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Abstract. The appearance of numerous period-doubling cascades is among the most
prominent features of parametrized maps, that is, smooth one-parameter families of maps
F:R x M — 9, where DV is a smooth locally compact manifold without boundary,
typically R¥. Each cascade has infinitely many period-doubling bifurcations, and it is
typical to observe that, whenever there are any cascades, there are infinitely many cascades.
We develop a general theory of cascades for generic F'.

1. Introduction

A major goal in dynamical systems is to better explain what is seen. There are many reports
of numerically observed (period-doubling) cascades in the contexts of maps, ordinary
differential equations and partial differential equations, and even in physical experiments
(cf. [24]). In each of these contexts, whenever one cascade is seen, an infinite number
are observed. There is also considerable numerical evidence that cascades occur as a
dynamical system becomes more chaotic. The concept of cascades is usually associated
with the orderly picture of the attractor structure of a quadratic map depicted in Figure 1.
The structure of quadratic maps is well understood, and it is not hard in this context to
show rigorously that cascades exist. However, most dynamical systems have bifurcation
structures that are a good deal more complicated than that of a quadratic map (cf. the
double-well Duffing equation in Figure 2), implying that the simple explanation for
cascades of the quadratic map does not generalize. In this paper, we develop a series
of general criteria for the existence of cascades in the context of parametrized maps.
We explain why cascades occur with infinite multiplicity. Our results give a rigorous
explanation for the link between cascades and chaos. The method of approach lays a
general framework for understanding cascades, even for observable systems for which the
underlying model equation is unknown. Our approach is very different from the celebrated
approach to cascades using scaling and renormalization theory, and this allows us to come
to new conclusions connecting cascades and chaos for maps and differential equations.
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FIGURE 1. The attracting set for the logistic map: F(a, x) = ax(1 — x). That is, for each fixed parameter value,

the attracting set in [0, 1] is shown. There are infinitely many cascades of attractors. This is the bifurcation

diagram most frequently displayed to illustrate the phenomenon of period-doubling cascades. However, cascades
occur for much more complex dynamical systems that are completely unrelated to quadratic maps.

FIGURE 2. The attracting set for the double-well Duffing equation: u” (¢) + 0.3u’(t) — u(t) + (u(t))3 +0.01 =
w sin t. This equation is periodically forced with period 2. Therefore the time-27r map is a diffeomorphism on

R? parametrized by w. Depicted here is the attracting set of F, projected to the (w, u(t))-plane. The constant
0.01 has been added to destroy symmetry in order to avoid non-generic symmetry-breaking bifurcations.

We give a more detailed comparison to previous theoretical work on cascades at the
end of this introduction. We establish the connection between cascades and chaos as a
concrete mathematical object. Namely, we establish a connecting arc of periodic orbits
between each cascade and a point in the chaotic region. In a second paper, we will give
a series of examples for which these methods rigorously show the existence of cascades.
These examples include large-scale perturbations of families of polynomials, large coupled
quadratic systems, high-dimensional maps with horseshoes, as well as flows with well-
defined Poincaré sections exhibiting chaos such as the double-well Duffing pictured in
Figure 2.

We now give a heuristic description of our results. We call a period-k orbit of a one-
parameter family F : R x 9t — 90 a flip orbit if its Jacobian matrix D, F¥(X, x) has an
odd number of eigenvalues less than —1, and —1 is not an eigenvalue. Otherwise the orbit
is non-flip. We denote the space of non-flip orbits of F in R x 21 under the Hausdorff
metric by POpon-fiip (F). We restrict our attention to a specific residual set (which will be
precisely defined) of the C* maps F : R x 9t — 9. We call maps in this residual set
generic. All our results are for generic maps.
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FIGURE 3. Bounded cascades come in pairs. The numerically computed attracting set for a modified logistic map
F(a, x) =h(a)x(1 — x), where h(a) =a(1.18 + 0.17 cos(2.4a)). Here h is not monotonic. As the parameter
a increases, h(a) increases, then decreases, and again increases. Hence /(a) passes three times over the region
where the logistic map has a period-three cascade. Panel (a) displays three ‘windows’ (the parameter ranges
labeled A, B, and C) of period-doubling sequences starting from period-three orbits. When parameter a yields a
one-piece chaotic attractor, the upper edge of the chaotic set is the image of x = 1/2, corresponding to h(a)/4,
the maximum value of F(a, -). Panel (b) shows a blowup of the box in (a). We have added a curve of unstable
non-flip period-three points revealing that the two cascades are in the same component. Hence we see three
period-three cascades, revealing a phenomenon that often happens in much more complicated systems. Namely,
that bounded cascades can be created or destroyed in pairs that are in the same component.

Components of POnon-tiip(F') are one-manifolds for generic F. For a specific residual set
of F, which we call generic F, we show in Theorem 1 (M) that all connected components
of POnon-fiip(F) are one-manifolds; that is, they are homeomorphic either to circles or
to open intervals. Furthermore, the ratio of the periods of two orbits in a component
of POnon-fiip(F) is always a power of 2. This result may seem counterintuitive to those
familiar with cases where periodic points are dense in a space. But our result is about
orbits, not points. This result is one of the keys to understanding cascades. From now on,
we use the term component to denote a connected component of POpop-fiip(F). When a
component is homeomorphic to an open interval, we call it an open arc.

Definition of cascade. Cascades were first reported by Myrberg [21], and later by May [18].
We define a cascade as the following type of subarc of an open arc A: let k denote the
smallest period of the orbits in A. A cascade is a half-open subarc that contains orbits with
all of the periods k, 2k, 4k, 8k, . . . such that it contains precisely one orbit of period k. We
refer to such a cascade as a period-k cascade. A cascade is homeomorphic to [0, 1) where
0 maps to the single period-k orbit.

We call an open arc A bounded if there is a compact subset of R x 91 that contains all
the orbits of A. Otherwise A is unbounded. If a cascade is contained in an unbounded open
arc, we call it unbounded; otherwise we call it bounded. We show that if a component is a
bounded open arc, then it always contains two disjoint cascades, and we refer to these as
paired cascades. See Figure 3.

The orbit index. An essential tool for studying cascades is the orbit index, a topological
index of a periodic orbit taking on a value in {0, —1, +1}. A periodic orbit in POyon-fiip (F),
has an orbit index of either —1 or +1. In Theorem 1 (M>), we state and prove that each
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component has a preferred orientation that can be determined at each hyperbolic orbit by
computing its orbit index.

Section 4 contains Theorem 2, establishing existence of cascades in a bounded
parameter region based on a small amount of information about the types of periodic orbits
on the boundary. The result is established by using the preferred orientation via the orbit
index to show that an open arc in a bounded parameter region is bounded and therefore
contains a cascade.

The literature on general existence of cascades is scant. Once a cascade is known to
exist, it can be understood using scaling and renormalization theory found in the work
from the early 1980s of Feigenbaum [8] and others [1-7, 10-12, 16]. Recent results
include [14, 15]. The goal of these methods is to show that, when a period-one cascade
exists for a parametrized map that is nearly quadratic, the procession of period-doubling
values has a regular scaling behavior. In contrast, our goal is to establish criteria for the
existence of infinitely many cascades. Our methods are topological and say nothing about
scaling. For a much more detailed comparison between our results and those given by
scaling theory, see [24, §6].

In the theory of one-dimensional quadratic maps F'(A, x), the existence of cascades
became a folk theorem based on the property of monotonicity: namely, that, as
the parameter increases, new orbits can appear but no orbits are destroyed. This
monotonicity was originally proved by Douady and Hubbard in the complex analytic
setting. See [19] for a proof. When there is monotonicity, the existence of cascades is quite
straightforward. Monotonicity of the quadratic map implies that the only possible periodic-
orbit bifurcations are those saddle-node and period-doubling bifurcations in which periodic
attractors are created. Periodic attractors do not persist as attractors as the parameter A
increases because there are no periodic attractors for A > 2; in order for a periodic attractor
to become unstable as A increases, it must undergo a period-doubling bifurcation, creating
a new periodic attractor with double the period. This new periodic attractor must cease
to exist before A =2, so the new higher period attractor undergoes a period doubling as
well, etc. The attractors must undergo infinitely many period-doubling bifurcations as A
increases. Hence a cascade exists.

General one-dimensional systems need not be monotonic, and higher-dimensional
systems tend never to be monotonic as shown in [13]. In these cases there are many
more possible bifurcations, which both create and destroy orbits. See Figure 3. However,
our results demonstrate that the existence of cascades is in no way dependent on either
dimension one, nor on monotonicity, nor on having attractors.

Yorke and Alligood [25] discuss in detail a case where the cascade of period doublings
involves attractors, and so they restrict attention to the case of systems where trajectories
are at most one-dimensionally unstable. We make no such restriction. In higher
dimensions, there is no reason for attractors to be present in cascades, and attractorless
cascades do exist.

The paper proceeds as follows. In §2, we classify the set of generic bifurcations of orbits.
In §3, we develop the orbit index, in order to investigate the ‘index orientation’ on each
component. Section 4 contains our main result on cascades in Theorem 2.
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2. Components in the space of orbits

This section introduces formal versions of the main concepts described in the introduction,
including the space of orbits under the Hausdorff metric, the set of flip orbits, the set of
non-flip orbits, and cascades viewed as subsets of this space. Throughout this paper we will
assume the following context. To avoid technicalities, we follow a C* approach similar to
Milnor’s treatment of Sard’s theorem [20], proving our results for C* rather than for C”
for a specific r.

HYPOTHESIS 1. (The setting) Let F : R x 9t — 9 be C®-smooth. We refer to it as a
parametrized map on 9.

Definition 1. (Orbits, flip orbits, and non-flip orbits) Write [x] for the orbit of the periodic
point x. In this paper, orbit always means periodic orbit. By period of an orbit or point, we
mean its least period. If x is a periodic point for F (X, -), then we sometimes say o = (A, x)
is a periodic point and write [o'] or (A, [x]) for its orbit. Let 0 = (A, x) be a periodic point
of period p of a smooth map G = F (A, -). We refer to the eigenvalues of o or [o] as
shorthand for the eigenvalues of Jacobian matrix DGP (x). Of course, all the points of an
orbit have the same eigenvalues. We say that [o] is hyperbolic if none of its eigenvalues
have absolute value 1. We say it is a flip orbit if the number of its eigenvalues (adding
multiplicities) less than —1 is odd, and —1 is not an eigenvalue. We call all other orbits
non-flip orbits. Define

PO(F) ={[o] :[o]is an orbit for F}

and
POnon-tiip(F) = {[o'] € PO(F) : [o'] is a non-flip orbit for F}.

The distance between two orbits in the space PO(F) or POpon-fiip (£) is defined using
the Hausdorff metric. We say that two orbits are close in 91 if every point of each orbit is
close to some point of the other orbit. The periods of the two orbits need not be the same.
This is made precise in the following definition.

Definition 2. (Hausdorff metric on sets) For a compact set S of 2 and € > 0, let B(e, S)
be the closed € neighborhood of S. Let S7 and S> be compact subsets of 1. (We are only
interested in the case where these sets are orbits.) Assume € is chosen as small as possible
such that S; C B(e, S3) and S> C B(e, S1). Then the Hausdorff distance dist(Sy, S»)
between S and S is defined to be €.

Letoj = (A}, x;) for j =1, 2 be orbits. We define the distance between [o1] and [o7]
to be

dist([o1], [02]) = dist([x1], [x2]) + [A1 — A2l.

For example, if (A, [x(A)]) is a family of period-2p orbits that bifurcate from the
period-p orbit (L4, [x4]) due to a period-doubling bifurcation, then

dist((X, [x(M)]), (Ag, [x£])) = 0 as A — A,.

Remark 1. Generally one expects periodic points to be dense in a compact chaotic set.
Using the Hausdorff metric changes the geometry. Every R x 9t neighborhood of a saddle
fixed point (1, x) with a transverse homoclinic intersection has infinitely many periodic
points y,, (of arbitrarily large period). However, since x is a hyperbolic saddle point, some
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points in the orbit of each y,, are far from x. Thus the orbits [y,,] do not converge to [x] in
the Hausdorff metric.

Definition 3. (Cascade of period m) The term component means a connected component of
POnon-fiip (F) in the Hausdorff metric. An arc is a set that is homeomorphic to an interval.
We call it an open arc if the interval is open or half-open if that describes the interval.

A (period-doubling) cascade of period m is a half-open arc C in POyon-fiip (F') with the
following properties. Let 4 : [0, 1) — C be a homeomorphism.
(1)  The set of periods of orbits in C is m, 2m, 4m, 8m, . . . .
(i) The number m is the minimum period of orbits in the component that contains C.
(iii)) C has no proper connected subset with properties (i) and (ii). Note that 4(0) will be

the only orbit of period m in C and it will be a period-doubling bifurcation orbit.
If a component contains a cascade, we refer to the component as a cascade component.

Remark 2. The cascades we discuss in this paper each lie in a compact subset of R x 91
(though the cascade’s component may be unbounded).
For generic F, we will show in Proposition 3 that such cascades have the following
additional property.
(iv) If {px}{° is the sequence of periods of the orbits, ordered so that for each k the k + 1
orbit lies ‘between’ (using the ordering induced from [0, 1)) the k orbit and the k + 2
orbit, then no period will occur more than a finite number of times. That implies

lim Pk = OQ.
k— 00

Examples of arcs and a cascade. There is a simple example of a subset of the orbits in
POnon-fiip (F) that is homeomorphic to an interval. Let F =X — x2. The smallest A for
which there is an orbit is —1/4, and that is a saddle-node fixed point Q = (—1/4, —1/2).
There is a unique periodic attractor for each A € J = (—1/4, Ageig) Where Ageig is the end
of the first cascade. We often refer to Agejg as the ‘Feigenbaum limit parameter’. The
attractors for A € J constitute a component C of the attractors in POyon-fiip (/). For each
A € J there is a unique attracting orbit x in C, and trivially for each orbit in C there is a
unique A in J. In fact the map on C defined by

@, [xD =2

is a homeomorphism. Therefore C is an open arc since it is homeomorphic to the
interval J. We shall see below that C is not maximal.

The cascade. There is a subarc C| C C that is a cascade. For A = 3/4 the orbit in C is
the period-doubling fixed point Q1 = (3/4, 1/2). For A > 3/4, the orbits in C have period
greater than 1. Let C; = {the orbits in C for which A > 3/4}. Then the cascade C; is the
smallest subarc of C for which all periods 2% occur.

The component containing C. The arc C is not a maximal arc. There is another arc, an arc
of unstable (derivative >+1) fixed points (A, y(A)) defined for A € (—1/4, +00), where
yA) =1+ V1T +42) /2. The two arcs terminate at the saddle-node fixed point Q.
Taking the union of the two arcs plus Q yields the component containing C. It is maximal
because on one extreme the period goes to oo and on the other extreme, A — oo. Each point
of the arc is a different orbit. Since the set of A values in the maximal arc is unbounded,
the cascade is an unbounded cascade.
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FIGURE 4. The Hopf bifurcation: all the local invariant sets of a generic Hopf bifurcation lie on a three-

dimensional center manifold. There is a two-dimensional surface consisting of invariant topological circles as

well as the arc of periodic points from which it bifurcates. As indicated by vertical arrows, in the case shown

here the invariant surface is attracting (when the dynamics are restricted to the center manifold). There also

exist generic Hopf bifurcations for which the arrows are all reversed. In this depiction, the surface appears as A
increases, but it could also occur as A decreases.

X,

Center manifold directions

In contrast to this straightforward example for quadratic maps, in which there is
exactly one saddle-node bifurcation, and exactly one period-doubling bifurcation for each
period 2%, a cascade is generally quite complicated. For example, a bounded component
that is a open arc contains two disjoint cascades (one on each end). See Figure 3. Quadratic
maps have a monotonicity property described in the introduction [19]; if an orbit exists
at Ay, then it exists for all A > A,. This leads to cascades that consist only of forward-
directed period doublings of attractors. That is, the period always doubles as the parameter
increases. In contrast, a cascade for a general map generally does not have such regular
behavior, nor does it consist only of attractors. In what follows we will be interested in
arcs of orbits with no regard to whether the orbits are attractors.

We now explain what is meant by a generic orbit bifurcation and show that there is a
residual set of F' for which every orbit is either hyperbolic or is a generic bifurcation orbit
(Proposition 1 below).

2.1.  Generic orbit bifurcations. We list the three kinds of generic orbit bifurcations,
largely following the treatment in Robinson [23]. Cases (i) and (ii) are depicted in Figure 5.
Figures 4 and 6-8 depict case (iii).

Definition 4. (Generic orbit bifurcations) Let F satisfy Hypothesis 1. We say that a

bifurcation orbit P of F is generic if it is one of the following three types (as described in

detail by Robinson [23]):

(i)  a generic saddle-node bifurcation (having eigenvalue +1);

(i) a generic period-doubling bifurcation (having eigenvalue —1);

(iii) a generic Hopf bifurcation with complex conjugate eigenvalues that are not roots of
unity.

We say that F'is generic if each non-hyperbolic orbit is one of the above three types.
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FIGURE 5. A depiction of a sufficiently small neighborhood of (a) the saddle-node bifurcation and (b) the period-

doubling bifurcation. The horizontal axis is the parameter, but it can be either increasing or decreasing in this

figure. The vertical axis is the space PO(F), so each orbit is depicted as a single point. Near the bifurcation point

in (a) all orbits are either flip orbits or all orbits are non-flip orbits. Near the bifurcation point in (b), exactly

one of segments A and B consists of flip orbits, and the other consists of non-flip orbits. The period-doubled

segment C always consists of non-flip orbits. Hence exactly two of the segments of a period-doubling bifurcation
are contained in POpop-flip (F).
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(C) The loop of period-3 orbits projected to PO(F)
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A ! The annulus contains a loop of periodic points (red and blue curves)
Period-3 repeller / s A Py
Period-3 attractor a b
Each invariant circle in the annulus contains an attracting and a repelling orbit Hopf point P

FIGURE 6. Orbits near a Hopf bifurcation. (a) Within the two-dimensional surface of invariant circles near
a generic Hopf bifurcation, the topological invariant circles containing orbits of a fixed period form annular
regions. (b) Each annular region projects to an annulus when projected to the plane of spatial directions of the
center manifold. The annulus consists of invariant topological circles, and each of those circles has an attracting
period-k orbit (attracting in the circle but not in the annulus) and a repelling period-k orbit—except for the inner
and outer boundary circles of the annulus. The boundary circles contain bifurcating period-k saddle-node orbits.
(c) The loop of periodic points is a k-fold cover of the corresponding loop of period-k orbits in PO(F). The
component of the period-k orbits is a topological circle (that is, a loop) in PO(F).

Note that the standard Hopf bifurcation theorem permits complex conjugate eigenvalues
to be higher-order roots of unity. However, we have chosen a more stringent generic
bifurcation condition, since a parametrized map with a bifurcation through complex
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Projection of the surface of invariant circles
Annuli containing periodic orbits

Hopf orbit P

Invariant circle with irrational rotation number

FIGURE 7. Orbits near a Hopf bifurcation lying on the two-dimensional surface in the three-dimensional center

manifold: here we project the parabolic region shown in Figure 6 onto a plane. Generically, near a Hopf

bifurcation orbit, there are infinitely many annular regions of orbits, each of a fixed period, separated by invariant
circles with irrational rotation number.

conjugate pairs that are roots of unity can be rotated by an arbitrarily small perturbation to
a family with a bifurcation through one complex conjugate pair that are not roots of unity.
Neither 1 nor —1 can be perturbed away in this manner, since these eigenvalues are real,
so do not occur in conjugate pairs. Since the roots of unity are countable, the families with
Hopf bifurcations for which the eigenvalues are not complex roots of unity are generic.
Hence we exclude bifurcations such as period tripling or multiples other than two.

Further, a generic Hopf bifurcation orbit has a neighborhood in PO(F) in which the
only bifurcation orbits are saddle-node bifurcation orbits. See Figures 4-8.

HYPOTHESIS 2. (Generic bifurcations) Assume Hypothesis 1. Assume that each orbit of
F is either hyperbolic or is a generic bifurcation orbit.

PROPOSITION 1. (Generic F constitute a residual set) There is a residual set S C C*° of
parametrized maps F satisfying Hypothesis 1 for which all bifurcation orbits are generic.

This residual set S is C' dense in the uniform C' topology; that is, for each F € C*,
there is a sequence (F;) C S such that ||F — Fi||cn — O asi — oc.

The proof of this proposition uses standard transversality arguments. See Palis and
Takens [22]. Minor changes to their methods give the irrational rotation number for Hopf
bifurcations.

2.2.  Components are one-manifolds for generic F.

Definition 5. (Index orientation) Assume that a periodic orbit y of period p of a smooth
map G is hyperbolic. Define the unstable dimension dim,(y) to be the number of real
eigenvalues (with multiplicity) having absolute value > 1.
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Let F satisfy Hypothesis 2, and assume that Q is a component that is a one-manifold.
(We show below that this is true for generic F.) Then we know that there is a
homeomorphism 4 : X — Q where X is either the interval (—1, 4+1) or a circle, which
we will write as [—1, 1]/{—1, 1}. For each s € X, let &, (s) denote the projection of A(s)
to the corresponding parameter value. Thus %, is a map from X to R, and X and A both
inherit an orientation from the real numbers. Therefore we can describe / as increasing or
decreasing at s whenever #;, is increasing or decreasing at s.

We say that the homeomorphism 7 is an index orientation for Q if, whenever h(s) is a
hyperbolic orbit, /4, (s) is locally strictly increasing when dim,, (h(s)) is odd and is locally
strictly decreasing when dim,, (k(s)) is even.

We now state the main result of this section.

THEOREM 1. (Components are oriented one-manifolds for generic F) Consider all F

as in Hypothesis 1. There is a residual set of such F for which each component (of

Ponon—ﬂip(F))~'

(M) is a one-manifold, i.e. is either a simple closed curve or is homeomorphic to an open
interval; and

(M) has an index orientation.

The proof of (Mj) consists of two parts. First, we show that in a neighborhood of
any hyperbolic orbit, its component is an arc. Secondly we show the same for each non-
hyperbolic orbit. Hence each point in a component has a neighborhood in the component
that is an arc, so the component is a one-manifold.

The neighborhood of a hyperbolic orbit. If op = (Ao, x0) is a period-p hyperbolic point,
the implicit function theorem implies that it has a smooth unique continuation curve of
period-p points o (1) = (A, x(1)), defined for A in some neighborhood of Xy with
0 (Ao) = 0¢. Furthermore [o(] has a neighborhood in PO(F’) in which there are no orbits
other than those of the continuation. Hence each hyperbolic orbit has a neighborhood in
PO(F) that is an arc.

The neighborhoods of a non-hyperbolic orbit. This part of the proof relies on the fact that
F is generic as defined in Definition 4.

The proof of part (M) will be complete with Proposition 2, which shows that each
non-flip generic bifurcation orbit y has a neighborhood that—when intersected with the
component it is in—is an arc that passes through y.

The proof of part (M) of Theorem 1 is complete when we finish proving Proposition 4
in §3. There we show that for each homeomorphism / from X to a component, either  or
h* is an index orientation where A*(s) = h(—s). Recall that —s € X whenever s € X.

PROPOSITION 2. (The neighborhood of a generic bifurcation orbit) Assume that F
satisfies Hypothesis 2.  Assume P = (Mo, [x0]) is a generic bifurcation orbit in
POnon-tiip(F) and let C be its component. Then P has a neighborhood in C that is an
open arc in which it is the only bifurcation orbit.

Proof. We consider each of the three generic orbit bifurcations individually.
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Case (i). See Figure 5(a). Locally a generic saddle-node orbit P is in an open arc of
otherwise hyperbolic orbits. If P is non-flip, then so are the nearby orbits. No other orbits
are nearby, so the proposition’s assertion is true for these orbits.

Case (ii). See Figure 5(b). Locally a generic period-doubling orbit P of period p consists
of an arc of period-p orbits passing through P, plus an arc of period 2p that terminates
at P. The latter is always non-flip near P. The period-p branch has an eigenvalue that
passes through —1 at P. Hence (locally) on one side of P the arc consists of non-flip
orbits and flip orbits on the other side. Hence there are two arcs in POpon-fiip (F) that
terminate at P. Hence a neighborhood of P in POpop-fiip (F) is an arc.

Case (iii). The generic Hopf bifurcation is much more complicated. It is the only generic
local bifurcation for which it is possible to have orbits of unbounded periods limiting to P
in the Hausdorff metric.

The center manifold theorem guarantees that, for any r in a sufficiently small
neighborhood of P, there is a three-dimensional C” center manifold for P in R x 9. The
Hopf bifurcation theorem guarantees that, within this center manifold, there is an invariant
topological paraboloid that is either attracting, as depicted in Figure 4, or repelling. Within
this paraboloid, for each A value there is an associated rotation number w; of the invariant
circle at parameter value A, as shown in Figures 6 and 7.

By the genericity assumption on Hopf bifurcation points, the limit w;, as A — Ao of
the rotation numbers w; is irrational. If w, is constant, then there are no local orbits,
so P would not be a bifurcation orbit. If w, is non-constant, then it varies through an
interval that contains both irrational and rational values. Let Y be the local set of orbits in
PO(F) other than {(X, [x,])}, the continuation of P. All points in Y are on the invariant
paraboloid. Therefore (A, [y]) € Y is only possible for A values such that w, is rational.
Therefore no point in Y is contained in the same component of PO(F') as P.

Specifically, take any point in Y. It is not in the same component as {(A, [x,])} since the
paraboloid can be separated into two components at every parameter value for which the
rotation is irrational. Therefore the curve {(X, [x,])} is isolated in its component of PO(F).
Furthermore, since a Hopf bifurcation changes the number of eigenvalues outside the unit
circle by two, the curve {A, [x,]} is either entirely flip orbits or is entirely contained in
Ponon-ﬂip(F)- o

Remark 3. Under Hypothesis 2, the period of the orbits in a component C is locally
constant near hyperbolic orbits and near saddle-node and Hopf bifurcations. The period
can only change at period-doubling bifurcations, in which case it changes by a factor of 2.
Hence an arc C in POyop-fiip(F') is a cascade only if the sequence of periods {pi} of the
non-hyperbolic orbits in C (such that orbit k + 1 is between orbit k and orbit & + 2) limits
to infinity. This occurs if the sequence is infinite and no period occurs more than a finite
number of times.

2.3. Bounded arcs and cascades. For a generic map F, let A be a component that is an
open arc. Then there is a homeomorphism % : (—1, 1) — A. Let m denote the minimum
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The Hopf bifurcation viewed in PO(F')

Each of these loops corresponds to a loop of periodic orbits in an annulus
The radius of the loop is proportional to the width of the annulus

AN

Hausdorff distance from P
\

’f/ As the orbits approach P, the periods approach infinity

A f Continuous arc of periodic orbits through P

Hopf bifurcation orbit P

FIGURE 8. Orbits near a Hopf bifurcation in PO(F): a neighborhood in PO(F) of a generic Hopf bifurcation

orbit P consists of (i) an arc of orbits (the horizontal axis) with the same period as P, and (ii) a collection of

components, each of which is a loop of orbits, i.e., a simple closed curve. All the orbits in each of these loops
have the same period. As the loops approach P in PO(F), the periods go to infinity.

period of the orbits in A. Without loss of generality, we can assume that /2 (0) is a hyperbolic
orbit with period m. Write A~ = h((—1, 0)) and AT = h((0, +1)). We say that a set of
orbits in POnen-fiip(F) is bounded if the union of its orbits lies in a compact subset of
R x 9. We say that an open arc A has a bounded end if either A~ or AT is bounded.
While we are splitting A at a rather particular orbit, the property of boundedness of an end
is independent of where the arc A is split. Note that, by our assumption, the point /(0) is
not in a cascade, since a cascade contains only one orbit of smallest period, meaning that
it is not hyperbolic. We refer to A~ and A™ as the ends of the component.

PROPOSITION 3. (Bounded cascades) Assume Hypothesis 2. If a component A is an
open arc, and one of its ends is bounded, then that end contains a cascade. If the entire
component A is bounded, then A contains two cascades, and these are disjoint.

Write Per(u) for the period of an orbit u € PO(F). We adopt the above notation for
m,h, A, A~ and AT. For brevity, we give the proof for the case where A is bounded,
since the case of one end being bounded uses the exact same method of proof.

Proof. Write J = (—1, 1). Let (tj)‘fo C J be a sequence that converges to either +1 or
—1. Since A is a component, it is closed in POpon-fiip (F), so the sequence has no limit
points. Let m ; denote Per(h(z;)) for each j. If a subsequence of (m ;) were bounded, A(z;)
would have a limit point, which it does not, so lim; . m; =00. Let m =min;{m;}.
Let S =t € J : Per(h(t)) = m. Note that S is compact. Let t5,, = sup S and tjyf = inf S.
Note that —1 < finr < 0 < t5up < 1. Write Jy := (=1, finf] and J3 := [fsup, +1). We claim
that A1 =h(J1) and Ay = h(J>) are cascades. Note that they are disjoint and each is
homeomorphic to a half-open interval under 4. Notice that, if the Per(h(¢)) changes
discontinuously at ¢, then A(¢) is a period-doubling orbit and the change is precisely by
a factor of 2 (cf. Proposition 2). Hence since the periods are unbounded in A; and Aj,
the periods of orbits in each must be {ka :k=0,1,2,...}, as required by item (i) in
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Definition 3. Since m is the smallest period in A, item (ii) is also satisfied. Item (iii) is
satisfied since, by our choice of #jyf and fp, A1 and A2 both have only one orbit with
period m. The two cascades are disjoint because J; and J, are disjoint.

We note that Per(h(t)) — oo as |t| — 1, as mentioned in item (iv). O

The previous result gives a criterion for cascades in terms of finding components that
are bounded arcs, but it remains unclear how to demonstrate that components are bounded
arcs. The key to solving that problem lies in the next section, which provides a natural
orientation for each component using the index orientation.

Note that one interpretation of the fact that A has no limit points is the following

property.

Isolation of generic bifurcation orbits of period <p. Assume Hypothesis 2. For each
period p, F has at most a finite number of non-hyperbolic orbits of period p in each
bounded region of R x 9. To prove this, note that, if there were an infinite number of
bifurcation orbits of period <p in a bounded set, then there would be an accumulation
point of these bifurcation orbits in POnon-fiip (), which would have to be non-hyperbolic.
However, this cannot occur, since generic orbit bifurcations are isolated from bifurcation
orbits of bounded period.

3. An orientation for components
An open arc component of POyon-fiip () has two orientations. This section establishes that
one of these two orientations is consistent with a specific topological invariant called the
orbit index. We establish the behavior of this index near each generic bifurcation. From
this, we are able to conclude that cascades occur, detailed in the main theorem in §4.

The following concept of the orbit index was developed in [17], where it is defined for
all isolated orbits (for flows).

Definition 6. (Orbit index) Assume that an orbit y of period p of a smooth map G is
hyperbolic. Based on the eigenvalues of y, we define

ot = G+(y) = the number of real eigenvalues (with multiplicity) in (1, 0o),

o~ =0 (y) = the number of real eigenvalues (with multiplicity) in (—oo, —1).

The fixed point index of y is defined as ind(y) = (—1)"+. From the definition of fixed point
index, it follows that

ind(x, GP™) = (=1)° " for m odd,
= (—1)"++"_ for m even.
Since ot and o~ are the same for each point of an orbit, we can define the orbit index

of a hyperbolic orbit

(=1)°" if o is even,

1
0 if o~ is odd. M

¢(x]) = {

Hence if [x] is a non-flip hyperbolic orbit,

¢ ([x]) = ind([x]).
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Note that a hyperbolic orbit is a flip orbit if and only if its orbit index is zero. Thus
for every hyperbolic orbit [x] that is non-flip, i.e., [x] € POnon-fiip (F), ¢ ([x]) is &1 (never
Z€ero).

The following proposition is a stronger version of part (Mj) of Theorem 1 and is used
to prove (Mj). It states that each component has an index orientation.

PROPOSITION 4. (Each component has an index orientation) Let F satisfy Hypothesis 2,
and let Q be a component. Let W : X — Q be a homeomorphism where X is the circle or
interval in Definition 5. Define the homeomorphism y* : X — Q by ¥*(s) = ¥ (—s) for
all s € X. Then either  or ¥* is an index orientation.

Proof. On each non-flip orbit y (i.e., where o~ () is even), ¢ (y) = (—1)”+(3’). Hence on
hyperbolic non-flip orbits, ¢ (y) = (—=1)4im«®) Hence on a hyperbolic non-flip orbit y,

dim, (y) is odd if and only if ¢ (y) = —1.

Hence in the definition of ‘index orientation’ we will substitute ‘¢ (h(s)) = —1 (or +1)’
for ‘dim,, (h(s)) is odd (or even, respectively)’.

Let ¥, ¥*: X — Q be as in the statement of the proposition. The component Q
consists of pairs of segments of hyperbolic orbits connected at generic bifurcation orbits.
Pick s € X such that P = v/ (s) = {*(—s) is hyperbolic. Since both the direction of the arc
and the orbit index are fixed on a hyperbolic segment, either ¥ or ¢/* is an index orientation
on the segment of hyperbolic orbits containing P. Assume without loss of generality
that this occurs for {. We show below that, at each type of orbit bifurcation, there is a
‘consistent’ index orientation, as depicted in Figure 10. That is, two consecutive segments
of hyperbolic orbits (separated by a bifurcation orbit) have the same index orientation,
¥ or ¥*. One of the two segments always leads toward the bifurcation orbit and one
segment leads away as s increases. Thus continuing by induction through all of its
hyperbolic segments, v is consistent with ¢ on all hyperbolic segments. We can then
conclude that v is an index orientation.

We now must show only that at each type of generic orbit bifurcation, there is a
consistent index orientation. Here and subsequently, since the indices are fixed on
hyperbolic segments, we denote the indices of a segment when we mean the indices of
any orbit on that segment.

Fart (i): saddle-node bifurcations. Let yo = (Ao, [xo]) be a generic period-p saddle-node
bifurcation orbit. In some neighborhood of yp, on one side there will be two segments
of hyperbolic period-p orbits y, and yp, and on the other side there are no orbits, as
depicted in Figure 5(a). The o values of y, and y, will differ by 1, since along the
arc an eigenvalue passes through 1, but their o~ values will be equal. Hence y, and
¥» have opposite fixed point index ind(y,, G?) = —ind(yp, G?), both possibly 0. Also
ind(y,, G?P) = —ind(y,, G2P). Hence from equation (1),

¢ (ya) + ¢ (yp) =0. (@)

Thus there is a consistent index orientation at this bifurcation.

Fart (ii): period-doubling bifurcations. Let yo = (1o, [x0]) be a generic period-p period-
doubling bifurcation orbit. In some neighborhood of yg, on one side there will be a segment
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of hyperbolic period-2p orbits. We denote the orbits by y., as in Figure 5(b). For A close
to Ao, Dy F?P is approximately (D, F”)? and so it has no real eigenvalues less than —1,
and, in particular, ¢ (y.) # 0. Hence

¢ (ye) = ind(yp, G*P). 3)

On the same side there must be a segment of hyperbolic period-p orbits, which we
denote y,. We write y, for the segment of period-p orbits on the other side from y.. The
invariance of the total fixed point index at a bifurcation yields

ind(y,, G?) = ind(y,, GP),
ind(y,, G*”) = ind(yp, G*") + 2 ind(y,, G*P).

We substitute ¢ for ind using equation (3), take the average of the left-hand sides of the
above equations, and set that equal to the average of the right-hand sides. This yields

& (Ya) = () + P (Ye)- 4

Since each of these has values in {—1, 0, 41}, and ¢ (y.) is not zero, there are two cases:

¢(ya) =0 and  ¢(yp) = -9 (yc)

or
¢(yp) =0 and P(ya) =+ (yc).

Hence there are two segments on which ¢ is non-zero. If both non-zero segments are on
the same side of the bifurcation point, they have opposite orientation. If the segments are
on opposite sides of the bifurcation point, they have the same orientation. Thus there is a
consistent index orientation at this bifurcation orbit.

Part (iii): Hopf bifurcations. If an arc of orbits has a Hopf bifurcation, o™ and o~ are the
same on the two sides of the bifurcation, so ¢ does not change. If a pair of complex values
become real as A is varied, o or o~ can change by 42 or —2, which has no effect on ¢
and ind. Thus there is a consistent index orientation at this bifurcation.

This completes the proof of the proposition. O

Figure 9 depicts a typical oriented arc in POnon-fiip (F) as described in the above result.
A proof similar to the proof of the above proposition also shows that the orbit index is
a bifurcation invariant for generic bifurcations; see [17]. Figure 10 depicts all generic
bifurcations.

4. Theorem of cascades from boundaries
4.1. Oriented arcs entering or exiting regions. We now describe the restriction of
oriented arcs to a region U with a bounded parameter range.

HYPOTHESIS 3. (Orbits near the boundary) Let F satisfy Hypothesis 2. Let Ly < A1,
and let U = [Ao, A] X M and 0U = {Ag, A1} x M. Assume that all orbits in oU are
hyperbolic. Assume that all orbits in U are contained in a compact subset of M.
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FIGURE 9. Part of oriented component Q with period-doubling (PD), period-halving (PH), saddle-node (SN),

and Hopf (H) bifurcations. If the homeomorphism / : X — POpon-fiip (F) is an index orientation, then, as s € X

increases, the A coordinate of 4 (s) increases or decreases and the arrows on the segments indicate which. Left-

pointing arrows correspond to orbit index ¢ = —1, and right-pointing to +1. One of the two adjacent segments

always leads toward the intervening bifurcation orbit and one segment leads away as s increases. The dotted lines
indicate flip orbits (which are not in Q).

(bl) +1 (b2) +1

(al) +1 (a2) o 0 -1 +1 0
(b3) . (b4) |

-1 0

@ @ __Cl ; ) o

(bS) +1 (b6) +1
0 -1 ) )
0 +1 -1 0

(b721 (b8)l

/
V

+1 0 0 -1

FIGURE 10. Generic bifurcations: this figure depicts all possible generic (a) saddle-node and (b) period-doubling
(or period-halving) bifurcations with their orbit indices, the numbers near each segment. Each point denotes an
orbit. In this symbolic representation, the horizontal axis is the parameter, and the vertical axis is PO(F). The
arrows have the same meaning as in Figure 9 but segments of flip orbits are indicated here by having no arrows

(and by having orbit index 0). The one-dimensional quadratic map A — x2 has only bifurcations of types (al)
and (b2).

Definition 7. Assume Hypothesis 3 and its notation. Let p € POnon-fiip (F) be a hyperbolic
orbit in dU. If p is oriented ‘into’ the region U by index orientation, then it is called an
entry orbit of U. That is, p is an entry orbit if either A = Ao and ¢ (p) = +1,0or A = A1 and
¢ (p) = —1. Otherwise, it is called an exit orbit of U.

A cascade is said to be essentially in U if all but a finite number of its bifurcation orbits
are in U.

THEOREM 2. (Cascades from boundaries) Assume Hypothesis 3. Let IN be the set of entry
orbits. Let OUT be the set of exit orbits. Assume that IN contains K elements, and OUT
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contains J elements. We allow one but not both of the sets to have an infinite number of

elements.

(Ck) If K <J, then all but possibly K orbits in OUT are contained in distinct
components, each of which contains a cascade that is essentially in U.
Likewise, if J < K, then all but possibly J orbits in IN are contained in distinct
components, each of which contains a cascade that is essentially in U.

(Co) If J =0o0r K =0, then the non-flip orbits of 0U are in one-to-one correspondence
with the components that intersect the boundary. Each of these components has one
cascade that is essentially in U.

Proof. Assume Hypothesis 3. For simplicity, we specify that J < K. The proof of the
other case is similar.

Let g be an orbit of IN. Then g is an entry orbit and it lies in a component Q, which by
Theorem 1 is a one-manifold. Let o : X — Q be the index orientation for Q. Starting at g
and following the component in the forward direction (using the index orientation), o (s)
initially enters the interior of U. If it leaves U, it does so through an exit orbit. Let exit(g)
denote the first such exit orbit encountered. Distinct entry orbits ¢ that exit yield distinct
exit(g) of which there are at most J. Hence all but J entry orbits are in components
that do not leave U for increasing s. Such a component must be an open arc and the
component must have a bounded end. By Proposition 3, it contains a cascade, a cascade
that is essentially in U. Hence (Ck) is proved.

If J =0, then each entry orbit is in a component that crosses the boundary only
once. Furthermore any component that crosses the boundary must do so at an entry orbit.
Each such component has an end in U and so has a component that is essentially in U,
proving (Cop). O

4.2. Related results. Our abstract results in the previous section build on the work
in [25] and Franks [9]. We now compare our results to these two previous results.

The papers [25, 26] proved the existence of cascades of attracting periodic points
for area-contracting maps and for elliptic periodic points for area-preserving maps, in a
particular case of Theorem 2, part (Cp), without assuming genericity. Whereas our current
result applies to parametrized maps with a large number of unstable dimensions, their result
only considered maps with at most one unstable dimension. The existence of attractors
relies on having at most one unstable dimension, because this implies that there are no Hopf
bifurcations. For parametrized maps with more than one unstable dimension, cascades do
not in general contain attractors. Both results involve snakes in the generic case, followed
by smooth convergence arguments to show the general case. These convergence arguments
no longer apply when there is more than one unstable dimension.

The Morse index is the number of unstable eigenvalues. If the Morse index is even, the
orbit index is either O or +1. If the Morse index is odd, the orbit index is either O or —1.

Franks [9] proves there are cascades under the following conditions. Let d be an odd
integer. Assume that, for every non-negative integer k, every orbit of period 2¥d has a
Morse index with the same ‘parity’ (all are odd or all even) at F(Ag, -), and the opposite
parity at F (A1, -). In our notation, this corresponds approximately to saying that, on the
boundary F(X1g, -) U F (X1, -), all orbits are entry orbits (or alternatively all are exit orbits);
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we ignore flip orbits. Our theorem relaxes this condition; we only assume that the numbers
of entry and exit orbits differ.

Franks’ proof uses the Lefschetz trace formula, which allows the smoothness of F' to be
relaxed; F is assumed to be a continuous parametrized map, where F'(Ag, -) and F (A1, -)
are smooth maps. However, this lack of smoothness has implications. The theorem does
not give information about the bifurcations, only assuring that the component of PO(F)
containing the original hyperbolic orbit of period 2"d (d odd) contains flip orbits of period
2%d for all k € N on the boundary F(Ag, -) U F(A1, -). The theorem says nothing about
the way these orbits bifurcate. A cascade is usually viewed as a sequence of events with
some separation, but in the context of Franks, a portion of the cascade can occur at a single
parameter value. For example, in non-generic maps with dimension larger than one, two
eigenvalues can simultaneously bifurcate through —1. Thus a fixed point can bifurcate to
a period-four orbit, missing a bifurcation through period two. A more extreme case of this
phenomenon is shown in the following example using a slight adaptation of Franks’ result.
The example is a one-dimensional but non-smooth map, in which an entire generalized
cascade occurs at one parameter value.

Example 1. (The parametrized tent map) Consider the parametrized map consisting of tent
maps of slopes of absolute value A, with A increasing to the standard value of 2. Orbits of
all the periods 2* (for k > 0) appear at exactly A = 1, or, more precisely, each exists for all
A > 1. In fact, for every k > 2, the period-k cascades appear in this manner. All of these
are cascades in the sense of Franks’ theorem.
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