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C onsider the object shown in Fig. 1, known as the Koch
curve. It is formed by a recursive process as follows:
From a line segment of length s, remove the middle third of
the line segment, and in its place add two connected seg-
ments of length s/3. All four segments intersect at 60° or
120° in order to stay connected and are s/3 long. Repeat the
same process to each segment to obtain 16 segments of
length s/9, 64 segments of length s/27, and so on. Notice
that the Koch curve has the curious property of being self-
similar, meaning that it is the union of smaller copies of
itself; in this case, each of the four ornamented segments is
similar to the whole curve. Also note that at each step in
making the curve, the length of the curve increases by a
factor of 4/3. Thus in the limit of many divisions, its length
is infinite. However, as Problem 1 shows, the curve has zero
area in the plane. Clearly this curve is very strange; it is an
example of a fractal. ‘

We define a fractal to be a self-similar object with non-
integral fractal dimension (see below). It is useful to con-
sider two types of fractals, exact mathematical objects, such
as the Koch curve, and random objects for which the sta-
tistical distribution obeys fractal scaling laws. Any particu-
lar realization of the second type of fractal is not necessarily
self-similar, but a statistical average gives the same results
as an exact fractal. In recent years, it has become evident
that statistical fractals often occur in nature.!

In this column, we discuss some of the physical pro-
cesses (notably those described by growth models) that gen-
erate fractal clusters of atoms or molecules. The study of
these processes has increased rapidly in the last decade. We
will cover some of the main themes of this research activity
and also introduce some of the mathematical concepts use-
ful for analyzing fractal clusters. A previous article” in this
column also covered fractal aggregation. Our emphasis is
somewhat different. Instead of looking in detail at the pro-
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cesses themselves, we will concentrate on what can be
learned from the fractal properties and, in particular, discuss
some interesting correlation functions.

Fractal dimensions and long-range correlations

The fractal dimension is a way of characterizing scale
changes between the object and its self-similar parts. It
originally arose in mathematics to measure objects that do
not behave as if they have an integral dimension. For ex-
ample, as we have seen, the Koch curve exists within a
finite region of two-dimensional space, but yet it has zero
area and infinite length. How can we assign anything like a
length or an area to this object? And if the object is neither
one nor two dimensional, what is it?

The simplest way to answer these questions is the fol-
lowing. As in Problem 1, cover an object with boxes of
varying size. We measure N, the smallest number of boxes
of linear dimension r that can cover the object. As r goes to
zero, if there exists a D such that N is proportional to r P,
then D is the fractal dimension. Also, the generalized area,
closely related to the mathematical concept of Hausdorff
measure, is proportional to NrP. It is not difficult to see that
for standard objects, such as lines and planes, the fractal
dimension is the same as any other definition of dimension.
For example, if we cover a line with boxes of side r, clearly
we will need twice as many if the side is r/2, and hence
D=1. However, for more complicated objects D need not
be an integer. :

As we show below, the fractal dimension is directly
related to an important physical quantity, the correlation

Figure 1. The Koch curve.



function c¢(r,x). Given an object made up of particles,
c(r,x) is the average density of other particles at a distance
r from a given particle at x. The function c(r,x) can be used
to find much information about an object, e.g., its elasticity
and how it scatters radiation. A process that distributes par-
ticles completely at random gives correlations of finite
range. In this case

c(r,x)~e "%,

where £ is called the correlation length. If the object is
fractal, then ;
c(r,x)~rP74,

where d is the dimension of the space. That is, the correla-
tion length & is infinite and each part of the object influences
other, distant parts. A statistical fractal is a random object
that nevertheless has long-range correlations. The existence
of the latter is the main reason why fractals are interesting
in physics.

Box counting

The most straightforward way to calculate D for a
given object is to apply the method given above. Compu-
tationally, consider an object as a list of points in
d-dimensional space. Box counting amounts to partitioning
a d-dimensional box containing the object into small
d-dimensional boxes of linear dimension r. Count how
many of the small boxes contain points from the object.
This quantity is N. Since

N=cr P,
where ¢ is a constant, we have
InN=D In(1/r)+b,

where b is another constant. This equation is the equation
for a line. After finding N for a series of r values, we can do
a least squares fit to find an estimate for D, the slope of the
line.

Correlation functions

Another method for computing the fractal dimension of
an object is to use the correlation functions that we now
discuss. These functions are related to the fractal dimension
as follows.’ Imagine computing the number of particles
M(R) that are within a distance R of the center of mass of
a fractal. If we cover the whole object with one large cir-
cular box of radius R, then using box counting we have

N=cR P=1,
so that
¢=RP.

Now we cover the fractal with disks of radius a that are
small enough to contain just one particle, so that the number
of disks N(a) is the same as the number of particles M (R).
Thus,

M(R)=N(a)=[R/a]P.

This relation is probably used more often than any other for
finding D for a fractal generated by a growth process. In

practice, at each stage of growth we find the number of
particles M and R. Usually, instead of finding the maximum
radius from the center of mass, we calculate a related quan-
tity, the radius of gyration R,, which is proportional to R
for a fractal:

1 M
R=\it 2 8y

where r; is the distance to the center of mass. The sum is
over the M particles in the current cluster. To obtain D, we
find R (M) and fit to M'/? as before. If the fractal is ho-
mogeneous, the center of mass can be replaced by any other
point. In this way we have defined a correlation function
C,(r,x), the number of particles within radius r of a given
particle. That is C,(r,x) is the mass that surrounds point x.
The well-known* Grassberger—Procaccia correlation inte-
gral C(r) is the average over x of C(r,x).

The correlation function c¢(r,x) was defined in the
above as the density at radius » about x. It is given by

c(r,x)~(dM/dr)/r® 1 ~rP¢,

where the numerator dM/dr is proportional to the mass and
the denominator is proportional to the d-dimensional vol-
ume of a thin shell at » around x. It is possible to compute
the average of c(r,x) over all x conveniently using Fourier
transforms and the Wiener—Khintchine theorem,5 but it also
is relatively easy to figure it out directly.

Generalized dimensions

Although the two methods for calculating fractal di-
mension give the same answers for ordinary fractals, for
more general objects, called multifractals, the two are dif-
ferent. For example, many strange attractors that arise in
dynamical systems give a different answer for the two kinds
of dimensions. They are related by the following general-
ized definition of dimension. If r is the edge length of a box
and p; is the probability that a point is in the ith box, then
the generalized dimension D, is given by the relation:

. 1 I3, pf
Dq_,lﬂ g—1 In r

2

Box counting gives D, whereas correlation functions give
D,.

Fractals and growth processes

The following “chaos game” generates a fractal by a
statistical process.® Pick a point inside an equilateral tri-
angle. Choose an arbitrary vertex, and go half the distance
to this vertex. Again choose a random vertex and go half-
way to it. Keep repeating the process. After repeated itera-
tions, what does the collection of points look like? Remark-
ably, this random process for growth results in an exact
fractal called a Sierpinski gasket. It is an example of a
strange attractor. Five thousand points are enough to see
what the limiting behavior looks like (see Fig. 2). Unlike
this example, usually statistical processes give rise to frac-
tals that are self-similar only in the average sense discussed
above. We now turn to two important physical cases.
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Figure 2. The result of 10,000 plays of the chaos game. Each time a point
inside the triangle was chosen at random, and the distance to randomly
chosen verticies was halved 20 times.

Percolation

A physical example of statistical fractals arises in per-
colation. This model was originally conceived to study fluid
flow through rocks.” In one version (site percolation) the
points of a lattice are populated with probability p. Popu-
lated sites correspond to spaces (pores) in rock through
which fluid can flow. Neighboring populated sites are ac-
cessible to each other, as fluid can reach from one of these
sites to another. The questions are whether a path across a
large lattice exists, and if so, what the nature of this path is.
Such a path is called a spanning cluster. In other words, we
want to know whether the fluid will be able to flow through
the rock.

For a square lattice the value of the percolation thresh-
old p. is p,~0.592746. For p<p., there is probability zero
of a connected cluster spanning a large (infinite) lattice, but
at p=p,, the probability of finding such a cluster becomes
nonzero. If we consider only the spanning cluster for
p>p,, its fractal dimension is two. Thus the spanning clus-
ter takes up a finite fraction of the lattice. However, for
pP=p., the spanning cluster is a fractal with D=91/48
~1.89.

Another physical example modeled by percolation is
gelation, such as the setting of Jello. There are particles in
a fluid, forming bonds with probability p. At p., bonds
reach across the fluid. Slightly above p_, the substance be-
comes rigid. The model also has applications to epidemics
and chemical reactions.?

It is interesting to study the fractal properties of the
spanning cluster. Unfortunately, a direct use of the above
model is a bit complicated because we must find the span-
ning cluster after populating the lattice. However, there is a
way to generate only one spanning cluster at a time. It

works by simulating an actual growth process.9 The clusters
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generated by the growth process have the same correlations
as those generated by site percolation. The idea is as fol-
lows: start with one populated site at the center of a lattice.
Populate each neighboring site with probability p. The near-
est neighbors to a lattice point (i,j) on the square lattice are
the four points (i +1,j) and (i,j = 1). If the neighbor is not
populated, then it is blocked and can never be populated.
Then generate a list of the nearest neighbors of all newly
populated sites that are not already populated or blocked.
Populate or block these neighbors with probability p or
1—p, respectively. Continue this process until you have cre-
ated a cluster of the desired size. If we use this method at
P=p., large clusters are generated that are statistical frac-
tals of dimension 1.89. An example is given in Fig. 3.

Diffusion-limited aggregation

Another physical model leading to fractal clusters is
diffusion-limited aggregation (DLA).> DLA is a model of
growth controlled by diffusion, in which particles perform
many steps of a random walk before sticking. Start with one
populated site. Far away from this site, allow another par-
ticle to perform random walk. If the new particle walks into
a neighboring site of the populated site, it sticks and be-
comes part of the aggregate. Repeating this process for a
large number of particles gives a result such as shown in
Fig. 4. Realizations seem to be fractals with D~1.71 for
d=2 and D~2.5 for d=3. One remarkable aspect about the
DLA model is that many real systems appear to be well
described by it. For example, crystal growth in a random
environment® gives rise to clusters that look very much like
DLA clusters.

Direct simulations of the DLLA model makes very inef-
ficient use of computer time. Several tricks have been de-
veloped to make DLA simulations tractable. One trick is
that the random walker need not actually start far away
from the aggregate. The walker can start at a random point
on a circle of size R,, that just encloses the cluster because
its probability of arrival on this circle is random. (This
observation is due to M. E. Sander.) However, the walker
may wander far away from the aggregate. In that case, it
may take a long time for the walker to return to the smallest
circle enclosing the cluster. This problem is not serious
since it is possible to allow the walker to take large steps
when it is outside R, . To ensure that the walker does not
encounter any matter, we allow the walker to take steps as
large as the distance to the enclosing circle, but in a random
direction. (This trick is due to P. Meakin.) A much more
sophisticated way to do this is described below. In the most
refined programs an additional trick is used: addressing
techniques allow rapid location of the nearest point on the
aggregate when the walker is inside a hole in a large ag-
gregate. Then a step as large as the distance to this point can
be taken, but in a random direction. Very large clusters can
be grown very quickly this way.!® For modest sizes that are
necessary for the problems suggested here, this trick is not
necessary.

Green’s functions
An additional method used to grow large clusters is
based on the physics of the situation, rather than additional



numerical techniques. A particle may walk outside Ry,
either on its first step or after wandering inside the circle for
a while. It is likely to hit the boundary again near its current
position. However, there is a chance that it will keep wan-
dering outside R, and hit again far away from its current
position. Rather than taking computer time to let the par-
ticle walk around the outside the circle, we can instead find

the probability density of the returning walker on the
boundary and bring back the particle in one jump.

To compute this probability density, we define u(r,t) as’
the probability that at time ¢ a particle is at position r, if at
time t=0 the particle is at position ry. Note that u(r,r)

" equals the probability of being at a neighboring position at

the time of the previous walk. Thus if the grid points are at
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Figure 4. A (DLA) cluster of about 3000 particles. This cluster took ~10
min to grow on a Macintosh II. The program was written in True BASIC.

distance Ax from one another, and a walk occurs at inter-
vals At, then the following relation holds in two dimen-
sions:

u(x,y,t)=gdu(x+Ax,y,t—At)+u(x—Ax,y,t—At)
+u(x,y+Ax,t—At)+u(x,y—Ax,t—Ar)].
(3)

Equation (3) is the discrete version of the diffusion equa-
tion, du/dt=V2u, with initial condition u(r,0)=&r— ry).
We are interested in the total probability to land, which we
call u,, . If we integrate both sides of the diffusion equation
from ¢=0 to o, we find

8(r—r), 4

since u(r,.2)=0. The solution to Eq. (4) is the Green’s func-
tion for the Laplacian. Hence u can be thought of as the
potential due to a point charge at r; (a point charge in two
dimensions or an infinite line charge in three dimensions).
In our case R,,,=R is the radius of the circle containing the
cluster, and |r|>R. Because the circle is absorbing, we solve
the equation under the boundary condition ;=0 on the
boundary of the circle. This condition is equivalent to the
electrostatic boundary-value problem of an infinite line
charge parallel to an infinite conducting cylinder of radius R
held at zero potential. Let ry=(a,0) along the x axis for
convenience (see Fig. 5). The solution to Eq. (4) is

R |1'”1'0|)

”“““’“‘(Z fr=ry])’

2 —
VU= —

®)

where r;=(R?/a,0). This solution can be obtained by using
the method of images in two dimensions. You can check
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Figure 5. The geometry for working out the Green’s function.

Landing point
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that u,,(R)=0 by writing [r—ry| and |r—r,| in terms of the
law of cosines.

The probability to land is the flux, the “electric field,”
through each point on the circle, F =(du,/dr)g . The inte-
gral of F from O to @ is the integrated probability p that the
particle will hit the circle again before angle 6. We use Eq.
(5) and normalize p and find

a*—R?

1 re
P=2r fo a’—2aR cos ¢+R? aé

1 _,[/atR 6

;tan TR tani . (6)

Note that p=1/2 at ==, i.e., there is a total probability
1/2 to wander all the way to the back of the circle either on
the top or the bottom.

For our computer program we need to invert this
function.” We choose a uniform random number between 0
and 1 and set it equal to p. Then we find the corresponding
@ from Eq. (6) and put the particle at that point on the circle.
It is easier to express this procedure in terms of the x and y
coordinates of the landing point:

_R 1-2? _R 2v a—R
=Rz YR "SR

tan 7p.

@)

If the initial particle is not on the x axis, we must rotate
these formulas. If the initial position is ry=(x,,y,) and

a = \/x§+yé, then
R (1—-v%)xo—2vy, R (1—v?)yo+2ux,
Ta 1+v° Ay 1+°

®)

If you use this method you should be able to generate
fairly large DLA clusters with modest computing resources.
There are many variations of the simple growth of a radial
cluster with which you can experiment. You can consider
growth in a channel, on a surface, with external fields, etc.
These and many other variations have been tried in the
literature, and many of them are very relevant to real ex-
periments.



Our goal has been to introduce the field of random
fractals and fractal correlations, one of the liveliest areas of
statistical physics in the last decade. Many deep problems
in the field are still unresolved. For example, there is no
good understanding of why DLA makes fractal objects. As
we have pointed out, practical applications of the models
are numerous. The interested student can find much food for
thought in the references.

Suggestions for further study

1. Show that by dividing the plane into triangular
“boxes,” the area covered by the Koch curve is zero. The
area is bounded above by the total area of the triangles that
cover the curve. You should find that, as the length of the
triangles decreases by a factor of 3, the area of the triangles
covering the curve decreases by a factor of 4/9. Hence as
the length of the edge of the triangles goes to zero, show
that the total area of the boxes that cover the curve goes to
zero as well, and hence the curve has zero area.

2. Deduce the fractal dimension of the Koch curve us-
ing the results from Problem 1.

3. Implement the chaos game. Use the data points you
find to show that the Sierpinski gasket has fractal dimension
log 3/log 2. Use box counting for the calculation. Then look
at the picture and find the dimension analytically.

4, Write a program that implements the algorithm in the
text for spanning percolation clusters at p.. Calculate the
fractal dimension of the resulting objects. Use both box
counting and correlation functions R (N) and C(N). Be-
cause this object is a statistical fractal, you need to average
.over many clusters. The average will be more or less the
same whether you throw away or keep the nonspanning
clusters. Here is an outline of the percolation algorithm:

(i) Start with a point (x,,y,) in the middle of your grid.
Put this point on a list of populated sites.

(ii)  Populate or block the neighbors of all the new sites
on the list with probability p and 1—p, respectively.
Add the populated sites to the list. You should keep
track of the number of newly populated sites. These
new sites are at the same “‘chemical distance” from
the starting point.

(ili) Repeat step ii until you either reach the edge of your
grid, have added enough points, or until all sites are
blocked.

When you find the dimension using R g(N ), remember
that at each N you need to sum over the distance from the
center of mass r. You can do this sum in a number of ways.
One way is to use the following relation, which allows you
to calculate R, and related sums needed for calculating
other quantities while you are computing points in the clus-

ter:
2
r,-) . )

N

(r -r)?=>,. r2——
’ i=1 N

)y

i=1

FMz

For numerical reasons, it is bad to subtract two large num-
bers as is done in Eq. (9). To reduce the size of each term on
the right-hand side of Eq. (9), try setting the origin of your
grid such that (xg,y)=(0,0).

5. Write a program to implement the DLA algorithm
and calculate the fractal dimension using box counting and
correlation functions. Compare the answer you obtain using
R, (x,r) with the one you find using C(r). How did your

‘answers compare in the case of the percolation model?

Small DLA clusters do not seem to give the same answer
for the two fractal dimensions, though the difference is
small. This difference is probably due to the fact that the
realizations are not homogeneous, because particles tend to
stick at the outside of the cluster. It is possible that this
difference goes away for large aggregates, though this point
is still in dispute. It is not known whether DLA is a simple
fractal or multifractal for which Dy#D,.

6. Modify your program for DLA so that it uses
Green’s functions; each time a particle walks outside the
circle R,,,, choose a random number in the interval [0,1]
and set it equal to p. From the discussion in the text you
might be tempted to use the interval [—1/2, 1/2]. Why does
this make no difference? The formulas (7) and (8) deter-
mine how far around the 01rcle the particle is when it hits
the boundary.
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