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Abstract. The Hénon family has been shown to have period-doubling cas-
cades. We show here that the same occurs for a much larger class: Large
perturbations do not destroy cascades. Furthermore, we can classify the pe-
riod of a cascade in terms of the set of orbits it contains, and count the
number of cascades of each period. This class of families extends a general
theory explaining why cascades occur [5].
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1. Introduction

One of the most mysterious phenomena in nonlinear dynamics is period-doubling
cascades. Cascades never occur alone. Processes have infinitely many cascades if
they have one, and they are seen in a wide variety of numerical and experimental
investigations. As a rule of thumb, for systems that depend on a parameter, it
seems that as systems become more chaotic, we see period-doubling cascades. We
have taken a more austere view, that if a system is nonchaotic for very negative
values of its parameter and is fully chaotic in some sense for very large positive
parameter values, then for parameter values in between there are period-doubling
cascades, independent of how complicated the transition is from no chaos to full
chaos. By the period of a periodic orbit, we mean its least period.

A cascade is a special type of connected set of periodic orbits, connected in
the space of periodic orbits under the Hausdorff metric. As a first approximation
to a definition, we say a one-parameter family of maps f : R × Rn → Rn has a
period-k cascade if there is a (connected) path in R × Rn of periodic points such
that the set of their periods is {k, 2k, 4k, 8k, . . . } (not necessarily occurring in this
order, and listed without multiplicity). We restrict these paths to certain “non-
flip” periodic orbits. The set of periodic orbits can be a collection of complicated
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networks of periodic orbits, and this restriction prunes the network to manageable
simplicity. Specifically, flip orbits are those whose Jacobian matrix has an odd
number of real eigenvalues that are less than −1 and has none which are equal
to −1. Nonflip orbits are all the rest. Later, we restate this more formally. If the
cascade can be chosen so that its closure in R×Rn is not compact, then we call the
cascade unbounded. We have developed a theory which explains (and counts) the
occurrence of cascades under general conditions for generic one-parameter fami-
lies of n-dimensional maps for arbitrary n. In this paper, we show that a family
obtained by adding a generic arbitrarily large perturbation to the Hénon family
retains the same cascade structure as the unperturbed family.

The Hénon family

HA(x, y) =
(
A+By − x2

x

)
is a much studied dynamical example. In an early result in the field, Devaney and
Nitecki [1] showed that for any fixed nonzero B, as A varies from small to large,
the Hénon family forms a horseshoe. Specifically, all the interesting dynamics is
captured by looking at a certain rectangular region of the plane: For sufficiently
negative A there are no bounded trajectories, but for large positive A the in-
variant set in this region has dynamics of a Smale horseshoe. In particular, the
invariant set is a hyperbolic set with one expanding and one contracting direction,
and the dynamics on the set is topologically conjugate to the full shift on two
symbols. Both [2] and [6] showed that as the Hénon horseshoe forms, the family
has infinitely many cascades. We now show that this result holds for a broader
class of families. Some of the difficulties are hinted at in [3] which shows that the
familiar monotonicity of orbit creation in the one-dimensional quadratic map is
essentially never true for chaotic families of diffeomorphisms in the plane. Orbits
are destroyed as well as created as its parameter increases.

We now define the perturbations of the Hénon family that we will consider.
Note that the word perturbation is usually used to denote something small. In
this paper the perturbations can be artitrarily large, as long they are small in
comparison to the original Hénon family in the asymptotic limit as x, y, and A go
to infinity. We will investigate maps F : R× R2 → R2 of the form

F (A, x, y) =
(
A+By − x2 + g(A, x) + α1(A, x, y)

x+ α2(A, x, y)

)
. (1)

In each case, B is a fixed nonzero constant, and A is the bifurcation parameter.
The functions g and α = (α1, α2) satisfy conditions stated below.

The class of functions g permitted are given as follows: Fix β > 0. Define Gβ
for β > 0 to be the set of C∞ functions g : R2 → R such that for all (A, x) ∈ R2,

|g(A, 0)| < β and |∂g/∂x(A, x)| < β.

This class includes for example C∞ functions that are C1 bounded.
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We now describe the class of functions allowed for α. Fix r > 0 to be any
arbitrarily large constant. For sufficiently small δ > 0 depending on r, let

Ψ{δ,r} = {α : R× R2 → R2 ∈ C∞ : ‖α(A, x, y)‖1 < δ when ‖(A, x, y)‖ > r}
(where ‖ · ‖1 denotes the C1-norm). Notice that this class of perturbations has
no restrictions other than smoothness in the region where ‖(A, x, y)‖ < r. This
class includes for example all C∞ functions with compact support, since any C∞

function with compact support is contained in Ψ{δ,r} for some r. Why do we not
just assume α ≡ 0 outside a ball or radius r? Allowing α to be nonzero everywhere
means that that the set of allowable functions F is open in C∞. Thus there exists
a residual subset of this open set (the set depends on g) in which all periodic
orbit bifurcations are generic. (See Definition 5.) Generic bifurcations allow us to
describe the connected sets of periodic orbits, which is essential for our task.

Since the function α is uniformly bounded, we can find a constant β1 so that
for all (A, x, y) ∈ R3,

|g(A, 0)|+ |α(A, x, y)| < β1 and |∂g/∂x(A, x)| < β1.

In a slight abuse of notation, we will drop the subscript 1, and just refer to this
new larger constant as β.

We have chosen these perturbations so that they are dominated by the stan-
dard Hénon terms when A and x are large. In particular, for sufficiently large
A = A1 and sufficiently small δ > 0, the map F (A1, ·, ·) is topologically the same
as the Hénon map. We show that for A equal to any sufficiently large A1, any
nonflip orbit in the horseshoe will lie in a cascade, and no other orbit for that A1

is in the cascade.

Definition 1. Let f : R × Rn → Rn be a C∞ function. We write [p] for the orbit
of the periodic point p. If p is a periodic point for f(A, ·), then in a slight abuse
of terminology, we say that σ = (A, p) is a periodic point for F . We write [σ] or
(A, [p]) for the orbit. We denote the set of periodic orbits in R × Rn under the
Hausdorff metric by PO(f).

Let σ = (A, p) be a periodic point of period k of a smooth map G = f(A, ·).
We refer to the eigenvalues of σ or [σ] as shorthand for the eigenvalues of the Jaco-
bian matrix DGk(p). Of course all the points of an orbit have the same eigenvalues.
We say that [σ] is hyperbolic if none of its eigenvalues have norm 1.

Let [σ] be a period-k orbit for f . We call [σ] a nonflip orbit for f if [σ] has
an odd number of real eigenvalues less than −1 and no eigenvalues = −1.

We denote the set of all nonflip orbits in R×Rn under the Hausdorff metric
by POnonflip(f).

Definition 2. An open arc is a set which is homeomorphic to an open interval.

Definition 3. A (period-doubling) cascade of period m is an open arc in POnonflip(f)
with the following properties:

(i) The open arc contains orbits of period 2km for some positive integer m and
for every nonnegative integer k.
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(ii) The number m is the smallest integer for which this is true, and m cannot
be made smaller by making the open arc larger.

Let (pk) be the sequence of periods of the nonhyperbolic orbits, ordered so that
for each k, the k+1 orbit lies along the open arc between the k orbit and the k+2
orbit. Under our genericity hypotheses, it turns out that no period can occur in
the sequence infinitely many times. It follows that in at least one direction (k →∞
or k → −∞), limk pk =∞.

We say the cascade is unbounded if it does not lie in a compact set of R×Rn.

Even orbits for the two-shift. For any fixed k, consider a period-k orbit S of the
full shift on two symbols. This orbit is associated with a length-k sequence of two
symbols: S = (a1, . . . , ak), where each ak is equal to either the symbol −1 or +1,
and S is not periodic. We say that S is even if the associated finite sequence S has
an even number of −1’s (or more compactly, if

∏k
j=1 ak = 1).

For a map F (A, ·, ·) of the form in (1), define MaxInv(A) to be the union of
the trajectories such that all positive and negative iterates are bounded.

Our main theorem is as follows:

Theorem 4 (Cascades for large perturbations of Hénon families). Fix B 6= 0, β > 0,
and r > 0. Let g ∈ Gβ. For δ > 0, let α ∈ Ψ{δ,r}, and let F be as in (1). Then as
long as δ is sufficiently small (depending on r), for every sufficiently large A = A1

depending on β, r, and B, there is a residual set of α ∈ Ψ{δ,r} depending on the
function g and the constant B for which the following hold:

1. MaxInv(A1) is conjugate under a homeomorphism to a two-shift, and this
homeomorphism gives a one-to-one correspondence of the even symbol se-
quences with the nonflip orbits. (Hence for A1, we can without confusion
refer to a periodic orbit for F (A1, ·) as being even.)

2. Each unbounded cascade contains exactly one periodic orbit for F (A1, ·), and
it is an even orbit.

3. For each even orbit there is a unique unbounded cascade containing that orbit.
4. If an even periodic orbit is of period k, and k is odd, the cascade containing it

is a period-k cascade. If k is even, then the cascade containing it is a period-j
cascade, where k/j = 2m for some m.

In other words, corresponding to every even period-k symbol sequence S,
there is exactly one unbounded cascade of F that satisfies the following: At pa-
rameter value A1, the cascade contains a unique periodic orbit, and it is the unique
period-k orbit of F with the symbol sequence S.

The number of even period-k orbits. Note that the number of period-k points of
the two-shift for each k has been studied quite extensively, and is often referred
to as the ζ function. In some cases, it is possible to write an easy formula for the
number Γ(2, k) of even period-k orbits, as follows: There is one even fixed point,
and no even period-2 orbits. If the k is an odd prime, the number of even period-k
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orbits is (2k − 2)/(2k). In general, if k is odd, the number of even period-k orbits
is exactly half the number of period-k orbits.

In the general case, any positive integer k, let L(k) = Σ(Γ(2, j)) for all j < k
for which k/j is a power of 2. Of course L(k) = 0 if k is odd. Then

Γ(2, k) = (ζ(2, k)/k − L(k))/2.

See [5] for a detailed discussion.

2. Proof of Theorem 4

Let B, F , α and g be as in the statement of the theorem. Note that the assumptions
on g and α imply that for all (A, x, y) ∈ R3,

|g(A, x)|+ |α(A, x, y)| < β(1 + |x|).

Define s = s(A1) =
√
A1, and let Q = 2s. Let the square E be defined by

E = [−Q,Q] × [−Q,Q]. Assume A1 > r and A1 > Q. Additional lower bounds
will be placed on A1.

The proof of the theorem proceeds from the following steps:

Step 1: Horseshoe dynamics for large A1. Set α(A, x, y) ≡ 0. For A1 sufficiently
large and for δ > 0 sufficiently small, the following are true:

(1a) Periodic orbits in E. For all A < A1, all periodic orbits of F are contained
in the interior of E.

(1b) The two-shift. On MaxInv(A1), F is topologically conjugate to the full shift
on two symbols.

(1c) Hyperbolicity. F is hyperbolic on MaxInv(A1), with one expanding and one
contracting direction at each point.

(1d) Nonflip orbits. For A = A1, the nonflip period-k orbits of F are in one-to-one
correspondence with the even period-k orbits of the full shift on two symbols.

Step 2: Adding small perturbations. The results in Step 1 are not sensitive to
C1-small perturbations. Thus, they are still true when we add α(A, x, y) ∈ Ψ{δ,r}
for sufficiently small δ > 0, since we assume that A1 > r, implying that ‖α‖1 < δ
for A = A1.

Step 3: No orbits for small A0. For fixed A0 sufficiently negative (and in particular
A0 < −r), the map F has no periodic orbits.

Step 4: Cascades. Let α(A, x, y) be contained in a residual set of Ψ{δ,r} such that
all bifurcations of F are generic (generic bifurcations are defined below). Each
nonflip periodic orbit of F (A1, ·, ·) is contained in a unique unbounded cascade.
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Step 5: Period of the cascades. If k is an odd number, this unbounded cascade is
a period-k cascade of F . If k is an even number, then this unbounded cascade is
a period-j cascade of F , where the ratio k/j is a power of two.

Proof of Step 1: Horseshoe dynamics for large A1.

(1a) Periodic orbits in E and (1b) The two-shift. Let F be of the form in (1) with
α ≡ 0. Let L = [−Q,Q]. Let J1 = [−2s,−s/2], J2 = [s/2, 2s], J = J1 ∪ J2.

We have previously shown in [5] that for all sufficiently large parameter values
λ1, the quadratic map q(λ, x) = λ − x2 + h(λ, x), where |h| < β(1 + |x|), has the
following properties:

Q1. q(λ1, L \ J) contains no points of L.
Q2. There is an interval M in L such that for all λ ≤ λ1, each periodic orbit is

contained in M .
Q3. At λ1, q(λ1, Ji) maps diffeomorphically across L, where i = 1 or 2.

For sufficiently large A1, we get similar results for F = (F1, F2):

F1. For sufficiently large A1, F (A1, E \ {J ×L}) contains no points of E. This is
an immediate consequence of Q1 above, since F1(A1, x, y) < A1 + |B|Q− x2

inside E.
F2. For all A < A1, all periodic orbits are contained in the interior of E. This is

not immediate from the quadratic case. The proof is as follows. Let {(x1, y1),
. . . , (xk, yk)} be a periodic orbit at parameter A. Fix x to be the xi with the
maximum absolute value. Let y be the corresponding yi. Thus yi = xi−1. Let
x = xi+1. That is, F1(A, x, y) = x. Thus |y| < |x| and |x| < |x|. This implies
that

−|x| < F1(A, x, y) ≤ A− x2 + |B| |y|+ β(1 + |x|).
Since |y| < |x|, we have 0 ≤ (A + β) − x2 + |x|(|B| + β + 1). Let ρ =
(|B|+ β + 1)/2. Then

0 ≤ (A+ β) + ρ2 − (|x| − ρ)2.

Hence
|x| ≤ ρ+

√
A+ β + ρ2.

Note that this right-hand side is increasing in A. Since B, β, and thus ρ are
fixed, for A1 sufficiently large,

ρ+
√
A1 + β + ρ2 < 2

√
A1 = Q.

Thus as long as A ≤ A1, we have |x| < Q. Since x is the point of the orbit with
the maximum absolute value, this implies that the periodic orbit is contained
in the interior of E.

F3. At A = A1, for each fixed y, F1(A1, Ji×{y}) maps diffeomorphically across L.
This is immediate from Q3 above. In addition, F2(A1, Ji×L) = Ji. Therefore,
each Ji × L maps diffeomorphically, across E, and vertically staying inside
of E, such that the i = 1, 2 images are disjoint.
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(1c) Hyperbolicity. Assume√
A1 > β + |B|+ max{1, |B|}.

The determinant and trace of the Jacobian matrix of F are respectively −B and
−2x+ ∂g/∂x. For any point in J × L,

|−2x+ ∂g/∂x| > 2s− β = 2
√
A1 − β.

The assumption above on A1 implies that one eigenvalue for the Jacobian matrix
is contracting and the other expanding.

Define the stable and unstable cones respectively by

S+
c = {(ξ, η) : |ξ| ≥ c|η|}, S−c = {(ξ, η) : |ξ| ≤ c|η|}.

Then for A = A1 and any point in J × L, the Jacobian matrix DF maps S+
1 into

S+
N , where N =

√
A1−β−|B|, and DF−1 maps S−1 into S−N1

, where N1 = N/|B|.
To see this, let (ξ, η) ∈ S+

1 , and let (ξ1, η1) = DF (ξ, η). Then

(ξ1, η1) = ((−2x+ gx)ξ +Bη, ξ).

Thus
|ξ1|
|η1|
≥ (
√
A1 − β)|ξ| − |B| |η|

|ξ|
≥
√
A1 − β − |B| = N > 1.

Therefore DF maps S+
1 into the interior of itself. Likewise, let (ξ, η) ∈ S−1 , and

let (ξ−1, η−1) = DF−1(ξ, η). Then

|η−1|
|ξ−1|

=
1
|B|
|Bξ + (2x− gx)η|

|η|
≥ (
√
A1 − β)|η| − |B| |ξ|

|B| |ξ|

≥
√
A1 − β − |B|
|B|

= N1 > 1.

Therefore DF−1 maps S−1 into the interior of itself.
Thus the stable and unstable cones are mapped strictly inside themselves

and expanded respectively under the derivative and its inverse. Using the method
of cones (Corollary 6.4.8 in [4]), this guarantees that at A = A1, F is hyperbolic
on MaxInv(F ).

Putting this together, we find that at A1, F on MaxInv(F ) is hyperbolic and
topologically conjugate to the two-shift. Specifically, we know that MaxInv(F ) is
contained in {J1 ∪ J2} × L. The conjugacy codes a point by considering its bi-
infinite orbit. For any integer i, we code the ith point in the itinerary of an orbit
with a “1” if the ith iterate is in the left region J1 ×L, and with a “−1” if the ith

iterate is in the right region J2 × L.

(1d) Nonflip orbits. We now determine the nonflip orbits for F for A = A1. In
the left region J1 × L, DF has an expanding eigenvalue which is greater than 1,
whereas for the right region J2 ×L, DF has an expanding derivative which is less
than −1. Thus any period-k orbit [p] in J ×L is a nonflip orbit exactly when [p] is
in J2×L an even number of times. Thus by our conjugacy, there is the one-to-one
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correspondence between nonflip orbits of F on MaxInv(F ) and the even orbits for
the two-shift.

Proof of Step 2: Adding small perturbations. For large |A1|, we have established
hyperbolic dynamics on an invariant horseshoe in MaxInv(F ). All of this is robust
under sufficiently C1-small additive perturbations α(A1, x, y), since C1-small im-
plies that we can make both the function values and all the partial derivatives as
small as we want. Furthermore, as long as α(A, x, y) ∈ Ψ{δ,r} for any A ∈ [A0, A1],
α is C1-small for |(x, y)| > r > Q. Therefore MaxInv(F ) ⊂ E for all A ∈ [A0, A1].

Proof of Step 3: No orbits for small A0. From F2, it suffices to show that for
sufficiently negative A0, F (A0, E) ∩ E is empty. Note that for all (x, y) ∈ E,

F1(A0, x, y) = A0 +By − x2 + g(A0, x, y) + α1(A0, x, y)
< A0 + β + |B|Q+ β|x| − x2.

This quadratic in |x| has a maximum at |x| = β/2, implying that

F1(A0, x, y) < A0 + β + |B|Q+ β2/4.

Thus as long as A0 + β + (|B| + 1)Q + β2/4 < 0, F1(A0, x, y) < −Q for any
(x, y) ∈ E, implying that F (A0, x, y) is not contained in E.

Proof of Step 4: Cascades. In order to prove our theorem, we state the following
abstract results on the existence of cascades, from [5]:

Definition 5. Let f : R × Rn → Rn be C∞. Let U be an open subset of Rn+1 =
R× Rn, and let V be its closure. By periodic orbit bifurcation, we mean a change
(as a parameter is varied) in the local number of periodic orbits or a change in the
dimension of their unstable space. We refer to a periodic orbit bifurcation in U as
generic if it is one of the following three types:

• A generic saddle-node bifurcation.
• A generic period-doubling bifurcation.
• A generic Hopf bifurcation with no eigenvalues which are roots of unity.

In [5], we show that a residual set of one-parameter families have only generic
periodic orbit bifurcations. Let α(A, x, y) ∈ Ψ{δ,r} be such that our F has only
generic bifurcations.

We now define the periodic orbit index in a way that is specific to F :
R × R2 → R2. Let P be a hyperbolic period-k orbit for F with the eigenval-
ues σ1 ≤ σ2 for derivative D(F k) with respect to the spatial variables (x, y). Let
Im = (−∞,−1), I0 = (−1, 1), and Ip = (1,∞). We define the periodic orbit index
for P to be

indF (P ) =


1 if σ1, σ2 are both in Im, I0, or Ip, or if σ1, σ2 are complex,
−1 if σ1 ∈ I0 and σ2 ∈ Ip,
0 if σ1 ∈ Im and σ2 /∈ Im.
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Note that a flip orbit corresponds to the case of index 0. For large parameters
such as A1, all periodic orbits are saddles, implying that the periodic orbit index
is −1 or 0.

This definition generalizes to a general definition for f : R × Rn → Rn. It
is a topological invariant, as is described in more generality and detail in [5]. Let
[Γ] : (0, 1)→ POnonflip(f) map homeomorphically to an open arc C in the nonflip
orbits for f . (The brackets are to emphasize that [Γ] maps a point in the interval
(0, 1) to an orbit in the set of nonflip orbits.) Then [Γ] can be identified with
one of the two orientations on C. There is one orientation that is induced by the
periodic orbit index: [Γ] is an index orientation on C as long as it has the following
property for every s ∈ (0, 1): indf ([Γ(s)]) = −1 whenever the parameterA is locally
decreasing, and indf ([Γ(s)]) = +1 whenever the parameter A is locally increasing.
As long as f has only generic bifurcations, there exists an index orientation on
every open arc in the set of nonflip periodic orbits.

Hypothesis 6 (Orbits near the boundary). Let f : R×Rn → Rn be a C∞ function.
Let U ⊂ R × Rn be an open set such that f has only generic bifurcations in U .
Assume also that the set of periodic points of f in U is contained in a bounded
set in Rn+1. Let J be an interval, and let Q be an open arc in POnonflip(f) with
index orientation σ : J → Q such that that Q is contained in U , though the image
of its endpoints may not be. If [σ(inf J)] is defined and contained in V \ U , then
it is called an entry orbit of U . Denote the set of all entry orbits of U by IN. If
[σ(sup J)] is defined and is contained in V \U , then it is called an exit orbit of U .
Denote the set of all exit orbits of U by OUT. Assume that IN ∩OUT is empty.

In our case, this hypothesis is satisfied for F for the set U = {[A0, A1]×E}.
In fact, the set of exit orbits for U is empty, and the set IN of nonflip orbits on
the boundary of the region U is entirely contained in {A1 × int(E)}.

Theorem 7 (General cascades theorem). Assume Hypothesis 6. For any odd num-
ber d, consider the set of orbits in POnonflip(f) with period 2kd for a positive
integer k. Let INd be the set of entry periodic orbits of this type in POnonflip(f).
Let OUTd be the set of exit periodic orbits of this type in POnonflip(f). Assume
that INd contains K elements, and OUTd contains J elements. We allow one but
not both of J and K to be infinite. If K < J , then all but K members of OUTd are
contained in distinct period-doubling cascades. Likewise, if J < K, then all but J
members of INd are contained in distinct period-doubling cascades.

This theorem is proved in [5]. From this abstract theorem, we conclude that
each nonflip periodic orbit P for our F (A1, ·, ·) is contained in a unique cascade.
We have already shown that there is a unique nonflip periodic orbit for F (A1, ·, ·)
corresponding to each even orbit for the two-shift.

Proof of Step 5: Period of the cascades. The only type of generic bifurcations which
change the period of an orbit are period-doubling and period-halving bifurcations.
If the period k of P is odd, then the period is already minimal in the sense that it
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is not possible to bifurcate to half the period. Therefore the period of the cascade
through P is k. If the period k is even, then it is possible that there is a period-
halving bifurcation within the cascade, implying that the period of the cascade
is less than the period k of the orbit P . However, the period always changes by
a factor of two, implying that the ratio of the period of P and the period of the
cascade is a power of two.

This completes the proof of the theorem. �

2.1. Reduced smoothness conjecture

We end with a conjecture about the nongeneric version of our abstract theorem.
If proved, in the context of the current paper, this would imply that it is pos-
sible to extend the results on perturbed Hénon families to the case of nongeneric
perturbations. The barrier to proving Theorem 7 in the nongeneric case is that
it is not possible to control the behavior of eigenvalues other than those involved
in the bifurcations. Such control is needed for the limiting arguments to work.
Otherwise, a sequence of maps with periodic orbits of fixed period can limit to a
map with a periodic orbit of smaller period. Lefschetz number arguments, as used
by Franks [2], do not apply to Theorem 7, since the hypotheses use the orbit index,
and thus do not include any assumptions on the Morse index of the flip orbits.
The following is a generalization of the definition of orientation.

Definition 8. Assume that f : R×Rn → Rn is a continuous family such that there
are only hyperbolic periodic orbits on the boundary of a region U in R× Rn. We
call an orbit [q] a generalized entry orbit if the Morse index of q is even, and a
generalized exit orbit if the Morse index is odd.

Every orbit which is an entry (resp. exit) orbit is a generalized entry (resp.
exit) orbit, but the generalized orientation is also defined for flip orbits.

Conjecture 9 (Abstract result reformulated). Assume that f : R × Rn → Rn is a
continuous family and that U ⊂ R × Rn is such that the periodic orbits in U are
contained in a bounded region. Assume also that on the boundary of U , there are
only hyperbolic periodic orbits. Let INd and OUTd respectively be the generalized
entry and exit orbits on the boundary of U of period p = 2md, where d is a fixed
odd number, and m is any positive integer. Assume that the number of orbits in
OUTd and the number of orbits in INd differ. Let K be the smaller of the two. (We
allow one but not both of these numbers to be infinite.) Then there is a cascade
through all but possibly K of the orbits in the larger of the sets INd and OUTd.
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