ, we say (x, λ) is chain recurrent if x is chain recurrent
for fλ.

If for every ε > 0 there is an ε-chain from x to y and an ε-chain from y to x , then x and
y are said to be in the same chain component of the chain-recurrent set.

The chain-recurrent set and the chain components are invariant under forward iteration.
We now define an explosion bifurcation in the chain-recurrent set. Such a definition can be
formulated for the non-wandering set as well.

Definition 2. (Chain explosions) A chain-explosion point (x, λ0) is a point such that x is
chain recurrent for fλ0 , but there is a neighborhood N of x such that on one side of λ0

(i.e. either for all λ < λ0 or for all λ > λ0) no point in N is chain recurrent for fλ. (All
explosion points in this paper are chain explosions, so we sometimes drop the qualifier
chain.)

Remark 1. (Bifurcations and explosions) Explosions have been used in the past to study
global bifurcations for planar diffeomorphisms [1, 20–23]. They are closely related to the
loss of structural stability, since interesting dynamics only occur where there is recurrence.
If fλ0 is a structurally stable function in a one-parameter family on a compact set, then for
any x , (x, λ0) is not an explosion point. For smooth maps on compact domains, the chain-
recurrent set is upper semicontinuous, whereas the closure of the set of hyperbolic periodic
points is lower semicontinuous. If the sets are equal, then they change continuously [10].

In studying global bifurcations, the setting of explosions has an advantage over
considering structurally stable systems in that we are not restricted to considering first
bifurcations. Explosions can occur for example at the limit point of a sequence of
bifurcations. However, there are bifurcations which are not explosions. For example, a
point of period doubling is not an explosion point, although it is a bifurcation. In this
paper, we do not discuss local bifurcations.
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Our work considers chain explosions, whereas others have considered explosions in the
non-wandering set. These concepts are quite closely related: the set of periodic points
is contained in the recurrent set, which is contained in the non-wandering set. The non-
wandering set is contained in the chain-recurrent set. There are examples showing that all
the containments are strict. However, for a generic smooth diffeomorphism on a compact
manifold, the chain-recurrent set and the non-wandering set are both equal to the closure
of the set of hyperbolic periodic orbits (cf. [10, §10.2]).

Our choice of chain explosions as opposed to non-wandering explosions is motivated by
the following useful recharacterization of the property of upper semicontinuity: if (x, λ)
is a chain-explosion point, then x is chain recurrent for parameter λ. This is not true for
the non-wandering set or for the closure of the hyperbolic periodic points. Using this
property, in our technical arguments we are able to separate out the dynamics and the
parameter change, allowing us to confine many of our arguments to studying the chain-
recurrent set at the parameter for which the chain explosion occurs. Our investigation is
practically equivalent to studying maps (without parameters) for which the chain-recurrent
set is strictly bigger than the recurrent set, provided that the map is sufficiently nice that it
could be seen in generic one-parameter families.

Remark 2. In order to show that (y, λ) is not a chain-explosion point, it is sufficient to
show that y is in the closure of the hyperbolic periodic orbits for fλ.

Remark 3. In the above definition, at fλ0 , x is not necessarily an isolated point of the
chain-recurrent set. For example, at a saddle-node bifurcation on an invariant circle, the
chain-recurrent set consists of two fixed points prior to bifurcation and the whole circle at
and in many cases after bifurcation.

The chain-recurrent set is not invariant under backwards iteration of a non-invertible
map. Thus explosion points are not preserved under iteration, forward or backward. The
following remark states what is guaranteed by the fact that chain recurrence is preserved
under forward iteration.

Remark 4. Let (x, λ0) be a chain-explosion point for f . Specifically, there exists δ > 0
such that there is no chain-recurrent point in Bδ(x) for all λ < λ0, but x is chain recurrent
at λ0. Then f (x) is chain recurrent at λ0, but f (x) may also be chain recurrent for λ < λ0.
In contrast, if x−1 is a preimage of x , then there is a δ−1 > 0 such that no point in Bδ−1(x−1)

is chain recurrent for all λ < λ0. Note that x−1 may not be chain recurrent at λ0.

We now give definitions of homoclinic and heteroclinic points. Note that for a
diffeomorphism, homoclinic and heteroclinic orbits require the existence of saddle points
with stable and unstable manifolds of dimension at least one. Thus they can only occur
in dimension two or greater. However, for non-invertible maps, it is possible to have a
fixed or periodic point with a one-dimensional unstable manifold and a zero-dimensional
stable manifold. Marotto terms such points snap-back repellers [17]. It is not possible to
reverse these stable and unstable manifold dimensions; the existence of a homoclinic orbit
to an attracting fixed point requires a multivalued map [25]. The following definition of
homoclinic points for interval maps is depicted in Figure 1.
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yx0

FIGURE 1. A one-dimensional map with a repelling fixed point x0 where f ′(x0) > 0. The point y is a homoclinic
point, since f k (y)= x0 (for k = 1), and there exists a sequence of successive preimages of y converging to x0.

Definition 3. (Homoclinic points) Let f : R→ R be a smooth function with a repelling
fixed point x0. Let y be a point in the unstable manifold of x0 and an integer K > 0 such
that f K (y)= x0. Then y is a homoclinic point to x0. If x0 is periodic with least period m,
then the same definition applies by replacing f with f m .

Remark 5. If p is a hyperbolic fixed point, and the forward limit set of a point z in the
unstable manifold of p includes p, then there are two possibilities: (1) a finite iterate of z
is equal to p, (2) the limit set of z contains points other than p. In this second case, z is
not referred to as a homoclinic point, since its limit set is larger than just p. This case is
considered in later sections of this paper.

For diffeomorphisms, all orbits through homoclinic points are homoclinic orbits. For
one-dimensional maps, there may be many non-homoclinic orbits through a homoclinic
point.

Definition 4. (Homoclinic orbits) Let f, x0, and y be as in the above definition of a
homoclinic point. An orbit (z−k)

∞

k=0 is a homoclinic orbit through y if the following
conditions are satisfied: z0 = x0, z−K = y for some K , and for all k ∈ N , f (z−k)= z−k+1,
and limk→∞ z−k = x0.

Since the stable manifold of a homoclinic point is zero-dimensional, a homoclinic
tangency is a tangency of the graph of the map at a homoclinic point. Homoclinic
tangencies are depicted in Figures 2 and 3.

Definition 5. (Homoclinic tangencies) Let f, x0, y, and (z−k)
∞

k=0 be as in the above
definition of a homoclinic orbit. The point w = z−L is a homoclinic tangency point if
the graph of f is tangent to the horizontal line at w.

3. Explosions at homoclinic tangencies
This section classifies explosions occurring via homoclinic tangencies. The results are
stated for fixed points, but the same results hold for homoclinic orbits for periodic points
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FIGURE 2. A one-dimensional map with a repelling fixed point x0 with f ′(x0) > 0. The point w is a homoclinic
tangency point. For the particular tangency depicted here, w is contained in a non-crossing orbit (Definition 7),

and thus by Theorem 5 w is not an explosion point.

right
wyUx

0

FIGURE 3. In a homoclinic orbit as in Figure 2, the tangency point w does not need to be the immediate preimage
of the fixed point. Here, w is the second preimage of x0.

with least period m if f is replaced by g = f m . Throughout this section, we make the
following hypotheses. The first hypothesis is a smoothness assumption. The second
and third hypotheses are generic assumptions for one-parameter families. The fourth is
a notational convention for the existence of a homoclinic orbit. The fifth hypothesis is
generic for one-parameter families containing a homoclinic orbit.
H1 f : (I × J )⊂ (R× R) 7→ I is a C1 smooth family of C2 interval maps. For a fixed

parameter λ0, denote f0 := fλ0 .
H2 Assume H1. Assume that there are no intervals on which f0 is constant. Assume

also that critical points of f0 are non-flat.
H3 Assume H1. Assume that for f0, there is at most one of the following.

(a) A non-hyperbolic fixed point or periodic orbit. We assume generic behavior
as a parameter is varied. That is, any non-hyperbolic periodic point is a
codimension one period-doubling or saddle-node bifurcation.
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(b) One critical point which comprises a tangency between stable and unstable
manifolds of fixed points or periodic orbits. We assume generic behavior as
a parameter is varied. That is, with variation of parameter, the critical point
moves from above to below (or below to above) the placement of the periodic
point.

H4 Assume H1, and that for each λ, xλ is a repelling fixed point for fλ. Denote x0 := xλ0 .
Assume that for f0, y is homoclinic to x0.

H5 Assume H1 and H4. At λ= λ0, the homoclinic orbit containing y contains only one
critical point.

The following theorem says that if at a repelling periodic point a map has negative
derivative then no homoclinic points are explosion points.

THEOREM 3. (No explosions for orbits with negative derivatives) Assume that fλ is a
family of maps satisfying H1–H5, and f ′λ0

(x0) < 0, then (y, λ0) is not an explosion point.

Proof. We show that y is contained in the closure of the hyperbolic periodic points of fλ0 .

If y is contained in a homoclinic orbit without a tangency, then the homoclinic orbit is
preserved under perturbation, which automatically implies that (y, λ0) is not an explosion
point. Thus we assume that y is contained in a homoclinic orbit containing a homoclinic
tangency point w. As before, denote this orbit by (z−k)

∞

k=0, where z0 = x0, limk→∞ z−k

= x0, and K and L are such that y = z−K and w = z−L .

Fix a neighborhood U of y. By H5, there exists a sequence of neighborhoods Uk 3 z−k ,
such that: (i) UK ⊂U ; (ii) for k ≥ L , f0(Uk+1)=Uk and the map is injective; and
(iii) for 0≤ k < L , UL−k = f k

0 (UL). Let V1 = f L
0 (UL \ w)=U0 \ x0. By H2, V1 is an

interval on one side of x0. By assumption f ′0(x0) < 0, so if the {Uk} are sufficiently small,
V2 = f L+1

0 (UL \ w) is an interval on the other side of x0. That is, V1 ∪ V2 ∪ {x0} is a
neighborhood of x0.

For some sufficiently large J , UJ ⊂U0. In addition, f J (UJ )=U0. Thus for 0≤ k ≤ J ,
Uk contains a periodic point. Thus there is a periodic point in U . Since U was arbitrary,
there are periodic points p j with period n j such that lim j→∞ p j = y and lim j→∞ n j

=∞. By H3, for j sufficiently large, the periodic points are hyperbolic. Therefore (y, λ0)

is not an explosion point. 2

Now consider the positive derivative case. Let w be a homoclinic tangency point
contained in homoclinic orbit (z−k)

∞

k=0. Since the eigenvalue of x0 is positive, there is an
M sufficiently large that (z−k)

∞

k=M lies entirely on one side of x0. That is, the homoclinic
orbit converges to the fixed point along one branch of the unstable manifold. We denote
this by saying that the homoclinic orbit is contained in the local right or left branch of x0,
as formalized in the following definition.

Definition 6. (Two branches of the unstable manifold) Let x0 be a repelling fixed point for
f ∈ C2, with f ′(x0) > 0. The local left and right branches of the unstable manifold of x0

are disjoint. Define Uleft and Uright to be the respective unions of images of local left and
right manifold branches.
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FIGURE 4. The tangency point w is contained in Uleft ∩Uright, and is thus not an explosion point. However, the
preimages i and j of w are explosion points.

Remark 6. The union of Uleft and Uright is the entire unstable manifold of x0. By the
intermediate value theorem Uleft and Uright are intervals. If (Uleft ∩Uright) \ x0 is not
empty, then the intersection must contain either Uleft or Uright. For example, Uright may
contain points both to the left and to the right of Uleft. See Figures 4 and 5.

From the proof of Theorem 3, it is clear that to study chain explosions in homoclinic
orbits, it is sufficient to consider homoclinic orbits containing tangency points. We
formalize the notation in the following hypothesis:
H6 For a family satisfying H1 and H4, at f0, point w is a homoclinic tangency point to

x0 contained in (at least one) homoclinic orbit (z−k)
∞

k=0. Let L be such thatw = z−L .

LEMMA 1. (No explosions when manifold branches intersect) Assume H1–H6. Assume
that f ′0(x0) > 0 and that w ∈Uright. If for any neighborhood N 3 w, the sets f L

0 (N ) and
the local right branch of x0 contain points in common, then (w, λ0) is not an explosion
point.

Proof. The details of this proof are similar to the negative derivative case. Preimages
of any small neighborhood N of w are contracting and in the local righthand manifold
branch. Thus the Lth image of N includes a shrunk preimage of N . Therefore N contains
a periodic point, which by H3 and H5 is hyperbolic. Since N is arbitrary, (w, λ0) is not an
explosion point. 2

Remark 7. The theorem above is also true when Uright is replaced by Uleft.

THEOREM 4. Assume H1–H6, and that w is contained in Uright ∩Uleft. Then (w, λ0) is
not an explosion point.
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FIGURE 5. In this figure, w is a homoclinic tangency point contained in a crossing orbit. Thus w lies in Uright,
but not Uleft. By Theorem 6, w is an explosion point. As depicted here, the preimage z of w is also an explosion

point.

Proof. Take a small neighborhood N of w. f L
0 (N ) is either a local left or a local right

branch of x0. Since w is contained in both Uleft and Uright, there is a shrunk preimage of N
contained in f L

0 (N ). Therefore by Lemma 1, (w, λ0) is not an explosion point. 2

As mentioned in the introduction, in our previous work we gave a useful geometric
method of approaching chain explosions in homoclinic orbits in two and three dimensions,
termed crossing cycles. In two dimensions, we showed that a crossing cycle is necessary
and sufficient for a chain explosion to occur [1]. The analogous statements are true in
one dimension, as in the theorem below. Crossing and non-crossing orbits are shown in
Figures 5 and 2 respectively.

Definition 7. (Crossing orbits) Assume H1–H6. We call the homoclinic orbit (z−k) a
crossing orbit if for sufficiently large k, z−k ∈Uleft \Uright (respectively Uright \Uleft), and
for any interval M which is a local right (respectively left) branch of the unstable manifold
to x0, there is a sufficiently small neighborhood N of the tangency point z−L such that
f L
0 (N ) is contained in M . A homoclinic orbit that is not crossing is called a non-crossing

orbit.

Remark 8. Note that there is a geometric interpretation for a crossing orbit: if a crossing
orbit has a tangency point at w = z−1, the definition is equivalent to saying that
z−k ∈Uleft \Uright (respectively Uright \Uleft), and f0 is locally above (respectively below)
the horizontal line at z−1. If w = z−L for L > 1, then for g = f L−1

0 there is a tangency
point at z−1, and one can draw the same geometric conclusion for g at z−1.

THEOREM 5. (Explosions imply crossing orbits) If H1–H6 hold and (w, λ0) is an
explosion point, then (z−k)

∞

k=0 is a crossing orbit.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Apr 2009 IP address: 129.174.83.242

724 E. Sander and J. A. Yorke

Proof. If at λ= λ0 there is a non-crossing homoclinic orbit containing w, then under f L
0

the image of a small neighborhood of w contains a shrunk preimage of itself. The result
now follows from Lemma 1. 2

The results stated so far give necessary conditions for an explosion point. We now give
a converse to these.

The following theorem gives sufficient conditions for an explosion.

THEOREM 6. (Crossing bifurcations and explosions) Assume H1–H6. If every homoclinic
orbit containing w is a crossing orbit, then (w, λ0) is an explosion point.

Proof. Assume H1–H6 and that every orbit containing the homoclinic tangency point
w = z−L is a crossing orbit. The point w is a homoclinic point for f0, so w is chain
recurrent for λ= λ0. Any sufficiently small neighborhood N of w is such that f L

0 (N ) is
contained in the local left (respectively right) branch of x0. If w ∈Uleft ∩Uright, then there
exist a set of preimages q−k for k > L of w converging to x0 from the left (respectively
right) such that the union of (q−k) for k > L and (z−k) for k ≤ L forms a non-crossing
orbit, contradicting our hypothesis. Therefore either w ∈Uright \Uleft or w ∈Uleft \Uright.
For specificity, let w ∈Uright \Uleft. Since Uright is an interval, any neighborhood N of w
contains points in Uright other than w. Choose N sufficiently small such that under f L

0 ,
the image of N is contained only in the local left branch of x0. Note that Uright is forward
invariant. Thus there are points in f L

0 (N ) contained in Uleft ∩Uright \ {x0}.
By Remark 6, since Uleft ∩Uright contains points other than x0, either Uleft ⊂Uright or

Uright ⊂Uleft. Sincew is contained in Uright but not in Uleft, Uleft ⊂Uright, and the inclusion
is strict. Thus the right endpoint of Uleft is x0. Furthermore, no points in the interior of Uleft

map to x0 under f0, since that would imply a second simultaneous homoclinic tangency,
violating H3b.

Now consider the left endpoint xL of Uleft. Since Uleft is forward invariant, f0(xL)

∈Uleft. This leaves two possibilities.
(i) xL maps into the interior of Uleft. If this is the case, there is a neighborhood of xL

which also maps into Uleft.
(ii) xL is a fixed point. In this second case, since there is already a homoclinic tangency

at w, H3 implies that xL is a hyperbolic fixed point. We assume xL is a repelling fixed
point (to get a contradiction). Specifically, we will show in the next paragraph that in this
case, there is a critical point in Uleft mapping onto xL . That means there is a heteroclinic
tangency between x0 and xL . This is a contradiction, since w was assumed (H3) to be the
only tangency point between stable and unstable manifolds. Therefore, we can conclude
that if xL is a fixed point, then it is an attracting fixed point.

Here is the proof that if xL a repelling fixed point then there is a critical point in Uleft

mapping to xL : if a point r in the interior of Uleft maps onto xL , then r is a critical
point. Specifically, since Uleft is forward invariant, a neighborhood of r maps to the
local right branch of xL . If no such r exists, then any interval of the form (x0 − a, x0)

contains a sequence of points ck such that limk→∞ f k
0 (ck)= xL . The limit approaches

xL from the right since xL is the left endpoint of a forward-invariant set. Since xL is
assumed to be a repelling fixed point, we know that there is an interval (xL , xL + b)
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which is monotone increasing under f0. This implies that for k sufficiently large, there
is a minimum jk ≥ 1 such that f jk+1

0 (ck) > f jk
0 (ck), and f jk

0 (ck)≤ f k
0 (ck). The latter

condition implies that limk→∞ f jk
0 (ck)= xL . Note that since jk is the minimum such

value, f jk−1
0 (ck) > f jk

0 (ck). Therefore f jk−1
0 (ck) is not in (xL , xL + b). There is a

convergent subsequence of f jk−1
0 (ck). Call the limit point q. Then f0(q)= xL , but q 6= xL .

Thus there is a critical point in the interior of Uleft mapping to xL .
(iii) There appears to be a third possibility for xL : f0(x0)= x0. In the setting of this

theorem, this third possibility cannot occur by the following argument: as in (ii), if a point
r in the interior of Uleft is such that f0(r)= xL , then r is a critical point. Since xL is a
homoclinic point, this is ruled out since it would be a simultaneous homoclinic tangency.
Assume there is no such r . Since xL is an endpoint of Uleft, there is a sequence of points
ck in the interior of Uleft such that f0(ck) converges to xL . A convergent subsequence of ck

exists, and has a limit point r such that f0(r)= xL . Unlike in (ii), xL is not a fixed point,
so no fancy argument is needed to show that r 6= xL (and r 6= x0). Therefore r is in the
interior of Uleft, which contradicts our assumption. This implies that (iii) cannot happen.

So far we have shown that either (i) there is an infimum value of xL in Uleft, and xL maps
into the interior of UL or (ii) xL is an attracting fixed point. In either case, for λ close to λ0,
there is a continuation of the left endpoint of Uleft, which we denote xλL . In case (i), there is
a continuation of the local infimum value xλI . In case (ii), there is a continuation of the fixed
point which we denote also by xλI (since the two cases do not appear at the same time).
The interior of Uλ

left for each λ is contained in the interval [xλI , xλ0 ]. This is clear in case
(i). In case (ii), xL is attracting, and at λ0 there are no critical points mapping to xL from
inside of Uleft. Thus small perturbations of the map have the same property. Therefore for
small ε > 0, no ε-chains leave the interval [xλI , xλ0 ] to the left. In fact, since x0 is repelling
with no tangency points in Uleft, there exists a δ0 > 0 such that for any sufficiently close λ,
for all δ < δ0, there is an ε > 0 such that no ε-chains leave [xλI , xλ0 − δ].

We have assumed that w is a generic and unique homoclinic tangency point for f0.
Therefore for λ near λ0 prior to tangency, f L

0 (N ) is contained in the interior of the local left
branch and not in the local right branch of x0. Thus for some δ < δ0, f L

λ (N ) is contained
in [xλI , xλ0 − δ]. This implies that there is an ε > 0 such that no ε-chains carry points from
N to itself. Thus (w, λ0) is an explosion point. 2

We are interested not only in explosion points which are themselves tangency points, but
also in explosion points far from tangencies which are caused by tangencies. Theorem 3
contained such a result, but the other results were specifically about the tangency points.
It is now straightforward to combine the previous results with Remark 4 to get results
for general homoclinic points. Since the chain-recurrent set is invariant under forward
iteration, the image of a non-crossing tangency point is a non-explosion point. However,
there may be explosion points with iterates that are non-explosion points. For example,
Figure 4 shows points of explosion which are not tangency points but are preimages of
tangency points.

THEOREM 7. (Explosions when manifold branches do not intersect) If H1–H6 hold, and
there exists a k∗ > 0 such that (z−k∗ , λ0) is an explosion point, then the orbit (z−k) is a
crossing orbit.
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Proof. If the orbit is a non-crossing orbit, then there are hyperbolic periodic orbits limiting
on every point in the orbit. 2

THEOREM 8. If H1–H6 hold, and (w, λ0) is an explosion point, then any pre-image z−k

in the homoclinic orbit of w is such that (z−k, λ0) is an explosion point.

Proof. If (w, λ0) is an explosion point, then by Lemma 4, z−k is not chain recurrent for
λ < λ0. At λ0, z−k is contained in a homoclinic orbit, and thus chain recurrent. 2

Remark 9. This theorem only mentions preimages of w which are contained in a
homoclinic orbit at λ0. There may be other preimages of w which are not contained in
any homoclinic orbit, and are thus not chain recurrent at λ0.

Remark 10. Assume H1–H6, and that at λ0 the tangency point w is contained exclusively
in one manifold branch of x0. Then at λ= λ0, either tangency point w ∈Uright, and Uleft

contains no tangencies to fixed points or periodic orbits, or tangency point w ∈Uleft, and
Uright contains no tangencies to fixed points or periodic orbits. This follows from the fact
that w is only contained in one of Uleft and Uright, so by H3 there is no tangency in the
other manifold branch.

THEOREM 9. Assume H1–H6. Assume that for λ= λ0, (z−k)
∞

k=0 is a crossing orbit, butw
is also contained in some other homoclinic orbit (α−k)

∞

k=0 which is a non-crossing orbit.
Thus (w, λ0) is not an explosion point. Then the following statements hold:
(i) for all m > 0, ( f m(w), λ0) is not an explosion point;
(ii) if there exists J > L such that z−J is contained neither in (α−k)

∞

k=0 nor in any other
non-crossing orbit, then for all k > J , (z−k, λ0) is an explosion point.

Proof. The first statement holds since at λ0, any image of w is contained in (α−k)
∞

k=0,
which is a non-crossing orbit. Thus by Theorem 7, this image is not an explosion point.

Let J > L be as in Part (ii) of the theorem. For specificity, assume that z−J ∈Uright.
As in the proof of Theorem 6, since z−J is not contained in any non-crossing orbit, it is
not contained in Uleft. A neighborhood of z−J maps into Uleft under f J

0 . If the tangency
point w is in Uright \Uleft, then the rest of this proof is exactly the same as the proof of
Theorem 6, and we conclude that (z−J , λ0) is an explosion point.

If w ∈Uleft ∩Uright, then the penultimate forward orbit of w: (x−k), 1≤ k ≤ L is
contained in Uleft ∩Uright \ {x0}. Therefore, the options for xL include the two options
listed in the proof of Theorem 6, in addition to the third option that xL is included in the
forward orbit of w. In this case, for λ prior to tangency, the left endpoint of Uleft moves
such that it maps into the interior of Uleft. Let xλI denote the minimum preimage of the
continuation of the critical point of w in this third case.

Whether or not xL is in in the forward orbit of w, for all λ sufficiently near λ0 prior
to tangency, there exists a δλ > 0 such that for all δ < δλ, there is an ε > 0 such that no
ε-chain leaves [xλI , xλ0 − δ]. The rest of the proof that z−J is an explosion point is the
same as in Theorem 6. For all k > J , z−k has all the same key properties as z−J , implying
that (z−k, λ0) is an explosion point. 2

This completes the classification of when homoclinic points are explosion points.
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Unlike the planar case, in one dimension the heteroclinic case reduces to the homoclinic
case. That is, if there is a transverse heteroclinic cycle including an orbit from {p} to {q},
which are hyperbolic periodic orbits, then both periodic orbits must be repellers. Further,
the unstable manifold of {p} contains the unstable manifold of {q}. Since we assume only
one tangency, a heteroclinic tangency point is also a homoclinic tangency point.

4. General explosion classification
There are many previous results on the structure of ω-limit sets and chain-recurrent sets for
interval maps. Block and Coppel [5] showed that the chain-recurrent set for maps of the
interval can be classified as the set of points {x | x ∈ Q(x)}, where Q(x) is the intersection
of all asymptotically stable sets containing the limit set ω(x). They showed that Q(x)
is either an asymptotically stable periodic orbit, a set of asymptotically stable iterated
intervals, or a special type of set known as a solenoidal set. However, this classification is
not as useful as it would appear, since Q(x) is not the set of points in the chain component
containing x . Block [4] also proved that an interval map has a homoclinic point if and only
if it has a periodic point with period not a power of two. Block and Hart [6] improved
on this result to show the existence of a homoclinic point to a given power of two implies
a cascade of homoclinic bifurcations. Further, if a family of maps changes from zero to
positive entropy, then there is a cascade of homoclinic bifurcations. Of most relevance to
the topic of this paper are the works of Sarkovskii, Mañé [16], Blokh [7, 9], and Blokh,
Bruckner, Humke, and Smı́tal [8], where the detailed structure of all possible ω-limit sets
is studied. The ω-limit set can be a Cantor set known as a basic set (Definition 9). Another
interesting case occurs when the ω-limit set of a point is a limit of a period-doubling
cascade, known as a solenoid (Definition 10). See [3, 15] for a detailed characterization
of solenoids. Blokh [9] showed that for C2-smooth maps, ω-limit sets are either periodic
orbits, periodic transitive intervals, subsets of basic sets, or solenoids. We use this result
to systematically show that for all possible explosions, there are saddle-node or tangency
bifurcations.

The following definition describes points at which jumps in an ε-chain are required. We
call these points barricades, as they serve to obstruct orbits. For example, at the bifurcation
parameter, a saddle-node point blocks the points on one side from reaching the other side.

Definition 8. (Barricade) Assume H1 and H2. Let z be any point. Let Sε = ω(Bε(z)). A
point y ∈ limε→0 Sε is called a barricade for z if it is blocking the orbit of z. That is, let
Zε = ω(Bε(y)). Then limε→0 Zε contains points not contained in limε→0 Sε .

We consider a point such that the ω-limit set is a fixed point or periodic orbit.

THEOREM 10. Assume H1–H3. Assume that for f0, z is a point such that ω(z) is equal
to a fixed point or periodic orbit {p}, and {p} is a barricade. Then {p} is either non-
hyperbolic or is the image of a critical point.

Proof. Assume that p is a fixed point, since otherwise we can let g = f n
0 . Since p is

a barricade, p ∈ Sε , and limε→0 Zε 6= limε→0 Sε (using the notation from Definition 8).
This implies that p cannot be an attracting fixed point, since for an attracting fixed point
limε→0 Zε = p. Thus if p is hyperbolic, it must be repelling, meaning that z is a preimage
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of p. Define K by f K (z)= p. Since p is a barricade, for small ε, f K (Bε(z)) is an interval
on one side of p, implying that p is in the orbit of a critical point. 2

The previous theorem only indicates that a critical point exists. It still remains to be
shown that the critical point is actually a homoclinic or heteroclinic point. We use the fact
that all ω-limit sets for interval maps have been classified. The following theorem is useful
in the proof of several subsequent theorems.

THEOREM 11. Assume H1–H3, and that M is an invariant interval under f0, such that
for all ε > 0, there is an ε-chain from a point x ∈ M to a point y /∈ M. Then there is an
ε-chain from an endpoint e of M to y, where e is fixed or period two. Furthermore, if x
is not an endpoint of M, then either e is non-hyperbolic; or e is repelling, and there is an
orbit of a critical point in M mapping onto e.

Proof. Since f (M)= M , the only way for an ε-chain to exit M is through an ε-jump
across one of the endpoints. Call the endpoint e. Thus there is a chain from e to y. Assume
e does not map to itself or to the other endpoint of M . Then f (e) is contained in the interior
of M . But this means that no small ε-jump at e exits M , which is a contradiction. Thus e
can be chosen to be either a fixed point or a period two point.

The orbit of e cannot be attracting, since then there would not be ε-chains from e to any
other point. If the orbit of e is hyperbolic, then it is repelling, and there is a chain from x
to e. If the orbit of x includes e, and x is not an endpoint of M , then the orbit of x contains
a critical point, since M is invariant. If the orbit of x does not include e, then the limit set
of x contains more than just a repelling periodic orbit. 2

The following result shows what happens if the backward limit set of a point contains a
periodic orbit.

THEOREM 12. Assume H1–H3. Let {p} be a fixed point or periodic orbit for f0 which is
hyperbolic. Let z be a point such that for all ε > 0 there is an ε-chain from {p} to z, but
z is not in the unstable manifold of {p}. Then there is a homoclinic tangency to a periodic
orbit.

Proof. Assume without loss of generality that p is a fixed point (since otherwise, we can
use the same proof for an iterate of f0). Since p is hyperbolic, it is repelling. The unstable
manifold of p is an invariant interval, denoted U (p). Since z /∈U (p), there is a barricade
point for p. By Theorem 11, there must be a barricade point which is a periodic endpoint of
U (p), with a critical point in U (p) mapping to the endpoint. That is, there is a homoclinic
tangency point for the periodic endpoint. 2

Combining Theorems 10 and 12, we conclude that if an explosion occurs at a point
(z, λ0) such that ω(z) is equal to a periodic orbit, then there is either a saddle-node
bifurcation point or a tangency between stable and unstable manifolds. We now consider
more general ω-limit sets. First consider the case where the ω-limit set of a point is
an interval.

THEOREM 13. Assume H1–H3, for f0, z is such that ω(z) is an interval M, and that there
exists x ∈ M such that e is a barricade for z. Then e is an endpoint of the interval, e is
fixed or period two, and if e is hyperbolic, then there is a homoclinic tangency to e.
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Proof. Since ω(z)= M , f0 is transitive on M . Therefore the unstable manifold of any
repelling periodic orbit in M contains all of M . A barricade must not be in the interior of
ω(z). Thus e is an endpoint of M . The result now follows from Theorem 11. 2

We now consider the case of an ω-limit set that is contained in an invariant interval but
is nowhere dense.

Definition 9. (Basic set [7]) Assume H1. Let M =
⋃n

k=1 Ik be an n-periodic cycle of
intervals for a function f0. Define B(M, f0)= {x ∈ M | for every relative neighborhood
U of x in M, orb(U )= M}. If B(M, f0) is infinite, then it is called a basic set.

THEOREM 14. Assume H1, H2, and H3a. Assume that (z, λ0) is an explosion point, and
ω(z) is nowhere dense and is contained in a basic set B(M, f0). Then ω(z) is a periodic
orbit.

Proof. Assume that (z, λ0) is an explosion point, and that ω(z)⊂ B(M, f0). Assume that
z is contained in an interval complementary to B(M, f0).

Blokh [7] considers the class of interval maps such that if I is a wandering interval, then
ω(I ) is a periodic orbit. This class of maps includes smooth interval maps [7] with non-flat
critical points [18]. Under the assumption that ω(z) is a nowhere dense set contained in a
basic set B(M, f0), [7, Property C] shows that if a point z is not contained in B(M, f0)

but ω(z) is, then ω(z) is a periodic orbit for f0.
Assume ω(z) is non-periodic, meaning z is contained in the basic set. By [9], B(M, f0)

is contained in the closure of the periodic orbits for f0. Using H3a, there is a sequence of
hyperbolic periodic points converging to z. Thus (z, λ0) is not an explosion point. 2

By the above theorem combined with Theorems 10 and 12, if an explosion point has an
ω-limit set which is a basic set, then there is either a saddle-node point or a tangency. The
last possibility for an ω-limit set is a solenoid, as in the following definition.

Definition 10. (Solenoid) Assume H1. Let M j =
⋃n j

k=1 I j
k be a nested sequence of cycles

of intervals for a function f0 with least period n j , lim j→∞ n j =∞. Thus f
n j
0 (I j

1 )= I j
1 ,

n j is increasing, and for each j , I j+1
1 ⊂ I j

1 . If the set S =
⋂
∞

j=1 M j is nowhere dense,
then S is called a solenoid or Feigenbaum-like set.

Jiménez López has shown that solenoids are the boundary of chaos and order [15].
Blokh [9] demonstrated that solenoids and basic sets are disjoint. We prove the following
result.

THEOREM 15. Assume H1, H2, and H3a. Assume that (z, λ0) is an explosion point,
and ω(z) is a solenoid S. Then there is an infinite sequence of periodic orbits which
are barricades with associated tangencies.

Proof. Since solenoids and basic sets are closed, invariant, and disjoint, there is a
neighborhood of solenoid S containing no basic sets. By definition, there is an infinite
nested sequence of invariant cycles of intervals M j containing S. As before, for interval
maps such that a non-wandering interval I has ω(I ) periodic, Blokh [7] proved that the
periodic orbits are dense in a neighborhood of S, meaning that z is not contained in S. Thus
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for all j sufficiently large, for all ε > 0 there is an ε-chain from points in M j to z, but z is
not contained in M j . By Theorem 11, there exists e j , an endpoint of an interval the cycle
of M j which is periodic. By hypothesis H3a, for sufficiently large j , e j is hyperbolic.
Since for all ε > 0 there is an ε-chain from e j to z, e j is a repeller for large j . There is
an orbit of a critical point in M j mapping onto e j . Furthermore, z is not contained in the
unstable manifold of e j , since there is a nested sequence of invariant M j not containing z.
Theorem 12 implies that the critical point to e j is a point of homoclinic tangency. 2

Remark 11. If f0 has a finite number of homoclinic and heteroclinic tangencies, as
assumed in H3b, then the above theorem shows that there are no forward chains from
solenoid S to a point outside of S.

Remark 12. We have shown that there is either a tangency or a non-hyperbolic critical
point contained in the same chain component as z. Under a generic hypothesis (H3a), a
non-hyperbolic periodic orbit is either codimension-one saddle-node or period-doubling
bifurcation. In fact, such an orbit is not a period-doubling point, since the periodic orbit at
a period-doubling bifurcation point is attracting.

We now combine the results of this section to give a proof of the General explosion
classification theorem.

Proof of the General explosion classification theorem. Assume that (z, λ0) is an explosion
point. The only possibilities for ω(z) are a periodic orbit, a cycle of intervals, a nowhere-
dense basic set, and a solenoid. Above, we have shown that in any of these cases, there is
a periodic barricade point for z which is either non-hyperbolic, or there is a homoclinic or
heteroclinic tangency. In fact, the case of a solenoid is ruled out by H3b. By Remark 12, a
non-hyperbolic periodic orbit must necessarily be a saddle-node point. This completes the
proof the theorem. 2
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