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1 Abstract

Quasiperiodicity is a dynamical behavior that particularly has large applications in Hamil-
tonian systems, one example being the Solar System, which contains quasiperiodic orbits,
that is, orbits that are almost but not periodic. Not only is it used in studying planetary
motion, but researchers at NASA have sought this behavior to be a possible fuel-efficient
path for a spacecraft to travel further distances. Implementing an algorithm based on the
work of Das, Saiki, Sander, and Yorke and of Levnajic and Mezic, we observed the dynam-
ics of the two dimensional standard map, that is, how the map’s appearance is influenced
by different values of the parameter being greater than or equal to zero in the system of
equations used in obtaining the map, and also by varying the number of initial conditions
and trajectory points, for an understanding of the behavior of quasiperiodic orbits. In
addition, we are currently extending the techniques used for obtaining and understand-
ing the standard map to study the four dimensional Froeschle map, and looking at new
parameters, which we intend to apply to other equations that have not been studied yet.

2 Introduction

In simplest terms, a quasiperiodic orbit is an orbit that is close to but is not quite periodic.
This occurs frequently in Hamiltonian systems as they are conservative systems. It is
conjectured that generically there are only three dynamical behaviors. Quasiperiodicity
is one out of those three dynamical behaviors and falls in between periodicity and chaos
in terms of complexity. It is known to be present in planetary motion. For example, the
moon has quasiperiodic behavior on a three-dimensional torus:

• 27.3 days for the Moon to orbit Earth and complete one revolution relative to the
stars

• 8.85 years for the moon’s orbit to rotate once. The orientation of the moon’s orbit
is not fixed in space, but rotates over time. This is known as orbital precession. The

1



Figure 1: Images from Das et al [2]. Left: Quasiperiodic trajectory on a torus. Right:
Poincare Return Map of the figure on the left.

longest diameter of the Moon’s orbit (known as the Moon’s major axis) makes one
complete revolution every 8.85 Earth years, as it rotates slowly in the same direction
as the Moon itself.

• 18.60 years for the lunar nodes (points at which the Moon crosses the ecliptic plane)
to complete one circle

As another example, consider the three body problem consisting of the earth, the moon,
and a satellite of negligible mass, where the system is considered in rotating coordinate at
is restricted to a plane. The motion of the satellite is quasiperiodic, mapping onto a two
dimensional torus in four dimensional space as shown by the figure on the left, where the
satellite’s location and momentum are given by generalized position vector (q1, q2) and the
generalized momentum vector (p1, p2). Everything is assumed to be in a plane.

The right image in Figure 1, which was taken with permission from Das et. al [2], is a
Poincare Return Map for a three body problem and a variety of quasiperiodic trajectories
B1, B2, C1 and C2. The black curve in the left image in Figure 1, also from Das et al.
[2], is an example of quasiperiodic trajectory and also corresponds to the quasiperiodic
trajectory B1 in the left image in Figure 1.

3 Properties of Quasiperiodicity

Definition. For the orbit of a map T to be quasiperiodic, it

1. must lie on a closed curve X (or torus in higher dimensions), such that

2. by a smooth change of coordinates (i.e, at least twice differentiable), the dynamics
of T becomes a pure rotation on the circle (respectively, torus) by a fixed irrational
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Figure 2: Orbits for rational and irrational ρ. Left: A periodic orbit for when ρ = 3
10 .

Right: a dense orbit starting at any x for f(x) when ρ =
√

10

rotation number(s) ρ, i.e.,

θi → θi + ρi (mod 1).

The rotation number is the rate of rotation as the reader will also find in Alligood
et. al [1]. Below is a more formal definition of the rotation number as stated by de
la Llave and Luque [5]:

Definition. Let f be the lift of an orientation-preserving homeomorphism of a circle.
Then, the rotation number of f is defined as

ρ(f) = π( lim
|n|→∞

fn(x0)− x0
n

)

3.1 Quasiperiodic vs Periodic

Rational ρ Implies Periodicity:
Suppose x ∈ [0, 1] and that f(x) = x + ρ(mod1). If ρ = p

q for p, q ∈ Z, that is, ρ
is a rational number, in simplified form, where q 6= 0, then every point has period q, as
indicated by the figure 3, left, where ρ = 3

10 , therefore producing an orbit of 10 points.
Irrational ρ Means Quasiperiodicity:
If we have x→ x+ρ(mod1) and that ρ is an irrational number (up to machine precision).

∀n ∈ Z, nρ is also irrational for all n. Therefore,

(f ◦ .... ◦ f)(x) = x+ nρ(mod1) 6= x

So, f(x) = x+ ρ(mod1) can never be periodic. In fact f(x) = x+ ρ(mod1) starting at any
x has a dense orbit, as evident from the figure 3, right, where ρ =

√
10.
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When we say ρ must be an irrational number in order for f(x) to be a dense orbit
starting at any x, we also want to mention that the numbers chosen for ρ must be rationally
independent to each other. More formally if c1, c2, ...., cn are in the set of rational numbers
and ρ1, ρ2, ......, ρn are in the set of real numbers, then

c1ρ1 + c2ρ2 + .......+ cnρn = 0

is the trivial solution in which every ck is zero [6].

4 Computing Rotation Numbers for the Standard Map

4.1 The Standard Taylor Chirokov Map

The Standard Map is an area preserving map on the two dimensional torus in which both
chaos and quasiperiodicity occur for a large set of parameter values, r and is represented
by the following system of two equations:

S1

(
x
y

)
=

(
x+ y

y + r sin(x+ y)

)
(mod 2π).

The graphs shown in Figure 3 were generated in MATLAB by implementing an algorithm
based on the work of Das et. al [2]; a specific value for r was chosen along with 800 initial
conditions for x and y and the number of trajectory points, N = 8000. The link to the
MATLAB code used in generating the Standard Map for different values of r can be found
in the Appendix. Let us take a look at the Standard Map for when r = 1.4 in Figure 5.
The orbits in the figure are the quasiperiodic regions and everything else around them are
the regions of chaos. What was understood is that the appearance of the Standard Map
varies in terms of the number of quasiperiodic and chaotic regions. When r = 0, one would
expect to obtain a plot of only straight lines. As the values of r are increased, the number
of quasiperiodic regions increase and the regions of chaos decrease; this is noticed after r
values of 1.2. For example, refer to the Standard Map for when r = 1. You will notice how
there are more regions of chaos for when r = 1 than for when r = 1.4.

Another feature the reader will be able to visualize for the Standard Maps in Figure 3 is
how a torus can be formed. In other words, suppose we have a square. Either the top and
lower boundaries or left and right boundaries can be aligned and glued together to form a
cylinder. Now imagine glueing the right and left boundaries of the obtained cylinder: then
we have a torus. As Alligood et. al [1] mentions, this visualization can be applied for the
Standard Maps shown in Figure 3 as well; the reader will then notice that some of these
orbits will wrap around the torus.

4.2 Results

The next step after studying the behavior of quasiperiodic orbits within the Standard Map
was to compute the rotation number. The rotation number will be equal to the average
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Figure 3: The Standard Map for 0 ≤ r ≤ 1.4. The following graphs display both chaos
and quasiperiodicity. They were obtained for N = 8000 trajectory points, and 800 initial
conditions of x and y for the listed values of the parameter r provided in the plots.
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Figure 4: Standard Map for r = 1.4, 800 initial conditions of x and y and N = 8000
trajectory points.

of the change in the values of ρ over a chosen orbit within the Standard Map. So, finding
the rotation number is a matter of selecting a specific orbit within our Standard Map for
a particular value of r, and by choosing a specific x and y coordinate. We show in Figure
5 the specific orbit that was selected from the Standard Map corresponding to r = 1.4
and how we observe the angles; let us name them θi and θi+1. We refer to the difference
in between θi and θi+1 , or in between preceding angles, as ∆i, which in turn is ρn. The
rotation number would be the average of ∆ρn over the orbit. So, we compute the average
by integrating the trajectory of the orbit and dividing by the total number of trajectory
points N . Additionally, our process for computing the rotation number included obtaining
a scatterplot for θi and ∆i, where ∆i = θi+1 − θi = ρn; the result is shown in Figure 5
along with the entire process that was used in computing the rotation number. The reader
will notice that we have a blue and a red curve in our scatterplot. The red curve is simply
the blue curve translated down by 1, as the reader will find the the MATLAB Code to
computing the rotation number, as provided in Appendix A. We plotted the two curves in
order to compare and check the accuracy of our computed rotation number. Below is the
algorithm, also based on the work of Das et. al [2] for computing the rotation number and
the result we obtained for it:

1. Set our parameter r to be fixed to r = 1.4
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Figure 5: Process for computing the rotation number. Top left: How we chose θi and θi+1.
The image of the orbit for r = 1.4. Top right: How ∆i was determined, and, therefore
ρn . Lower Left: A specific orbit for when r = 1.4, x = 3.5 and y = 0.4, and N = 500.
Lower Right: A scatterplot of ∆vs.θ. The red curve and blue curve are the same; the main
difference is that the red curve is the blue curve translated downward by 1. Both curves
represent ∆i = θi+1 − θi.
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Figure 6: Loglog plot of Error vs N for N = e17 with its line of best fit, which displays a
slope of −1 and an order of convergence of 1.

2. Set initial conditions x0 = 3.5 and y0 = 0.4 and chose N = 500 iterates, where N is
the number of trajectory points. As the reader will find later in this subsection along
with the reason why the following is done, the value for N is not kept constant; it
is varied to e17. By fixing the initial conditions and and varying N , we make better
progress in getting an approximation of the rotation number.

3. Find the change in between two values of angles, i.e, ∆i+1 = θi+1 − θi as shown in
the upper two drawings in Figure 5.

4. Plot a scatterplot of ∆ vs. θ as shown in the lower right image in Figure 5.

5. Numerically compute the rotation number when r = 1.4 which is done by taking

the average of ∆ρn over the orbit, that is ρ = 1
N

N∑
k=1

∆i, where ∆i corresponds to

∆ρn as shown in the drawings in Figure 5. For r = 1.4, ρ = 1.9290. A value of ρ = 2
or approximately near was expected, so our result is accurate.

We then proceeded to finding the difference in between preceding values of ρ and then
divided by N ; this has been referred to as the error. The goal then was to obtain a loglog
plot of Error vs. N , which enabled us in proceeding to find the line of best linear fit as
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Figure 7: The Froeschle Map for two different value of ε and η, where ε = 2η and N = 8000
as based on the work of Mezic Levnajic [4]. First row: The Froeschle Map for when ε = 0.05,
η = 0.025. The top left image is a two-dimensional slice of the Froeschle Map for x1 vs.
y1, and the top middle is for x2 vs. y2. The top right image is a three-dimensional plot of
x1 vs x2 vs y1. Second Row: The Froeschle Map for when ε = 0.08, η = 0.04. The images
in this row are again the two dimensional slices and the three-dimensional plot as in the
first row of images.

shown in Figure 6. Before obtaining our plot, we set N = e17 as it was providing the most
accurate result we needed for our Error Vs. N Plot. Another reason we aimed to find a
line of linear fit is because we were expecting an order of convergence of 1 as it fulfills the
notion of the Birhkoff average, which is known to have an error of at least the order N−1

for a length N trajectory in the case of quasiperiodic orbits; the reader may refer to Das
et. al [2] for more knowledge on the Birkhoff average.

5 Future Work

5.1 Froeschle Map

Now that we have studied the behavior of quasiperiodic orbits within the Standard Map,
our next goal is to move on to a higher-dimensional example, the Froeschle Map. This map
is a four dimensional area-preserving map. Below is the system for Froeshle Map, which
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the reader will also find in Levnajic and Mezic [4]:
ẋ1
ẏ1
ẋ2
ẏ2

 =


x1 + y1 + ε1 sin(2πx1) + η sin(2πx1 + 2πx2)
y1 + ε1 sin(2πx1) + η sin(2πx1 + 2πx2)

x2 + y2 + ε2 sin(2πx2) + η sin(2πx1 + 2πx2)
y2 + ε2 sin(2πx2) + η sin(2πx1 + 2πx2)

 (mod 1).

The images in Figure 7 were generated in MATLAB again by implementing the algorithm
based on the work of Das et. al [2] and also Levnajic and Mezic [4] and our current progress
in our study of quasiperiodic orbits within the Froeschle Map. It was similar to what was
used for the Standard Map, except this time, there were two more equations involved in
the system and two parameters. In fact, if we were to set ẋ2 and ẏ2 to 0, then we would
again obtain a system of two equations similar to that of the Froeschle Map. Therefore,
the slice for x1 vs. y1 for example looks similar to the Standard Map. The same can be
said for the x2 vs y2 slices. Here is what was noticed in the three dimensional plots. In top
right 3D plot in Figure 7, we notice that there are rectangular slices, whereas in the lower
left 3D plot, the slices are circular. The goal with the Froeschle Map is to take the three
dimensional x1 vs x2 vs y1 plots and find a specific 2 dimensional tori in them. Once that
is achieved the next step would be to find the angles within that tori, θ and ∆, as was done
in the case of the Standard Map and obtain a scatterplot of the change in angle versus
the prior angle in order to numerically compute the rotation number for the quasiperiodic
orbits within the Standard Map.

Additionally, one of our goals is to look at new parameters and apply them to equations
that have not been studied yet. Another one of future works that is currently in progress
includes taking the data obtained for the quasiperiodic orbits for various r values within
the Standard Map into the mesh software ParaView and create a 3D visualization of how
every orbit corresponds to a different rotation number, which will be evident in the varying
heights of the orbits.
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6 Appendix: List of MATLAB Files

1. Standard Map: stmapfinal.m

2. Froeschle Map: froeshlemapfinal.m

3. Computing Rotation Numbers: rotationnumbercomputation.m
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