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A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter

families of) maps for which as the parameter is varied, the map transitions from one without

chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a

cascade for many maps with phase space dimension 2. We use continuation methods to show the

following: under certain general assumptions, if at one parameter there are only finitely many

periodic orbits, and at another parameter value there is chaos, then between those two parameter

values there must be a cascade. We investigate only families that are generic in the sense that all

periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to

show there must be infinitely many cascades. We discuss in detail two-dimensional families like

those which arise as a time-2p maps for the Duffing equation and the forced damped pendulum

equation. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813600]

In a series of papers in 1958–1963, Pekka Myrberg was

the first to discover that as a parameter is varied in the

one-dimensional quadratic map (cf. Figure 1), periodic

orbits of periods k, 2k, 4k, 8k, … occur for a variety of k
values (cf. Refs. 45 and 46 and references therein). This

now well known phenomenon of period-doubling cas-

cades has been seen in a large variety of parameter-

dependent dynamical systems. Though it is not always

possible to detect cascades numerically, as they may not

be stable, they have been observed numerically in the

contexts of maps, ordinary differential equations, partial

differential equations, delay differential equations, and

even in physical experiments. See Refs. 6–9, 21, 24,

26–28, 31, 38, 41, 54, 55, 60, and 62 and the double-well

Duffing equation in Figure 2. It has often been observed

that cascades occur in a dynamical system varying with a

parameter during the transition from a system without

chaos to one with chaos. In the current paper, we rigor-

ously show the existence of a cascade (in fact of infinitely

many) for certain two-dimensional systems, which

include a transition to chaos.

I. INTRODUCTION

Though period-doubling cascades (subsequently short-

ened to cascades) frequently occur en route to chaos, the

onset of chaos can occur without cascades. For example,

chaos appears following the appearance of a homoclinic

orbit (without a cascade) in the Lorenz system as q is

increased past q � 13:9 (for fixed b ¼ 8=3 and r ¼ 10).1,34

The Lorenz system has cascades but only for larger q val-

ues.56 A second example is the parameterized tent map

family f ðk; xÞ ¼ 1� kjxj on [�1,1]; for k<1 there is no

chaos, and for all k>1 there is a set on which chaos occurs.

However, there are no cascades for the tent map family. We

note here that in using the term “chaos,” we include transient

chaos; we do not assume that there is a chaotic set that is an

attractor. These examples suggest that it is of value to under-

stand better when cascades must accompany the transition to

chaos. Observe that the tent map is not differentiable, and

the Lorenz system cannot be written as a map defined on

two-dimensional manifold. (Standard representations as a

Poincar�e map result in places where the map is not defined.

While one can study a Poincar�e return map using a plane

defined by having a constant z, the return map is not defined

at those points in the plane that are on the stable manifold of

the origin and their trajectories never return to the plane.) In

this paper, we restrict to smooth (differentiable) maps mean-

ing that the tent map, its two-dimensional analogues, and the

Lorenz system do not fit within our theory. In particular, our

focus in this paper is on one-parameter families of two-

dimensional maps, which throughout this paper have the

form

Fðk; xÞ; with k 2 R and x 2M; (1)

where M is a 2-dimensional manifold such as R2 or a cylin-

der. Such a map arises from the time-2p map for double-well

Duffing equation (cf. Figure 2).

Types of orbits. A (periodic) orbit for a map F is a finite

set of points. That is, for a fixed k value and finite k, a pe-

riod-k orbit of Fðk; �Þ is a finite set of points fx1;…; xkg such

that Fðk; xiÞ ¼ xiþ1 for i < k and Fðk; xkÞ ¼ x1. In what fol-

lows we refer to a periodic orbit as an orbit and call it a sad-

dle if its Jacobian matrix DxFkðk; xÞ has eigenvalues a and b
satisfying jaj < 1 < jbj. The saddle is a regular (or nonflip)

saddle if b > 1 and is a flip saddle if b < �1. A regular orbit

is any orbit that is not a flip saddle. If the orbit has an eigen-

value with absolute value 1, it is called a bifurcation orbit.

An orbit that is not a bifurcation orbit is a flip orbit if DXF
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has precisely one real eigenvalue that is less than �1. Note

that a flip orbit is either a saddle or a repeller.

If a cascade exists then for some k, there is a sequence

of parameter values k0; k1; k2;… such that there is a period-

doubling bifurcation of a period-k orbit for Fðk0; �Þ, a period-

doubling bifurcation from a period-2k orbit for Fðk1; �Þ, a

period-doubling bifurcation of a period-4k orbit for Fðk2; �Þ,
and in general for every i > 0, there is a period-doubling

bifurcation of a period-2ik orbit for Fðki; �Þ.
There are many definitions of chaos, the choice of which

depends on the aspect of chaos to be emphasized. The defini-

tion that is appropriate here is based on periodic orbits. We

say F has periodic-orbit (PO) chaos or is PO-chaotic at k1 if

Fðk1; �Þ has infinitely many regular periodic saddles. For

example, if a map has a horseshoe, it must have PO-chaos.

We consider only maps F in (1) which are generic in the

sense that all its bifurcation orbits are generic; specifically,

we say a bifurcation orbit P of F is generic if it is one of the

following three types (cf. Ref. 50):

(i) A generic saddle-node bifurcation.

(ii) A generic period-doubling bifurcation.

(iii) A generic Hopf bifurcation for a map, i.e., a Naimark-

Sacker bifurcation.

See Ref. 52 for a more detailed description of generic

bifurcations. We say F is generic when each of its bifurca-

tion orbits is generic. For example, no period-tripling bifur-

cations or other degenerate bifurcations are permitted. In

particular, such maps F are dense in set of smooth families

in a space C1 of infinitely differentiable functions. See Ref.

52 for a more detailed technical description of this generic

set of maps.

Main result. The following says that in the class of F
we consider, there is a cascade if the system becomes PO-

chaotic.

Theorem 1 (Route to PO-chaos). Assume that F in (1) is
generic (as described above), and that

(S0) F0 ¼ Fðk0; �Þ has at most a finite number of orbits, and
it has no bifurcation orbits.
(S1) F1 ¼ Fðk1; �Þ has at most a finite number of orbits that
are either attractors or repellers, and it has no bifurcation
orbits.
(S2) F has PO-chaos at k1.

(S3) Define W ¼ ½k0; k1� �M. Then, there is a bounded
subset of W that contains all periodic points in W.

Then, there is a cascade in ðk0; k1Þ.
We hope at this point that the reader will feel that there

are very few assumptions here and there does not seem that

there are enough assumptions to prove anything. But from

these mild assumptions, we assert that in the transition from

no PO-chaos to PO-chaos, there must be a cascade.

Continuation methods are strong enough for us to create a

proof. In order to prove the existence of one cascade, we

prove there are infinitely many cascades in W. Furthermore,

each cascade of orbits is connected by a smooth curve of per-

iodic orbits, as described in Sec. I A.

A. Components, cascades, and continuation

Definition 1 (Component). A set C � R�M is defined
to be a set of orbits if ðk; xÞ 2 C implies x is a periodic point
of Fðk; �Þ; and in addition, every other point ðk; x0Þ on the
same orbit is also in C. We say that a set of orbits C is a
component if it satisfies the following properties:

(1) C contains only regular orbits (meaning no flip orbits).
(2) C is path connected; i.e., for any two points ðka; aÞ and
ðkb; bÞ in C, there is a path of periodic points all of
which are contained in C, such that one end of the path
is ðka; aÞ and the other end is ðkb; bÞ. Furthermore, there
is an upper bound on the periods of the periodic points
on the connecting path. (The periods of orbits in a com-
ponent are unbounded in the cases we consider).

(3) C is maximal, in the sense that it is not contained in a
strictly bigger set of orbits satisfying (1) and (2).

Note that each regular periodic orbit is contained in a

component. By definition, flip orbits are not contained in

components.

FIG. 1. The parameterized map Fðl; xÞ ¼ l� x2. For each fixed l value,

the attracting set in [0, 1] is shown. There are infinitely many cascades. For

this map, each cascade has precisely one saddle-node bifurcation. The

branch of unstable orbits ending at the saddle-node bifurcation is shown for

period-1 and period-3. Each regular periodic orbit within the map’s horse-

shoe at l ¼ 2 is uniquely connected to one of the (infinitely many) cascades.

The regular period-one and period-three orbits are shown here, depicted

respectively by one and three dots at l ¼ 2. This is the bifurcation diagram

most frequently displayed to illustrate the phenomenon of period-doubling

cascades. However, cascades occur for much more complex dynamical sys-

tems that are completely unrelated to quadratic maps, as shown for example

in Fig. 2.

FIG. 2. The attracting set for the double-well Duffing equation: u0 0ðtÞ þ
0:3u0ðtÞ � uðtÞ þ ðuðtÞÞ3 þ 0:01 ¼ x sin t: This equation is periodically

forced with period 2p. Therefore, the F ¼ time-2p map is a diffeomorphism

on R2 parameterized by x. Depicted here is the attracting set of F, projected

to the ðx; u0ðtÞÞ-plane. The constant 0.01 has been added to destroy symme-

try in order to avoid non-generic symmetry-breaking bifurcations.
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For generic F, each component C is either a closed loop

of periodic orbits (where there is an upper bound on the peri-

ods of the orbits), or it contains a path

hðsÞ ¼ ðkðsÞ; xðsÞÞ for s 2 an open interval J; (2)

and the path hð�Þ passes through each orbit exactly once. In

fact, we can always nonlinearly rescale s so that the open

interval J is (�1, 1), so we will always assume J ¼ (�1, 1).

Note that h(s) lies in each orbit of C for exactly one s. The

function h is a called a “parametrization” of C.

Example 1 (A component). In Fig. 3, we see a path
hðsÞ ¼ ðkðsÞ; xðsÞÞ for s 2 ð�1;þ1Þ that passes through a
family of periodic orbits, leftmost of which is a saddle-node
fixed point, and as we follow that to the right, the family
undergoes a series of period-doubling bifurcations. Let C be
the set of all ðk; xÞ that are points of orbits that h passes
through. The set C is a component.

We have already discussed cascades in a heuristic way,

but in order to describe the details of our continuation meth-

ods, we now give a formal definition.

Definition 2 (Cascade). A cascade is an infinite set of
period-doubling bifurcation orbits On n¼ 0, 1,… such that
for some k, each orbit On has period 2nk with the following
properties:

(1) There is a single component C that contains all the orbits
On. Let hðsÞ ¼ ðkðsÞ; xðsÞÞ for s 2 ð�1; 1Þ be a paramet-
rization of the component C and let sn 2 ð�1; 1Þ be the s
values, so that each hðsnÞ is a point of On orbit.

(2) Either sn ! �1 or sn ! þ1 as n!1.

We say the cascade is in the interval ðka; kbÞ if kðsnÞ 2
ðka; kbÞ for all but finitely many n. We note that there could
be two or more bifurcation orbits with the same period in a
component C.

B. A comparison to previous results

There are at least two general approaches to the investi-

gation of cascades, namely renormalization group methods

and continuation methods.

Renormalization group methods. Renormalization

group methods are analytical in nature, focusing on what

happens near the limiting parameter value. The approach ori-

ginated by Feigenbaum23 and Coullet-Tresser,19 with further

work by Collet-Eckmann,14–18 Sullivan42,57,58 and the

account in Ref. 20, Catsigeras,10–12 and many others

including5,22,33,35–37 and references therein. The approach

examines the parameter value where the event of interest

occurs; in this case, the parameter value that is the limit of

the period-doubling bifurcations and for generic situations

describes what happens nearby (e.g., the parameters of con-

secutive period-doubling bifurcations scales in the well

known way). This approach via the method of renormaliza-

tion is extremely powerful and has lead to many deep dy-

namical systems results, including those leading to two

recent Fields Medals. See Ref. 39 for a more complete

description of the methods and historical context.

Continuation methods. The continuation approach is

used in the current paper to describe behavior of generic sys-

tems. One examines the topological structure that causes the

event that is being investigated, assuming one has a generic

situation. The methods do not give scaling results such as

seen with renormalization methods. However, they some-

times have the advantage of giving results for a larger class

of systems. Continuation methods were used by Yorke-

Alligood and Franks.25,61 Franks used algebraic arguments

arising from the Lefschetz index. Thus, his results do not

give information on the nature of bifurcations. Our results

extend the approach of Alligood and Yorke, which used a

periodic orbit index. Our techniques are more general than

those of Alligood and Yorke, as described below.

Two approaches to the implicit function theorem. To

make the difference between the two approaches clearer, we

describe the two corresponding approaches to a much sim-

pler problem. Assume G : R� Rn ! Rn is a highly differen-

tiable function. Let D be the open set of points ðk; xÞ for

which the Jacobian matrix DxGðk; xÞ is non-singular, and let

ðk0; x0Þ 2 D. The task is to describe the set of solutions of

Gðk; xÞ ¼ Gðk0; x0Þ; (3)

that originate near ðk0; x0Þ. Answering this question via an

analytical approach gives the following.

Implicit function theorem: On some sufficiently small
interval J ¼ ðk0 � �; k0 þ �Þ centered at k0, there is a differ-
entiable function X defined on J such that Xðk0Þ ¼ x0 and
Gðk;XðkÞÞ ¼ Gðk0; x0Þ for k 2 J.

What happens to the set of solutions if we try to follow

them beyond the small interval? A continuation approach

addresses this question in the generic case. By making use of

Sard’s theorem, we get the following.

Global continuation theorem: For almost every
ðk0;x0Þ2D, the set Y of solutions of (3) consists of one or more
smooth curves. Let Y0

0 denote the curve of solutions in Y that
contains the point ðk0;x0Þ.

FIG. 3. A path in a component. There is one component that contains fixed

points (as well as orbits of period 2n for n ¼ 1; 2; 3;…. The path h(s) shown

in red passes through each orbit in this component exactly once. As shown,

at each period-doubling bifurcation, h(s) passes through the upper branch,

but this choice is arbitrary. If the path were chosen so it sometimes went

through the lower branch of periodic points, it would still pass through the

same orbits. Both branches of periodic points describe the same orbits. Note

that the lower branch extends infinitely far to the right and infinitely far

down. The limiting end point ðl�; x�Þ is not a periodic point and is not a

point of the cascade. The path can be thought of as the image of a function

hðsÞ ¼ ðlðsÞ; xðsÞÞ for s in an open interval J, and the path h(s) passes

through each orbit exactly once. Furthermore, for an appropriate change of

variables, we can choose J ¼ (–1, þ1).
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Then, Y0
0 is a curve that does not cross itself. It is either

a closed loop or is an unbounded curve.
If the curve is unbounded, then it is topologically equiv-

alent to the real line, and kðsÞ2 þ jxðsÞj2 must go to 1 at
both ends of the curve; that is Y0

0 can be parameterized by
the positive or negative of arc length s so that Y0

0 ¼ fðkðsÞ;
xðsÞÞ : s 2 Rg.

Then, limjsj!1ðkðsÞ2 þ jxðsÞj2Þ ¼ 1. In particular if the
set of ðk; xÞ 2 Y with jkj 	 b is bounded for every b, then
points in Y0

0 pass through all k values.
See Refs. 2–4, 13, 40, 43, 44, and 49. Note the similarity

of this theorem to the case of a component containing only

one cascade.

Related continuation work. We end this introduction

by briefly outlining what is contained in our previous papers

on cascades and how they compare to the current paper.

The current paper, including Theorem 1, is a significant

departure from the work of Yorke and Alligood,61 who

showed that if as a parameter changes, a map F develops a

Smale horseshoe in a very specific manner, then there are

cascades. In particular, they assume that there is a rectangle

R whose image at one parameter value a does not intersect R
but at another b maps twice across the rectangle so as to

have the properties of a Smale horseshoe; we do not assume

this (and our proof does not mention horseshoes). They also

have further limitations which imply that between parame-

ters a and b, there are no periodic points on the boundary of

R. A perusal of Theorem 1 reveals that our work has no such

assumption; we do not identify any rectangle R. In Theorem

1, we make no assumptions about how any horseshoe is cre-

ated and instead make only mild assumptions about other

orbits. Further, their work concluded that the (unperturbed)

H�enon map has cascades (that lie inside R), whereas our

approach can conclude that the H�enon map with large,

generic, C1-bounded perturbations has cascades.51

In Ref. 52, we use continuation methods to develop a

more general n-dimensional version of our main lemma here

that gives a criteria for the existence of a cascade for generic

F. We apply those criteria here to two-dimensional systems

depending on a parameter that develop PO-chaos. We note

that we always prove there exists a cascade by proving there

are infinitely many cascades.

We considered cascades for H�enon maps in Ref. 51.

We developed the concept of periodic-orbit chaos and

gave combinatorial results for counting cascades in Ref.

32. In Ref. 53, we gave a brief overview of many of our

concepts and results, with the main focus on the character-

ization of periodic-orbit chaos and its relationship to posi-

tive topological entropy, as well as on the theoretical

understanding of the generic Hopf bifurcations for maps.

In particular, it announces without proofs versions of some

of the results contained in the current paper: it contains

images of numerical calculations for the double-well

Duffing map and the forced-damped pendulum but only

announces the cascades results in passing. In this paper,

the double-well Duffing, Ikeda, and forced-damped pendu-

lum equations are treated in detail in Examples 2, 3, and

4, and the discussion of coexisting sinks (not mentioned in

the previous paper).

The paper proceeds as follows. In Sec. II, we discuss

the implications of Theorem 1. In Sec. III, we apply our

abstract theorem to show that a cascade exists.

II. CASCADES FROM BOUNDARIES

In this section, we give a more detailed discussion of the

implications of Theorem 1. We start by discussing the notion

of distance we use.

Definition 3 (Odd and even, exit and entry orbits). Let F
be generic and let p be a periodic point of a regular hyper-
bolic orbit for F. If p is a saddle, we call it either an odd
orbit or an S orbit. If it is an attractor or a repeller, it is an
even orbit or an AR. The odd-even terminology is due to the
fact that the even points have an even number (either 0 or 2)
eigenvalues that are greater than 1, while odd orbit has an
odd number, namely 1, since it is a saddle. We mention the
odd and even definitions only here to emphasize the nature
of the distinction between AR and S orbits.

If a regular orbit p is even, it is called an entry orbit for
k ¼ k0; and for k ¼ k1, it is called an exit orbit. If the regu-
lar orbit p is odd, the reverse holds: it is called an entry orbit
for k ¼ k1; and for k ¼ k0, it is called an exit orbit.

These definitions of entry and exit may seem rather arbi-

trary, but in fact they are derived from a specialized topolog-

ical index known as the orbit index, first defined in Ref. 40,

and it is this topological index theory that fundamentally

underlies the proof of our theoretical results.

In Fig. 4, families of orbits enter the set ½k0; k1� at the

saddles marked p1; p2; and p3 and exit at p4 and p5. The fam-

ily that enters at p2 does not exit. The Global Continuation

FIG. 4. Paths on families of orbits. Each point in the curves of this figure

represents an entire orbit. This figure depicts three different paths of periodic

orbits. It outlines the situation in Theorem 1 and Lemma 1. Path segments

between bifurcations consist of regular saddles (denoted S), attracting orbits,

or repelling orbits (both denoted AR). The bifurcation orbits for a generic

family are all saddle-node (SN), period-doubling, or period-halving (both

denoted PD) bifurcations. If while following a path, the path reverses direc-

tion (kðsÞ is increasing on one branch and decreasing on the other), as with

p3 and p4 at SN, then one branch is Type S while the other is type AR. The

path starting at p1 reverses direction twice, both times at a SN point. If a path

connects orbits at two ends of the parameter interval, as with p1 and p5, then

they are the same type. We show that there are infinitely many Type S seg-

ments starting at k1 that do not return to k1, and only a finite number of these

may connect to orbits at k0, and these must be Type S. Hence, there are

infinitely many paths like the one stemming from p2, remaining forever in a

bounded region between k0 and k1 and containing cascades.
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Theorem works because for a generic map, a family of solu-

tions cannot suddenly stop, because it would have at least

one limit point.

Theorem 1 declares the existence of a cascade. Below

we describe the key lemma needed for the existence of cas-

cades in proving Theorem 1. See Fig. 4. For a set W in pa-

rameter cross phase space, in keeping with our prior

notation, we refer to a cascade as being in W if all but a finite

number of bifurcation orbits of the cascade are in W.

Lemma 1 (Cascades from boundaries52). Assume that F
is generic and satisfies the boundedness condition ðS3Þ of
Theorem 1. Recall that in ðS3Þ, we define W ¼ ½k0; k1� �M.
Let C be a component parameterized by hðsÞ ¼ ðkðsÞ; xðsÞÞ
for s 2 ð�1; 1Þ. Then the following two statements hold:

(i) (The case of a path entering and exiting W.) Assume
�1 < s1 < s2 < 1 are two consecutive values of s for
which kðsÞ is on the boundary of the interval ½k0; k1�.
(That is, kðs1Þ is equal to either k0 or k1, and kðs2Þ is
equal to either k0 or k1, but for all s so s1 < s < s2,

we have that k0 < kðsÞ < k1.) Then either hðs1Þ is an
entry point and hðs2Þ is an exit point, or hðs1Þ is an
exit point and hðs2Þ is an entry point.

(ii) (The case of a path with an end that does not leave
W.) Assume that �1 < s1 < 1 is such that kðs1Þ is
equal to either k0 or k1, but k0 < kðsÞ < k1 for all s 2
½s1; 1Þ or for all s 2 ð�1; s1�. Then, C contains a cas-
cade that is contained in ðk0; k1Þ.

Sketch of proof of (i) of Lemma 1. Consider a component

C and its parametrization hðsÞ ¼ ðkðsÞ; xðsÞÞ. Then, each

segment of h(s) between bifurcations consist of regular sad-

dle points (denoted S), or attracting points or repelling points

(both denoted AR). See Figure 4. Period-doubling and halv-

ing bifurcations only change the branch type when they also

reverse the direction of h(s) and due to genericity, there can

only be a finite number of bifurcation points for s 2 ½s1; s2�.
When kðsÞ reverses direction, it must change type, i.e.,

from Type S to Type AR or vice versa. Specifically at a

saddle-node bifurcation, the orbit type changes if and only if

kðsÞ reverses direction, and the period of the two regular

branches of the path differ by a factor of two. At a saddle-

node bifurcation, a path changes, from a Type S branch to a

Type AR or vice versa; the period of the two branches is the

same.

If kðs1Þ ¼ kðs2Þ, then the direction must have reversed

an odd number of times, and the end orbits must be of oppo-

site type, so one is an entry and one is an exit. If

kðs1Þ 6¼ kðs2Þ, then an even number of reversals must have

occurred and the end orbits are of the same type. Since the

ends are on opposite ends of ½k0; k1�, so one is an entry point

and the other is an exit, as claimed in (i).
Sketch of proof of (ii) of Lemma 1. If kðs1Þ is on the

boundary of the parameter interval, and k0 < kðsÞ < k1 for

s1 < s < 1, then let Period(s) denote the period of the orbit

at parameter s. (Note that the case �1 < s < s1 is virtually

identical to the case under consideration.) We claim

PeriodðsÞ ! 1 as s! 1. Note that since Period(s) can

increase or decrease only in steps by a factor of 2 that would

mean there must be an infinite number of such steps, and all

of the periods 2k � Periodðs1Þ for all k ¼ 0; 1; 2; 3; � � � must

occur. Indeed, there must be period-doubling bifurcations

with those periods, since as s changes, Period(s) only

changes at period-doubling bifurcation orbits. Hence, the

component would contain a cascade.

To prove the claim, assume it is false. Then, there must

be a sequence of parameter values sn ! 1 as n!1, for

which PeriodðsnÞ is bounded. Since the periods are integers,

there is a subsequence such that p ¼ PeriodðsnÞ is constant.

Since the sequence of points on the path is bounded in k and

x, it follows that there must be some limit point z0 ¼ ðk; xÞ
and since it is the limit of points of period p, it must be a per-

iodic point and its period must divide p.

Since F is generic, the periodic point z0 is on a path and

any sequence of periodic points that limits on z0 and are not

in that path must have its periods going to1. Therefore, the

sequence hðsnÞ must be on the path. Hence, the component

ends at z0, which is impossible, because the path through z0

extends further, since by definition, we assume each path is

maximal. Hence, we must have PeriodðsÞ ! 1 as s! 1.

Proof of Theorem 1. The proof that there is a cascade in

Theorem 1 proceeds from the Lemma. The saddles in condi-

tion ðS2Þ are all entry orbits and they are infinite in number.

There are only a finite number of exit orbits. Hence, there

are infinitely many components that enter and do not exit.

From the lemma, such a component has a cascade in the

interval ðk0; k1Þ.
In light of Newhouse’s work showing that infinitely

many sinks can co-exist in chaotic regions, one might be

concerned about the reasonableness of hypotheses ðS1Þ and

ðS2Þ in Theorem 1: namely, we have required that at k1, all

orbits are hyperbolic, there are infinitely many regular sad-

dles, and finitely many attractors and repellers. It is conjec-

tured that it is always possible to choose some k1 in the

chaotic range, so that there are only finitely many attracting

or repelling orbits at that value. Even though diffeomor-

phisms with infinitely many coexisting sinks are Baire

generic (as Newhouse showed47), it is conjectured that they

have “probability zero” in the sense of prevalence. See

Gorodetski and Kaloshin29 for recent partial results in this

direction. The first results in this direction were much earlier

in Refs. 59 and 48.

We may thus plausibly expect a generic parameterized

map to have finitely many attractors for almost every param-

eter value. If this property is true, we can apply it to inverses

of maps to conclude that there are only finitely many repel-

lers for almost every parameter value. Hence, we can plausi-

bly assume that for almost every parameter value, there are

finitely many attractors and repellers. Even if the conjecture

is false, our assumption is true for many systems.

III. APPLICATIONS AND OFF-ON-OFF CHAOS

Dynamical systems that satisfy conditions ðS0Þ; ðS2Þ,
and ðS3Þ for some k0 and k1 are plentiful. These give evi-

dence of exhibiting PO-chaos, but a rigorous check of this

condition is generally difficult at best and not practical. The

following processes are examples that satisfy those three.

We have chosen specific parameter values, though the
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phenomena described are seen over a wide range of parame-

ter intervals.

Example 2 (The Ikeda map). The Ikeda map models the
field of a laser cavity.30 For z 2M ¼ C, the complex plane,
the map is

Fðk; zÞ ¼ kþ 0:9 z eif0:4�6:0=ð1þjz2jÞg:

At k ¼ 0, there is a globally attracting fixed point. At
k ¼ 1:0, we observe numerically a global chaotic attractor
with a positive Lyapunov exponent and homoclinic points
and one attracting fixed point and no repellers.

Example 3 (The Pulsed Rotor map). The Pulsed Rotor
map with ðx; yÞ 2M ¼ S1 �R is

Fðx; yÞ ¼ ððxþ yÞðmod 2pÞ; 0:5yþ ksinðxþ yÞÞ:

For k ¼ 0, there is a saddle fixed point and an attracting
fixed point that attracts everything except for the stable
manifold of the saddle. For k ¼ 10, we observe a chaotic
attractor and a fixed point with a transverse homoclinic
point.

Geometric Off-On-Off chaos. We now define a class

of parameterized maps that includes many nonlinear oscilla-

tors. Namely, there is no chaos at large and small k values,

but there is chaos at some intermediate value. We formalize

these properties in the following definition:

Definition 4 (Off-on-off-chaos map). Recall that the
dimension of M is 2. We say F is an off-on-off-chaos map if
F is generic and satisfies the following properties:

(D0) There are values K1 < K3 such that F1 ¼ FðK1; �Þ and
F3 ¼ FðK3; �Þ each have at most a finite number of orbits.
(D1) There is a K2 2 ðK1;K3Þ for which F2 ¼ FðK2; �Þ has
at most a finite number of orbits that are attractors or repel-
lers, and all of its orbits are hyperbolic.
(D2) F2 has infinitely many regular saddle orbits.
(D3) There is a bounded subset of W ¼ ½K1;K3� �M that
contains all of the orbits in W.

Although we cannot rigorously prove that there are pa-

rameter values for which chaos is observed and there are

only finitely many sinks, it seems extremely likely to us that

such parameter values exist for the double-well Duffing

equation, forced damped pendulum, as well as other nonlin-

ear oscillators not studied here. See Figure 2. Both are peri-

odically forced with period 2p. Therefore, their time-2p
maps, denoted by Fðk; �Þ or Fðk; u; du=dtÞ are diffeomor-

phisms on R2.

The following definition distinguishes two types of cas-

cades. See Figure 5.

Definition 5 (Paired and solitary cascades). For a
generic F, assume a component C has a cascade on each
end. Then, we say the two cascades are paired. If a cascade
is not paired, it is solitary.

For a generic F, if there is only one cascade in compo-

nent C on the set W ¼ ½K1;K3� �M; then on one end, the

component C continues without a limit in the interior of W.

Thus, it must either be unbounded in x or reach the boundary

of W. If assumption D3 in the above definition holds, then x
values in C are bounded, meaning that there is a point ðk; xÞ
in C with either k ¼ K1 or k ¼ K3.

Theorem 2 (Off-on-off chaos). Assume F is an off-on-
off chaos map with K1 < K2 < K3 given in the definition
above. Let W ¼ ½K1;K3� �M. Then, there is a cascade pair
in W. Also there are at most finitely many solitary cascade
components in W.

As might be expected, we prove the existence of paired

cascades by proving there are infinitely many such pairs.

Proof. This is a slight modification of the proof of

Theorem 1. There are infinitely many regular orbits at K2 but

only finitely many have paths that extend to either K1 or to

K3 or whose path returns to K2. Therefore, there are infin-

itely many whose path (or component) remains in between

K1 and K3 and has only one orbit at K2. It follows that each

of these has a cascade in ðK1;K2Þ and another in ðK2;K3Þ;
that is, the component has paired cascades.

If C is an unbounded cascade with some k values in

½K1;K3�, that is, it has some orbit in W, then it must have an

orbit whose K coordinate is either K1 or K3. Since the map

has only finitely many of these orbits, there can be at most

finitely many such unbounded cascade components. w

Our numerical investigations strongly suggest that for

the double-well Duffing Eq. (1), there are a number of inter-

vals in the parameter range where F has a globally attracting

fixed point. These intervals are centered near the values

k 2 f1:8; 20; 73; 175; 350g.
Furthermore (2) between any two consecutive values in

this set, there is a k for which (some iterate of) the time-2p
map appears to have a Smale horseshoe. Actually, it seems

to have a chaotic attractor. Zakrzhevsky63 provides many

insights into the dynamics of a double-well Duffing equation

though his version uses a restoring force of u3 þ u instead of

our choice of u3 � u.

Example 4 (The forced damped pendulum). The time-2p
map for

d2h
dt2
þ 0:3

dh
dt
þ sinh ¼ k cos t

FIG. 5. Paired cascades. This figure depicts two sets of period-seven cas-

cade components for the H�enon map ðu; vÞ7!ð1:25� u2 þ lv; uÞ, each con-

taining paired cascades. Only one point of each of the period-7 orbits of the

H�enon map are shown, so that it is clearer how each pair is connected by its

component. The leftmost and rightmost cascades are paired; that is, they lie

in the same component of orbits. They are connected by a path of unstable

regular periodic orbits (the orbit connecting the lefthand and righthand sides

of the figure). Likewise, the two middle cascades are paired. They lie on

(and are connected by) a path of attracting period-seven orbits. Paired cas-

cades are not robust to macroscopic changes in the map in that both can be

simultaneously destroyed by a large enough local perturbation.
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strongly appears to yield a geometric off-on-off-chaos map.
We investigate the time-2p map on M ¼ S1 �R; that is, the
first variable is h ðmod 2pÞ and the second is dh=dt 2 R.
There is a symmetry about k ¼ 0: For parameters k and �k,
the system has the same dynamics. At k ¼ 0, there are only
two periodic orbits, both fixed points, an attractor and a sad-
dle, and we observe numerically a global chaotic attractor
with a positive Lyapunov exponent and homoclinic points at
k ¼ 2:5. For k 
 10, as at k ¼ 0, the two fixed points are the
only orbits. Due to the friction term 0:3 dh=dt, the orbits
must lie in a bounded subset of M for k 2 ½�10; 10�. This
map then appears to be a geometric off-on-off-chaos map
with either K1 ¼ 0; K2 ¼ 2:5, and K3 ¼ 10, or by symmetry,
with K3 ¼ 0; K2 ¼ �2:5, and K1 ¼ �10. Assuming these
numerical observations are valid, each cascade component
must have its k values lie entirely in either (0, 10) or (�10,
0). There are at most k¼ 4 unbounded cascade components
and an infinite number of bounded pairs of cascades (where
both are in the same component).
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