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There are many ways that a person can encounter chaos, such as through a time series from a
lab experiment, a basin of attraction with fractal boundaries, a map with a crossing of stable
and unstable manifolds, a fractal attractor, or in a system for which uncertainty doubles after
some time period. These encounters appear so diverse, but the chaos is the same in all of the
underlying systems; it is just observed in different ways. We describe these different types of
chaos. We then give two conjectures about the types of dynamical behavior that is observable
if one randomly picks out a dynamical system without searching for a specific property. In
particular, we conjecture that from picking a system at random, one observes (1) only three
types of basic invariant sets: periodic orbits, quasiperiodic orbits, and chaotic sets; and (2) that
all the definitions of chaos are in agreement.

Keywords : Chaos; Lyapunov exponents; basins of attraction; horseshoes; forced-damped
pendulum.

1. Introduction

Chaos is observed in so many ways that it can be
quite confusing for a practitioner to get a reasonable
answer to the simple question

“What is the definition of chaos?”

In fact, chaos cannot now be satisfactorily defined
mathematically using a single definition, not
because chaos is not a single concept, but because
chaos has many manifestations in many different
situations. There are situations in which many of
these manifestations simultaneously apply, but each
is independent of the others; while these definitions
seem to agree in almost all cases, they tend to dif-
fer at the margins. In this paper, we discuss a vari-
ety of manifestations of chaos, the context where

each would be likely to be found, and some of
the methods used for detecting them. We restrict
attention to deterministic dynamical systems, in
which the initial conditions determine all future
behavior. This paper is certainly not an attempt to
be complete — there are many situations which we
have left out altogether. We also freely admit that
the particular focus is shaped by personal experi-
ence. These examples are meant to illustrate a point
which we do believe is universal: For the defini-
tion to be useful, the determination of chaos should
depend on the viewpoint of the investigator. It must
be phrased in terms of the information that is avail-
able to the scientist in question.

The following is the list of aspects of chaos that
we discuss, forming a summary of the rest of the
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paper:

• In Sec. 2, we discuss homoclinic orbits and horse-
shoes. These aspects of chaos are the earliest
types of observed chaotic behavior, first described
in the writings of Poincaré.

• Section 3 addresses strange chaotic attractors and
their fractal topology.

• Section 4 describes sensitive dependence on ini-
tial conditions, including scrambled sets of Li–
Yorke chaos, broad band power spectrum, and
Lyapunov chaos. These latter two are commonly
used in the study of time series data.

• Section 5 describes three nonequivalent types
of entropy: topological entropy, periodic orbit
entropy, and metric entropy.

• Section 6 covers important types of robust sets
which are not attractors but may exhibit chaos:
saddles and basin boundaries.

• Section 7 contains two conjectures on the types
of behavior observable for a dynamical system
selected at random. We give a formal definition
for what we mean by observable. In broad strokes,
we conjecture that for observable dynamical
systems: the basic invariant sets have periodic,
quasiperiodic behavior, or chaotic behavior; and
multiple concepts of chaotic sets will agree for
observable dynamical systems. In contrast to
expected typical behavior, we list some com-
monly studied concepts which represent nontyp-
ical behavior.

2. Homoclinic Orbits and
Horseshoes

If an orbit of a system containing an initial con-
dition x has the same limit both in forward and
backward time, x is called a homoclinic point. If
the stable and unstable manifolds cross each other
at a homoclinic point, then there are infinitely-
many homoclinic points limiting on each other, and
chaos occurs near this set of points. This situation is
referred to as a homoclinic tangle. Figure 1 shows a
homoclinic bifurcation, meaning the progression as
a parameter is varied starting with no intersections
between stable and unstable manifolds, followed by
a tangency between manifolds, and ending with a
homoclinic tangle. This was the type of chaos that
Poincaré initially missed in his treatise on the sta-
bility of the solar system, which had won him a
prize given by King Oscar III of Sweden. Poincaré

assumed that there were no homoclinic crossings.
When Phragmén pointed out his error, his attempts
at a correction resulted in his creating the mod-
ern field of dynamical systems [McGehee, personal
communication]. In particular, he clearly realized
the complex nature of the situation in the following
description of the situation depicted in the bottom
two panels of Fig. 1 [Poincaré, 1993, pp. I59]: “If
one seeks to visualize the pattern formed by these
two curves and their infinite number of intersec-
tions, each corresponding to a doubly asymptotic
solution, these intersections form a kind of lattice-
work, a weave, a chain-link network of infinitely fine
mesh; each of the two curves can never cross itself,
but it must fold back on itself in a very complicated
way so as to recross all the chain-links an infinite
number of times. One will be struck by the complex-
ity of this figure, which I am not even attempting
to draw.”

More than 60 years after Poincaré’s work,
Smale [1967] rigorously described homoclinic tan-
gles by showing that the behavior of homoclinic tan-
gles is at least as complicated as the behavior of a
very simple iterated map that he called a horseshoe
for its geometric shape. In particular, he was then
able to fully define all dynamical behavior under
the horseshoe map. In particular, he showed that
although the map is deterministic, the behavior
of the orbits is as random as a coin flip, includes
infinitely many periodic orbits, and displays expo-
nential divergence of trajectories. The set of points
with these hallmarks of chaos (known as the chaotic
set) also has an interesting fractal structure. The
chaos in this case can be transient, meaning that the
chaotic set is unstable. After creating the seemingly
arbitrary map, Smale demonstrated that for every
fixed point (or periodic orbit) with a homoclinic
crossing, there is a horseshoe map embedded in the
behavior of the system. Therefore, any system with
a homoclinic crossing includes the type of random
behavior described above. The relationship between
homoclinic points and chaos motivates much of the
study of homoclinic points and their bifurcations.

Verifying chaos by checking for homoclinic
crossings is in some cases feasible when other man-
ifestations — such as power spectrum or Lyapunov
exponent — cannot be used. This method has
even been used in infinite-dimensional contexts,
such as for parabolic partial differential equations
and delay differential equations [Lani-Wayda &
Walther, 1995, 1996]. (More general results in this
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Fig. 1. The formation of a homoclinic tangle in the Hénon map: (x, y) �→ (ρ − x2 − 0.3y, x) for −4 < x < 4,−3 < y < 3,
left to right, up to down ρ = 2.0, 2.01725, 2.01875, 2.0246. The stable manifold for a fixed point is shown in red. The unstable
manifold contains the attractor, in yellow. In the first figure, the stable and unstable manifolds do not cross and the attractor
is disconnected. In the second figure, the stable and unstable manifolds are tangent, and the attractor becomes connected. The
manifolds cross in the third and fourth figures, becoming a tangled mess limiting on themselves infinitely often. Homoclinic
tangles are one of the best known behaviors associated with chaos.

spirit show the existence of Shilnikov heteroclinic
orbits for delay equations [Lani-Wayda, 2001].)
Although the horseshoe is most often used to study
homoclinic tangles, some dynamical systems can be
shown to have a horseshoe directly without first
showing the existence of a homoclinic orbit. This

is, for example, true for Hénon maps [Devaney &
Nitecki, 1979] and in some rigorous computational
proofs of chaotic behavior [Arai & Mischaikow,
2006]. There are shortcomings of testing for a
chaotic set via chaotic orbits. As mentioned above,
the set may be unstable, referred to as transient
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chaos. In addition, the existence of a homoclinic
crossing is not a quantitative measure of either the
amount of chaos in a system or its robustness under
variation of a parameter.

3. Chaotic Attractors and Their
Topology

Homoclinic crossings are not the aspect of chaos
that Ueda so most prominently observed when he
first viewed the Duffing map attractor in 1961
[Hayashi et al., 1970], depicted in Fig. 2. Rather,
he was struck by the repeatability and irregular
topology of the attractor. Similar observations of
robustness and geometric complexity were made by
Edward Lorenz for the well known Lorenz attractor
[Lorenz, 1963].

The fractal nature of attractors is a signature
of chaos — and attractors with this property are
referred to as strange attractors. (It is also possible
to have a strange nonchaotic attractor with fractal

structure, but these structures are nontypical and
highly degenerate1 [Grebogi et al., 1984].) To say
that an attractor “looks fractal” has been made
rigorous using a variety of attractor dimension def-
initions, and it is numerically feasible to check a
variety of dimensions for an attractor for a low-
dimensional system, though in attractor of higher
dimensions these calculations become far more com-
plex and in some cases infeasible.

Even with this more sophisticated mathemat-
ical machinery, there is still no clear definition of
a strange attractor. However, there is one special
case of strange attractors called rank-one attrac-
tors that are well defined and relatively well under-
stood [Young, 2003; Wang & Young, 1999, 2001,
2013]. Figures 1–3 show examples of the relation-
ship between strange attractors and homoclinic tan-
gles. In particular, in Figs. 1 and 3, one sees that
topological changes in the attractor occur at homo-
clinic bifurcations: two attractors merge into a sin-
gle attractor when stable and unstable manifolds
are tangent at a homoclinic bifurcation.

Fig. 2. The attracting set for Ueda’s forced double-well Duffing map: x′′(t) + 0.05x′(t) + x(t)3 = 7.5 sin(t) for −2.2 < x <
2.2,−1.5 < y < 2.6. The solution is plotted every 2π (stroboscopic), which defines an invertible map. Looking at this attractor
in 1961, Ueda observed the repeatability of the irregular (now known to be fractal) topology [Hayashi et al., 1970]. This is
one of the signatures of chaotic sets. (Left) The attractor is plotted alone. (Right) The Ueda attractor plotted together with a
portion of the two branches of the stable manifolds (in magenta and cyan) of a saddle fixed point at the origin, thus showing
that there is a homoclinic tangle. If all of the stable manifold branches were plotted, they would densely cover the attractor
and the region surrounding it.

1It is possible that strange nonchaotic attractors are of infinite codimension. This is discussed further in Sec. 7.
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Fig. 3. Chaotic attractors for the Holmes map: (x, y) �→ (1.5x−x3 +λy, x) for −2 < x < 2,−2 < y < 2. There are three fixed
points, one at the origin and two outer ones satisfying x = y = ±√

0.5 + λ for λ > −0.5. In the upper two pictures λ = 0.7
and there are two attractors (yellow and red) whose basins are white and magenta. In the lower two figures, λ = 0.714, the
attractors have merged. In all four pictures, blue represents the basin of ∞ and at the center of the picture (0, 0) is a fixed
point whose stable manifold in the upper two figures is the boundary between the white and magenta. For the two figures on
left, only the attractors and the basins are shown. The upper right figure includes the stable manifolds of outer fixed points in
black and green while in the lower right, those manifolds (green) have crossed the stable manifold and their closures are equal.
If plotted to infinite extent, it appears that those stable manifolds would come arbitrarily close to every point in the basin of
the attractor. The merging of attractors occurs between 0.7 and 0.714 when the stable and unstable manifolds of (0, 0) cross,
creating new homoclinic points.
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4. Sensitive Dependence on Initial
Conditions

Perhaps the easiest chaotic system to understand
analytically is the doubling map f on [0, 1] where

f(x) = 2x (mod 1),

that is f(x) is the noninteger part of 2x. The point
0 is a steady state, since 0 = 1 (mod 1). The point
x = 1/3 exhibits periodic behavior since f(1/3) =
2/3, and f(2/3) = 4/3 (mod 1) = 1/3. However,
points arbitrarily close to 1/3 deviate from the orbit
of 1/3, where the deviation becomes exponentially
large with the iterate. For example, the point 0.33
is close to 1/3, but f(0.33) = 2 × 0.33 = 0.66,
f 2(0.33) = 0.32, the fractional part of 1.32. The
deviation on the seventh iterate is more than 100
times as great as the original deviation. Further, the
deviation is larger than 1/3: the distance between
the two points in the original orbit. In general, for
initial points x, y that are sufficiently close together,
when we apply the map n times to each we get
|fn(x) − fn(y)| = 2n|x − y|, provided that |x −
y| ≤ 0.5 × 2−n. Table 1 shows this deviation. This
example demonstrates one aspect of chaos: expo-
nential divergence of trajectories, also referred to
as sensitive dependence on initial conditions.

Another aspect of chaos demonstrated by this
example is an infinite number of periodic orbits.
We have shown by example that 1/3 is a peri-
odic point. In fact, the map f has infinitely many
periodic points. For example, for each prime num-
ber p and integer 0 < m < p, m/p is a periodic
point; i.e. fp−1(m/p) = m/p. This follows from
the so-called Fermat’s Little Theorem [Weisstein,
2014], which states that for each integer k (here
we are interested in k = 2) and each prime p,
kp−1 − 1 is an integer multiple of p. Therefore, for
each integer m, m×kp−1−m is an integer multiple
of p. Dividing by p yields (m/p) × kp−1 − m/p =
0 (mod 1). Hence fp−1(m/p) = m/p so m/p is a
periodic orbit and its period divides p − 1. Note
that f3(1/7) = 1/7 (mod 1) whereas 1/3, 1/5, 1/11,
and 1/13 have periods 2, 4, 10 and 12 respectively.

It is however easy to see that this map has at most
a finite number of period k points for each k, so
there is no bound on the periods of the periodic
orbits.

4.1. Li–Yorke chaos

In 1975, Li and Yorke [1975] reported on sensi-
tive dependence on initial conditions in their def-
inition of a chaotic set for a map F . Such a set was
later referred to as a scrambled set. The definition
requires both that the set is mixing in the sense
that for any two distinct points p and q in the set,
the distance between Fn(p) and Fn(q) occasionally
get arbitrarily close to each other but then move
apart and get closer together and go apart, coming
arbitrarily close but not staying close. An uncount-
able scrambled set with an infinite number of peri-
odic orbits has Li–Yorke chaos. See also Sec. 5,
where we discuss entropy — topological entropy is
an alternative codification of mixing, and periodic
orbit entropy is an alternative codification of a large
number of periodic points, but all of these concepts
are distinct. Li–Yorke has proved to be useful in
the study of maps, but it is rather hard to ren-
der numerically or verify rigorously, especially for
higher-dimensional maps and flows. The next two
concepts in this section are much more useful for
data analysis.

4.2. Broad power spectrum chaos

Gollub and Swinney observed chaotic motion in
Taylor–Couette flow fluid experiments, but they
had no analytical representation of the system [Gol-
lub & Swinney, 1975]. Rather, their data was in
the form of an experimental time series, and their
indicators of chaos were the broad power spec-
trum for the time series data. This is the basis
of the numerical 0–1 test for chaos [Gottwald &
Melbourne, 2009a, 2009b; Melbourne & Gottwald,
2008]. The broad power spectrum only considers
the behavior of orbits, ignoring nearby trajectories,
thus missing the geometric aspects of the chaos.

Table 1. Iteration of the doubling map.

Iterate 0 1 2 3 4 5 6 7

Point 1/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3

Point 0.33 0.66 0.32 0.64 0.28 0.56 0.12 0.24

Deviation 1/300 2/300 4/300 8/3007 16/300 32/300 64/300 128/300
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An idea which does consider nearby trajectories is
Lyapunov chaos.

4.3. Lyapunov chaos

By far the most common method of checking for
chaos in maps and flows is by using Lyapunov
exponents, a quantitative measure of the degree of
stretching or contraction of the system along an
orbit. A positive exponent implies the existence
of a direction for which the system is stretching
along the orbit. Lyapunov chaos occurs if there is a
positive probability of a random trajectory having
an expanding direction. It is a useful technique as
it gives quantitative information about the degree
of chaos: the degree of stretching and the num-
ber of stretching directions. This information can
be used to make estimates on the fractal nature
of the chaotic set. In some cases, there is a rela-
tionship between Lyapunov exponents and power
spectra [Slipantschuk et al., 2013]. A comparison of
numerical methods can be found in [Barrio et al.,
2009].

4.4. Finite time Lyapunov
exponents

They are used for time series data using delay
coordinate embedding and an attractor reconstruc-
tion, recovering information about the map by
considering its topological properties. In fact, an
entire branch of research has sprung up using finite
time Lyapunov exponents to analyze data [Shadden
et al., 2005; Shadden, 2005].

A full attractor reconstruction may not work
well in the presence of noise. For example, in
[Mytkowicz et al., 2009] the computer is shown
to be a chaotic dynamical system in terms of its
cache behavior, resulting in a reconstruction of a
12-dimensional attractor. However, the presence of
noise in the system implies that a two-dimensional
projection gives much more reliable results.

Results on spurious Lyapunov exponents
[Tempkin & Yorke, 2007] show a simple exam-
ple in which calculation of Lyapunov exponents
for a time series gives completely misleading infor-
mation regarding the original system. The paper
illustrates spurious Lyapunov exponents with an
example of a five-dimensional time series of the
deterministic Hénon attractor where the original
Hénon attractor has Lyapunov exponents α > 0 and
β < 0, but the time series has Lyapunov exponents

2α,α, α+β, β, 2β. Thus even in this simple example,
the largest and smallest exponents do not serve as
a quantitative measure of the expansion and con-
traction rates for the original system. The results
call into serious question whether Lyapunov expo-
nents for time series data give any sort of meaning-
ful quantitative measurement of the original system.
We conjecture that the following weaker statement
holds: if the time series data has a positive expo-
nent, then the original system does as well.

Note that it is difficult to distinguish determin-
istic chaos from noise. However, if our attractor
reconstruction yields a successful result, it is the
result of deterministic behavior rather than of ran-
dom fluctuations.

5. Three Nonequivalent Entropies

Chaos for a finite-dimensional map is often char-
acterized as possessing positive entropy. In this
section, we point out that there are (at least) three
distinct nonequivalent definitions of entropy. Fur-
thermore, there are concrete contexts in which each
is the superior definition, in that the other two are
impossible to verify.

5.1. Topological entropy

For a dynamical system, the topological entropy
measures the mixing of the domain. Specifically,
orbits of length n are said to be distinguishable with
resolution ε if they vary by more than ε in the first
n iterates. The topological entropy is defined as the
exponential growth of the number of mutually dis-
tinguishable orbits as the resolution goes to zero.
Specifically, let N(n, ε) be the number of distin-
guishable orbits with length n. Then the entropy
is the limit as the resolution ε goes to zero of h(ε),
where h(ε) = lim supn→∞ log N(n, ε)/n.

Recall from Sec. 4 that a scrambled set also
has a form of mixing. In fact, positive topological
entropy implies that there exists an uncountable
scrambled set [Blanchard et al., 2002]. However,
there are cases with an uncountable scrambled
set with zero topological entropy [Misiurewicz &
Szlenk, 1980].

Positive topological entropy is a useful concept
in the case of continuous maps which are not nec-
essarily differentiable. It is not useful in the case
where one is only provided with a trajectory as the
output of an experiment. It is also not easily com-
puted numerically, though it has been proved to be
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positive using rigorous computational methods in
some cases [Day et al., 2008; Newhouse et al., 2008;
Frongillo & Treviño, 2012].

5.2. Periodic orbit entropy

For a map f , if the number of periodic orbits
grows exponentially with the period, we say the
map has periodic orbit chaos. That is, the supre-
mum of the number Sp of fixed points of fp grows
exponentially with respect to p. This growth fac-
tor ρ = lim supp→∞ log Sp/p is the periodic orbit
entropy. Periodic orbit chaos corresponds to a pos-
itive periodic orbit entropy.

One application of periodic orbit chaos is in
understanding the transition from order to chaos.
Period-doubling cascades consist of an infinite num-
ber of period-doubling bifurcations as a parameter
is varied (cf. Fig. 4). They have long been noted as
a hallmark of the transition from order to chaos,
in contexts as varied as quadratic maps, ordinary
differential equations, infinite-dimensional systems
such as partial differential equations, delay equa-
tions such as the one shown in Fig. 4, and exper-
imental data. In [Sander & Yorke, 2012, 2013], we
were able to show the exact relationship between
cascades and the transition to periodic orbit chaos.
We show that if a typical2 family of two-dimensional
maps with bounded periodic orbits transitions from
a finite number of periodic orbits to an infinite num-
ber of saddles and a finite number of attractors

and repellers, then the transition contains period-
doubling cascades.

Positive periodic orbit entropy is equivalent to
positive topological or metric entropy except in spe-
cial cases. There are many works dedicated to show-
ing exactly when these concepts are equivalent. The
next paragraph gives a brief journey through some
of these results.

Bowen showed that for Axiom A diffeomor-
phisms, periodic orbit chaos is equivalent to positive
topological entropy [Bowen, 1970]. Wang and Young
proved that the same is true for Hénon-like maps.
However, Chung and Hirayama [2003] showed that
for maps on surfaces with Hölder continuous deriva-
tives, positive topological entropy occurs exactly
when there is exponential growth of saddle peri-
odic points (ignoring attracting and repelling peri-
odic points). For interval maps, the periodic and
topological entropies may not be equivalent [Chung,
2001; Katok & Mezhirov, 1998]. The number of
periodic orbits can grow significantly faster than
exponentially — corresponding to infinite periodic-
orbit entropy. Artin and Mazur proved that maps
with at most exponential growth of periodic orbits
are dense in the space of diffeomorphisms. How-
ever, periodic orbit growth can be superexponen-
tial, growing like en1+ε

as n increases for some ε > 0
and in particular bigger than topological entropy
for maps in one and higher dimensions [Kaloshin &
Kozlovski, 2011]. Kaloshin and Hunt showed that
for r ≥ 2 this is nongeneric. That is, a generic

Fig. 4. Period-doubling cascades occur for the delay equation dx/dt(t) = F (x(t − τ )) = −2x(t − τ )e−x(t−τ)2, where delay
= τ is the parameter for the horizontal axis. This graph is made by creating a series of trajectories, each using fixed τ , and
plotting (τ, x(t − τ )) whenever t is such that x(t) = 0 and dx/dt > 0.

2More technically, the statement is true for a generic set of map families, meaning that it is true for an arbitrarily small
perturbation of any family.
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subset of an open set of maps has superexponen-
tial growth of periodic orbits, but the growth is
not much faster than exponential for a prevalent
set [Kaloshin & Hunt, 2001a, 2001b]. Generically,
this behavior occurs in a homoclinic class [Bonatti
et al., 2008]: Every nonhyperbolic homoclinic class
of a C1 generic diffeomorphism with a finite number
of homoclinic classes has superexponential growth
of the number of periodic points. For a hyperbolic
homoclinic class the entropy is equal to the peri-
odic orbit entropy. If a set is topologically mix-
ing, then there are constants so that the entropy
bounds the periodic orbit growth. Generic C1 dif-
feomorphisms in the complement of the Axiom A
plus no cycle diffeomorphisms have superexponen-
tial growth, whereas the topological entropy of any
diffeomorphism of a compact manifold is finite.

5.3. Metric entropy

Whereas topological entropy looks at mixing rates
for all orbits, metric entropy measures mixing prob-
abilistically, looking at the degree to which the
dynamical system mixes typical orbits. Topologi-
cal entropy is an upper bound on metric entropy.3

The Pesin entropy formula relates metric entropy
to the Lyapunov exponents: for smooth maps that
preserve Borel measure, the metric entropy is the
sum of the positive Lyapunov exponents. Ruelle
showed that with no assumption on the metric, this
becomes an inequality, i.e. the sum of the positive
Lyapunov exponents is an upper bound for the met-
ric entropy. Ledrappier and Young made further
contributions to showing the precise relationship
between Lyapunov exponents and metric entropy.
See [Young, 2003]. These results do not apply for
general infinite-dimensional equations or for time
series.

6. Robust Chaotic Sets that are Not
Attractors

In this section, we discuss instants of chaos that
are robust under parameter changes, but are not
attractors.

6.1. Chaotic saddles

The term chaotic saddle refers to an invariant
chaotic set S that is unstable; that is, arbitrarily

close to the set there are initial points whose tra-
jectories leave some neighborhood of S. (The term
saddle is often used even if the set is a repeller.)
Above the word chaotic can be used in any of
the ways we have discussed, whether in terms of
broad power spectrum, Lyapunov exponents, Li–
Yorke chaos (for maps), or homoclinic points. A
chaotic saddle is usually a fractal. The invariant set
of the horseshoe map is a simple example of such a
set. Anytime there is a homoclinic tangle, there are
horseshoes, so unless the horseshoe is included in a
larger attractor, the invariant set will be a chaotic
saddle. Chaotic saddles are robust in the sense that
they persist under sufficiently small changes in the
dynamical system. Figure 5 shows a chaotic saddle
for the Holmes map (x, y) �→ (1.5x−x3 + λy, x) for
multiple λ values.

6.2. Chaotic basin boundaries

The boundary between basins of attraction of two or
more attractors can contain a chaotic set, in which
case there exist special case of chaotic saddles,
often with fractal structure. Even when the attrac-
tors themselves have simple behavior, the boundary
between basins can contain chaotic sets. Figure 6
shows examples of chaotic attractors and chaotic
sets in boundaries of basins of attractors in the
case of forced-damped pendulum equation. See also
our movie showing the full sequence of basins and
boundaries for ρ ∈ [1.5, 3.5] [Sander & Yorke, 2014].

7. Observable Behaviors in
Dynamical Systems

In this section, we aim to put chaos in context. In
trying to describe chaos, one might ask “chaos —
as opposed to what?” That is, what other basic
building blocks besides chaotic sets are a dynam-
ical system likely to have. In particular, besides
chaotic sets, for a randomly chosen dynamical sys-
tem, not selected for any particular kind of behav-
ior, what kinds of basic invariant sets are likely to
exist? We start by making the phrase “randomly
chosen” more precise. We then present a short list of
behaviors which we conjecture to be observable. We
then describe some examples of special dynamical
systems that have been finely tuned to have some
special property, a property we would not encounter
in a randomly chosen dynamical system.

3In fact, the topological entropy is the supremum of the metric entropies taken over all f -invariant Borel probability measures.
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Fig. 5. A chaotic saddle set for the Holmes map: (x, y) �→ (1.5x − x3 + λy, x) for −2 < x < 2,−2 < y < 2, where from up to
down λ = 0.8, 0.95. The saddle is in blue (left and right). On the right, the two branches of the stable manifold for the fixed
point at (0, 0) are shown in magenta and cyan. This set is invariant and chaotic though it is not stable under either the map
or its inverse. It is however robust with respect to a change in parameter. The fractal nature of the set is apparent here.

7.1. Typical, observable, and rare
behaviors

If a dynamical system is picked at random, we would
like to know what dynamical behaviors we should
expect to see. We distinguish three concepts: (i) typ-
ical : behavior we expect for almost every randomly
chosen dynamical system, (ii) observable: behav-
ior we expect to occur with positive probability,
and (iii) rare: behavior that occurs with probability

zero. To be more specific as to where we take our
probability measure for these concepts, in the con-
text of a general dynamical system, either a map or
a differential equation, imagine a huge set of smooth
dynamical systems depending on several parame-
ters, and imagine that we could use a perfect ran-
dom number generator to pick the parameters at
random to select one dynamical system. The pre-
cise technical details involve the idea of prevalence.
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Fig. 6. Fractal basins of attraction for the forced-damped pendulum: x′′ + 0.2x′ + sin x = ρ cos t, for −π < x < π, 2 < y < 4,
and ρ = 1.5725, 1.73, 2.3225, 3.0875 left to right and up to down. The solution is plotted every 2π (stroboscopic), defining
an invertible map. The third figure demonstrates a globally attracting chaotic attractor. The first and second show fractal
boundary for the many basins of attraction for attractors with simple behavior: periodic orbits. In the second figure, there are,
in fact, eight distinct but intermingled basins of attraction. The fourth figure shows a fractal boundary of a basin of attraction
of a chaotic orbit. For a more complete picture, see our movie showing the entire sequence of changes of basins and boundaries
for ρ ∈ [1.5, 3.5] [Sander & Yorke, 2014].

See, for example [Hunt et al., 1992; Ott & Yorke,
2005; Kaloshin, 1997].

Note that in above we are assuming to have
a specific dynamical system: if the map depends on
parameters, then we are talking about the probabil-
ity of a specific choice of parameters. Thus bifurca-
tion points can be rare behaviors. Such a statement

has already been rigorously proved in a number of
cases, especially for periodic orbits: It is shown in
[Hunt et al., 1992] that for almost every map (in
the sense of prevalence), there are no saddle-node
or period-doubling bifurcation periodic orbits. Of
course, these orbits can occur in parametric families
of maps, but the parameters for which they occur
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have measure or probability zero. To show that a
behavior is rare, it is not sufficient to study a sin-
gle parametric family. For example, for the logistic
map rx(1 − x), the set of r that are the limit of an
infinite number of period doublings (i.e. the Feigen-
baum points) appears to be measure zero in the
set of randomly chosen parameter values r. How-
ever, even if we show that Feigenbaum points are
measure zero in r, we could not conclude without
further work that they are rare in the sense of preva-
lence. To show that the behavior is rare, we would
need to consider the behavior in high-dimensional
parameter spaces.

7.2. Basic sets

The term basic set refers to any of the basic invari-
ant building blocks of dynamical systems. Chaotic
sets and isolated periodic orbits (including isolated
fixed points or steady states) can all be examples of
basic sets. Specifically, for a differential equation or
map on the n-dimensional space R

n (or on a smooth
surface) we define a basic set B to be a set that is
closed, has a dense orbit, and is maximal, mean-
ing that there is no strictly larger closed set with a
dense orbit containing B. That is, there is no point
x in the space whose positive limit set strictly con-
tains B. In particular, if a chaotic set is a basic set,
then no periodic orbit contained in that chaotic set
is a basic set because that periodic orbit would not
be maximal.

There are three kinds of sets of particular
interest that can be basic sets.

7.3. Periodic basic set

The simplest type of basic set is a periodic orbit
which is maximal. The basic set consists of a finite
number of points.

7.4. Chaotic basic set

We call a basic set with chaotic behavior using any
of the definitions described in this paper a chaotic
basic set.

7.5. Quasiperiodic basic set

In addition to chaotic and periodic dynamics,
one observes quasiperiodic dynamics. For example,
Fig. 7 shows what happens near a parameter value
for which there is a Hopf bifurcation for a map, that
is, a Neimark–Sacker–Hopf bifurcation. For each
a ∈ [19, 22] there is an invariant closed curve —
which is topologically a circle — and on each cir-
cle there is either a periodic behavior or the map
is equivalent (under some nonlinear change of vari-
ables) to an irrational rotation. In the latter case,
the topological circle is a quasiperiodic basic set.

Such a map could also arise as a Poincaré return
map of a periodically forced differential equation,
(like a periodically forced van der Pol equation) in

Fig. 7. Two views of a Neimark–Sacker–Hopf bifurcation for an overcompensatory Leslie map T (x, y) = (a(x +

y)e−0.1(x+y), 0.7x), where 18 < a < 24 [Ugarcovici & Weiss, 2004]. Near the (subcritical) bifurcation, there is an attract-
ing invariant circle. Around every parameter a for which the rotation of the circle is rational, there is a region with an
attracting periodic orbit instead of an attracting invariant circle, resulting in the holes on the surface.
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which case the topological circle is a cross-section
of a topological torus.

We can investigate the behavior of these topo-
logical circles by restricting attention to maps of a
circle. In 1961, Arnold [2009] reported on the ana-
lytic maps on a circle such as that by

θn+1 = θn + ω +
K

2π
sin(2πθn) (mod 1),

where all θn are in [0, 1) as are ω and K. We think
of θ as lying on a circle and ω is a rotation of that
circle while the final term is a nonlinear perturba-
tion of this rotation. The map has a periodic attrac-
tor for ω in infinitely many different disjoint closed
intervals in [0, 1], but Arnold found that the com-
plementary set C of ω is also large in the sense that
C has positive measure, and the closure of C is a
positive measure Cantor set (also known as a fat
Cantor set). Hence if ω is chosen at random, there
is a positive probability that ω is in C. For such ω,
the limit set of each θ1 is the entire interval [0, 1].
He showed that for such cases, there is a change of
variables that converts that map into an irrational
rotation of the circle. For such ω, we say the map
is quasiperiodic.

The quasiperiodic case more generally includes
maps and flows on higher-dimensional topological
tori for which there is a change of variables into a
system that is a rotation on each of k ≥ 1 circles,

θ1,n+1 = θ1,n + ω1,n, . . . , θk,n+1 = θk,n + ωk,n.

7.6. Observable basic sets

The following conjecture states that the three basic
sets given above is a complete set of what is
observable.

Conjecture 1 (Three Observable Types of Basic
Sets). The following are the only types of basic sets
which are observable:

(C) a maximal chaotic set
(P) a periodic orbit which is maximal
(T) a topological torus (on which trajectories are

quasiperiodic). For maps, this includes invari-
ant topological circles on which there are no
periodic orbits.

7.7. Typical chaos

We have outlined a variety of definitions of chaos,
emphasizing that there may not always be perfect

agreement between the definitions of what is
chaotic, but the definitions appear to agree most
of the time and we conjecture below that this is
typically the case.

Conjecture 2 (Typical Agreement of Chaos Defini-
tions). For a typical smooth dynamical system, the
sets which are chaotic by one of the definitions listed
below are chaotic for each of the other definitions
listed below. (This is actually a separate conjecture
for each pair of definitions.)

(E1) Positive topological entropy.
(E2) Positive periodic orbit entropy.
(E3) Positive metric entropy.
(L) Positive Lyapunov exponent.

(H1) Containing homoclinic orbits.
(H2) Containing horseshoes (for some iterate of the

map or large time of the flow).

For one-dimensional maps, the definitions of
horseshoes and homoclinic orbits must be correctly
interpreted, cf. [Sander & Yorke, 2009]. We do
not expect that the numerical values for the three
entropies to be typically the same, merely that they
will have the same sign.

7.8. Examples of rare dynamics

In contrast to our discussion of observable behav-
iors, there are dynamical systems that have a large
literature but occur only seldom. We list a few of
these unlikely but important types of dynamical
behaviors, all of which we conjecture to be rare in
the sense of prevalence.

• Transitional behavior such as chaotic crises where
as a parameter is varied a chaotic attrac-
tor changes suddenly, possibly disappearing and
other bifurcation behaviors;

• Strange nonchaotic attractors and more generally
quasiperiodically forced systems;

• Higher-dimensional attracting invariant tori;
• Interval exchange maps (which can occur as

Poincaré return maps of specially tuned dynam-
ical systems);

• A Feigenbaum point: the limit of a cascade of
period doublings in a system depending on a
parameter.

8. Conclusion

The effort to define chaos is reminiscent of the
discussion over the planethood (and eventual lack
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thereof) of the dwarf planet Pluto, as can be seen
in the following comments from [Brown, 2010]:
“. . . scientists work by concepts rather than defi-
nitions. . . . Nature abhors a definition. Try to lock
something into too small a box and I guarantee
nature will find an exception. A planet is some-
thing that is big and important in the solar system,
something that dominates its part of the solar sys-
tem, but the actual definition becomes murky at the
margins.” Likewise there are many different hall-
marks of chaos, which all work well in many cases
for many people, but to try to pin chaos to one for-
mal definition that works for all mathematicians,
scientists, and engineers is to ignore the nature of
nature itself.
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