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The appearance of infinitely-many period-doubling cascades is one of the most prominent
features observed in the study of maps depending on a parameter. They are associated
with chaotic behavior, since bifurcation diagrams of a map with a parameter often reveal a
complicated intermingling of period-doubling cascades and chaos.

Period doubling can be studied at three levels of complexity. The first is an individual period-
doubling bifurcation. The second is an infinite collection of period doublings that are connected
together by periodic orbits in a pattern called a cascade. It was first described by Myrberg and
later in more detail by Feigenbaum. The third involves infinitely many cascades and a parameter
value µ2 of the map at which there is chaos. We show that often virtually all (i.e. all but finitely
many) “regular” periodic orbits at µ2 are each connected to exactly one cascade by a path of
regular periodic orbits; and virtually all cascades are either paired — connected to exactly one
other cascade, or solitary — connected to exactly one regular periodic orbit at µ2. The solitary
cascades are robust to large perturbations. Hence the investigation of infinitely many cascades
is essentially reduced to studying the regular periodic orbits of F (µ2, ·). Examples discussed
include the forced-damped pendulum and the double-well Duffing equation.
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1. Introduction

In Fig. 1, as µ increases from µ = −0.25 towards
a value µF ≈ 1.4, a family of periodic orbits
undergoes an infinite sequence of period dou-
blings with the periods of these orbits tending
to ∞. This infinite process is called a cascade.
We will later define it more precisely. It has been
repeatedly observed in a large variety of scientific
contexts that the presence of infinitely many period-
doubling cascades is a precursor to the onset of
chaos. For example, cascades occur in what numer-
ically appears as the onset to chaos for both the

double-well Duffing equation, as shown in Fig. 2,
and the forced-damped pendulum, shown in Fig. 3.
Cascades were first reported in [Myrberg, 1962], and
studied in more detail in [Feigenbaum, 1979]. This
cascade is not the only cascade. In fact, there are
infinitely many distinct period-doubling cascades.
Namely, there are infinitely many windows, that
is, disjoint intervals in the parameter that begin
with a saddle-node (or source-sink) bifurcation, and
continue with the attractor undergoing an infinite
sequence of period doublings within that interval of
parameters.
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Fig. 1. Cascades for F (µ, x) = µ − x2. This figure shows the attracting set for F for −0.25 < µ < 2. The attracting set is
created at a saddle-node bifurcation at µ = −0.25 (green dot). The path of unstable fixed points (red) exists for all µ > −0.25.
The stable fixed point undergoes infinitely many period-doubling bifurcations, limiting to the value µ ≈ 1.4. This set of period
doublings is called a period-doubling cascade. This map also has infinitely many period-doubling cascades that begin with
periodic orbits of period > 1. The red curve consists of unstable regular fixed points that exist for all µ > −0.25.

Fig. 2. Cascades in the double-well Duffing equation. The attracting sets (in black) and periodic orbits up to period ten (in
red) for the time-2π map of the double-well Duffing equation: x′′(t) + 0.3x′(t) − x(t) + (x(t))2 + (x(t))3 = µ sin t. Numerical
studies show regions of chaos interspersed with regions without chaos, as in the Off–On–Off Chaos Theorem (Theorem 5).

Fig. 3. The forced-damped pendulum. For this figure, periodic points with periods up to ten were plotted in red for the time-2π
map of the forced-damped pendulum equation: x′′(t)+0.2x′(t)+sin(x(t)) = µ cos(t), indicating the general areas with chaotic
dynamics for this map. Then the attracting sets were plotted in black, hiding some periodic points. Parameter ranges with
and without chaos are interspersed.
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Quadratic maps as in the example in Fig. 1
has the quite atypical property that as the parame-
ter increases, there are no bifurcations that destroy
periodic orbits. Such maps are called monotonic.
(This monotonicity was originally proved implicitly
by Douady and Hubbard in the complex analytic
setting. See the paper [Milnor & Thurston, 1988] for
a proof.) Once one knows that a map is monotonic,
it is easy to show that as chaos develops there must
be infinitely many cascades. See Figs. 1 and 4–8.

The monotonicity property is a quite severe
restriction, even in one-dimension. No higher
dimensional maps that develop chaos are mono-
tonic; yet numerical studies indicate that there are
infinitely many cascades whenever there is one. See
for example, Figs. 2, 3 and 5. In this paper we sum-
marize our progress and give new extensions to our
theory that explains why there are infinitely many
cascades in the onset to chaos. Our explanation is
also valid for maps of arbitrary dimension.

In the first result of this paper, we consider
the context in which virtually all periodic saddles
have the same unstable dimension. (By virtually
we mean all except for a finite number.) In this
case, the onset of chaotic behavior always includes
infinitely many cascades.

There is extensive literature on Routes to
Chaos; that is, situations in which for some µ1 and
µ2, the trajectory of x under F (µ2, ·) is in the basin
of a chaotic attractor, whereas under F (µ1, ·) it is

not. Whatever might have happened that caused
this change between µ1 and µ2 is called a route to
chaos. We prefer to call these “routes to a chaotic
attractor” to be more specific. There are many dif-
ferent routes to a chaotic attractor. See our discus-
sion section for a partial enumeration. For many
maps there is competition between instability and
stability. For example, the appearance of an attract-
ing periodic orbit as a parameter is varied may mask
the chaotic dynamics, and when the orbit becomes
unstable, a chaotic attractor is likely to appear.
Hence a periodic orbit’s loss of stability is one exam-
ple of a route to a chaotic attractor. This approach
ignores the question we address here: how did the
chaotic dynamics arise in the first place?

Two types of cascades. For maps with the mono-
tonicity property, each cascade is solitary, in that
it is not connected to another cascade by a path
of regular periodic orbits. These paths are the col-
ored stems shown in Fig. 4. See Sec. 2 for full defini-
tions of these terms. Furthermore, the chaos persists
for all parameters larger than a certain value. How-
ever, in many scientific contexts, it is common to see
chaotic behavior appear and then disappear as the
parameter µ increases. Thus as it increases, there
is both a route to chaos followed by a route away
from chaos. In this situation virtually all cascades
are paired; that is, two cascades are connected by
a path of regular periodic orbits. See Fig. 5.

Fig. 4. Cascades for F (µ, x) = µx(1 − x). The logistic map has infinitely many cascades of attracting periodic orbits, and
all cascades start at the stable orbit of a saddle-node bifurcation. The unstable orbits form what we call the stems of the
cascades (shown in color). Each stem continues to exist for all large µ values. By our terminology, this means that all the
cascades shown are solitary (on any parameter interval [µ1, µ2], for µ1 = 3.5 and any µ2 > 4) since the stem does not connect
its cascade to a second cascade. The stems are shown here up to period six. Different colors are used for different periods.

1250022-3



March 12, 2012 11:18 WSPC/S0218-1274 1250022

E. Sander & J. A. Yorke

(a)

(b)

Fig. 5. Paired cascades in the Hénon map (u, v) �→ (1.25 − u2 + µv, u). The top bifurcation diagram shows a set of four
period-7 cascades. The bottom bifurcation diagram shows the detail of the top part. Only one point of each of the period-7
orbits of the Hénon map are shown so that it is clearer how the two pairs connect to each other. The leftmost and rightmost
cascades form a pair that is connected by a path of unstable regular periodic orbits (shown in red). Likewise, the two middle
cascades form a pair. It is connected by a path of attracting period-seven orbits (blue). Paired cascades are not robust to
moderate changes in the map.

Solitary cascades are robust. In our second set
of results, we show that while paired cascades can
be easily created and destroyed, solitary cascades
are far more robust even in the presence of rather

large perturbations of a map. Solitary cascades usu-
ally have stems with a constant period. This stem-
period can be thought of as the period that starts
the cascade. These ideas give quite striking results.
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For example, for each period p the following two
maps

Q(µ, x) = µ− x2

and

Q̃(µ, x) = µ− x2 + 1000 cos(µ3 + x)

have exactly the same number of solitary cascades
of stem-period p — assuming the bifurcations of
the second map are generic. Namely, we call a
map generic if its periodic orbit bifurcations are all
generic. See Sec. 2 for the full definitions of these
terms. We know that all the bifurcation orbits are
generic for almost every smooth map, and that if
a smooth map is not generic, then it has infinitely
many generic maps arbitrarily close to it, but unfor-
tunately — with few exceptions — we cannot tell if
a given map is generic.

The map Q has no paired cascades, but the
Q̃ may. For example there is exactly one solitary
cascade with stem-period 1 and one with stem-
period 3. These results extend to

F (µ, x) = µ− x2 + g(µ, x)

where g is smooth (i.e. infinitely continuously differ-
entiable) and |g(µ, x)| and |gx(µ, x)| are uniformly
bounded — as would be the case if g was smooth
and periodic in each variable, again assuming the
map F has generic bifurcations.

Outline. The paper proceeds as follows: in Sec. 2,
we give some basic definitions, including what we
mean by a cascade, the definition of chaos that
we use here, and the class of generic maps with
which we work. Section 3 contains a series of results
relating chaos and cascades, with an explanation
of the concrete relationship between periodic orbits
within the chaos and the resulting cascades along
the route towards this chaos. In Sec. 4, we discuss
the fact that all cascades are either paired or soli-
tary, and show that solitary cascades are robust
under changes in the map.

In Sec. 5, we show that if there is chaotic behav-
ior interspersed with nonchaotic behavior, then
virtually all cascades are paired. It is common in sci-
entific applications that chaos is interspersed with
orderly behavior, in what we call off–on–off chaos
(defined formally in Sec. 5). Our numerical studies
indicate that this occurs multiple times for both the
forced-damped pendulum and double-well Duffing
examples.

We end with a discussion and present open
questions in Sec. 6.

2. Definitions

We investigate smooth maps F (µ, x) where µ is in
an interval J , and x is in a smooth manifold M of
any finite dimension. For example, for the forced
damped pendulum,

d2θ

dt2
+A

dθ

dt
+ sin θ = µ cos t,

we take F (µ, x) to be the time-T map, where T =
2π is the period of the forcing, and x = (θ, dθ/dt).
Then the first coordinate of x is on a circle, and the
second is a real number. Hence M is a cylinder.

We say a point (µ, x0) is a period-p point if
F p(µ, x0) = x0 and p is the smallest positive integer
for which that is true. Its orbit, sometimes written
[(µ, x0)], is the set

{(µ, x0), (µ, x1), . . . , (µ, xp−1)},
where xj = F j(µ, x0).

By the eigenvalues of a period-p point (µ, x0),
we mean the eigenvalues of the Jacobian matrix
DxF

p(µ, x0).
An orbit is called hyperbolic if none of its

eigenvalues has absolute value 1. All other orbits
are bifurcation orbits. Figure 6 depicts two stan-
dard examples of bifurcation orbits and the result-
ing stability of nearby periodic points.

We call a periodic orbit a flip orbit if the orbit
has an odd number of eigenvalues less than −1, and
−1 is not an eigenvalue. (In one dimension, this
condition is derivative with respect to x is < −1.
In dimension two, flip orbits are those with exactly
one eigenvalue < −1.) All other periodic orbits are
called regular. For example, the periodic orbits
of constant period switch between flip and regular
orbits at a period-doubling bifurcation orbit since
an eigenvalue crosses −1. See Fig. 7. We write RPO
for the set of regular periodic orbits.

For some a, b ∈ R and ψ ∈ [a, b), let Y (ψ) =
(µ(ψ), x(ψ)) be a path of regular periodic
points depending continuously on ψ. Assume ψ
does not retrace any orbits. That is, each Y (ψ) is
a periodic point on a regular periodic orbit, and
distinct values of ψ correspond to periodic points
on distinct orbits. We call a regular path Y (ψ)
a cascade if the path contains infinitely many
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Fig. 6. Center manifold of saddle-node bifurcations and period-doubling bifurcations. This figure shows typical saddle-node
and period-doubling (halving) bifurcations, along with the stability. For generic maps F : R ×Rn, it is sufficient to examine
the R × R center manifold. We plot one-dimensional x vertically and µ horizontally. We use vertical arrows to show how
the stability varies near a bifurcation periodic point — indicated by a large dot. In each case, all the stability arrows can be
reversed, thereby generating four more cases.

period-doubling bifurcations, and for some period
p, the periods of the points in the path are pre-
cisely p, 2p, 4p, 8p, . . .. As one traverses the cascade,
the periods need not increase monotonically, but as
ψ → b, the period of Y (ψ) goes to ∞. The orbits
of a cascade with monotonic period increase are
depicted schematically in Fig. 8.

Write fixed(µ, p) for the set of fixed points of
F p(µ, ·) and |fixed(µ, p)| for the number of those
fixed points. We say that there is exponential
periodic orbit growth at µ if there is a num-
ber G > 1 for which the number of periodic orbits
of period p satisfies |fixed(µ, p)| ≥ Gp for infinitely
many p. For example, this inequality might hold for
all even p, but for odd p there might be no periodic
orbits. This is equivalent to the statement that for
some h (= logG) > 0, we have

lim sup
p→∞

log |fixed(µ, p)|
p

≥ h. (1)

2.1. Periodic orbit chaos

Chaotic behavior is a real world phenomenon, and
trying to give it a single definition is like trying to
define what a horse is. Definitions are imperfect. A
child’s definition of a horse might be clear but would
be unsatisfactory for a geneticist (whose definition
might be in terms of DNA) and neither would sat-
isfy a breeder of horses who might give a recursive
definition, “an offspring of two horses”. Definitions
of real-life phenomena describe aspects of that phe-
nomena. They might agree in the great majority
of cases on which animals are horses, though there
may be rare atypical exceptions like clones where
they might disagree. Just as it is impossible cur-
rently to connect the shape and sound of a horse
with its DNA sequence, it is similarly impossi-
ble currently to identify in full generality positive
Lyapunov exponents with exponential growth of
periodic orbits.

Saddle-node Saddle-node

C

BA

Period-doubling Period-doubling

A B

C

(a) (b) (c) (d)

Fig. 7. The regular periodic orbits form a one-manifold near regular saddle-node and period-doubling bifurcation orbits. In
this schematic figure each point is an orbit and the horizontal axis is the parameter, usually µ in this paper. (a) and (b) Near
a standard saddle-node bifurcation of a periodic orbit, the local invariant set consists of a curve of periodic orbits. They are
either all flip orbits or all regular periodic orbits. Therefore RPO is locally a curve. (c) and (d) Near a standard period-doubling
(or period-halving) bifurcation of a periodic orbit, the local invariant set consists of two curves of periodic orbits, one of period
p shown as segment AB, and one of period 2p shown as segment C. Segment C always consists of regular periodic orbits,
whereas exactly one of A and B consists of flip orbits and the other regular periodic orbits. Thus RPO is locally a curve
consisting of C and either A or B, depending on which is regular. For the quadratic map µ− x2, only (a) and (d) occur. That
is, periodic orbits are created but never destroyed as µ increases. When x is two-dimensional, such simplicity virtually never
occurs [Kan et al., 1992].
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Fig. 8. A depiction of a monotonic cascade. A cascade is
a path of regular periodic orbits that has infinitely many
period-doubling bifurcations with the periods going to infin-
ity at the end of the path. Solid lines denote regular orbits,
and dashed lines denote flip orbits. This figure uses only the
orbit-creation bifurcations, (a) and (d) in Fig. 7. If only bifur-
cation types (a) and (d) are present and x is scalar, then
each saddle-node spawns an unstable branch and an attrac-
tor as µ increases. For µ − x2, there are no attractors for
µ > µ2 for µ2 sufficiently large. Hence this branch of attrac-
tors cannot continue forever and must bifurcate. Only (d) is
available, spawning a flip orbit branch and a doubled-period
branch of attractors. Again this new branch of attractors can-
not continue forever as µ increases. In this way, an infinite
set of period-doublings results before µ reaches µ2. Much
more complicated patterns are possible when all four types
of bifurcations are allowed, including period-halving as well
as period-doubling, and the path may contain many saddle-
node bifurcations.

Similarly “chaos” and “chaotic” should have
definitions appropriate to the needs of the user. On
the other hand, an experimenter might insist that to
be chaotic, there must be a chaotic attractor, until
he/she starts looking for chaos on basin boundaries
and finds transient chaos. That approach leaves no
terms for the chaos that occurs outside an attrac-
tor, as on fractal basin boundaries. We make no
such restriction. Our results involve periodic orbits,
and we make our definition accordingly.

We say a map F (µ, ·) has periodic orbit (PO)
chaos at a parameter µ if there is exponential peri-
odic orbit growth. This occurs whenever there is
a horseshoe for some iterate of the map. It is suf-
ficiently general to include having one or multiple
co-existing chaotic attractors, as well as the case of
transient chaos. As hinted at by Eq. (1), in many
cases PO chaos is equivalent to positive topologi-
cal entropy. We discuss this relationship further in
Sec. 6.

The unstable dimension Dimu(µ, x0) of a
periodic point (µ, x0) or periodic orbit is defined to

be the number of its eigenvalues λ having |λ| > 1,
counting multiplicities.

We say there is virtually uniform (PO)
chaos at µ if there is PO chaos, and all but a finite
number of periodic orbits have the same unstable
dimension, denoted Dimu(µ).

For the pendulum map discussed above, when-
ever there is PO chaos at some parameter value
µ, we expect the periodic orbits to be primarily
saddles, and if it likewise had virtually uniform
PO chaos, then we would expect Dimu(µ) = 1.
Assuming there are infinitely many periodic orbits,
roughly half would be regular saddles, with the
rest being flip saddles. Furthermore, all attracting
periodic points are regular.

Our first goal is to describe the route to (PO)
chaos. That is, if at µ1 there is no chaos, while at
µ2 there is virtually uniform chaos, we explain what
must happen in this interval in order for chaos to
arise.

We believe that generally there is one typical
route to chaotic dynamics. Namely, there must be
infinitely many period-doubling cascades when µ is
between µ1 and µ2. (Each of these cascades in turn
has infinitely many period-doubling bifurcations.)

2.2. Generic maps

Our results are given for generic maps of a parame-
ter. Specifically, we say that the map F is generic
if all of the bifurcation orbits are generic, meaning
that each bifurcation orbit is one of the following
three types:

(1) A standard saddle-node bifurcation (where
“standard” means the form of the bifurcation
stated in a standard textbook, such as [Robin-
son, 1995]). In particular, the orbit has only one
eigenvalue λ for which |λ| = 1, namely λ = 1.

(2) A standard period-doubling bifurcation. In par-
ticular, the orbit has only one eigenvalue λ for
which |λ| = 1, namely λ = −1.

(3) A standard Hopf bifurcation. In particular, the
orbit has only one complex pair of eigenvalues λ
for which |λ| = 1. We require that these eigen-
values are not roots of unity; that is, there is no
integer k > 0 for which λk = 1.

These three bifurcations are depicted in Figs. 7
and 9. Generic F have at most a countable number
of bifurcation orbits, so almost every µ has no bifur-
cation orbits. See [Sander & Yorke, 2011] for the
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Fig. 9. A regular periodic Hopf bifurcation point is locally contained in a unique curve of regular periodic orbits. To under-
stand generic Hopf bifurcations, it is sufficient to determine the dynamics on its (invariant) center manifold, which is locally
like R2 × R. It contains all periodic orbits that are near the bifurcation orbit. Near a generic Hopf bifurcation with no
eigenvalues which are roots of unity, the local invariant set consists of a curve of periodic points (in solid black) and a sur-
rounding paraboloid (at left). Although there are infinitely many periodic orbits on the paraboloid in each neighborhood of
the Hopf bifurcation point, the middle curve of periodic points is disconnected from all periodic points on the paraboloid.
Specifically, the paraboloid contains infinitely many annuli converging to the bifurcation point, each with periodic orbits
formed and destroyed at saddle-node bifurcations. Typical annuli are depicted here by colored regions. The periodic orbits
are depicted in blue (saddles) and red (nodes). Between every two annuli, there is an invariant circle (in black) with irra-
tional rotation number, as made clear by the projection (at right) of the paraboloid to the center manifold plane of the
phase space.

details showing that these maps are indeed generic
in the class of smooth one-parameter families. For
systems with symmetry such as the forced-damped
pendulum, a fourth type of bifurcation occurs, such
as a pitchfork or symmetry-breaking bifurcation.
This adds complications, though in fact with extra
work our results remain true.

Our motivation for considering generic maps is
given in Proposition 1 in the next section, which
states that each regular periodic orbit for a generic
map is locally contained in a unique path of periodic
orbits. The connection to cascades can be summa-
rized as follows: starting at each regular periodic
orbit Q for µ ∈ [µ1, µ2], there is a local path of reg-
ular periodic orbits through Q. Enlarge this path as
far as possible. Either the path reaches µ1 or µ2, or
there is a cascade. This idea is explained in more
detail in the next section.

3. Onset of Chaos Implies Cascades

Our first result is Theorem 1, which demonstrates
that the route to virtually uniform PO chaos
contains infinitely many period-doubling cascades.
Theorem 2 is a restatement of these results in a
way that makes the relationship between chaos and
cascades much more transparent.

Write J for the closed parameter interval
[µ1, µ2]. Our main hypotheses will be used for a
variety of results so we state them here.

List of Assumptions.

(A0) Assume F is a generic smooth map; that is, F
is infinitely differentiable in µ and x, and all
of its bifurcation orbits are generic.

(A1) Assume there is a bounded set M that con-
tains all periodic points (µ, x) for µ ∈ J .

(A2) Assume all periodic orbits at µ1 and µ2 are
hyperbolic.

(A3) Assume that the number Λ1 of periodic orbits
at µ1 is finite.

(A4) Assume at µ2 there is virtually uniform PO
chaos. Write Λ2 for the number of periodic
orbits at µ2 having unstable dimension not
equal to Dimu(µ2).

Theorem 1. Assume (A0−A4). Then there are
infinitely many distinct period-doubling cascades
between µ1 and µ2.

Example 3.1. Based on numerical studies, a num-
ber of maps appear to satisfy the conditions of
the above theorem. Note that numerical verifica-
tion involves significantly more work than just plot-
ting the attracting sets for each parameter, since we
are concerned about both the stable and the unsta-
ble behavior to determine whether there is chaos.
Examples include the time-2π maps for the double-
well Duffing (Fig. 2), the triple-well Duffing, the
forced-damped pendulum (Fig. 3), the Ikeda map
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(introduced to describe the field of a laser cavity),
and the pulsed damped rotor map.

This formulation gives no idea how the behav-
ior at µ2 is connected to the cascades that must
exist. Thus before giving a proof, we reformulate
the conclusions of the theorem in a more trans-
parent way. Specifically, we reformulate so that it
is clear how infinitely many cascades in the strip
S = [µ1, µ2] × M are connected to regular periodic
orbits at µ2 by continuous paths in RPO.

3.1. Paths of orbits

We now give a formal definition for paths of regular
periodic orbits and show that they connect regu-
lar periodic orbits at µ2 with cascades between µ1

and µ2. We start with the following theorem, which
guarantees that a path through each regular peri-
odic orbit is unique.

Assume hypotheses A0−A4, and consider a
local path through a regular periodic orbit as guar-
anteed by the above proposition. Specifically, let
Y0 = (µ2, x0) be a regular periodic point. Since all
such points at µ2 in the above theorem are assumed
to be hyperbolic, the orbit can be followed without
a change of direction for nearby µ < µ2. We can
define Y (ψ) = (µ(ψ), x(ψ)) continuously for ψ in
an interval [ψ0, ψ1] as follows. Let Y (ψ0) = (µ2, x0).
Then Y (ψ) follows the branch of regular periodic
points for decreasing µ until reaching Y (ψ1), which
is either a bifurcation orbit or µ = µ1. If it is a
bifurcation point, which would be a generic bifur-
cation point, then from the above proposition there
is a unique branch of regular hyperbolic periodic
points leading away from Y (ψ1), and Y (ψ) follows
that branch. If Y (ψ1) is a period-doubling bifurca-
tion point, there are two branches of regular peri-
odic points, but both are on the same orbits. Either
branch can be followed since both represent the
same orbits and both are regular.

Each branch of hyperbolic periodic orbits can
be parametrized by µ and is easy to find numerically
by solving a differential equation. Write A(µ) for
the square matrix DxF

p(µ, x(µ)) and b(µ) for the
vector DµF

p(µ, x(µ)). Differentiating

F p(µ, x(µ)) = x(µ)

with respect to µ and manipulating yields

b(µ) +A(µ)
dx

dµ
=
dx

dµ
,

or
dx

dµ
= −(A(µ) − Id)−1b(µ),

where Id denotes the identity matrix. The matrix
inverse above exists since (µ, x(µ)), being hyper-
bolic, cannot have +1 as an eigenvalue.

This construction suggests a definition. We say
Y (ψ) is a path in S for ψ in some interval K if it
is continuous and

(i) Y (ψ) is a regular periodic point in S for each
ψ ∈ K;

(ii) Y does not retrace orbits; that is, Y is never on
the same orbit for different ψ.

Proposition 1 [Local paths of regular periodic
points]. For a smooth generic map F : R×M → M,
each regular periodic point is locally contained in a
path of regular periodic points. The corresponding
path of periodic orbits is unique.

This proposition appears in [Sander & Yorke,
2011]. Here we give an idea of the proof. The
implicit function theorem shows that there is a
local curve of periodic points through a regular
hyperbolic periodic point. Therefore, the proof con-
sists of showing that there is also a local curve
of orbits through each periodic bifurcation orbit.
This must be shown for each of the three types
of generic bifurcations. The curve is not neces-
sarily monotonic: It may reverse direction with
respect to µ, as depicted in Fig. 6. Namely, a path
Y (ψ) = (µ(ψ), x(ψ)) reverses direction at ψ0 if
µ(ψ) changes from increasing to decreasing or vice
versa at that point. For n-dimensional x, the study
of generic saddle-node and period-doubling bifur-
cations can be reduced to one-dimensional x due
to the center manifold theorem. The bifurcation
orbit has n − 1 eigenvalues outside the unit circle,
and these do not affect the dynamics on the two-
dimensional invariant (µ, x)-plane. Hence here we
can consider x as being one-dimensional.

In the case of a saddle-node bifurcation, one
branch of orbits is stable and one is unstable in
R1. Since the other n − 1 eigenvalues do not cross
the unit circle near the point, it follows that the
unstable dimension of the orbits in n-dimensions is
even for one branch and odd for the other, i.e. the
unstable dimension k(ψ) of Y (ψ) changes parity as
Y (ψ) passes through the bifurcation point Y (ψ0).

For a period-doubling bifurcation, consider the
notation depicted in Fig. 6. Namely, let (A) denote
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the period-n orbits with no coexisting period-
2n orbits, let (B) denote the branch of period-
n orbits coexisting at the same parameter values
with the branch (C) of period-2n orbits. If branch
(A) is regular and (B) is flip, then the path Y
includes branches (A) and (C), which are on dif-
ferent sides of the bifurcation point, and µ(ψ) does
not change direction and k(ψ) does not change par-
ity. If however (B) is regular and (A) is flip, then
µ(ψ) does change direction and k(ψ) does change
parity.

For Hopf bifurcations (see Fig. 9), the path pro-
ceeds monotonically past the bifurcation point and
the unstable dimension changes by ±2, so the par-
ity does not change. Hence in all cases, the path
changes direction if and only if the parity changes.
The cases of saddle-node and period-doubling bifur-
cations are straightforward, as depicted in Fig. 7. To
show that RPO is locally a curve at a Hopf bifurca-
tion is trickier than the other two cases, since there
are in fact infinitely-many periodic orbits near a
Hopf bifurcation point, but they are not connected
to the Hopf bifurcation point by any path of peri-
odic points, as shown in Fig. 9. The proof follows
from the steps listed.

Cascades. We call a regular path Y (ψ) for ψ ∈
[a, b) a cascade if the path contains infinitely many
period-doubling bifurcations, and for some period
p, the periods of the points in the path are pre-
cisely p, 2p, 4p, 8p, . . . . As one traverses the cascade,
the periods need not increase monotonically, but as
ψ → b, the period of Y (ψ) goes to ∞.

We will say a path Y (ψ) is maximal if the
following additional condition holds:

(iii) Y cannot be extended further to a larger inter-
val, and it cannot be redefined to include
points of more regular orbits.

Figure 10 shows an example of a middle portion
of a maximal path. Figures 11 and 12 show different
possibilities for how the maximal path ends.

Let Orbits(Y ) be the set of periodic points on
orbits traversed by Y . That is, if (µ, x) = Y (ψ)
for some ψ, then (µ, x) ∈ Orbits(Y ) and so are the
other points on the orbit, (µ,Fn(µ, x)) for all n.

Two integers are said to have the same parity
if both are odd or both are even. Otherwise they
have opposite parity. Figures 6 and 10 demonstrate
why this is a critical idea. Namely, the unstable

doubling

doubling

Period
halving

Period

Period

Saddle
node

Hopf

Fig. 10. Paths of regular periodic orbits. We assume here
that all bifurcation orbits are generic. It follows that a regular
periodic point is in a path of periodic points. Since each peri-
odic point is in a periodic orbit, we can think of the path as
being a path of regular periodic orbits. This is a unique path
of regular orbits (solid). Here we show orbits, not points. Flip
orbits are depicted by dashed lines, showing that the path is
no longer unique if we include all periodic orbits. Let Y (ψ)
be a path of regular (non-flip) periodic points parametrized
by ψ, such that Y (ψ) does not pass through the same orbit
twice. Write [Y (ψ)] for the orbit that the point Y (ψ) is in. It
is a useful fact that whenever the µ coordinate µ(ψ) of Y (ψ)
changes direction, the unstable dimension of Y (ψ) changes
by one. Hence it changes from odd to even or vice versa. The
arrows along the path show which way the path is traveling
as ψ increases.

dimension of a path Y (ψ) changes parity as ψ
increases precisely when the path changes direc-
tions. Thus the parity of the unstable dimension
corresponds to the orientation of the path.

Fig. 11. Paths of regular periodic orbits starting from µ2.
Assume the bifurcations are generic. We use the notation of
the above figure. Let Y0 = (µ2, x0) be a regular hyperbolic
periodic point. If its maximal path of orbits extends to an
hyperbolic orbit Y ∗

0 at µ1, then the path has changed direc-
tions an even number of times and the unstable dimensions
of Y0 and Y ∗

0 have the same parity; that is, both are even
or both are odd. If the path starting at a regular hyper-
bolic orbit Y1 = (µ2, x1) returns to a point Y ∗

1 at µ2, the
path changes directions an odd number of times, and so the
unstable dimensions of Y1 and Y ∗

1 have opposite parity and
in particular the unstable dimensions of the two are different.
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Cascade

Fig. 12. An interior path of regular orbits starting from µ2

yields cascades. Continuing the assumptions and notations
of the above figures, assume the hypotheses of Theorem 1.
Only a finite number of paths that start at µ2 can either
reach µ1 or return to µ2. Hence there are an infinite number
of regular hyperbolic orbits at µ2 that yield paths that nei-
ther reach µ1 nor return to µ2. Such interior paths must
contain an infinite number of bifurcations. Since generically
there are only a finite number of bifurcation orbits of each
period between µ1 and µ2, the period of the orbits must
tend to infinity along the path and it must contain a cas-
cade. Hence there are infinitely many cascades between µ1

and µ2.

Theorem 2. Assume (A0−A4). Then the following
are true.

(B1) there are infinitely many regular periodic
points at µ2.

(B2) For each maximal path Y (ψ) = (µ(ψ), x(ψ))
in S starting from a regular periodic point
Y0 = (µ2, x0), the set of orbits traversed,
denoted by Orbits(Y ), depends only on the ini-
tial orbit containing Y0. That is, different ini-
tial points on the same orbit yield paths that
traverse the same set of orbits, so we can write
Orbits(Y0) for Orbits(Y ).

(B3) Let Y0 = (µ2, x0) and Y1 = (µ2, x1) be reg-
ular periodic points on different orbits. Then
Orbits(Y0) and Orbits(Y1) are disjoint.

(B4) Let K denote the unstable dimension of a reg-
ular periodic point (µ2, x0). For a maximal
path Y (ψ) = (µ(ψ), x(ψ)) in S starting from
(µ2, x0), let k(ψ) denote the unstable dimen-
sion of Y (ψ). At each direction-reversing
bifurcation, k(ψ) changes parity; that is, it
changes from odd to even or vice versa. Ini-
tially Y (a) = (µ2, x0) so initially µ(ψ) is
decreasing and k(a) =K, so initially k(a)+K
is even. Hence in general µ(ψ) is decreasing if
K + k(ψ) is even and increasing if it is odd.

(B5) Let Y be a maximal path on [a, b] in S and
µ(a) = µ2. If µ(b) = µ2, then µ(ψ) is increas-
ing at that point so k(a) +k(b) is even. Hence
k(a) + k(b) is odd, so k(a) �= k(b).

(B6) There are infinitely many distinct period-
doubling cascades between µ1 and µ2.

(B7) There are at most Λ = Λ1 + Λ2 regular
periodic orbits at µ2 with unstable dimension
Dimu(µ2) that are not connected to cascades.

Theorem 2 is a version of Theorem 1 that
allows us to show that most regular orbits at µ2 are
connected to cascade by a path of regular orbits.
The conclusions of this theorem were shown to
hold in [Sander & Yorke, 2011] under assumptions
A0−A4 along with the additional hypothesis that
at µ2, there are infinitely many periodic regular
orbits. However, we are now able to show that this
last hypothesis is unnecessary because it is auto-
matically true. In fact, under assumptions A0−A4,
approximately half of the periodic orbits are regu-
lar. This proof is quite technical in that it involves
topological fixed point index theory. To make this
treatment more readable, we give the full details in
[Joglekar et al., 2010].

Example 3.2. Assume phase space is two-
dimensional. If at µ2 there is a transverse homo-
clinic point then there will be infinitely many
saddles and exponential orbit growth. Condition
A2 is often satisfied if the attractor(s) are peri-
odic orbits and there is a Smale horseshoe in the
dynamics.

Example 3.3. Our numerical studies of the
forced-damped pendulum indicate that it satis-
fies the hypotheses of this theorem on [µ1, µ2] ≈
[1.8, 20], [73, 20], [73, 175] and [350, 175]. Thus there
are infinitely-many cascades on each of these
intervals.

Weakening the uniformity hypothesis. We end
this section with the conjecture that A4 can be
weakened without effecting the conclusions of the
theorem. Specifically, let Φ(µ,K, p) be the fraction
of all period-p orbits at µ that have unstable dimen-
sion K. We will say that most periodic orbits
have unstable dimension K if Φ(µ,K, p) → 1 as
p → ∞. We believe that for most generic smooth
maps and most µ, there is some dimension u0 for
which this holds.
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Conjecture 1. Assume (A0−A3) (not including
(A4)). Assume that most periodic orbits at µ2 have
unstable dimension K. Then there are infinitely
many regular periodic orbits with unstable dimen-
sion K, and infinitely many of these are connected
to distinct period-doubling cascades between µ1

and µ2.

4. Conservation of Solitary Cascades

Let J be an interval, and let Y (ψ) for ψ ∈ J be
a maximal path of regular periodic orbits contain-
ing a cascade. For any point s0 in the interior of
J , infinitely many period doublings of the cascade
occur either for ψ < s0 or ψ > s0. In the follow-
ing definition, we distinguish two types of cascades
based on what happens to the other end of Y (ψ).

Definition 4.1. Let F satisfy A0−A2. A cascade is
solitary in [µ1, µ2] if the maximal path of regular
periodic orbits containing it possesses no other cas-
cades. In this case, we call the non-cascade end of
the maximal path the stem of the cascade. A cas-
cade is paired if its maximal path contains two cas-
cades. A cascade is bounded in [µ1, µ2] if its max-
imal path is contained in the interior of the interval
and never hits the boundary µ = µ1 or µ = µ2. We
call a path which stays in the interior of the interval
an interior path.

On a sufficiently large parameter interval, all
cascades for quadratic maps are solitary, as shown
in Fig. 4. Figure 5 shows an example of two sets of
paired cascades. The following theorem shows that
the classification of solitary versus paired is equiv-
alent to classifying cascades in an interval as being
purely interior versus hitting the interval boundary.

Theorem 3 [Solitary and paired cascades]. Let F
satisfy A0−A2 on [µ1, µ2]. A cascade is paired if and
only if the maximal path containing the cascade is
an interior path. In particular, bounded cascades
are always paired.

The maximal path of a solitary cascade contains
a periodic point on the interval boundary; i.e. there
is a point (µ, x) in the maximal path of the cascade
such that µ = µ1 or µ = µ2. Namely, solitary
cascades are never bounded.

Proof. We give a sketch of the proof. Let J be an
interval, and let Y (ψ) for ψ ∈ J be a maximal path
of regular periodic points in [µ1, µ2] containing a

cascade as ψ increases. Fix s0 ∈ J , and consider
the one-sided maximal paths Z±(ψ) ⊂ Y (ψ) where
Z±(ψ) = Y (ψ) respectively for ψ > s0, ψ < s0,
ψ ∈ J . We have assumed that Z+(ψ) contains
the cascade. Therefore Z+(ψ) is an interior path,
since otherwise there would not be infinitely many
period-doubling bifurcations.

Key Fact: By the methods described in Sec. 3, a
one-sided maximal path of regular periodic points is
an interior path if and only if it contains a cascade.

Assume the cascade in Y (ψ) is paired. Then
Z−(ψ) ⊂ Y (ψ) contains a cascade, so by the key
fact above, Z−(ψ) is an interior path, implying Y (ψ)
is as well.

Conversely, if Y (ψ) is an interior path, then
Z−(ψ) is as well, and by the key fact Z−(ψ) contains
a cascade, meaning that the cascades in Z±(ψ) are
paired. �

Conservation of solitary cascades. If F satis-
fies A0 − A4, and Λ1 = Λ2 = 0, then Theorem 1
implies that there is conservation of solitary cas-
cades. Specifically, let F̃ be any generic map such
that F and F̃ agree at µ1 and µ2, though they may
have completely different behavior inside the inter-
val. Then F and F̃ have exactly the same solitary
cascade structure. Since the number of cascades is
infinite, this does not appear to be a meaningful
statement. However, we can classify solitary cas-
cades by looking at the period of their stems, and it
is in this sense that their cascades are the same. In
Fig. 4 we label five solitary cascades, one of period
three, one of period four, two of period five, and one
of period six.

Three rigorous examples of conservation of soli-
tary cascades are encapsulated in the following one-
dimensional maps (see Fig. 13):

F (µ, x) = µ− x2 + g(µ, x) (quadratic),

F (µ, x) = µx− x3 + g(µ, x) (cubic),

F (µ, x) =
x4 − 2µx2 + µ2

2
+ g(µ, x) (quartic),

(2)

where g is smooth, and for some real positive β,

|g(µ, 0)| < β for all µ, and

|gx(µ, x)| < β for all µ, x.
(3)

It is straightforward to show that for g ≡ 0,
each of these maps has a [µ∗1, µ

∗
2] such that there

are no regular periodic orbits for F at µ∗1, and F
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Fig. 13. Quadratic, Cubic, and Quartic Maps. The three maps from Eq. (2), are shown for g = 0 and for µ = 24, 15, and
8, respectively. The squares depicted are [−2

√
µ, 2

√
µ]2. The maxima and minima are far larger than the size of the boxes,

resulting in purely uniform chaotic behavior within the boxes. This is typical for large µ. As µ increases, these three graphs
would be stretched vertically. The values of the map F for large µ at the critical points are proportional to µ, µ3/2 and µ2,
respectively, largely unaffected by g, which is bounded and has bounded derivative.

has virtually uniform (PO) chaos at µ∗2. This leads
to the fact that for g of the form given, each of the
three maps has no regular periodic orbits for µ1 suf-
ficiently negative, and for µ2 sufficiently large has
a one-dimensional horseshoe map. The conditions
on g guarantee that it does not significantly affect
the periodic orbits when |µ| is sufficiently large; in
particular it does not affect their eigenvalues, so it
does not affect the number of period-p regular peri-
odic orbits for large |µ|. Hence all three maps have
no regular periodic orbits for µ small and have no
attracting periodic orbits for µ large, and for suf-
ficiently large |µ|, all periodic orbits are contained
in the set [−2

√
µ, 2

√
µ]. This leads to the following

result:

Theorem 4 [Conservation of cascades]. For each of
the functions F in Eq. (2), F is generic for a resid-
ual set of g chosen as in Eq. (3). For each of the
three examples, the number of stem-period-k soli-
tary cascades for all generic F is independent of
the choice of g.

In other words, fix F to be one of the three
types in Eq. (2). Fix any g as in Eq. (3) such that
F is generic. Then there exist µL and µM such that
as long as µ1 < µL and µ2 > µM , F has the same
number of solitary cascades on [µ1, µ2] as occur in
the g ≡ 0 case for the interval [µ∗1, µ∗2].

As an interpretation of this statement, take a
set B as large as you like in parameter cross phase
space, and make g = −(µ−x2) in B, so F ≡ 0 in B.
Hence the only periodic orbit in B is the fixed point

x = 0, so B contains no cascades. It might seem
that we have annihilated all cascades by this pro-
cess, but the theorem guarantees that every single
one of these solitary cascades will appear. They are
just displaced from their original location, moved
outside of B.

The conservation principle works for higher-
dimensional maps as well. For example, we have
shown in [Sander & Yorke, 2009] that even large-
scale perturbations of the two-dimensional Hénon
map have conservation of solitary cascades. That
is, writing x = (x1, x2),

F (µ, x1, x2) =

(
µ+ βx2 − x2

1 + g(µ, x1, x2)

x1 + h(µ, x1, x2)

)
,

(Hénon)

where β is fixed, and the added function (g, h)
is smooth and is very small for ‖(µ, x1, x2)‖ suf-
ficiently large. See [Sander & Yorke, 2009] for
a precise (and technical) formulation. Here the
added terms cannot destroy the stems which are
unchanged in the domain where ‖(µ, x1, x2)‖ is very
large. Each stem must still lead to its own solitary
cascade.

If F (µ, x1, . . . , xN ) is a set of N coupled
quadratic maps such that

xi �→ K(µ) − x2
i + g(x1, . . . , xN ), (coupled)

where g is bounded with bounded first derivatives,
and limk→±∞Ki(µ) = ±∞, then there is conserva-
tion of solitary stem-period-k cascades.
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5. Off–On–Off Chaos for Paired
Cascades

In the previous section, we concentrated on the
implications of Theorem 3 on solitary cascades,
but it also has implications for paired cascades.
It describes a situation which is quite common in
physical systems, namely the case in which parame-
ter regions with and without chaos are interspersed,
such as shown in Figs. 2 and 3. Specifically, we
give the following definition describing the situa-
tion where there is no chaos at µ1 and µ3, while at
F, it is chaotic at µ2.

Definition 5.1 [Off–on–off chaos]. Assume F satis-
fies A1–A4 on [µ1, µ2] and on [µ3, µ2], where µ1 <
µ2 < µ3. Then F is said to have off–on–off chaos
for µ1 < µ2 < µ3.

If F has off–on–off chaos, we can apply Theo-
rem 2 to both [µ1, µ2] and to [µ2, µ3] and conclude
that there are infinitely many cascades in each of the
two intervals. The following theorem is stronger, in
that we also conclude that virtually all regular peri-
odic points at µ2 are contained in paired cascades.

Theorem 5 [Off–on–off chaos]. If F has off–on–off
chaos on µ1 < µ2 < µ3, then F has infinitely many
(bounded) paired cascades and at most finitely many
solitary cascades in (µ1, µ3).

The result follows directly from combining the
results of Theorems 2 and 3.

Example 5.1. Our numerical studies indicate that
the time-2π maps of the forced double-well Duff-
ing (Fig. 2) and forced damped pendulum (Fig. 3)
have off–on–off chaos, and that it occurs on mul-
tiple nonoverlapping parameter regions. Here 2π is
the forcing period. We cannot prove there are only
finitely many periodic attractors, though we find
very few. These systems have no periodic repellers.

6. Discussion

6.1. Our results in the context of
routes to chaos

We now contrast our view with the traditional view
of many different routes to chaos. People write
about Routes to Chaos — where chaos does indeed
mean there is a chaotic attractor. Below we list
classes of distinct routes to chaotic attractors. Our
results imply that for generic smooth maps depend-
ing on a parameter, there is a unique route from no

chaos to chaos (which we have defined to mean vir-
tually uniform PO chaos) — in the sense of having
a chaotic set that need not be attracting, for exam-
ple, when there is a transverse homoclinic point.
Between a parameter value where there is no chaos
and a parameter value where there is chaos, there
must be infinitely many period-doubling cascades.

6.2. Routes to a chaotic attractor

(1) A chaotic attractor develops where there was
no previous horseshoe dynamics; this includes
what we might call the Feigenbaum cascade
route.

(2) There is a transient chaos set and a simple non-
chaotic attractor (equilibrium point or periodic
orbit) and that attractor becomes unstable. For
periodic orbits there are three ways to become
unstable.

(3) Like above except the attractor is a torus with
quasiperiodic dynamics. How many ways can
a torus become unstable? We suspect in many
ways.

(4) Crisis route: as a parameter decreases, a chaotic
attractor collides with its basin boundary and
the chaotic set is no longer attracting. How
many ways can this happen? Also unknown.

(5) There is a chaotic attractor and a nonchaotic
attractor and as a parameter is varied, the ini-
tial condition being used migrates into the basin
of the chaotic attractor.

(6) Homoclinic explosions lead to chaotic
dynamics.

However, using the viewpoint described in this
paper, there is only one route to chaos.

6.3. Relating PO chaos and
positive entropy

Consider the following definition, related to expo-
nential growth of periodic orbits, alluded to when
the definition was given: If |fixed(p)| ∼ Gp for
large p, then we sayG is the growth factor, or we call
logG the periodic orbit entropy. Taking logs of
both sides, dividing by p, and taking limits, we get

lim sup
p→∞

log |fixed(p)|
p

= logG = h.

We believe that many of the methods used here will
lead to a fruitful study of periodic orbit entropy.
Note that PO chaos occurs exactly when h > 0.

1250022-14



March 12, 2012 11:18 WSPC/S0218-1274 1250022

Connecting Period-Doubling Cascades to Chaos

If there are only finitely many orbits for example,
h = 0. If there is at most a fixed number k of peri-
odic orbits of each period p, again h = 0, even if
there may be infinitely many orbits. In many situa-
tions, there is a relationship between exponential
periodic growth and positive topological entropy,
and in fact, in some cases periodic orbit entropy
is equal to topological entropy. We elaborate below.

Bowen showed [Bowen, 1970] that for Axiom A
diffeomorphisms, you can find topological entropy
exactly by looking at the growth rate for the num-
ber of period-p orbits as p goes to infinity. For
Hénon-like maps, Wang and Young proved that
the topological entropy coincides with the exponen-
tial growth rate of the number of periodic points
of period p [Wang & Young, 2001]. In [Chung &
Hirayama, 2003] it is shown that for any surface
diffeomorphism with Hölder continuous derivative,
the topological entropy is equal to the exponential
growth rate of the number of hyperbolic periodic
points of saddle type. That is, you can throw away
the attractors and repellers.

In terms of interval maps: The paper [Misi-
urewicz & Szlenk, 1980] contains a proof that if f
is a continuous and piecewise monotone map of the
interval, then the topological entropy is bounded
above by the exponential growth rate of the num-
ber of periodic orbits. Building on [Katok & Mezhi-
rov, 1998], the paper [Chung, 2001] demonstrates
that if f is C1+α, similar results can be obtained if
one counts only the set of hyperbolic periodic orbits
(namely, periodic points x for which |(fp)′(x)|1/p >
1) or the set of transversal homoclinic points of a
source.

6.4. Nonsmooth maps

Continuous maps F which are piecewise smooth
but not smooth violate our assumptions, but such
maps can be thought of as the limits of generic
smooth maps Fn which differ from F only very
near the discontinuities of Fx. In dimension one,
F = µ+ bx+ c|x| gives a rich collection of examples
obtained by choosing constants b and c in inter-
esting ways. See the extensive literature on border
collision bifurcations [Nusse et al., 1994]. Such maps
deserve more discussion than we can give here but
we mention two examples.

(1) For the tent map F (µ, x) = µ− 2|x|, there are
no periodic orbits when µ < 0; there is one
periodic orbit, a fixed point at 0, when µ = 0,

and orbits of all periods when µ > 0. All orbits
are in families of straight line rays that bifur-
cate from and originate at (0, 0), the map’s only
bifurcation periodic orbit. In this case, all bifur-
cations in all the cascades that would exist for
the approximating generic families Fn tend to
(0, 0) as n→ ∞.

(2) For the tent map with slope ±µ, namely
F (µ, x) = 1 − µ|x| for 1 < µ ≤ 2, a periodic
orbit suddenly appears at x = 0 for countably
many µ. For example, if µ3 denotes the small-
est parameter with a period-three orbit, then
the point x = 0 is a period-three point, and
only infinitely many periodic orbits whose peri-
ods are multiples of three bifurcate from it. All
of the cascades for those orbits that we would
expect for a smooth map are collapsed into the
single point (µ3, x = 0).
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