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Abstract

COMPUTATION OF DYNAMICAL STRUCTURES FOR DYNAMICAL BILLIARDS
AND PARAMETER DRIFT EQUATIONS

Patrick Bishop, PhD

George Mason University, 2024

Dissertation Director: Dr. Evelyn Sander

In this thesis, we will be looking at computational methods for studying area preserving

maps. We will demonstrate a new computational method for computing billiard maps, apply

existing methods such as the weighted Birkhoff average (WBA) to the billiards system, and

construct a way to compute the stable and unstable manifolds by way of the parametrization

method. Other methods have been used to compute the billiard map for convex tables

but we have constructed a new method that is analytic and can work implicitly with the

parametrized form of the ellipse. The parametrized form for the ellipse allows one to easily

perturb the ellipse in a way that mimics the Fourier series which becomes more useful with

the parametrization method. Previously, WBA and the parametrization method have been

used on explicit systems but we will develop a novel method of applying them to an implicit

form for the billiard map. This research is related to the Birkhoff conjecture since our focus

will be on billiard tables that are perturbations of the ellipse. In the second part of this

thesis, we will focus on applying the method of weighted Birkhoff averages to parameter

drift problems to study the breakup of tori. In particular, we will look at the periodically

forced Duffing oscillator and show how using the method of weighted Birkhoff averages

speeds up this process and allows for quicker measurements of break up probabilities.



Chapter 1: Introduction to Billiards

1.1 Introduction

Billiards has been a beloved game since the 14th century. It also provides a rich

mathematical playground which mathematicians have been studying since Birkhoff first

discussed the 2-D billiard system with convex boundaries in [1]. It is a system comprised

of a two dimensional domain with a point bouncing elastically within the domain. The

famous Birkhoff conjecture, which we will discuss in more detail in section 1.3, has been

the subject of interest since being first proposed. In short, the Birkhoff conjecture states

that the only smooth totally integrable billiard systems are ellipses. Since this conjecture

was first proposed, research has been aimed at proving this conjecture in a few different

ways. Some have focused on the perturbed ellipse case as in [2] while others have proved

local versions of the conjecture as in [3, 4]. In 2023, Baracco and Bernardi proved that

a totally integrable strictly-convex symplectic billiard table, whose boundary has strictly

positive curvature, must be an ellipse, [5]. For more discussion on open problems in Birkhoff

billiards, refer to [6].

Chaos in billiards systems has also been an interest of research ever since Bunimovich

showed there existed tables with only focusing components (focusing trajectories like a lens)

that contained chaotic orbits, [7,8]. An introduction to chaotic billiards can be found in [9].

Further research into systems with chaos can be found in [10,11]. Research in billiards has

been extended to many physical models including studying dynamics in nuclear billiards

[12], and celestial mechanics, where the billiard system is subject to the force of gravity

[13,14]. Other research has been focused on billiard tables subject to a magnetic field such

as in [15].
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We now describe our work on billiards. This research is joint with Jason Mireles James

and Evelyn Sander.We will discuss several ways to identify aspects of the phase space for

the billiard map. This will be discussed more thoroughly in section 1.6. To distinguish

chaotic orbits from regular orbits we will use the weighted Birkhoff average, which is a

method of computing Birkhoff averages of an orbit. This numerical method converges

slowly when the orbit is chaotic and quickly when the orbit is non-chaotic, thereby allowing

us to distinguish between orbit types. To study non-chaotic orbits, we will use the rotation

number, a Birkhoff average which computes the average amount that the ball moves about

the ellipse on each bounce.

We will be focused on continuously differentiable boundaries, in particular, of the per-

turbed ellipse since we are interested in applications to the Birkhoff conjecture. Although

there are many methods for computing billiards, we have found that previous methods are

not sufficient for our goals. This is in part due to numerical difficulties which we will outline

later in section 1.4. Additionally, our method allowed us more freedom in how we describe

the perturbed ellipse. For example, Figure 1.1 shows orbits for an ellipse and a perturbed

ellipse. Finally, we are interested in computing the stable and unstable manifolds using the

parametrization method, and our representation for the ellipse allows us to set up the tools

needed. To this end, we construct the billiard map as an implicitly defined analytic system,

since that is most efficient and accurate for computing the stable and unstable manifold via

the parametrization method.

This chapter has the following structure. In section 1.2, we describe the Birkhoff billiards

map, and give general theoretical results. In section 1.3, we will discuss the billiard map

and properties of some elementary tables such as the circle and the ellipse. In section 1.4,

we give an overview of other numerical methods that have been implemented to simulate

billiard systems for various tables shapes, including convex and non-convex tables. In section

1.5, we describe our approach to simulating orbits of the billiard system for the perturbed

ellipse case. This method works for tables that have smooth boundaries and are convex.

In section 1.6, we show some results from our simulations as well as describe the methods

2
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Figure 1.1: The formulation for the billiard map is determined completely by the points
of contact on the boundary and the direction of the balls path. The physical tables (left
column) versus the phase space (right column) where r and θ are defined by definition
1.2.3 for three trajectories in the billiard map on the ellipse with coefficients a1 = 1.1 and
b1 = 1 (top row) from equation (1.6) and the perturbed ellipse with a1 = 1.1, a2 = 0.03 and
b1 = 1, b2 = 0.03 (bottom row) from equation (1.10). Three orbits were taken starting from
θ = 0.25 each having an orbit length of 100.
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used to analyze the phase space for the perturbed ellipse table including rotation number

and the weighted Birkhoff average. We also discuss a method for finding periodic orbits

using the method of multiple shooting. In section 1.5.2, we describe how to reformulate this

method as an analytic system and extend it into the complex phase space. This method is

not effective for iteration, but it is effective for continuation, allowing us to continue real

solutions into the complex phase space. This allows us to compute a Fourier series for the

parametrization method, which leads to an effective way to approximate the Taylor series

with a polynomial. We use this Taylor series approximation to calculate the stable and

unstable manifolds for periodic orbits.

1.2 Dynamical Billiards

Dynamical billiards, as developed by Birkhoff, is an iterated map on a phase space. Birkhoff

adapted this physical game to a dynamical systems model as a way to simplify gas dynamics.

The billiard system consists of a 2-D domain D and a point particle (radius zero) moving

along straight line paths within D until it hits the boundary, at which point it is reflected

elastically. More formally, billiard tables are defined as found in [9]:

Definition 1.2.1. A billiard table D is the closure of a bounded open connected domain

D ⊂ R2 such that ∂D satisfies the following:

1. The boundary Γ is a finite union of smooth compact curves.

2. The boundary components Γi can intersect each other only at their endpoints.

Now that we have the definition of the table, we can define more generally the billiard

system.

Definition 1.2.2. A billiard system consists of a point particle and a domain D where

the point particle moves in straight lines within the domain D according to the following

criteria. Let v(t) ∈ R2 for t ∈ [0,∞) denote the trajectory of the particle within the billiard

table D. Let v(0) ∈ Γ denote the starting point of the ball on the boundary. Furthermore,

4



1. v(t) consists of continuous line segments each of which is twice differentiable with

respect to t.

2. v(t) moves within D along straight lines until it reaches the boundary for some t∗ > 0

at which point it is reflected elastically back into D according to the law of reflection.

In this treatment, we restrict the domain to those with convex and smooth boundaries

as done in [16]. We denote the boundary of D with Γ which will be assumed to be a

continuously differentiable curve, parametrized by B where B(θ) = (x(θ), y(θ)) such that:

B : [0, 1]→ R2

with B(0) = B(1) and B([0, 1]) = Γ. We also require B to have a counter-clockwise

orientation on Γ and assume B′(θ) is well defined and non-zero for all θ. We assume that

the curve does not intersect with itself at any point, that it is convex, and that the billiard

ball moves with constant speed.

We now state the law of reflection.

Theorem 1.2.1. Let v, v̂ intersect on Γ, and assume v reflects to v̂ at the point of inter-

section. Let np be the unit inward normal at the point of intersection on Γ. Then,

v̂ = v − 2 〈v, np〉np.

Proof. Figure 1.2 gives the geometric description for how this proof is structured. For any

vector v we can find its orthogonal decomposition in the following way:

v = vT + vN (1.1)

where vT is the component parallel to the tangent line at the point of contact and vN is

the component orthogonal to the tangent line at point of contact. By the law of reflection,

θ1 = θ2 where θ1 is the angle made with the vector v and the normal vector at the point of

5
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N

Figure 1.2: Reflection of a billiard ball off the boundary. The normal vector is the dotted
green line, and the tangent vector is the blue line.

contact and θ2 is the angle made with the vector v̂ and the normal vector at the point of

contact. Therefore, we can assume:

v̂ = vT − vN . (1.2)

Then,

v − v̂ = (vT + vN )− (vT − vN ) = 2vN = 2 〈v, np〉np

where in the final line we substitute the expression for vN with the expression for the

projection of v onto np which by construction, is equal to vN . Thus,

v̂ = v − 2 〈v, np〉np

It is worth noting the following property of the convex table for the physical system.

First discussed in [1], finding the next point of contact for the ball in a convex billiard

6



system can be formulated as a minimization property. The minimization method can be

stated with the following lemma.

Lemma 1.2.1 (Minimization Property). Let x, y, and z be points on the boundary ellipse,

D. Suppose the line segment xy is reflected to the line yz at the point y. Then the angles

made between the lines xy and yz with the tangent line at the point y are equal if and only

if y is a critical point for the function:

f(y) = |xy|+ |yz|

where |xy| and |yz| are the 2-norm of each vector.

A proof for this lemma can be found in Levi and Tabachnikov [17] and relies on the

Lagrange multiplier principle.

Since we know that trajectories move along straight lines between boundary collisions,

the trajectory of the billiard is fully determined by the location of the boundary collision,

along with the direction of the incoming vector v. This leads to an iterated map f , describing

the ball’s location. That is, the billiard ball will move along a straight path in the direction

of v, where it will then intersect the boundary at a new point B(θ̂). Define γ to be the

angle that v makes with the tangent vector at the point of contact and let r = cos γ, at

which point, the ball will then be reflected back according to theorem 1.2.1. Denote the

new direction as v̂, with angle γ̂ and r̂ = cos γ̂. A geometric picture for this description

can be found in figure 1.3. By theorem 1.2.1, the angle between v and the normal vector

vN , at B(θ̂) is equal to the angle between v̂ and vN at B(θ̂). This immediately implies that

the angle between the tangent vector at the point of contact and v is equal to the angle

between the tangent vector and v̂. We formulate this in the following definition.

Definition 1.2.3. Let D be a convex domain as in definition 1.2.1 with boundary Γ defined

by a continuous parametrized curve, B. Let f be the map between successive collisions of a

ball with the boundary. The phase space for this system is given by I = {(r, θ) : −1 < r <

7



1, 0 ≤ θ < 1} where r represents the cosine of the angle γ, that the direction of the particle,

v makes with the tangent of the boundary at the point B(θ). Let θ̂ be the parameter value

corresponding to the point of next contact with the boundary. and let γ̂ be the angle made

with the trajectory of the ball after the collision with the boundary and the tangent line at

B(θ̂), and let r̂ = cos γ̂. Then the billiard map is:

(r̂, θ̂) = f(r, θ).

Figure 1.3: A point moving from the boundary at B(θ) with direction v to B(θ̂) with new
direction v̂.

We can construct a sequence of points {(rk, θk)} with (rk, θk) = f(rk−1, θk−1). This

sequence fully determines the billiard ball’s trajectory within D. In the above definition,

8



we restrict r ∈ (−1, 1) since at the endpoints of this interval, any r outside this range would

be parallel to the tangent vector or pointing outside the table. Since we are restricting to

convex tables, r would be pointing outside of the table. The phase space is a topological

cylinder, since B(0) = B(1). Often, the boundary is parametrized by arc length

s(t) =

∫ t

0

√
x′(k)2 + y′(k)2dk,

where B̃(t) = (x(t), y(t)), but we have not chosen to do so. When parametrized by arclength,

B̃ : [0, L]→ R2,

where L is the total length of the boundary which could be computed from our original

parametrization via

L =

∫ 1

0

√
x′(t)2 + y′(t)2dt.

The following are properties of the billiard map parametrized by arc length. The billiard

map is an exact symplectic twist map with symplectic form cos γds. This means that it

preserves the area form. In simpler terms, this means that for the mapping (x, y) 7→ (x̂, ŷ),

we can recover the information on (y, ŷ) just from knowing (x, x̂). This is encoded by

a generating function. Further discussion of billiards as a twist map and the generating

function for the billiards system can be found in Meiss, [18, 19], and Himmelstrand [16] as

well as in Golé [20]. A discussion on symplectic maps and their relation to Hamiltonian

systems can be found in [21].

We define a symplectic map in the same way Golé does in [20] but using our billiard

system notation:

Definition 1.2.4. A diffeomorphism from R2 to R2 which preserves area and orientation.

Then F is called symplectic.
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The billiard map satisfies the twist condition which says the following:

Definition 1.2.5. Let f : (r, s)→ (r̂(r, s), ŝ(r, s)) be a symplectic map on the cylinder that

is differentiable. Then f is a twist map if ŝ is strictly increasing in r for any fixed s.

A generating function is defined by Golé in [20] to be the following:

Definition 1.2.6. Given a map F (r, s) = (r̂(r, s), ŝ(r, s)), a function J is called a generating

function for the lift of a twist map F if it has the following property:

r = −∂J(s, ŝ)

∂s

r̂ =
∂J(s, ŝ)

∂ŝ

The generating function for the billiard map is the distance function applied to two

points on the boundary. We state and prove this with the following lemma.

Lemma 1.2.2. Let

J(s, ŝ) = |B̃(s)− B̃(ŝ)|

where s and ŝ are the arclength values. Then J is a generating function for the billiard

map.

Proof. First note that |dBds | = 1 by definition of parametrization with respect to arc-length.

Suppose that the angle between the line B(ŝ) − B(s) and the tangent line is γ. Also note

that ∂B̃
∂s is the tangent to B̃. Keeping in mind that the cosine formula for the dot product

is as follows:

〈(
B̃(ŝ)− B̃(s)

)
,
∂B̃

∂s

〉
=
∣∣∣B̃(ŝ)− B̃(s)

∣∣∣ ∣∣∣∣∣∂B̃∂s
∣∣∣∣∣ cos γ

We apply the chain rule to find ∂J
∂s :

10



∂J

∂s
=

−1

2
√

(x(s)− x(ŝ))2 + (y(s)− y(ŝ))2

(
2(x(s)− x(ŝ))

dx

ds
+ 2(y(s)− y(ŝ))

dy

ds

)

=
1

|B(s)−B(ŝ)|

〈
−(B(ŝ)−B(s)) ,

dB

ds

〉

= −
∣∣∣∣dBdt

∣∣∣∣ cos γ

= − cos γ = −r

Similarly we can find ∂J
∂ŝ :

∂J

∂ŝ
= cos γ = r̂

If we let r = cos γ then we have:

∂J

∂s
= −r

∂J

∂ŝ
= r̂

This completes the proof.

While we are not using the symplectic structure in our methods, this structure deter-

mines the type of dynamics we can expect. When parametrized by arc length, the billiard

map is a homeomorphism as well with a proof outlined in [16]. Therefore, these properties

underlie our analysis. Our billiard map takes f : I → I where I = (−1, 1) × [0, 1). This

is also a homeomorphism. In the next section, we will discuss the billiard map on a few

different tables as well as discuss the phase space structure for each table.
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1.3 Table Shapes

We now focus on some specific smooth billiard domains, mainly the circle and the ellipse.

1.3.1 Billiards on Circular Tables

We start by considering a circular boundary. We use the equation for the circle with radius

a parametrized, θ ∈ [0, 1):

B(θ) =

a cos 2πθ

a sin 2πθ

 (1.3)

Due to the symmetry of the circle, there is an explicit equation for the ball’s trajectory. In

the next lemma, we show that we can use rotation matrices to parametrize the curve to

prove this explicit formula. In most literature, a geometric proof is used, as will be discussed

after the following lemma.

Lemma 1.3.1. For a circular table of radius a given by B(ϕ) = (a cosϕ, a sinϕ) where

ϕ ∈ [0, 2π), let γ be the angle of the bounce and recall that r = cos γ. Then,

f(r, ϕ) = (r, ϕ+ 2γ)

Proof. Suppose we are given an initial point on the circle B(ϕ) with trajectory v. The angle

γ, given in radians is the angle that the initial trajectory, v, of the particle makes with the

tangent line at B(ϕ) with r = cos γ. The tangent vector at any given point on the circle is

given by:

T (ϕ) = B′(ϕ) =

−a sinϕ

a cosϕ


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We start with the initial point on the boundary at −π2 with direction v, since γ would

be measured off the horizontal at B(−π
2 ):

v−π
2

=

cos γ

sin γ



We can rotate any vector by θ + π
2 to shift it from this point of reference at −π2 . This

gives the following rotation matrix:

M =

cos
(
ϕ+ π

2

)
− sin

(
ϕ+ π

2

)
sin
(
ϕ+ π

2

)
cos
(
ϕ+ π

2

)
 =

− sin(ϕ) − cos(ϕ)

cos(ϕ) − sin(ϕ)


We can now find v given ϕ and γ. Using relations of sine and cosine, in particular, the

additive angle identities, we find:

v = M

cos γ

sin γ

 =

− sin (ϕ+ γ)

cos (ϕ+ γ)

 . (1.4)

Then, we find the next intersection point with the boundary by creating a straight line

connecting B(ϕ) and B(ϕ̂) parametrized by some value s:

B(ϕ̂) = B(ϕ) + sv. (1.5)

Rewriting this in terms of our equation for B:

(a cos ϕ̂, a sin ϕ̂) = (a cosϕ, a sinϕ) + s · (− sin (ϕ+ γ), cos (ϕ+ γ))
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and so we have:

a cosϕ− s sin (ϕ+ γ) = a cos ϕ̂

a sinϕ+ s cos (ϕ+ γ) = a sin ϕ̂.

Summing the squares of these equations gives:

(a cosϕ− s sin (ϕ+ γ))2 + (a sinϕ+ s cos (ϕ+ γ))2 = a2

a2 + s2 + 2as (sinϕ cos (ϕ+ γ)− cosϕ sin (ϕ+ γ)) = a2

2as (sinϕ cos (ϕ+ γ)− cosϕ sin (ϕ+ γ)) = s2

−2a sin (γ) = s.

Now we plug in the value for s back into equation (1.5) we get:

a cos ϕ̂ = a cosϕ− 2a sin (γ) sin (ϕ+ γ)

a sin ϕ̂ = a sinϕ+ 2a sin (γ) cos (ϕ+ γ).

and substituting in the sum of angles formulas for the cosine and sine term with the ϕ+ γ

argument and a lot of simplification we finally get:

a cos ϕ̂ = a cos (ϕ+ 2γ)

a sin ϕ̂ = a sin (ϕ+ 2γ)

Therefore, ϕ̂ = ϕ + 2γ. Now to find r̂. Let U be the unit tangent at the new point of

contact, B(ϕ̂). Then U is given by the following:
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U = (− sin (ϕ+ 2γ), cos (ϕ+ 2γ)) .

Then using the dot product between v defined in equation 1.4 and U we find the expression

for the cosine of the angle made between them, or in other words the angle of incidence

made at B(ϕ̂):

r̂ = 〈v, U〉

= [− sin (ϕ+ γ) sin (ϕ+ 2γ) + cos (ϕ+ 2γ) cos (ϕ+ γ)]

= [cos ((ϕ+ γ)− (ϕ+ 2γ))]

= cos (γ)

= r.

Note that this used the fact that v and U are unit length. The angle of incidence is the

angle of reflection and thus r̂ = r. This completes the proof.

A more standard proof for this description of the circle billiard system is done with

geometry. A picture for this idea can be seen in figure 1.4. We start by connecting the

normal vectors at each of the endpoints of ~v to the center of the circle. We have thus

constructed a triangle with the two normal vectors and ~v as the three sides. Since each

of the normal vectors have length 1, we have constructed an isosceles triangle. Therefore,

the angles made between each normal and v are equal, more specifically, they equal π
2 − γ.

Therefore, the angle made with v and the tangent at B(ϕ̂) is γ. To find ϕ̂, we simply need

to add up the interior angles of the triangle:

ϕ̂− ϕ+ 2
(π

2
− γ
)

= π

15



Figure 1.4: By constructing a triangle with the vector v (blue) and the normal vectors
(green) at the two endpoints of v, we get an isosceles triangle. Implying that v makes the
same angle with the two tangent vectors (purple).

and solving for ϕ̂ gives:

ϕ̂ = ϕ+ 2γ.

Given the simple map, it is easy to recognize periodic orbits. For example, when r = 0

a 2 -period orbit arises since that implies that γ = π
2 and ϕ̂ = π. Furthermore, when γ = π

4

we get ϕ̂ = ϕ+ π
2 and is a periodic orbit with period 4. In fact, it is easy to see that when

γ is rational, the orbit is periodic. When γ is irrational, the ω−limit set of the orbit is

the whole line. Therefore the phase space for the billiard map on the circle is a cylinder

that only consists of horizontal invariant curves since r is constant. This was first shown

by Birkhoff in [1].

The following corollary gives a similar result as lemma 1.3.1 for our definition of the

circle table in equation (1.3). This way of describing the table is more in line with how we

parametrize the table in the next few sections.
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Corollary 1.3.1. For a circular table of radius a given by B(θ) = (a cos (2πθ), a sin (2πθ))

for θ ∈ [0, 1),

f(r, θ) =
(
r, θ +

γ

π

)
,

where γ is given in radians as defined in equation 1.2.2.

1.3.2 Billiards on Elliptical Tables

Now we turn our attention to the ellipse. Given a smooth ellipse as the boundary for our

table, we construct B(θ) = (x(θ), y(θ)) where:

x(θ) = a1 cos 2πθ

y(θ) = b1 sin 2πθ.

(1.6)

The goal is now to find an explicit expression for the next point of contact with the

boundary. We can construct this explicit expression by writing the function for the line

connecting B(θ) to B(θ̂) given by v = (v1, v2) = B(θ̂)−B(θ). We can now parametrize this

line in the following way. For convenience, let d1 = v1
a and d2 = v2

b .

x̂ = x+ sv1

ŷ = y + sv2.

That is,

B(θ̂) = B(θ) + sv, (1.7)
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i.e:

cos 2πθ2 = cos 2πθ1 + d1s

sin 2πθ2 = sin 2πθ1 + d2s.

Plugging these equations into the standard equation for the ellipse we get:

1 = (cos 2πθ1 + sd1)
2 + (sin 2πθ1 + sd2)

2

= 1 + 2s (d1 cos 2πθ1 + d2 sin 2πθ1) + s2(d21 + d22).

Rearranging this equation gives us an explicit description for s:

s = −2

(
d1 cos 2πθ1 + d2 sin 2πθ1

d21 + d22

)
.

We can then easily substitute this value for s back into the original parametrization to find

the next point of impact on the boundary of the table.

The phase space for the ellipse, similar to the circle, consists only of invariant curves,

see Figure 1.5. Which leads us into the Birkhoff conjecture. We now define what it means

for a billiard system to be completely integrable. There are two ways to define integrability

but we use the definition as found in [5].

Definition 1.3.1. We say a billiard system is completely integrable if the phase space has

a continuous full measure foliation by one-dimensional invariant submanifolds.

In other words almost every point in the phase space is contained in a one dimensional in-

variant submanifold and those submanifold vary continuously with respect to some foliation

parameter. Note that in the definition above the one dimensional submanifolds generally

consist of more than one orbit. For continuously differentiable domains, the examples given

so far fit this criteria. Billiards in a square domain are also completely integrable but we
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are focused on continuously differentiable domains. The dynamics in such a system is com-

pletely regular, [9]. This leads us to the Birkhoff conjecture with the earliest statement

being made by Poritsky in 1950, [22], but we will use the statement summary given in [4].

Theorem 1.3.1 (Birkhoff Conjecture). For a convex smooth boundary, if the billiard system

is completely integrable, it must be an ellipse.

Figure 1.5: Phase space for the ellipse with b1 = 1 and a1 = 1 (top left), a1 = 1.1 (top
middle), a1 = 2 (top right), a1 = 3 (bottom left), a1 = 5 (bottom middle), and a1 = 7
(bottom right). Each orbit is colored by its rotation number, defined by definition 1.6.3 in
section 1.6.1. This figure was made using 800 initial r values were taken from θ = 0.25 and
θ = 0.5 each having orbit length 2000.

Research in billiards since then has been targeted towards proving this conjecture. For

instance, in 1995, Delshams and Ramı́rez-Ros proved that any non-trivial, symmetric per-

turbation of the ellipse is not integrable, [3]. In [2], Avila et al. proved the Birkhoff

conjecture for tables that are perturbed ellipses with small eccentricity. Then extended in

[23] by Kaloshin and Sorrentino. In [24], Bialy and Mironov proved the Birkhoff conjecture

for centrally-symmetric C2-smooth convex planar billiards.
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Relating Dynamics to the Physical Table

There are a few notable aspects of the phase space for the ellipse. The phase space for

several different ellipses can be found in figure 1.5. One can categorize each trajectory on

the physical table into three separate groups of the phase space.

Theorem 1.3.2. In the billiard system for an ellipse, if the initial trajectory of the ball is

between the two foci of the ellipse, then each subsequent bounce will pass between the foci.

These trajectories correspond to the bounded orbits in the phase space that lie on contractible

circles when viewing the phase space as a cylinder.

In figure 1.5, these orbits can be seen as the light blue circles. These types of orbits can

be seen more explicitly in figure 1.1 as the purple and gold orbits. Figure 1.5 is colored by

rotation number, which will be defined in section 1.6. For the ellipse, the rotation number

can be taken to be the average amount of the table traversed by each bounce. As the

eccentricity of the ellipse grows, these contractible circles grow as well, implying that more

of the boundary can be reached if the trajectory passes initially between the foci. Another

group of orbits exists in the ellipse, as follows.

Theorem 1.3.3. In the billiard system for an ellipse, if the initial trajectory of the ball

passes between a focus and the boundary of the ellipse, then each subsequent bounce will

be directed between a focus and the boundary of the ellipse. These orbits correspond to the

non-contractible orbits in the phase space when viewing the phase space as a cylinder.

In figure 1.5, these orbits are represented by the curves above and below the contractible

circles. This behavior is seen explicitly in figure 1.1 exhibited by the orange orbit. If the

orbits have an irrational rotation number, the orbit will be a dense set. There exists one

more type of orbit for the ellipse.

Theorem 1.3.4. In the billiard system for an ellipse, if the initial trajectory of the ball

passes through a focus of the ellipse, then each subsequent bounce will also pass through a

focus of the ellipse. These orbits correspond to heteroclinic orbits in the phase space.
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Figure 1.6: Caustic curves for the ellipse. For each picture, a single orbit was taken with
orbit length 1000. The edge of the blue regions are the caustic curve. For the top row, the
curve is an ellipse because the trajectory passes initially between a focus and the boundary.
For the bottom row, the caustic curve is a hyperbola because the initial trajectory passes
between the foci.

In figure 1.5, these orbits are represented by the ∞ shape that confines the contractible

circles. Proofs for the above theorems can be found in [9] and in [25]. These groupings of

orbits in the physical table are bounded by curves that are called caustics. Caustic curves

are defined in the same way as Tabachnikov in [25].

Definition 1.3.2 (Caustic). A caustic for a planar billiard orbit is a curve in D, the

physical table, such that if a trajectory is tangent to it, then it remains tangent to it after

every reflection.

Lazutkin in [26] proved that billiards in strictly convex, smooth boundaries have caustics.

Mather was able to show that when the curvature of the boundary vanishes at some point,
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then no caustics exist in [27]. Caustic curves are not guaranteed to exist for every orbit in a

general convex domain. One can see that no caustic exist for the gold orbit in the perturbed

ellipse case shown in figure 1.1. The orbits that follow the criteria from theorem 1.3.2 are

bounded by a hyperbola, this can be seen more clearly by the second row of figure 1.6. The

orbits that follow the criteria from theorem 1.3.3 are each bounded by an ellipse which can

be seen in the first row of figure 1.6. Lastly, the previous two groupings of caustics can

be separated in the phase space by a heteroclinic orbit that is given by the orbits passing

through the foci. A more in depth discussion of caustics of the ellipse can be found in [25].

1.3.3 Other Tables

Billiards tables consist of three types of curves that can make up their boundary: dispersing

curves which are concave, focusing curves which are convex, and straight lines. In this thesis

we will be focused on strictly focusing curves, hence the convex restriction in definition 1.2.2.

With dispersing curves and straight lines, an issue arises in the construction of these table

with the formation of discontinuous points on the boundary, namely, cusps and corners.

For a more detailed discussion on the differences in these types of curves refer to [9].

When it comes to polygonal boundaries, the domain is taken to be a union of straight

lines, connected at a single point. An introduction to billiards in the square can be found

in [9] and an introduction to billiards for more general regular polygon tables can be found

in [25]. The billiard map for regular polygons can be seen rather easily by tiling the plane

with the boundary and drawing a straight line across the plane and keeping track of the

orientation of each of these tiles. This process of tiling the plane is called unfolding. For

a more robust description of unfolding see Gutkin, [28]. Although polygonal domains are

not chaotic, they do display mixing properites, which is numerically demonstrated in recent

research by do Carmo and Lima in [29].

Originally, it was thought that chaos was only present in tables with dispersing bound-

aries, but this was proved incorrect by Bunimovich in the mid 1970s. In [8], Bunimovich

was able to show that there were tables with domains with boundary components consisting
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of only focusing curves and straight lines. These tables, referred to as Bunimovich tables,

are domains with focusing components on the boundary that exhibit chaotic behaviour. An

introduction to Bunimovich tables can be found in chapter 8 of [9].

1.4 Prior Numerical Methods for Billiards Systems

Many numerical methods have been used in previous research to simulate billiards systems.

The goal of which is to accurately predict the next bounce for the orbit of a billiard ball

within the billiard table. In this section, we describe some methods that have been proposed

or used to model these systems, whether it be strictly using numerics in the physical space

and some using numerics in the phase space.

1.4.1 Methods Using the Minimization Property

In [17], Levi and Tabachnikov utilize the minimization property to find the point of next

contact of the particle with the boundary. An advantage for this method is that we can still

use the parametrized curve representation for the ellipse. Furthermore, the method is quick

to compute having only one instance of Newton’s method to perform. This method relies

on the fact that the table is convex and is not applicable for nonconvex tables. This method

is particularly useful when discussing Poncelet polygons. More on Poncelet Polygons can

be found in [17,30]. For an introduction to the Poncelet theorem, refer to [25].

We originally attempted to implement this method with our billiard system but ran into

two issues. The first being it relies on the norm which is not analytic. Therefore, we would

not be able to utilize this in the continuation. The second issue is that y is not the only

critical point of this function. There is in fact another critical point. The second solution to

the above equation would be −y, meaning if we were to apply Newton’s method to find this

value, it could converge to the wrong value. In order to get around this, we apply several

methods outlined in section 1.5.
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1.4.2 Tangent Method

In [31], da Costa et al describe billiard dynamics on oval-like tables where the polar equation:

RW (θ) = 1 + ε cos pθ (1.8)

is used as the boundary for their table and p is some integer taken to be 3 in this particular

paper. In equation (1.8), when ε = 0, the billiard table is a circle. But as ε grows, the

table becomes more deformed, essentially growing three connected lobes. Then functions

are constructed for the x and y coordinates using equation (1.8) similar to how we set up

the circle and ellipse cases. The tangent method is then implemented to find the point of

next contact with the boundary. The tangent method is an iterative method that begins

by constructing a parametrized line between the first and second contact point. Then an

intersection point is found between the line and the approximate circle, R = 1 + ε, call it

(Xe, Ye). This approximation is used to find the angular position on the actual boundary,

(Xa, Ya) which will provide a good guess for the next step. Drawing a tangent line at

the point of (Xa, Ya), one finds the parameter value for which the original line intersects

this new tangent line. The point of intersection becomes the new (Xe, Ye) and then the

steps are repeated until |Xe −Xa| and |Ye − Ya| are within some tolerance. The final point

produced by this iterative method will be the next point of contact with the boundary. The

method uses an explicit expression for solving for the parameter value for the intersection

of the trajectory. Each approximate tangent line involves derivatives of these coordinate

equations. We found that we could not use this method since this type of perturbation was

specifically for the circle and the overall formulation was not analytic.

1.4.3 Using the Standard Equation of the Ellipse

Some numerical methods rely on the standard form for the ellipse, meaning:

(x
a

)2
+
(y
b

)2
= 1 (1.9)
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For example, Turaev in [32], the ellipse was perturbed by adding a small sine term to

equation (1.9). The method for finding the next point of contact begins with finding the

initial vector for the billiard ball, v0. It then follows the v incrementally by small steps along

the line connecting the initial boundary point and the first contact point by creating a line

from v. At each increment of v, the point is checked whether it lies within the boundary

or outside the boundary. This is accomplished by plugging in the new increment of v, or vi

into the above equation and subtracting this from the equation (1.9) applied to v0. If the

difference is negative, then the ball must be still inside the boundary, and if the difference

is positive, then the ball is outside the boundary. Turaev would then set up the boundary

as a system of differential equations to solve for the arc length coordinate using a fourth

order Runge-Kutta method.

1.4.4 Using Energy Functions

In 2015, Solanpää et al in [33] wrote a C++ package to simulate general nonconvex billiard

systems in 2D tables with more general criteria, similar to what is stated in definition

1.2.1. In this paper, they cover the methods used to simulate models for various billiards

and diffusion models including those with multiple charged particles and those subject to

magnetic fields. For the billiards model, they use the separable Hamiltonian function to

implement a split operator scheme where they approximate the propagator by some product

of solution forms for each of the parts in the separable Hamiltonian. Their software package

is able to create phase spaces and single particle orbits for tables as easy as the ellipse to

more complicated structures such as the Bunimovich mushroom.

1.4.5 Tables with Corners

Lansel and Proterin [34] wrote software to simulate classical billiard systems on tables that

are constructed entirely of line segments but not necessarily convex. Their method focuses

on tracking the trajectory of the ball v and the angle the ball makes with the horizontal axis,

θ rather than tracking the cosine of the angle v makes with the tangent. From these values,

25



they are able to to find the Cartesian coordinates for the point of contact on the boundary.

Their method for solving for the next point of contact is slightly more complicated due

to the more complicated structure of the table. They are given an initial point on the

boundary and a trajectory v, then they find the intersection of v with each line segment

that comprises the boundary. The intersection with the minimum distance is the next point

of contact with the boundary. One issue that arises with tables comprising of line segments

is corners, or the point where two line segments meet. There is no clear derivative at these

points so they average the derivatives at the points to the right and left of the corner. This

averaged derivative is then taken as the approximate derivative for the corner. I suspect

this method could be applied to tables with smooth boundaries that are non-convex in

combination with our method in the next section.

1.5 Methods for the Perturbed Ellipses

For the circle and ellipse, we have shown there are closed form solutions for describing the

billiard balls path by the points of collision and the angles made with the tangent of the

boundary. For general convex tables, there is no explicit solution. We now develop an

implicit method to find these quantities.

1.5.1 Iterative Method of Real Valued Billiard Systems

Begin by defining a few variables in this system.

Definition 1.5.1. Let B(θ) = (x(θ), y(θ)) be a twice differentiable continuous boundary

curve in R2 with counter-clockwise orientation where θ ∈ [0, 1) and B(0) = B(1). Let

T (θ) = B′(θ) be the tangent vector to the curve. Given a point θ and an angle γ, let v and

r be as follows:

1. v is the vector so γ is the angle between v and T as in section 1.2.

2. r = cos γ.
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We focus on the case of the perturbed ellipse. In particular, we assume B(θ) =

(x(θ), y(θ)) is given by:

x(θ) = a1 cos (2πθ) +

n∑
k=2

ak cos (2kπθ)

y(θ) = b1 sin (2πθ) +

n∑
k=2

bk sin (2kπθ).

(1.10)

As long as (ak, bk) � (a1, b1), this is a small perturbation and additionally the table

remains convex. We start with a point given by (r, θ). This implicitly defines a vector, v,

as we see below.

Let T (θ) = B′(θ) the tangent direction. Since orientation is counter-clockwise, the

inward normal vector is given by n(θ) = (−T2, T1). Using the following dot product relation

a · b = |a||b| cos θ

for two arbitrary vectors a and b, and the fact that γ is the angle between v and T , we get

〈T (θ), v〉 = |T (θ)| |v| r.

This does not have a unique solution since v can be of any length and still be a solution

to the above equations, so we need another condition. The condition we choose to enforce

is ‖v‖ = 1. Now we have a set of equations that will give a unique v. We write it in

component-wise form:

T1v1 + T2v2 =
√
T 2
1 + T 2

2 r

v21 + v22 = 1

(1.11)
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noting that the |v| = 1 on the right hand side of the first equation.

Because of the square root, this set of equation (1.11) is non-analytic. We will need

to fix this issue when moving to the complex plane in the future sections. This implicit

equation for v can be written as a zero finding problem that can be solved, for example,

with Newton’s method.

Now that we have the vector v, we can use it to develop a method to find the next point

of collision with the boundary. We start by constructing the line in the direction of v

L(s) = p1 + sv, (1.12)

where p1 = B(θ1) and s is a length parameter. Since the table is convex, this line has

two intersection points with the boundary, the first being the original point the particle is

leaving B(θ), and the second being the next point of contact B(θ̂). As long as we have a

good guess near the desired solution, this intersection can be formulated as another zero

finding problem when we construct the equation

F (s, θ̂) = L(s)−B(θ̂) =

x1 + sv1 −
(∑n

k=1 ak cos (2πkθ̂)
)

y1 + sv2 −
(∑n

k=1 ak sin (2πkθ̂)
)
,

 (1.13)

which gives location of the next bounce on the boundary. The method we use to find this

zero is Newton’s method. Notice there are two zeroes that satisfy this equation, namely

the new point B(θ̂) and the original point B(θ). Converging to the second bounce point is

a matter of feeding in a good initial guess. We now explain how to find a good guess.

For a good guess we use two tactics. First we approximate the boundary by ellipse to be

the ellipse generated by the first cosine and sine term in equation (1.10). Since predicting

the next point of contact on an ellipse has closed form solution, we can find the next bounce

on the approximate ellipse with the (r, θ) from the perturbed ellipse. Although, this next

point on the approximate ellipse provides a good guess in most cases, it is not enough to
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guarantee convergence to the correct root in some small number of cases. These difficult

cases occur when the ball only bounces a short distance, or more specifically r is close to

1. In order to converge to the correct root in these cases, we use the method of deflation

on the function F (s, θ̂) to eliminate the incorrect zero we do not want Newton’s method to

converge. We will discuss this in more detail in section 1.5.4.

After we have found the next point of contact, B(θ̂), we now need the new r̂. Since we

now know θ̂ we can find the tangent line at this point, U(θ̂) = B′(θ̂). From theorem 1.2.1,

we know that the angle made by v2 with the tangent line will be the same as the angle

between v1 and the tangent line. Thus, using the dot product relation with the angle we

get:

r̂2 − (v · U)2

‖U‖2
= 0 (1.14)

which becomes yet another implicit equation which can be solved by using Newton’s method.

This completes the method.

This method was implemented to create figures 1.7, where we slowly increase the second

terms by some parameter ε in each of the coordinates. Using the weighted Birkhoff average,

we are able to subtract out the chaotic regions. This will be explained in more detail in

section 1.6.

A question that may arise from the way we perturb the ellipse is given the coefficients

in figure 1.7, what value of ε will cause the table to not be convex. To answer this, we

calculated the signed curvature. For the general curve close curve B(θ) = (x(θ), y(θ))

k =
x′y′′ − y′x′′

(x′2 + y′2)
3
2

.

If the curve bounds a convex set then k is always positive. If the curve bounds a concave set,

then the minimum k is negative. We calculated the minimum k value for tables associated

with coefficients a1 = 1.1. a2 = 0.03ε, b1 = 1, and b2 = 0.25ε and found that the maximum
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Figure 1.7: Phase space for the billiard map on the perturbed ellipse given by equation
(1.10) with coefficients a1 = 1.1, a2 = 0.03ε, b1 = 1, and b2 = 0.025ε where ε is varied
between 0.1 and 1. The color of each orbit represents the rotation number for the orbit.
The chaotic orbits are in black. Each picture was created by taking 600 initial r values for
each θ = 0, 25, 0.33, 0.4 and 0.5. Each orbit has length 2000.

epsilon one could have without the curvature being less than zero is about ε = 9.1806.

Beyond this value, the table fails to be convex. This can be seen in figure 1.8. Figure 1.8

also shows the calculation of minimum signed curvature for each ε value. If one wished

to perturb the ellipse to have more terms, then an easy guess would be to make each

an, bn = 10−nε. Then the maximum ε value above would remain the largest epsilon value

for the table to remain convex.

1.5.2 An Analytic Method for Continuation

We now develop an analytic method for computing billiard maps. Unlike our previous

method, we require a guess for the iterate of the point. Thus, this method will be effective
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Figure 1.8: Calculating the maximum ε value for the table to remain convex using the
coefficients used to produce figure 1.7. The picture on the right shows the table deforming
due to the change in ε. While the picture on the left shows the calculation for the minimum
signed curvature calculated for each ε.

for continuation but not for finding big orbits. In this section, we propose a predictor-

corrector continuation method to push our phase space into complex space. The reason

we want to use a real analytic function is that we need a way to compute f applied to a

Taylor series and get another Taylor series. Since the map is defined implicitly the most

accurate way to this is to evaluate f of the Taylor series at the nth roots of unity and take

the discrete Fourier transform. The method is as follows: We begin by predicting the next

point of contact with the boundary by using the real case. Then we continue by using a

nearby complex solution as a guess for the new complex one. We start by assuming the

definition 1.5.1 from section 1.5, but now we have that the (r, θ) has real and imaginary

parts.

As previously done, we first need to find the vector v, which is the vector that is at

an angle γ with the tangent line at B(θ). Previously, we used the dot product formula,

but this no longer works in the complex case since it requires taking the square root of a

complex value. Therefore, the system will not be analytic. To get around this we square

both sides of the equation and keep the requirement that v has modulus 1. This yields the

set of equations
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(T1v1 + T2v2)
2 = (T 2

1 + T 2
2 )r2

v21 + v22 = 1

(1.15)

From this we move the left terms to the right hand side of the equation and apply

Newton’s method to find the v that is the zero for the system. Once we have the trajectory

of the ball v, we can move onto the next step, finding the next point of contact with the

boundary, B(θ̂). To do this we perform the same step as the real case by constructing the

function

L(s, θ̂) = B(θ) + sv −B(θ̂). (1.16)

We then apply Newton’s method to this equation to find the zero for this function and

get the parameter value θ̂ which corresponds to the next point of contact with the boundary.

The difference between this step and its corresponding step in the real case is that we cannot

apply deflation since our function might not be analytic. Therefore, this method would not

work for small bounces.

Lastly, we need to compute r̂, the cosine of the angle between the tangent at B(θ̂) and

the new trajectory v̂. As before, U = B′(θ̂) is the tangent vector at the point B(θ̂) and v

is the initial trajectory of the particle pointing towards B(θ̂). Again, we perform the same

step as the iteration method, solving the following equation:

r̂2 − (v · U)2

|U |2
= 0. (1.17)

We perform these steps for each iterate of the billiard map with complex r and θ by

taking the real components of r̂ and θ̂ for the iteration method in the next step.

In the next section we will construct an implicit computation of the derivative for the

map f which will be necessary for us to implement the parametrization method.
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1.5.3 Finding the Derivative for the Billiard Map

In this section, we find Df . This will be used to implement some of the methods described

in section 1.6 and section 1.7. More specifically, we need to find an expression for

∂f

∂(r, θ)
=

 ∂r̂
∂(r,θ)

∂θ̂
∂(r,θ)

 . (1.18)

We are able to do so by using implicit differentiation.

Start by defining T (θ) = B′(θ) where B(θ) is the function that describes the table and

DB is the derivative. The first step of our method requires finding v = (v1, v2) given (r, θ),

that satisfies

G(v1, v2, r, θ) =

(T1(θ)v1 + T2(θ)v2)
2 −

(
T1(θ)

2 + T2(θ)
2
)
r2

v21 + v22 − 1

 = 0. (1.19)

Since G is dependent on v1, v2, r, and θ and, in fact, v1, v2 are dependent on r and θ, we

can use implicit differentiation to find an expression for:

∂(v1, v2)

∂(r, θ)
= −

(
∂G

∂v

)−1 ∂G

∂(r, θ)
. (1.20)

Therefore, we just need to find expressions for the two derivative matrices on the right side

of the equation. Let T (θ) = B′(θ) = (T1(θ), T2(θ)) be the equation for the tangent line at

the point B(θ) on the boundary of the table. Then, from equation (1.10)

T1(θ) =

n∑
k=1

−2πkak sin (2πkθ)

T2(θ) =

n∑
k=1

2πkbk cos (2πkθ).
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The derivative with respect to θ of T is given by the following expression:

∂T1
∂θ

(θ) =
∑
k

−(2πk)2ak cos (2πkθ)

∂T2
∂θ

(θ) =
∑
k

−(2πk)2bk sin (2πkθ)

Now we have a formula for T and the derivative of T , which we will shorten to T ′, which

will help give us a more explicit expression for ∂G
∂(r,θ) . Taking the partial derivative of G

with respect to r and θ gives us the 2× 2 matrix:

∂G

∂(r, θ)
=

−2r(T 2
1 + T 2

2 ) 2(T1v1 + T2v2)(T
′
1v1 + T ′2v2)− 2(T1T

′
1 + T2T

′
2)r

2

0 0

 .
(1.21)

Taking the partial derivative of G with respect to v1, v2 gives the 2× 2 matrix

∂G

∂v
=

2(T1v1 + T2v2)T1 2(T1v1 + T2v2)T2

2v1 2v2

 . (1.22)

Combining equations (1.20),(1.21), and (1.22), we can solve for ∂v
∂(r,θ) . In the next step of

our method, we wish to find the θ̂. Let H be a function that is the the difference between

the boundary and the trajectory of the ball we found in the previous step, v. Remember

from the previous section, equation 1.13, that the zero for this function will be the point of

next contact on the boundary θ̂ where

H(r, θ, s, θ̂) = B(θ) + sv −B(θ̂) = 0. (1.23)
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Notice here that H is dependent on r, θ, s, and θ̂ where v = v(r, θ) as above. Assume

that s and θ̂ depends on r and θ. By implicit differentiation we get the expression

∂(s, θ̂)

∂(r, θ)
= −

(
∂H

∂(s, θ̂)

)−1
∂H

∂(r, θ)
. (1.24)

Notice that the second column of equation (1.24) is half of the matrix we need from

equation (1.18). Taking the partial derivatives of H with respect to s and θ̂ yields the

following 2× 2 matrix:

∂H

∂(s, θ̂)
=

(
v −dB

dθ̂
(θ̂)

)
(1.25)

and now finding the partial derivative of H with respect to r and θ yields another 2 × 2

matrix

∂H

∂(r, θ)
=

(
s∂v∂r

dB
dθ (θ) + s∂v∂θ

)
. (1.26)

Combining equations (1.24), (1.25), and (1.26) we now have an expression for ∂(s,θ̂)
∂(r,θ) . The

third and final step of our method is to compute the new r̂ for our trajectory. Let U =

DB(θ̂), the equation of the tangent line at B(θ̂). From equation (1.14) in the previous

section, we can construct K to be a function of r, θ, r̂ ∈ R such that

K(r, θ, r̂) = r̂2 − (U1v1 + U2v2)
2

U2
1 + U2

2

. (1.27)

We again, use implicit differentiation to find an expression for ∂r̂
∂(r,θ)

∂r̂

∂(r, θ)
= −

(
∂K

∂r̂

)−1 ∂K

∂(r, θ)
. (1.28)
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Finding the solution to the right hand side of this equation will give us the final expres-

sion we need for the derivative of r̂ with respect to r and θ. These partial derivatives have

an explicit expression as well with one being a single value and the other a column vector:

∂K

∂r̂
= 2r̂ (1.29)

and

∂K

∂(r, θ)
=
−2(U1v1 + U2v2)

U2
1 + U2

2

(
∂U1

∂(r, θ)
v1 +

∂v1
∂(r, θ)

U1 +
∂U2

∂(r, θ)
v2 +

∂v2
∂(r, θ)

U2

)

+
(U1v1 + U2v2)

2

(U2
1 + U2

2 )2

(
2U1

∂U1

∂(r, θ)
+ 2U2

∂U2

∂(r, θ)

)
.

(1.30)

Thus we now have an expression for both ∂r̂
∂(r,θ) and ∂θ̂

∂(r,θ) , where

∂r̂

∂(r, θ)
= −

(
∂K

∂r̂

)−1
· ∂K

∂(r, θ)
(1.31)

and

∂θ̂

∂(r, θ)
=

−( ∂H

∂(s, θ̂)

)−1
· ∂H

∂(r, θ)


2

, (1.32)

where (·)2 represents the second row of the matrix. Since ∂r̂
∂(r,θ) is a column vector, we will

need to take the transpose of this vector and combine it with the row vector ∂θ̂
∂(r,θ) giving

us the final expression for the 2× 2 matrix in equation (1.18).

Before we can show that the map f is analytic we will need help from the implicit

function theorem. We state the theorem as shown in [35] which is the version of Hildebrandt

and Graves.
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Theorem 1.5.1. Suppose that the mapping F : U(x0, y0) ⊂ X × Y → Z is continuous and

defined on an open neighborhood U(x0, y0) and F (x0, y0) = 0 where X,Y , and Z are Banach

spaces over C. Suppose further that the partial derivative DyF exists on U , is continuous

at (x0, y0), and detDyF (x0, y0) 6= 0. Then the following are true:

1. There exists positive numbers r0 and r such that for every x ∈ X satisfying |x−x0| ≤ r0

there is exactly one y(x) ∈ Y for which |y(x)− y0| ≤ r and F (x, y(x)) = 0.

2. If F is continuous in a neighborhood of (x0, y0) then y(x) is continuous in a neigh-

borhood of x0.

3. If F is a Ck (analytic) map for 1 ≤ m ≤ ∞ on a neighborhood of (x0, y0) then y(x)

is also a Ck (analytic) map on a neighborhood of x0.

From the above theorem we are able to prove the following result for our map f .

Theorem 1.5.2. The billiard map f as defined in section 1.5.2 is analytic for r ∈ (−1, 0)
⋃

(0, 1)

and θ ∈ [0, 1).

Proof. If G,H and K are analytic and satisfy the criteria of theorem 1.5.1 then so f is

analytic as well. It is easy to see that these functions are analytic since G and K are

polynomials in each term. H is analytic since it is a sum of analytic functions. Therefore,

we just need to show that:

det
∂G

∂v
6= 0, det

∂H

∂(s, θ̂)
6= 0, and

∂K

∂r̂
6= 0.

First we take the determinant of equation (1.22) which is

4(T1v1 + T2v2)(T1v2 − T2v1).

which is non-zero as long as 〈T, v〉 6= 0 or when 〈n, v〉 = 〈(−T2, T1), v〉 6= 0. The first

case corresponds to when v is orthogonal to the tangent line at the point of contact or
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r = 0 which we do not allow. The second case corresponds to when the normal vector is

orthogonal to v. This would imply that v is in the same direction of the tangent or r = −1

or 1. This situation cannot occur due to our restrictions on the boundary.

Second we take the determinant of equation (1.25) and get

−v1B′2(θ̂) + v2B
′
1(θ̂) = 〈v, (−T2, T1)〉 = 〈v, n〉 .

The above is only equal to 0 when v is parallel to the normal vector at the point of next

contact or, r̂ = 0. Lastly, for equation (1.29), we have

∂K

∂r̂
= 2r̂.

We see that the inverse exists if and only if r̂ 6= 0. Therefore, we have that each map f

exists and is continuous, differentiable, and analytic on r ∈ (−1, 0)
⋃

(0, 1) and θ ∈ [0, 1).

Our first instinct to solving this problem at r = 0 was to reformulate equation (1.15)

to be the dot product with the normal vector of the boundary. Although this allows us to

solve equation (1.15), we would still be unable to solve equation (1.17) since the derivative

would be zero.

In summary, we now have a three step implicit method for finding an iterate of a billiard

map as well as an expression for the derivative of this map. The key point of this method

is that it is analytic but there are a few drawbacks to this method as well which we will

discuss in the next section.

In section 1.6.2, we will discuss some results that use this derivative to find periodic

orbits using a multiple shooting Newton’s method, and in section 1.7 we will discuss how

this derivative assists in computing the stable and unstable manifolds for these periodic

orbits.
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1.5.4 Numerical Issues

The strengths of this implicit formulation of the billiard map lie in its structure. For

one, the way we construct this perturbation mimics the Fourier series where the advantage

will become clear when implementing the parametrization method in section 1.7. One

issue that arises with this construction mainly occur at (r, θ) = (0, 0) and (r, θ) = (0, 0.5).

The orbit for this initial conditions is a two period orbit that bounces between these two

points. Furthermore, the Jacobian is singular for equation (1.11) and (1.15) meaning, we

cannot apply Newton’s method. One more computational issue arises with equation (1.11)

when Newton’s method converges to vk−1. In other words, it finds the previous v that is

approaching the current point on the table. To rectify this, we use theorem 1.2.1 to find vk.

Another issue that arises in the real case is with solving the equation (1.13). As stated

in section 1.5, in cases where the ball is travelling a small distance along the boundary, our

Newton’s method converges to the point of origin rather than the point of next contact. To

avoid this, we implement deflation. Deflation was originally applied to polynomial equations

with roots that are wide spread by Peters and Wilkinson in [36]. Wilkinson deflation of

polynomials was then extended to systems of nonlinear algebraic equations by Brown and

Gearhart in [37]. Then extended to infinite dimensional Banach spaces by Farrel et al in

[38] and extended to computing bifurcation diagrams by Beentjes in [39]. For a general

non-linear function F : X → Y , where X and Y are Banach spaces, deflation is defined as

follows.

Definition 1.5.2. The deflation matrix is

M(x, r) =
I

|x− r|
,

where I is the identity matrix.
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Supposing that F has two roots x1 and x2 such that F (x1) = F (x2) = 0, then the

deflation operator

T (x) = M(x, x1)F (x)

will converge to the root x2 using Newton’s method. The proof of these statements can

be found in [37] and [39]. We apply the deflation matrix to the equation (1.13) with

(s, θ) = (0, θi) where θi corresponds to the point on the boundary where the path of the ball

starts. Therefore, we guarantee that Newton’s method on equation (1.13) always converges

to θi+1.

1.6 Applications for Iterative Methods

1.6.1 Chaos and Rotation Number

In this section we will define the rotation number and its properties. The results from

computing the rotation number for some test cases as well as the billiard map will be in

the following results section. Before we define the rotation number, we first define some

preliminary definitions.

Definition 1.6.1. Let Π : R → S1 be the standard projection onto the circle. This can be

represented in a couple of different ways:

1. Π(t) = t mod 1

2. Π(t) = e2πit

For our purposes, we will be using the first representation listed in equation 1.6.1. Now

we state the definition for a lift as seen in [21].

Definition 1.6.2. Suppose f : S1 → S1 and is orientation preserving. Then a lift, F :

R→ R, of f is a map such that:

1. Π ◦ F = f ◦Π
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2. F is monotonically increasing

3. F (t+ 1) = F (t) + 1, ∀t.

A lift is not unique. For example, for any homeomorphism f , if F1 and F2 are two lifts,

then there exists an integer k such that F2(t) = F1(t) + k, [21].

Definition 1.6.3. Let f : S1 → S1 be a homeomorphism with lift F : R→ R. Let

ρ̂(f) = lim
n→∞

Fn(x)− x
n

.

Then, the rotation number for the orbit of x is ρ(x) = ρ̂ mod 1.

It is not obvious, but the rotation number is independent of the point, and is also

independent of the lift. A proof of these statements can be found in [21]. The rotation

number is rational when the orbit is periodic, as stated and proved in the following lemma.

Lemma 1.6.1. If there is a point on [0, 1] with least period q ∈ N then ρ(F ) = p
q where

p ∈ N.

Proof. Suppose that x ∈ [0, 1]. Then, F q(x) = x + p for some p ∈ Z. Let n > q be an

integer. Then n has a unique representation of the form

n = kq + r.

Therefore,

Fn(x) = F kq+r(x) = F r
(
F kq(x)

)
= F r(x+ kp) = F r(x) + kp.

Now using the definition of rotation number yields:

lim
n→∞

Fn(x)− x
n

= lim
k→∞

F r(x) + kp− x
kq + r

=
p

q
.
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The previous lemma implies that, if the orbit is periodic, then the rotation number will

be rational. We generalize the above lemma to include irrational rotation numbers. The

proof can be found in [21].

Theorem 1.6.1. Suppose f : S1 → S1 is a C2 orientation preserving diffeomorphism.

Then, for the rotation number λ, if:

1. λ is rational, then f has a periodic point. If it is not the periodic point, then the orbit

will asymptotically approach the periodic point.

2. λ is irrational, then f is topologically conjugate to a rigid rotation

G(x) = (x+ λ) mod 1.

We call such cases quasiperiodic.

Weighted Birkhoff Averages

In this section we describe how we find the weighted Birkhoff average, WBA, for an orbit.

We found that this method was able to distinguish chaotic orbits from regular orbits, as

well as to compute rotation number. After finding the appropriate length of the orbit to see

this difference, as seen in 1.13, we are able to implement this method for the billiard map.

In [40] and [41], Das et al. introduced WBN as a method that can be efficiently applied to

the computation of rotation numbers and conjugacies to rigid rotations for quasi-periodic

systems. Suppose we have a probability space X with measure µ. We start with some

definitions from [21].

Definition 1.6.4. A measure µ is invariant for a map f : X → X provided µ(f−1(A)) =

µ(A). If µ is an invariant measure for f , f is also said to be a µ-measure-preserving

transformation.
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Definition 1.6.5. A map f : X → X is called ergodic with respect to invariant measure µ

provided µ(X \A) = 0 for any measurable invariant set A of f with µ(A) > 0.

With these two definitions, we can state the Birkhoff ergodic theorem as stated in [21].

Theorem 1.6.2 (Birkhoff’s Ergodic Theorem). Assume f : X → X is a measure preserving

transformation for the measure µ. Assume g : X → R is a µ-integrable function. Then

lim
T→∞

1

T

T−1∑
j=0

g ◦ f j(x)

converges µ-almost everywhere to an integrable function g∗. Also, g∗ is f invariant wherever

it is defined for µ-almost all x. Furthermore, the following statements hold.

(i) If µ(X) <∞ then ∫
X
g∗(x)dµ(x) =

∫
X
g(x)dµ(x).

(ii) If µ is an ergodic measure for f , then g∗ is a constant µ-almost everywhere.

This theorem implies that, if a µ-measure-preserving transformation is ergodic on a

finite measure space, then the time average of an orbit is equivalent almost everywhere to

its spatial average with respect to µ. In order to calculate this average, since taking this

limit is computationally impossible, we take a finite time average for large T .

For any function h : M → R, a finite-time Birkhoff average on an orbit of a map f

beginning at point z ∈M is given by

BT (h)(z) =
1

T

T−1∑
k=0

h ◦ fk(z). (1.33)

If f is measure-preserving, letting T go to infinity, Theorem 2.1 guarantees this average

converges almost everywhere. The problem with numerical implementation of equation
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1.33 is that convergence is slow. More specifically, convergence for the Birkhoff average

is of order O
(
1
T

)
for the quasi-periodic case where T is the length of the orbit [40]. The

weighted Birkhoff average was introduced in [40] in order to speed up convergence. We will

now explain the method of weighted Birkhoff averages.

We call a function g : R→ [0,∞) a C∞ weighting function if g is infinitely differentiable,

g > 0 on [0, 1], and g = 0 elsewhere. We can now define a weighted Birkhoff average

WBT (h(z)) =
T−1∑
t=0

wt,Th ◦ f t(z) (1.34)

where

wt,T =
1

S
g

(
t

T

)
, S =

t−1∑
t=0

g

(
t

T

)
.

Our particular choice of C∞ weighting function g is the exponential bump function

g(t) = e[−t(1−t)]
−1
,

for t ∈ (0, 1) and 0 everywhere else. The function g is chosen to be a function that is

infinitely smooth at 0 and 1 to minimize the error caused by the ends of the orbit [42].

This method results in significant speed up of convergence for non-chaotic orbits but not

chaotic orbits since the average does not converge for these orbits in the same amount of

time. For chaotic orbits, the convergence can be arbitrarily slow, but is generally expected

to be O
(

1√
T

)
, due to the central limit theorem. Das and Yorke show in [41, 43] that if

f and h are infinitely differentiable, then on non-chaotic orbits that meet the diophantine

condition, the method has super polynomial convergence. See Theorem 1.6.2.

The method we use to determine chaos from regularity is as follows. For two segments

of an orbit

{1, ..., T} and {T + 1, ..., 2T},
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we compute the weighted Birkhoff average for each and then compute the number of con-

sistent digits beyond the decimal point in our two approximations,

digT = − log10
∣∣WBT (h)(z)−WBT (h)(fT (z))

∣∣ . (1.35)

If digT is large, then convergence is fast, meaning the orbit is non-chaotic. If digT is small

then convergence is slow indicating the orbit is chaotic. Therefore, the difference between

these two weighted Birkhoff averages will have a large difference. If the orbit is quasi-

periodic then the two weighted Birkhoff averages will be close, as stated in the following

theorem.

Theorem 1.6.3. Let f be a C∞ map and let {f t(z)} be a quasi-periodic orbit with a

Diophantine rotation number, and let h be a C∞ function, then there exist constants cn

such that for all n ∈ N,

∣∣∣∣WBT (h)(z)− lim
N→∞

BN (h)(z)

∣∣∣∣ < cnT
−n.

This method has previously been used as follows. In [44], Das et al. applied the method

of weighted Birkhoff averages to compute rotation rates of quasi-periodic trajectories and

applied the method to the planar three body problem with one mass being infinitesimal

compared to the other two. These methods were extended to distinguish orbits that lie on

rotational two-tori in [45]. Meiss and Sander applied weighted Birkhoff averages to a three

dimensional analogue to Chirikov’s standard map which will be defined in the next section.

In [46], Duignan and Meiss extend these results to ergodic flows and applied the method

to the two wave Hamiltonian system, a quasi-periodically forced, dissipative system that

has a strange attractor with no positive Lyapunov exponents and a model for magnetic line

flow. In [47], Blessing and James used the method of WBA to initialize the parametrization

for invariant tori. They are able to do this by using the weighted Birkhoff average to

determine the rotation number and conjugacy equation of the quasiperiodic system. In the
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Figure 1.9: Phase space for the Chirikov standard map defined by equation 1.36 with
k = 0.9 colored by the digT value for each orbit (right) and colored by the rotation number
for regular orbits while black corresponds to chaotic orbits (left). These pictures were
created by taking 1000 initial conditions each having an orbit length of 2000.

next section, we use the WBA to study chaos and quasi-periodicity for different billiard

systems.

Results

We use the Chirikov standard map as a test case since, like the billiards map, it is a

symplectic map with both chaotic and regular orbits. The Chirikov standard map is defined

as follows:

x̂ = x+ ŷ mod 1

ŷ = y − k

2π
sin (2πx).

(1.36)

Figure 1.9 shows the phase space for the standard map with k = 0.9 and the color of each

orbit represents the associated digT value from equation (1.35) for the orbit. Meiss and

Sander in [42] found that a cut-off value of digT = 5.5 was sufficient for distinguishing an

orbit as chaotic. We average the difference of the successive x coordinates for equation

(1.36) by taking the difference xk+1 − xk.
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Figure 1.10: The phase space for the ellipse with a1 = 2 and b1 = 1 colored by rotation
number (left) and digT value (right). The picture was created by taking 600 initial r values
starting from 2 θ values, θ = 0.25, 0.5. Unlike previous pictures, the white here are gaps in
the initial conditions.

As another test case, we use the ellipse. We have already shown in figure 1.5 and again

in figure 1.10, the phase space for the ellipse colored by rotation number. One can see that

the rotation number is close to 1 on the upper and lower bounds of r indicating the ball

is bouncing a very small amount each iteration. The digT value for this map as seen in

figure 1.10 is the max value of digT , confirming that we have only non-chaotic orbits in

the ellipse. We note that the equation for the rotation number for the rotational tori using

definition 1.6.3 can be written as a Birkhoff average. Using θ from definition 1.2.3, we take

h(θi) = f(θi)− θi and use this as our function h in equation (1.34). h therefore calculates

the average amount of the circle traversed with each bounce. Das and Meiss used the same

approach in [43].

Finally, we applied the WBA method to the case of the perturbed ellipse. Figure

1.11 shows the phase space for the billiard map on the perturbed ellipse where each orbit

is colored by the digT value calculated for the orbit. We use equation (1.10) and take

a1 = 1.1, a2 = 0.03ε, b1 = 1, and b2 = 0.025ε where ε is varied between 0.1 and 1. Now

when we perturb the ellipse we introduce a chaotic region, therefore a bimodal distribution

arises separating those orbits that are chaotic from those that are non-chaotic. Figure 1.12

is a histogram of the digT values calculated for 1200 orbits each with length 2000 and length
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104. We can see that there is a bimodal distribution in this histogram with the separation

occurring between 4 and 5 for orbit length 2000 but this separation becomes more clear

when the orbit length is 104. Calculating the WBA for orbits in multiple different perturbed

ellipses, we found we found that a cut off value of digT = 4.875 was a sufficient value for

distinguishing chaotic orbits from non-chaotic orbits when the orbit length is 2000. This

cut off mostly agrees with larger orbit lengths as well. Treating the digT values calculated

with orbit length 104 as truth, out of the 1200 orbits used to make the histograms, we found

that there were 135 falsely labelled as chaotic and 160 falsely labelled as non-chaotic when

the orbit length was T = 2000. It is worth noting that Newton’s method for our method

was set to have a tolerance of 10−14 so any values beyond that can be taken to be as having

only 14 digits of accuracy.
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Figure 1.12: A histogram displaying the bimodal distribution obtained from calculating
the dig values for 1200 orbits each with length 2000 (right) and length 10000 (left) in the
perturbed ellipse.

Figure 1.11: Phase Space for the billiard map on the perturbed ellipse given by equation
(1.10) with coefficients a1 = 1.1, a2 = 0.03ε, b1 = 1, and b2 = 0.025ε where ε is varied
between 0.1 and 1. The color of each orbit represents the digT value calculated for the
orbit. Each picture was created by taking 1800 initial conditions across multiple different θ
values. Each orbit has length 2000.
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Figure 1.13: 100 initial trajectories were taken all starting from θ = 0.5 for the perturbed
ellipse with coefficients a1 = 1.1, a2 = 0.03, b1 = 1, and b2 = 0.03. The plot shows the
convergence rate for the digT value of each orbit as we increase the number of points, T , in
the orbit. The orbits in red are the chaotic orbits.

Figure 1.13 displays the convergence of these digT values calculated for 50 orbits starting

from θ = 0.5. We chose this initial θ value because the line of fixed θ intersects the chaotic

sea (red part) with higher proportion. This figure is similar to Figure 2 produced by Meiss

and Sander in [42]. They too found that 104 was an optimal orbit length for distinguishing

chaotic orbits from non-chaotic orbits. In figure 1.13, we plot the length of the orbit T

verses the WBA value calculated for that orbit. The chaotic orbits are colored in red while

the regular orbits are colored blue. One can see that the chaotic orbits do not converge in

the average as quickly as the non-chaotic orbits do. We can see from this figure that an

orbit length of T = 2000 is mostly sufficient to determine whether an orbit is chaotic or

regular in the billiard map, although for more accurate results an orbit length of T = 104

should be used since this is where complete separation of chaotic and non-chaotic occurs

from the WBA perspective.

One issue that arises with our implicitly defined map is that our method always produces

a θ value that is between 0 and 1 when solving equation (1.13). Thus, when the ball

passes θ = 1 in a counter-clockwise direction, the difference between the θ values would be

negative when all previous iterates had a positive difference. Therefore, leading to issues in
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calculating the rotation number and subsequently the WBA for those orbits. For example, if

the ball travels from θ = 0.6 to θ̂ = 0.1 (counter-clockwise rotation for the orbit), we would

have a negative difference. Our solution to this issue was to find the difference between

each consecutive contact point. If the difference was negative, we add one to the later θ

value. This does not pose a problem when the balls path is in a clockwise rotation since

the 1 would average out.

1.6.2 Periodic Orbits Using Multiple Shooting Method

In this section, we discuss a method for computing periodic orbits. We wish to find peri-

odic orbits for billiards systems. We use the multiple shooting method, first proposed by

Morrison et al. in [48]. Previously, this method has been used to find periodic orbits in

maps on Rn [49]. However, we have added a way to deal with maps on the n-dimensional

torus, Tn. Given a function f , {p1, p2, ..., pN} is a periodic orbit under f if

f(pj) = pj+1 for j = 1, ..., N − 1 and f(pN ) = p1. (1.37)

One is tempted to apply Newton’s method to G(p) = fN (pk) − pk. However, this is less

numerically stable than using the following system of equations. Let

P (x1, ..., xN ) =



f(xN )− x1

f(x1)− x2
...

f(xN−1)− xN


.

Clearly, {p1, ..., pN} is a period N orbit for f if and only if P (p1, ..., pN ) = 0. Furthermore,

f and P have the same smoothness properties. Since f : Rk → Rk, and P : RNk → RNk,

Df(~x) is a k × k matrix and therefore DP (~x) is an Nk × Nk block diagonal matrix with
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Figure 1.14: Applying the multiple shooting Newton’s method to the standard map to find
the two, three, four, and five period orbits, respectively, from top left to bottom right. The
black dots represent the periodic orbit points.

the form

DP (~x) =



−I 0 · · · Df(xN )

Df(x1) −I · · · 0

...
. . .

. . .
...

0 · · · Df(xN−1) −I


where I is the k × k identity matrix.
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Figure 1.15: The phase space for the ellipse with the period 3, 5, 10, and 30 orbit denoted
with large black circles.

Results

We start by using a test case of the Chirikov standard map as given by equation 1.36 to

find the periodic orbits using the multiple shooting Newton’s method. Figure 1.14 shows

orbits of period 2, 3, 4, and 5 computed in this way.

We apply multiple shooting to the perturbed ellipse table to find several different peri-

odic orbits. Figure 1.15 shows our computed period 3, 5, 10 and 30 orbits. Note that the

period 10 orbit is contractible but the others are non-contractible.

1.7 Finding Manifolds with the Parametrization Method

In the following section, we will describe the parametrization method and how we will use

it to calculate the stable and unstable manifold for maps on Tn.
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1.7.1 Parametrization Method

The parametrization method was first introduced by Cabré et al. in [50–52] to obtain a

parametrization of the manifold that is adapted to its geometry, [53]. For an introduction

and comprehensive discussion on the parametrization method, see [53]. In [49] and [54],

this method was extended to discrete time dynamics. In [55], the parametrization method

was used for implicitly defined maps but the functions were polynomials so the Taylor

series could be found using convolutions. In this section we will give an overview of the

parametrization method and show how we will apply this method to implicitly defined

billiard maps (which are not defined by polynomials).

The parametrization method relies on two well known theorems in dynamical systems.

From Robinson in [21], the Hartman-Grobman theorem for maps is as follows.

Theorem 1.7.1 (Hartman-Grobman Theorem). Let f : Rn → Rn be a Cr diffeomorphism

with a hyperbolic fixed point p. Then there exists a neighborhood U ⊂ Rn of p and V ⊂ Rn

of 0 and a homeomorphism h : V → U such that f(h(x)) = h(Ax) for all x ∈ V , where

A = Dfp.

Let Es denote the stable eigenspace which is spanned by the eigenvectors {ξsk} associated

with the eigenvalues {λsk} each with |λsk| < 1. Let Eu denote the unstable eigenspace which

is spanned by the eigenvectors {ξuk} associated with the eigenvalues {λuk} each with |λuk | > 1.

We can define the local stable manifold for some neighborhood U ′ ⊂ U of p as

W s
loc(p, U

′) = {x ∈ U ′ : fn(x) ∈ U ′, ∀n ≥ 0}

and the global stable manifold as

W s(p) =
⋃
j≥0

f−j (W s
loc(p)) = {x ∈ RN : fn(x)→ p as n→∞}.
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The local unstable manifold for p in U ′ is defined as:

W u
loc(p, U

′) = {x ∈ U ′ : d(f−n(x), p)→ 0}

and the global unstable manifold as

W u(p) =
⋃
j≥0

f j (W u
loc(p)) = {x ∈ RN : f−n(x)→ p as n→∞}.

Theorem 1.7.1 tells us that all orbits near the fixed point behave similarly to a linear

map but the next theorem will give us more about these orbits behaviour near the fixed

point. From Robinson in [21], the stable manifold for maps is stated as follows. Note that

Cω is the space of real analytic functions.

Theorem 1.7.2 (Stable Manifold Theorem). Let p be a hyperbolic fixed point for a Ck (Cω)

map f : U ⊂ E → E with k ≥ 1. Then, there is some neighborhood of p, U ′ ⊂ U such that

W s(p, U ′, f) and W u(p, U ′, f) are each Ck (Cω) embedded disks which are tangent to Es

and Eu, respectively.

Suppose f is a map with a hyperbolic equilibrium point p̂. Assume that Df(p̂) has

eigenvalues such that none have modulus equal to 1, or |λ| = 1. Denote ks = dimW s and

ku = dimW u where W s,W u are the stable and unstable manifold, respectively. Assume

also that Df(p̂) is diagonalizable, which implies we have a linearly independent set of

eigenvectors and the number of eigenvectors equals the number of linearly independent

eigenvalues. Denote the stable eigenvalues and corresponding eigenvectors by:

 λs1, ..., λ
s
ks

ξs1, ..., ξ
s
ks



55



and the unstable eigenvalues and eigenvectors by:

 λu1 , ..., λ
u
ku

ξu1 , ..., ξ
u
ku


where |λs1| < · · · |λsks | and |ξs1| < ... < |ξsks |. This also assumes the same ordering for the

unstable eigenvalues as well. For this work, we will assume that our eigenvalues satisfy a

non resonant condition meaning, no stable eigenvalue is a product of powers of the other

stable eigenvalues.

Let p̂ = (p0, p1, ..., pN−1) with pi ∈ R2 denote a N periodic orbit under the map f

such that fN (p̂) = p̂. To find this periodic orbit, we employ the multiple shooting method

outlined in section 1.6.2. We construct F : R2k → R2k such that

F (p1, ..., pN−1) =



f(pN )− p1

f(p1)− p2
...

f(pN−1)− pN


.

By proposition 3.1 in [49], λ is an eigenvalue of DF (p) if and only if n
√
λ is an eigenvalue

of DfN . After ordering the eigenvalues as above, we take the first eigenvalue of DF and

perform the following.

We wish to find a smooth function P : R2k → R2k where k is either ks or ku that satisfies

P (0) = p̂ and
∂

∂θj
P (θ) = ξj
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for all 1 ≤ j ≤ N . We also wish for P to satisfy the conjugacy equation

f(P (θ)) = P (λθ) (1.38)

We know P exists by the stable manifold theorem and since P is smooth we can choose to

write P in many different ways. We choose to find the Taylor series for P . As done in [49]

and [54] we reformulate equation (1.38) for both the stable and unstable manifold to solve

for P using Newton’s method. We have

Φs(θ) = P (λθ)− f(P (θ))

Φu(θ) = P (µθ)− f(P (θ))

(1.39)

where µ = 1
λ . We use µ for the unstable case so that the power series can converge since

|λu| > 1.

By theorem 1.7.1,

P (θ) = p̂+Df(p̂)θ +O(θ2)

so we know the 0th and 1st order terms for the Taylor expansion of P in equation (1.38)

which are

P (λθ) = p̂+Df(p̂)λθ +O(θ2).

Now we need to find an expression for the right hand side of equation (1.38). We do this by

finding the Fourier series for f(P (θ)) using code written by Jason Mireles James and Jan

Bouwe van den Berg. The series for each of the components of f is of the form

fi(P (θ)) =
∑

bjθ
j
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Figure 1.16: Stable (blue) and Unstable (red) manifolds calculated using the parametriza-
tion method for the 2, 3, 4, and 5 period orbits of the standard map.

for i = 1, 2. We can now write equation (1.39) as

∑
ajλ

jθj −
∑

bjθ
j = 0.

Since the discrete Fourier coefficients are the coefficients for the Taylor series on the unit

circle at the nth roots of unity, we can apply Newton’s method to the difference of the

coefficients to find aj . We then repeat for each j.

Our results are as follows. As before with the multiple shooting method, we use the

Chirikov standard map given by equation (1.36) as a test case for using the parametrization

method on mod maps.
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Figure 1.16 shows the approximation for the stable (red) and unstable (blue) mani-

folds for a period 2, 3, 4, and 5 orbit for the Chirikov standard map produced by the

parametrization method outlined in the previous section.

1.8 Future Work

We have shown that the parametrization method can be successfully applied to maps on Tn

by finding the stable and unstable manifolds in the Chirikov standard map. Our next goal

is to calculate the stable and unstable manifolds for the implicitly defined billiard map on

the perturbed ellipse. Afterwards, it would be worth looking into other implicitly defined

maps such as delay differential equations outlined in the conclusion of [55].

Another goal we have for future work is to find a solution to r = 0. Other formulations

for the implicit way we define our billiard map such as using the normal vector in the dot

product instead of the tangent vector have produced the same issues while other formula-

tions have shown promise to refine the issue down to a fewer number of cases. The next

steps would be to verify the methods are analytic and implement them into our billiard

map code.

Lastly, we need a way to make rigorously prove we have found the periodic orbit since we

can only be sure of the orbit up to machine precision. The methods with interval arithmetic

can be applied to give us a way to prove that we have accurately represented the periodic

orbit, stable, and unstable manifolds which would typically be intractable to calculate by

hand. Therefore we have set up our method in such a way that we would be able to use

computer assisted proofs.
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Chapter 2: Rate-Induced Break Up

2.1 Introduction

Recently, tipping points have been the subject of study for climate systems. There are three

categories for tipping points: bifurcation tipping, noise induced tipping, and rate induced

tipping. Most research has focused on dynamical systems containing some noise term, as in

[56, 57]. Inspired by rate induced tipping, we discuss methods to detect coherent structure

break up for deterministic equations with no attractor. Using the snapshot approach used

by [58] and developed by [59], we look at a stroboscopic mapping of the periodically forced

Duffing oscillator as the parameter is increased at a linear rate.

As an example, we will be focused on the periodically forced damped oscillator:

ẍ = x− x3 + p(t) cosωt. (2.1)

where p(t) is a ramp function. In section 2.2, p(t) will be constant. In section 2.3, p(t)

will be a linear ramp function but in section 2.4.2, we change p(t) to a Heaviside function

that linearly increases until a final value is reached, then remains constant. We perform a

stroboscopic mapping by taking t = 2πk
ω where k ∈ N. When p(t) = 0, then every orbit

is periodic. As p(t) grows, more of these quasiperiodic orbits are destroyed and the area

of chaos grows. In [58], a snapshot method is used to track the orbits proximity to the

stable manifold of the snapshot hyperbolic point belonging to the time instant nc, the time

instant which signifies the iteration when the orbit starts to break up. Once an orbit has

come sufficiently close to the stable manifold of the snapshot hyperbolic point, the snapshot

tori become chaotic. See section 2.4.1 for a discussion on snapshot hyperbolic points. The

conventional method for distinguishing chaos is by using Lyapunov exponents. A very
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useful method for detecting chaos has been the weighted Birkhoff average. In this chapter,

we use a weighted Birkhoff average to help distinguish when snapshot tori break up into

the chaotic sea and utilize these results to find criteria for rate induced break up of these

coherent structures.

2.2 Periodically Forced Duffing Oscillator

We consider the periodically forced Duffing oscillator as presented in [58]:

ẍ = x− x3 + ε cosωt (2.2)

and let ε = 0.01 and ω = 1. The system is Hamiltonian with Hamiltonian function:

H(x, y) =
p2

2
− x2

2
+
x4

4
− xε cosωt.

As in [58], we take a stroboscopic mapping and consider the instants t = 2πk
ω , where k is a

positive integer, thus we have a Poincaré section. See discussion below in 2.4.

Figure 2.1 was produced by taking ε = 0.01 and following 2000 trajectories under (2.2).

We solve the system by using ode45 in Matlab and setting a relative and absolute tolerance

of 10−10. A weighted Birkhoff average is applied to the first 1000 points in the trajectory

and then the second 1000 points of the trajectory and then each trajectory is colored by its

corresponding digT value. Instead of using the rotation number for our Birkhoff average as

we did in the last chapter, we average the projection on the x axis for each orbit generated

by the equation. We also used h(x) = cos 2πx as well but the digT values were about the

same. We found that orbits with digT values less than 3 are chaotic and those with digT > 3

are non-chaotic.
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Figure 2.1: Periodically forced Duffing oscillator with ε = 0.01. We set v̇(0) = 0, x(0) = 0
to each of the 2000 points evenly spaced in [−2, 2] and then follow each trajectory 2000
iterations. The color of each point represents the orbit’s corresponding digT value.

2.3 Periodically Forced Duffing Oscillator with Parameter

Drift

The next step was to apply the method to the forced Duffing oscillator with parameter

drift. The system now being:

ẍ = x− x3 + p(t) cosωt (2.3)

where p(t) is a ramp function. For this section we set p(t) = ε0 +αt. with ε0 = 0.01, ω = 1,

and α = 0.001.

We take a stroboscopic mapping by considering the time instances t = 2πk
ω , where k ∈ Z.

A stroboscopic map is a map that sets the value of the time variable at equal intervals. If p

is periodic with period 2π
ω then this would be a Poincaré section. The undrifted case would
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be an example of this. In the drifted case, we do not have a Poincaré section due to the

parameter drift.

In [58], Jánosi and Tél used a stroboscopic mapping for the drifted Duffing oscillator.

They used a similar approach to the snapshot attractors established by Romeiras et al.

in [59] by looking at snapshot tori. Taking a KAM torus from the undrifted case, they

evolve it under equation (2.3) for the flow. Jánosi and Tél declared an orbit to be chaotic

when a point of the orbit intersects with the snapshot hyperbolic point’s stable manifold

which was accomplished by examining the average distance of point pairs on the ensemble of

an initial torus. Once this distance grows exponentially, the subensemble begins exhibiting

chaotic characteristics. A snapshot hyperbolic point being the equilibrium point with locally

hyperbolic dynamics at each Poincaré section. We were able to replicate figure 4 in [58] by

applying the method of weighted Birkhoff averages. This allowed us to find the break up

of each torus without having to calculate Lyapunov exponents. After taking 100 points of

x in [−2, 2], we iterate under the equation (2.2) 2000 times. Then we take those points and

iterate them under equation (2.3) to see how the parameter drift affects each torus. We

started by applying the method of weighted Birkhoff averages to 5 orbits evenly distributed

between x = 0.18 and x = 0.2 and letting v̇(0) = 0. We iterated these 5 initial conditions

for N = 2000 under equation (2.2) then used those points as initial conditions for equation

(2.3) with α = 0.001. Figure 2.2 depicts the tori snapshots for n = 2, 4, 6, and 8 with color

representing the orbits corresponding digT value.

Figure 2.3 depicts the snapshots n = 2, 4, 6, and 8 for the larger phase space. We can

see that as ε grows, the chaotic sea surrounding the two lobes grows as well. After n = 40,

we see that the chaotic sea completely absorbs the left lobe of periodic orbits. Leaving

only a U-shaped structure grouping of tori on the right hand side. Figure 2.4 depicts the

histogram of digT values for 100 orbits taken between x = −2 and x = 2. We have picked a

digT value of 3 as our cut off value since this is where the separation occurs for the bimodal

distribution in the histograms. If an orbit has a digT value of less than 3, than it is chaotic.

If the digT value is greater then 3, we label the orbit as quasi-periodic.
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Figure 2.2: Evolution of tori captured at instants of n = 2, 4, 6, 8 for 5 initial conditions
between x(0) = 0.18 and 0.2 with v(0) = 0 and α = 0.001.

2.4 Rate Induced Tipping

One question that naturally arises from the previous section, is how does the value of α

change the system. In other words, if one were to increase the rate of the ramp function,

how would the system behave. This brings us to the topic of rate induced tipping.

2.4.1 Background on Rate Induced Tipping

Rate induced tipping has been a growing field in dynamics. Focus has been placed on

dynamical systems with noise such as climate models. [60], sought to suggest appropriate

definitions for rate induced tipping for asymptotically constant parameter shifts in terms

of pullback attractors for non-autonomous systems. Suppose we have the non-autonomous
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Figure 2.3: Drifted Duffing oscillator. Setting v(0) = 0 and taking 100 points between
[−2, 2] as x(0). We set α = 0.001 and ε0 = 0.01. Snapshot tori for n = 5, 10, 15, 20 (left to

right; top to bottom). A tolerance of 10−8 was used.

system

dx

dt
= f(x, p(rt)) (2.4)

where x ∈ Rn, and p(t) is a time varying input. As in [60], we refer to the case that p is

constant as the parametrized system with parameter p, and to its stable solution as the

quasi-static attractor. Let

P(p−, p+) =

{
p(t) : p− < p(t) < p+, lim

t→±∞
p(t) = p±, and lim

t→±∞

dp

dt
= 0

}

and

X = {(x, p) : f(x, p) = 0 and p− ≤ p ≤ p+} .
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Figure 2.4: Histograms for the snapshot drifted Duffing oscillator at n = 5, 10, 15, 20.
These are the corresponding histograms for the snapshot tori depicted in figure 2.3.

Therefore, we define the subset of X that is linearly stable as,

Xstab = {(x, p) : max {<(σ(df(x, p))))} < 0}

where σ denotes the spectrum and < denotes the real part of a value.

We will need a few preliminary definitions from [60] in order to formulate a criterion for

rate-induced tipping. We first need to define some structure for our parameter drift.

Definition 2.4.1. Given a parameter shift p(t) ∈ P (p−, p+), we say a continuous curve

(X(t), p(t)) that limits to some (X±, p±) as t → ±∞ and whose image lies within X is a

path. We say it is a stable path if its image lies within Xstab.
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Definition 2.4.2. Consider a stable path (X(t), p(t)) from (X−, p−) to (X+, p+). We say

a solution x(t) end-point tracks this path if it satisfies:

lim
t→±∞

x(t) = X±.

Definition 2.4.3. Given a parameter shift p(t) ∈ P(p−, p+), we say points (X−, p−) and

(X+, p+) on Xstab are p − connected if they are the limiting points for some stable path

(X(t), p(t)).

Now that we have some proper definitions for our parameter drift, we can define rate-

induced tipping as follows:

Definition 2.4.4. Suppose that (X−, p−) ∈ Xstab and fix p(t) ∈ P(p−, p+). We say there

is irreversible rate induced tipping from X− on p if there is a r0 > 0 and a X+ that is

p-connected to X− such that the system end-point tracks a stable path from X− to X+ for

0 < r < r0 but not for r = r0.

Ashwin et al. in [61], use similar definitions to define rate-induced tipping for linear

systems. In [60], Ashwin et al. extend these methods to nonlinear systems by tracking

trajectories under 2.4 with respect to a pullback attractor. They applied these definitions

to model the evolution of global mean surface temperature. In [57], Ritchie and Sieber

studied a prototypical model for rate-induced tipping, the saddle-node normal form subject

to time-varying equilibrium drift and noise. They specifically were looking at how a system

that is close to a rate-induced tipping event behaves under the influence of additive noise.

In [62], Drótos et al study rate induced tipping on the Lorenz’s atmospheric circulation

model for midlatitudes on one hemisphere. They study this phenomenon by using snapshot

attractors by evolving an ensemble of trajectories under the system until some final time.

In [63], they prove that the occurrence of a rate-induced tipping coincides with the loss of

uniform asymptotic stability by one of the locally pullback attracting solutions limiting at

the stable equilibria of the past limit-problem. Ashwin et al. in [61], defined a tipping point
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as a sudden, large, and irreversible change in output of a complex system in response to a

small change in input. They go on to define rate induced tipping to be when the system

fails to track a continuously changing quasi-static attractor. This definition does not include

equation (2.3) since we do not have an attractor. Thus, we cannot apply the methods used

in [61], [60]. Therefore, for the case of the Duffing oscillator, we refer to the break up of

coherent structures under different parameter drift rates as rate induced break up.

2.4.2 Rate of Alpha

We want to study whether rate induced tipping occurs with (2.3). Since equation (2.3) does

not have an attractor, the previous discussion does not apply to this case. Inspired by rate

induced tipping, we define rate induced break up as the break up of coherent structures due

to a change of the rate of the parameter shift. Therefore we construct a ramping equation

for p in the following way. Let

p(t, α) =

 ε0 + αt, t <
εf−ε0
2πα

εf , t ≥ εf−ε0
2πα

(2.5)

Keeping ε0 = 0.01 constant, we vary the parameter α to see if the system changes behaviour.

For each α, we flow the points under equation (2.3) until we reach a final value p(t) = εf . As

an example, in Figure 2.6 we take 10 points in x ∈ [1.6, 1.8] with v = 0. We flow these points

under the Duffing oscillator. Then taking those coherent structures as initial conditions, we

flow those trajectories under the drifted Duffing oscillator until we reach n = 10. For each

picture in Figure 2.6 we have changed the value of α and evolved the system until we reach

εf = 0.07. For example, if α = 0.002 then εf is reached at n = 4 snapshots. Thus, we evolve

the system under the drifted Duffing oscillator until n = 4 then switch to εf for n > 4. In

Figure 2.6, one can see as the value of alpha is increased, the U-shaped structure on the

right lobe is stretched across the whole domain into a chaotic sea. As alpha increases, more

and more of the U-shaped structure is absorbed into this chaotic band.
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Figure 2.5: The picture displays the different ramps used to reach the final epsilon value.
This particular case can be seen in the third row of table 2.1.

In table 2.1, we measure the percentage of chaotic trajectories in the system when the

parameter drift reaches a specific value εf . Each column represents a different ramp α for

p increased until εf is reached. Then the system is drifted until the final n snapshot. The

final column represents instantaneous ramp used to reach each εf . It is clear the larger

the εf value is the more chaotic orbits in the system. We conclude that with every row of

the table, the faster the ramp, the more chaos is produced with the maximum being at the

instantaneous ramp.

Table 2.1: Proportion of chaos as p(t, α) starts from ε0 = 0.01 and grows to εf then evolved
until the final n value is reached. The value corresponding to the snapshot n is determined
from equation (2.5). For reference, the amount of chaotic orbits in equation (2.2) is 15%.

Final n εf α = 0.001 α = 0.002 α = 0.003 α = 0.004 α = 0.005 Instant

n = 7 εf = 0.05 0.25 0.28 0.28 0.32 0.38 0.37

n = 10 εf = 0.07 0.29 0.40 0.45 0.48 0.5 0.54

n = 13 εf = 0.09 0.41 0.50 0.57 0.57 0.62 0.66

n = 15 εf = 0.1 0.44 0.58 0.60 0.59 0.63 0.70
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Figure 2.6: The trajectory of 10 points with v(0) = 0 and x(0) ∈ [1.6, 1.8] drifted under
different values of α until εf = 0.07. From left to right and top to bottom: α = 0.001,
α = 0.002, α = 0.003, α = 0.004.

The advantage of this method is that it only requires the orbit in order to find the

break up of the tori. Previous methods relied on calculating the Lyapunov exponents or

computation of the distances between points and an orbit. The WBA only requires the

information from the orbit itself to test for when the tori break up. The WBA has been

proven to be a faster way of distinguishing chaos than Lyapunov exponents.

2.5 Future Work

Future directions for rate induced break up are to further explore whether coherent struc-

tures, in the original undrifted Duffing equation, retain their structure under different

parameter ramps. Fixing two values, ε0 and εf , we would study the effects of different

parameter ramps in terms of the invariant sets breaking up.
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The detection of Lagrangian Coherent Structures (LCS) has been the focus of many

fluid dynamics problems. The field of Lagrangian Coherent Structures (LCS) has been

used to uncover special surfaces of trajectories that organize the rest of the flow into ordered

patterns, [64]. The word Lagrangian in the LCS system conveys that the detected material

surface must be evolving with the flow, [64]. In [65], they prove an analytic result that can

be used to locate uniformly finite-time hyperbolic sets and their local stable and unstable

manifolds in two dimensional time-dependent velocity fields. Their main theorem from

this paper was applied to typical oceanic and atmospheric flows where the deformation

rate of coherent structures is slower than typical particle speeds. In [66], they extend this

two-dimensional analysis to three-dimensional velocity fields. In [64], Haller, focuses on

deconstructing observed types of material coherence and then seeks the dynamical structures

that create these forms of coherence in nonidealized flow data.

LCSs are typically categorized into two different groups: hyperbolic and elliptic LCS,

[67]. In [67], they are able to detect elliptic LCSs by integrating the difference between

two trajectories. The typical method used to detect hyperbolic Lagrangian structures is by

using finite-time Lyapunov exponents (FTLE), [65]. There are a few issues that arise when

using the FTLE approach that are outlined in [64]. In [68], Szezch et al show that one

can use finite-time rotation numbers as a faster method for finding these structures. These

methods lead me to believe that the method of weighted Birkhoff averages will be a useful

tool for detecting these coherent structures as well as predict their breakup. An avenue

of study for LCS is the comparison of WBA and FTLE systems like the two-dimensional

model of the unsteady quadruple gyre flow outlined in [69] and the ABC flow map given in

[65,67].
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