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Abstract

DYNAMICS OF HARVESTED RESOURCES, WITH EMPHASIS ON COMMERCIALLY
EXPLOITED FISHERIES

Michael Crone, PhD

George Mason University, 2015

Dissertation Director: Dr. Evelyn Sander

Modeling the dynamics of commercial fisheries is an active field at the crossroads of

mathematics, ecology, and economics. Population levels are one of the most basic statistics

used for all conservation. In all natural resource management, predictions for future popula-

tions are required to predict the impacts of management strategies. Collapses of commercial

fish stocks have been reported in many regions [10, 21, 36]. Accurate understanding of both

ecological and behavioral responses to commercial exploitation in fisheries is an important

tool to combat population collapse. In this dissertation, we study two population models

with applications in commercial fisheries. First, we study the ratio-dependent predator-prey

model with constant harvests, a continuous model that has been proposed, but for which

previous analysis has not been conducted. We explore the dynamics of the model in general,

and then conduct a search for limit cycles that persist when the predator harvest changes.

We find that stable, persistent limit cycles are not very common, especially when there is

also a harvest of the prey species. We apply the model to the oyster and black drum system

in Louisiana and find that a variety of parameters show a near-best fit, a track of increasing

oyster populations to a level some 20-50% higher than its 23-year average. Next, we study

a new discrete model that we created. This model seeks to predict harvest changes in a



tractable way, and we provide stability analysis of the model. We expand the model to

incorporate several agents and apply the model from several initial conditions where over-

fishing is occurring. We then propose a simple management rule that, in our simulations,

improves performance of the model.



Chapter 1: Introduction

In this thesis, we study two population models with applications in commercial fisheries.

In this introductory chapter, we provide a background of population modeling in fisheries

and ecology, with specific emphasis on where the models in this thesis draw on and fit into

previous work.

In Chapter 2, we discuss a model with predator-prey interaction. A very early predator-

prey model was created by Lotka and Volterra independently in the early 20th century

[43, 49]:

ẋ = ax− bxy

ẏ = cxy − dx.

In this model, a, b, c and d are positive constants, x represents the prey species, and

y the predator species. The prey grow exponentially in the absence of predators, and

the predators decay exponentially in the absence of prey. The term xy models interaction

between predator and prey. Most now believe that xy is not a realistic formula for predator-

prey interaction, and we are not aware of any current research uses of the entire model.

However, exponential decay for the predators is still in use today and we retain it in our

study.

Lotka and Volterra inspired a general class of models:

ẋ = g(x)− yf(x, y)

ẏ = −h(y) + cyf(x, y),

where c is a positive constant, g(x) describes the growth or decay of the prey species in

1



the absence of predators, −h(y) represents the growth of the predators in the absence of

prey (with the minus sign in front because there is generally assumed to be decay in the

absence of prey), and yf(x, y) represents the interaction of predators and prey. The notation

represents the fact that in most early models and, in fact, most models currently employed

today, f(x, y) is a function of x alone in this form, a condition known as prey dependence.

The term f(x, y) is known in the field as the functional response of predators to prey. As we

will discuss below, the model we analyze in Chapter 2 is ratio dependent, rather than prey

dependent. However, due to the prevalent use of prey dependence, we will discuss some of

the various prey dependent models and their inspiration.

The functional response f(x, y) is the predation rate per predator. In the Lotka-Volterra

model, the predation rate per predator is bx, that is, each individual predator eats a con-

sistent proportion of the prey population, no matter how large the prey population gets.

Early adaptations to the Lotka-Volterra model involved supposing that predators become

saturated (“full” in lay terminology), and the predation rate per predator as a proportion

of prey declines as x gets large.

Predator saturation is an important phenomenon in ecology and affects the behavior

of many species. It is well known that salmon and other migratory prey species travel in

large groups to saturate their predators and help ensure that at least some of the prey

survive the migration. With that in mind, it is not surprising that the original Lotka-

Volterra model without saturation is not in current use. Several models were proposed with

predator saturation in mind, most notably a model proposed in 1934 by Gause [30] and

two models proposed in 1959 by Holling [37, 38], which came to be known as Holling I and

Holling II.

Another class of models was later proposed by Holling in 1965, which include an as-

sumption that, at some prey density levels, prey may become easier to catch in higher

densities [39]. This could be the case if prey are otherwise stressed and vulnerable in high

densities, or if predators have less distance to travel between each prey individual or learn

how to catch prey with practice. This class of models have come to be known as Holling
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III models, and some popular formulas for this situation are the ones proposed by Real in

1977 [51] and Hassell in 1978 [34].

Later work has focused on incorporating these mostly prey dependent models have been

incorporated into complex computer models, such as Ecopath [25], created by the National

Oceanic and Atmospheric Administration in 1992 and maintained currently by the Ecopath

Research and Development Consortium, and Atlantis [29], created in 2004, a fisheries man-

agement tool developed by Fulton at the Commonwealth Scientific and Industrial Research

Organisation in Australia. Both these models incorporate a multi-species food web as well

as a variety of other factors including spatial features, nutrient level, age structure and

migration. These models have the advantage of these incorporations when the underlying

parameters are known and are a useful tool for managers in those situations. However, such

models are also information intensive, in that each relationship requires one or more param-

eter estimates. We focus in this dissertation on a simpler abstraction: the predator-prey

relationship only.

The model that we consider in this thesis is based on a model that is dependent on

both prey and predator. Consider again the salmon run. Salmon run in a high density so

that their predators become saturated, but predation rate per predator does not respond

to the density of predators in a prey-dependent model. It seems reasonable to assume that

predators would start to be crowded out from the resource, and the functional response

should decline as the predator density increases. With this in mind, Arditi and Ginsberg

[4] proposed a model in 1989 where the functional response was dependent on the ratio x/y

of prey to predators, which has come to be known as the ratio-dependent predator-prey

model. A rather comprehensive analysis of the ratio-dependent predator-prey model was

conducted by Xiao and Ruan in 2001 [57]. We discuss the analysis in more detail in Chapter

2.

We are interested in modeling marine species that are commercially harvested. In 2005,

Xiao and Jennings [55] analyzed an adaptation of the ratio-dependent model with a prey

harvest, and, in 2006, Xiao et al [56] analyzed the ratio-dependent predator-prey model

3



with a commercial harvest on the predator species. The model we will study in Chapter 2

is a model with a harvest on both the predator and the prey species. To our knowledge, no

such analysis is present in the literature.

Since we are also modeling fishing, we now turn our attention to other models of com-

mercially fished species. Traditionally, fisheries models have been single species models

assuming logistic growth (ẋ = rx(1−x/M)) for the targeted species. In this model, growth

is maximized at rM/4 when x = M/2 and a classic management theory known as Maxi-

mum Sustained Yield, is to attempt to stabilize the population at M/2 and harvest at the

growth rate of rM/4, as this will maximize the total harvest of the population. This model

is described in detail in [15]

There are a few objections to this model for deciding on a harvest. One is that the

equilibrium created by this model is semi-stable, as pointed out by [15], the practical con-

sequence being that if, due to random fluctuation or some exogenous event, x falls below

M/2, the population will not return to equilibrium, but will continue to decline to extinction

unless the harvest is reduced.

It is also argued that maximizing the harvest is not necessarily the most ecologically

optimal regime. As early as 1973, Clark [15] suggested that economically optimal fishing

may not imply conservation. When the discount rate (i.e., interest rate or return on invest-

ment) in the greater economy is high enough, the most economically beneficial behavior

could in theory be to catch all the fish possible, up to extinction, and invest the profits in

the larger economy. However, it is also true that it becomes more expensive to catch fish

as their population decreases.

In 2010, Grafton et al. [31] analyzed the economics with both a discount rate and a

higher catch per unit effort for higher stock biomass for four disparate fisheries and found

that maximizing profits lead to a higher population than maximizing harvest for discount

rates up to 10% for the slow-growing orange roughy and discount rates up to 25% for the

other species considered. This set off a debate between Clark et al. [16, 17] and Grafton et

al. [32]. In the end, Clark et al. [17] conclude that plausible changes in price, technology,

4



and/or fishing effort costs could result in extinction being economically optimal even using

Grafton et al.’s model.

In Chapter 3, we study a discrete single-species model. In the absence of harvest, we

model population growth by logistic growth and once again adapt the model by bringing in

a commercial harvest. However, in this chapter we do not consider a constant harvest, the

emphasis in Chapter 3 is on modeling a harvest that changes over time. In particular, we

model the harvest as responding to changes in the harvested population in a simple way.

In many sections of Chapter 3, we also consider heterogeneous agents and model them in

a similar manner, but with different parameters, and observe the effect of changes in the

agents.

We seek to continue work on the alignment of behavior of the individual in a way that

does not impose costs on others: in economic terms, we propose to incentivize fishers to

avoid negative externalities. Probably the most prominent method in fisheries of aligning

these incentives is through individual transferable quotas (ITQs), which we summarize in

the next few paragraphs.

A common model in economics for human behavior is that people act in their rational

self-interest. Under this model, unregulated fisheries do not typically fare well. An un-

regulated, open-access fishery is a classic example of what is known as the tragedy of the

commons. Fishers have a perverse incentive to over-exploit in the present at the expense of

future resource availability because future catches are a common good, shared by all fishers,

whereas current catches are a private good which the fisher does not share with others.

To counteract the tragedy of the commons, fishery managers set a total allowable catch

(TAC) and fishers raced to catch fish until the TAC is reached, at which point fishing

was stopped for the season. This set up a so-called derby season, where fishers raced to

catch the most fish in the shortest amount of time, which has been linked to a fishing fleet

which is larger than is economically ideal and has negative consequences for safety and the

environment [13]. For example, under fishing derby management in Aitutakus in the Cook

Islands, fishers damaged the reef by overloading their boats [1].
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ITQs give individual fishers a right to a specified percent of the TAC each season,

eliminating the various pressures of the race to fish. In the Alaskan Pacific halibut fishery,

the ITQ system lengthened the fishing season from three 24-hour periods to 8 months.

Mortality due to ghost fishing, the capture of fish in discarded fishing equipment, was

immediately reduced by 80% [33].

Also, TAC is determined under uncertainty and in a manner subject to political pressure.

If fishers are incentivized to overexploit, they can pressure managers to set TAC too high.

ITQs can be bought and sold among fishers and, in some implementations, to non-fishers.

The price of the quotas reflects the long-term value of the fishery, which gives them an

incentive to preserve the resource for future years, so ITQs address the tragedy of the

commons.

Importantly, ITQs do not solve the tragedy of the commons. Even under ITQs, an indi-

vidual fisher who damages the fishery shares the cost with all quota holders. However, ITQs

do address the tragedy of the commons, in that they provide some cost to the individual

fisher, which is lacking in the absence of any stake in the future value of the fishery. Many

studies show success for ITQs. In 2008, Costello et al. [19] found that fewer ITQ-managed

fisheries were collapsed. ITQs are not perfect in preventing fishery collapse, but they tilt

the odds against collapse.

In this thesis, we move a little beyond ITQs by providing a mechanism to sell back the

quota, which reduces pressure on the population, especially if and when it declines. We run

simulations from several initial overharvesting conditions to find management rules that

could help correct this behavior, without assuming that anyone knows what the modeled

optimal harvest is. In this sense, Chapter 3 is part of a small number of papers that we

describe in the next few paragraphs that seek to decentralize decision making by simple

rule.

In 1992, Townsend [54] proposed “bankable” ITQs that allow fishers who fish less than

their entire quota in a given year to fish that quota in future years, with added interest

equal to the growth rate of the fish stock, thus setting the annual quota in the hand of the
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fishers for any given year.

In 2009, Arnason [5] even found that an ITQ system involving what he termed conser-

vation ITQs eliminates the need for a central authority to set a TAC. In his system, fishers

and conservation groups can trade quota, with quota held by conservation groups remaining

unfished.

In 2013, Bishi et al [8] modeled allowing fishers to switch between two species by their

own choice and found that it can create what they call a “self-regulating” fishery as fishers

switch to the second species when one of the species becomes harder to find. Initially, they

obtained this result for two species that do not interact, but they later found this result to

hold even when the two species are in a predator-prey relationship.

Another goal of ours in modeling harvest behavior in Chapter 3 is to help make the man-

agement of fisheries and other common pool resources more understandable and therefore

localizable. In 2003, Hilborn [35] proposed simple rules in fisheries management, in part

so that the reasons for prediction could be better understood by the modelers. Elinor Os-

trom studied successful common-pool resource management throughout her Nobel Laureate

career ending in 2012. One of her findings [46] was that respect for the rules in resource

management declines as managers become more removed from the resource extractors.
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Chapter 2: The ratio-dependent predator-prey model with

constant harvests

Consider a general predator-prey model:

ẋ = g(x)− yf(x, y) (2.1)

ẏ = −h(y) + cyf(x, y),

where x is the population of the prey species, y is the population of the predator species,

g(x) describes the growth of the prey in the absence of predators, and −h(x) describes

the decay of the predators in the absence of prey. The term yf(x, y) models predator-prey

interaction, and the function f(x, y) is known as the functional response. The unusual

choice of notation, yf(x, y), is based on the fact that several early functional responses,

when defined in this way, were entirely prey-dependent - that is f(x, y) was actually a

function of x. In 1989, Arditi and Ginzburg proposed a ratio-dependent functional response

with f(x, y) = ax/(x + cy), so named because f is a function of x/y, and the associated

predator-prey model:

ẋ = rx(1− x

M
)− axy

x+ cy
(2.2)

ẏ = y

(
−d+

bx

x+ cy

)
.

Simple calculation shows that model can be transformed to a scale-free form:
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ẋ = x(1− x)− axy

x+ y
(2.3)

ẏ = y

(
−d+

bx

x+ y

)
,

where a,d, and b are positive constants.

Some empirical support has been found for this model as described in [2]. As we discuss

in the next section, a rather extensive analysis of (2.3) was conducted in [57]. We study an

extension of (2.3):

ẋ = x(1− x)− axy

x+ y
− h (2.4)

ẏ = y

(
−d+

bx

x+ y

)
− k,

where the nonnegative constants h and k represent a constant harvest by human resource

managers of each species. Because of the biological application and consistent with [57, 55,

56], we are only interested in solutions where x, y ≥ 0, forming a region we will call P . We

present these models in their scale-free form for analysis.

Analysis of (2.4) was proposed in [55]. However, this paper did not contain this analysis.

To our knowledge, analysis of (2.4) is not present in the literature.

As we will discuss below, previous articles have demonstrated the existence of limit cycles

for (2.3) and similar models. In theory, the existence of these limit cycles has consequences

for resource managers, in that population changes might be neither the result of over- or

under-fishing. The purpose of our study in this chapter is to explore the relevance of these

limit cycles in practice.

The rest of this chapter is as follows: in Section 2.1, we discuss the analysis of some

specific cases of our model in previous work. In Section 2.2, we give some analytical results
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of our model, (2.4). In Section 2.3, we compare some of the properties of (2.4) with

positive harvests to results from the special cases in the papers from Section 2.1. In Section

2.4, we present some basic numerical indications for (2.4). In Section 2.5, we describe

the creation and results from a numerical limit cycle continuation procedure for (2.4) we

created and implemented in MATLAB, beginning with some further analysis in support

of that procedure. In Section 2.6, we demonstrate an analytical result that a predator

harvest can prevent predator extinction under (2.4) for some parameter values and initial

conditions. Finally, in Section 2.7, we apply (2.4) to the oyster and black drum populations

in the public oyster areas of Louisiana.

2.1 Background

In [57], Xiao and Ruan analyzed the dynamics of (2.3) and determined all equilibria and

their stability for the system. I will summarize their paper here since my work is closely

related to this paper, and to [55] and [56]. Equation (2.3) is smooth in the interior of P and

was extended to a Lipschitz system in P , by defining ẋ = 0 and ẏ = 0 when (x, y) = (0, 0).

Then (2.3) has 2 or 3 equilibria, depending on the parameters: (0, 0), (1, 0), and (x∗, y∗)

where

x∗ = 1− a(b− d)

b
, y∗ =

b− d
d

x∗,

when (x∗, y∗) ∈ P . For (1,0) and (x∗, y∗), the Jacobian is analyzed to determine the stability

of the equilibria. The point (1,0) is always hyperbolic, except when b = d, for which (1, 0)

is a saddle-node point. The equilibrium (x∗, y∗) may also be nonhyperbolic. The equation

for a surface of Hopf bifurcations corresponding to some (actually, most) of the parameters

for which (x∗, y∗) is hyperbolic is also found. In this case, the Liapunov coefficient is used

to determine that the Hopf bifurcations are supercritical. Of note, since a Hopf bifurcation

surface exists, some parameter values must result in limit cycles since limit cycles always

exist near Hopf bifurcations.
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The Jacobian of (2.3) does not exist at the origin, so linear analysis is not possible for

(2.3) in its original version. Stability at the origin was analyzed using the time transfor-

mation dτ = (x + y)dt, which preserves stability in P . Under this transformation, (0, 0)

becomes a nonhyperbolic equilibrium, which was analyzed using a transformation to polar

coordinates. Global dynamics are classified for some parameter values, using the bound-

edness of (2.3) and a previous result in [41] which rules out limit cycles when (x∗, y∗) is

stable. The classification of all cases does not provide a formula distinguishing when the

limit cycles created on the Hopf bifurcation surface disappear.

Phase portraits using XPP [26], a commonly used numerical software for differential

equations, are also shown. Of note, the parameters used to plot a limit cycle (a = 2, d =

0.5, b = 0.782) give b to the thousandths position, whereas no other parameter was specified

to greater than the tenth place and no parameter at all was specified in the other seven

phase portraits to greater than the tenth place, which may suggest, as my numerical results

given below also find for many Hopf points, that only a small range of parameter values

can create a limit cycle.

In [55], a similar analysis was conducted for (2.4) with k = 0:

ẋ = x(1− x)− axy

x+ y
− h (2.5)

ẏ = y

(
−d+

bx

x+ y

)
.

Here, Xiao and Jennings subtract a constant harvest from the prey species in (2.3),

to model a prey species that has a constant human harvest in addition to its “natural”

dynamics. As before, (2.5) is Lipschitz in P under the extension ẋ = −h and ẏ = 0 when

(x, y) = (0, 0). The number of equilibria can vary from 0 to 4. Closed form formulas of

the equilibria were calculated by setting both derivatives equal to zero. These formulas are

given in [55] and not repeated here. Of note, when (2.5) has 1 or 2 equilibria, they occur on
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the x-axis. When there are 3 or 4 equilibria, 2 are on the x-axis and the remaining equilibria

are in the open first quadrant. In the case of 3 equilibria, the strictly positive equilibrium

is a cusp of codimension 2, and the coordinate transformation to demonstrate this was

given in the appendix of [55]. The case of a single equilibrium is also nonhyperbolic, and

normal form analysis is also shown in the appendix for a single equilibrium. In this case,

the equilibrium is a saddle-node bifurcation point if b 6= d, and a degenerate saddle-node of

codimension 4 if b = d and 2a − 5b 6= 0. (No result is given for the case where b = d and

2a− 5b = 0.) Sketches of phase portraits for (2.5) with 1, 2, and 3 equilibria are given.

A bifurcation analysis is also conducted in [55]. The presence of two saddle-node bifur-

cation surfaces is clear from the analysis of the number of equilibria, and the formula for

these surfaces is provided. A transformation of (2.5) to the normal form of a codimension 2

bifurcation, known as the Takens-Bogdanov bifurcation, is conducted. The transformation

is known to be nonsingular by numerical computation for some parameter values, demon-

strating the existence of a surface of Takens-Bogdanov bifurcations, as well as a surface

of Hopf bifurcations and a surface of homoclinic bifurcations, since the latter bifurcations

always exist near a Takens-Bogdanov bifurcation. As in [57], criticality (see Definition 2)

of the Hopf bifurcations was analyzed using the Liapunov exponent. Hopf bifurcations of

(2.5) may be either supercritical or subcritical, depending on the parameters. When a < b

at the saddle-node bifurcation, an orbit connecting the saddle-node bifurcation point and

the saddle point on the x-axis is expected. Because of the number of free parameters, it is

further expected that a surface exists near the saddle-node in the parameter space where a

separatrix connects the two saddles. On this surface, a heteroclinic bifurcation would be ex-

pected. Explicit equations for the bifurcation surface are only calculated for the saddle-node

bifurcations.

Finally, [56] conducts an analysis of the system with predator harvesting, i.e. (2.4) with

h = 0:

ẋ = x(1− x)− axy

x+ y
(2.6)
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ẏ = y

(
−d+

bx

x+ y

)
− k.

Again, (2.6) is Lipschitz with the proper extension, in this case ẋ = 0 and ẏ = −k when

(x, y) = (0, 0). No equilibria exist on the axes. The number of equilibria was determined

for all possible parameter values, and can be 0,1, or 2. In this case, setting both derivatives

equal to zero and solving requires solving a cubic equation in a single variable. The number

of equilibria in P was determined for all possible parameter values based on intermediate

value theorem arguments. A closed form formula for the equilibrium was only found in the

case where only a single equilibrium existed. In this case, the equilibrium is nonhyperbolic.

Transformation to a normal form was conducted. When the trace of the Jacobian is zero (an

explicit formula for this condition is provided in [56]), the equilibrium is a cusp. Otherwise,

the equilibrium is saddle-node bifurcation point. In the case of 2 equilibria, the sign of the

determinant of the Jacobian shows that one equilibrium is a node and the other is a saddle.

The stability of the node was not determined. Limit cycles are not possible in the case of a

single equilibrium, since it not possible for such a cycle to contain equilibria whose indices

sum to 1. Thus, limit cycles are only possible in the case of two equilibria. Bifurcation

analysis was also conducted. To simplify this analysis, attention was restricted to the case

where a = 1, and formulas discussed earlier from the single-equilibrium case are translated

to this case. The authors show by translation to normal form that when a = 1, the cusp is

a Takens-Bogdanov bifurcation point. Again, analysis using the Liapunov exponent shows

Hopf bifurcations may be either subcritical or supercritical, depending on the parameters.

2.2 Preliminary Analytical Results

2.2.1 Number and nature of equilibria

In this section we give some results on the number and nature of the equilibria of (2.4) under

the assumption h, k > 0. Results for the number and type of equilibria when either harvest
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is zero are given in the papers [57], [55], and [56], as discussed in the previous section.

We first note that there are no equilibria on the axes for (2.4) with positive harvests

since plugging in x = 0 or y = 0 we see that ẋ = −h 6= 0 on the y-axis and ẏ = −k 6= 0 on

the x-axis. With this result, the region where h, k > 0 is easily characterized, as shown in

the following simple calculation:

Lemma 1. Let a, b, d, x, y be positive numbers such that

(i) y < x(b/d− 1) and

(ii) a < (x+ y)(1− x)/y.

Then there exist unique positive values h and k such that (x, y) is an equilibrium for

(2.4) with parameter values a, b, d, h, k. Conversely, if (x, y) is an equilibrium for (2.4) with

parameter values a, b, d, h, k, then (i) and (ii) are satisfied.

Proof.

k = y(−d+ bx/(x+ y)) > 0 ⇐⇒

−d+ bx/(x+ y) > 0 ⇐⇒

−dx− dy + bx > 0 ⇐⇒

dy < x(b− d) ⇐⇒

y < x(b/d− 1).

h = x(1− x)− axy/(x+ y) > 0 ⇐⇒

axy/(x+ y) < x(1− x) ⇐⇒

ay < (x+ y)(1− x) ⇐⇒

a < (x+ y)(1− x)/y.
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Note that (i) implies d < b and (ii) implies x < 1.

We now move to the number of equilibria. Simple calculation shows that when k > 0,

the system ẋ = 0, ẏ = 0 is equivalent to:

Q(y) := bd2y4 + (−b2d+ ab2d+ bd2 − 2abd2 + ad3 + 2bdk)y3+

(b3h− 2b2dh+ bd2h− b2k + ab2k + 2bdk − 4abdk + 3ad2k + bk2)y2+ (2.7)

(−2b2hk + 2bdhk + bk2 − 2abk2 + 3adk2)y + bhk2 + ak3 = 0

x =
y(k + dy)

−k + by − dy
,

from which we can see there a unique equilibrium in P for each root of Q(y) in the interval

[0, k
b−d). Since Q(y) is a quartic polynomial, we know that there are at most four equilibria

for any choice of parameters.

We also note that Q(0) = bhk2 + ak3 > 0 and Q( k
b−d) = b3k4

(b−d)4 > 0, so, if there are no

multiple roots (which would correspond to nonhyperbolic equilibria), there must be an even

number of roots between 0 and k
b−d . We combine these results into the following Lemma.

Lemma 2. For any choice of positive parameter values a, b, d, h, k, (2.4) has at most four

equilibria. If all the equilibria are hyperbolic, then there are an even number of equilibria in

P .

In the case where all equilibria are hyperbolic, we can characterize the type of each

equilibrium. To do so, we return to the analysis of (2.4). For now, we suppose that only

a, b, d > 0 and h ≥ 0 are given. We now let k vary along with x and y in our analysis.

From the equation for ẋ, calculation shows that for any given x ≥ 0, there is at most one y

15



(independent of k) where (2.4) could be at equilibrium, specifically

Y (x) :=
−x3 + x2 − hx
x2 − (1− a)x+ h

.

We also have that any choice of x and y determines a unique k at equilibrium, specifically

k = y(−d+bx/(x+y)). These two results combine to give us a function K(x) that maps the

x of each equilibrium (x, y) in P to the value of k where (x, y) is an equilibrium. Since K is

the composition of two functions that are differentiable on their domain, K is differentiable.

In fact, in the following Lemma, we see that for hyperbolic equilibria, K ′(x) is tied to the

type of equilibrium:

Lemma 3. Let (x, y) be a hyperbolic equilibrium of (2.4). Then (x, y) is a node if K ′(x) > 0

and a saddle if K ′(x) < 0.

Proof. Let f(x, y, k) = x(1−x)− axy
x+y −h, g(x, y, k) = y

(
−d+ bx

x+y

)
−k, J be the Jacobian

of (2.4). Any branch of equilibria is given implicitly by f(x, y, k) = g(x, y, k) = 0. By

standard multivariate calculus, 1/(K ′(x)) is the first coordinate of −J−1

∂f
∂k

∂g
∂k

, which, by

simple calculation is −∂f
∂y

1
det(J) . From the trace-determinant plane, det(J) > 0 at nodes, so

the sign of K ′(x) is the same as the sign of −∂f
∂y , which is ax2

(x+y)2
, which is positive in P .

Since from the trace-determinant plane, det(J) < 0 at saddles, we similarly have K ′(x) is

negative at saddles.

From its component functions, K(x) is a rational function of x. In the following result,

we show that, on the domain appropriate to our problem, K does not have asymptotic

behavior.

Lemma 4. Restrict the domain of K(x) to those equilibria where (x, Y (x)) is in P and

K(x) ≥ 0. Then the domain of K(x) is bounded, and K is 0 on the boundary of the domain.
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Proof. We know the domain is bounded, since x is non-negative and we saw above that

x < 1. As before, there are no equilibria when x = 0 since ẋ = −h 6= 0 in that case.

Factoring out −x from Y (x), we have

Y (x) = −x x2 − x+ h

x2 − (1− a)x+ h
.

Let N(x) = x2−x+h,D(x) = x2−(1−a)x+h. For Y (x) ≥ 0, we must have N(x)/D(x) ≤ 0.

The only difference between the polynomials N(x) and D(x) is the coefficient on x. In fact,

N(x) = D(x)−ax < D(x), so N(x)/D(x) is non-positive precisely when N(x) ≤ 0 < D(x),

and the domain is contained in the region where this is true.

We now consider the sign of K on the region where Y (x) is positive. Since K(x) =

Y (x)(−d + bx/(x + Y (x))), when Y (x) > 0, the sign of K(x) is determined by the sign

of −d + bx/(x + Y (x)), which, by simple calculation is b
ax(x2 − (1 − (1 − d/b)a)x + h),

and eliminating known positive quantities again, this is determined by the sign of S(x) :=

(x2 − (1 − (1 − d/b)a)x + h), which again differs from N(x) only in its coefficient of x.

Since S(x) − D(x) = −ad
b x, we know S(x) < D(x). Specifically, S(x) is negative when

D(x) = 0, so the domain of K does not approach the points where D(x) = 0. Now

N(x) − S(x) = a(1 − d/b)x > 0, using the inequality we saw above that d/b < 1 at an

equilibrium in P , and the domain of K is the set of points where N(x) ≤ 0 ≤ S(x). Finally

K(x) = 0 when N(x) = 0, since N(x) = 0 implies Y (x) = 0. The function K(x) = 0 when

S(x) = 0 since K(x) = b
axS(x).

The previous result allows a better characterization of the equilibria when they are

hyperbolic.

Theorem 1. Let a, b, d, h, k > 0 be parameter values and {(x1, y1), (x2, y2), ...(xn, yn)} be the

equilibria for (2.4) for those parameter values, arranged in order of increasing x-values. (As

we have seen above, these x-values must be distinct.) Then if all equilibria are hyperbolic,
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(xm, ym) is a node for odd m and (xm, ym) is a saddle for even m.

Proof. Consider (x1, y1). Since (x1, y1) is an equilibrium in P , x1 is in the domain of K

and K(x1) = k > 0. The domain of K may be disconnected, but x1 is on some connected

portion of the domain, which has a lower bound ω < k where K(ω) = 0. Since K(x) does

not obtain the value k until x1, by continuity K(x) must thus be increasing when it reaches

x = x1. (We have assumed hyperbolicity, so x1 may not be an extremum of K.) Thus, by

Lemma 3, (x1, y1) is a node.

Also, since K is increasing at x1, K(x) > k for x just above x1, and so at the next

equilibrium x-value, x2, K(x) must be decreasing, and (x2, y2) must be a saddle.

In this way, we have alternating stability type on each connected component of the

domain. To see alternating stability type overall, we note that since K(x) is 0 on both

endpoints of each connected component, there must be an even number of crossings of the

value k on each component.

Note: We have shown this result in the case of positive harvest. A review of the

equilibrium results from [55] and [56] shows that this result extends to the case where one

harvest is zero. From [57], the origin is always nonhyperbolic when both harvests are zero

and this result would technically extend vacuously to that case as well.

2.2.2 Bifurcation results

In this section, we will provide some results related to the bifurcations of (2.4) as the

predator harvest, k, varies. We begin by providing an equation for the bifurcation surfaces

of (2.4). Certain common factors recur in the formulas for bifurcation surfaces. If we let:

z = ay2

v = bx2 (2.8)

w = d(x+ y)2
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j = (2x− 1)(x+ y)2,

then by straightforward calculations using Mathematica, under (2.8), the eigenvalues of the

Jacobian of our system are:

v − z − w − j ±
√

(v − z − w − j)2 + 4(jv − wz − jw)

2(x+ y)2
.

We have not converted the denominator to the new coordinates because for the bifurcation

analysis below it is irrelevant, except to note that it is always positive unless x = −y, which

is never true in the interior of P or on the boundary except at (0,0). Let f1 = v− z−w− j,

f2 = jv − wz − jw. We analyze the numerator, f1 ±
√
f1

2 + 4f2. We have:

• At a saddle-node bifurcation, f2 = 0, since f1 ±
√
f21 + 4f2 = 0 ⇐⇒ f2 = 0.

• At a Hopf bifurcation, f1 = 0 and f2 < 0 since these conditions establish that f1 ±√
f21 + 4f2 will be purely imaginary.

Furthermore, a double-zero eigenvalue occurs when f1 = 0 and f2 = 0. The Takens-

Bogdanov bifurcation is the generic bifurcation that occurs when the Jacobian of a system

has a double-zero eigenvalue. We use generic in the sense of [42], p. 78, that a property

is generic “if systems from the intersection of a countable number of open and dense sub-

sets of D possess this property,” where D is a space of dynamical systems. Heuristically,

this means that a Takens-Bogdanov bifurcation usually occurs at an equilibrium whose Ja-

cobian has a double-zero eigenvalue. There are, however, certain “nongeneric” conditions,

known as degenerate cases, under which a double-zero does not result in a Takens-Bogdanov

bifurcation. We will look at the degenerate cases for (2.4) in Section 2.2.3.

Furthermore, it is possible to analyze (2.4) in terms of its bifurcations, and then “force”

the system into equilibrium using the harvests h and k which do not occur in the Jacobian.

For any choice of a, b, d, x, and y, there is a unique (but not necessarily positive) choice of
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h and k that brings the system to equilibrium:

h = x(1− x)− axy

x+ y

k = y(−d+
bx

x+ y
).

In this way, the constant harvest allows us to implicitly identify the bifurcation surfaces

of (2.4). It is not necessary to first find the equilibria and then find the Jacobian at the

equilibria. The nature of the constant harvests is such that we can analyze the Jacobian

for bifurcation criteria and then adjust the harvest to find the equilibria.

Interestingly, this also shows that any positive value of z, v, and w, and any real j

corresponds to some equilibrium in P with positive parameters under (2.8). To show this,

we first note that a straightforward calculation shows that when j 6= 0, (2.8) is solved by

a =
z(√

j
2x−1 − x

)2

b =
v

x2
(2.9)

d =
w(2x− 1)

j

y =

√
j

2x− 1
− x.

The solution leaves us free choice of x since the space formed by z, v, w, and j has one less

dimension than the space formed by a, b, d, x, and y. Further calculation using this solution

20



shows that (i) in Lemma 1 is equivalent to

v2j

x2w2(2x− 1)
> 1

and that (ii) is equivalent to

z <

(√
j

2x− 1
− x

)√
j

2x− 1
(1− x).

Note that for any z, v, w > 0 and j ∈ R, some x in the neighborhood of 1/2 will satisfy (i)

and (ii).

When j = 0, (2.8) is solved by

x =
1

2

b = 4v (2.10)

a =
z

y2

d =
w

(y + 1
2)2

.

Now straightforward calculation shows that (i) is equivalent to

y <
2v(y + 1

2)2

w
− 1

2

and (ii) is equivalent to

z <
1

2
y

(
y +

1

2

)
.
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Note that again some solution to (i) and (ii) exists for any z, v, w > 0. In this case, choosing

y high enough will satisfy both inequalities.

Thus, (2.8) makes testing the bifurcation conditions simple. The nature of our transfor-

mation is such that this does not easily translate to a solution for x and y in terms of the

parameters, but it does easily translate into a solution for one or two parameters in terms

of x and y and the other parameters.

2.2.3 Conditions for Takens-Bogdanov Bifurcations

In the previous section, we noted that Takens-Bogdanov bifurcations typically exist at

double zero eigenvalues. In this section, we will give precise conditions, in terms of the

parameters, for Takens-Bogdanov bifurcations varying the two parameters b and k, including

formulas for the degenerate cases.

In this section we will use the notation f(x, y) := ẋ = x(1−x)− axy
x+y −h, g(x, y) := ẏ =

y
(
−d+ bx

x+y

)
− k, and let J refer to the Jacobian of (2.4). We will use subscript notation

for partial derivatives, for example fy := ∂f
∂y . We will be interested only in those points in

the interior of our phase space and parameter space, because we wish to find points where

all bifurcation behavior is in the region of biological interest, so we will assume all variables

and parameters are strictly positive.

For a Takens-Bogdanov bifurcation, we need f = g = f1 = f2 = 0, where f1 and f2 are

the functions defined in the previous section. A long but straightforward calculation shows

that when f = g = 0, the equations f1 = f2 = 0 are equivalent to:

q =
x3(2x− 1)

(x+ y)(x2(2x− 1) + (−h+ x2)y)

b =
−x3 + 2x4 − hxy − x2y + 3x3y − hy2 + x2y2

x(x2 − qx2 − 2qxy − qy2)
(2.11)

d = qb
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where q := d/b is introduced for notational convenience. We will see q again in Section

2.5.1. Note that for any x, y, h, (2.11) gives a unique, if defined q, a, b, k, and d. We also

note that numerical calculation shows that there exist solutions where all parameters are

positive (for example x = 0.3, y = 1, h = 0.1, a ≈ 0.477, b ≈ 0.926, d ≈ 0.167, k ≈ 0.046).

We now seek to rule out the degenerate cases. From Theorem 8.4 in [42], we avoid the

degenerate cases if:

J 6= 0 (2.12)

fxx + gxy 6= 0 (2.13)

gxx 6= 0 (2.14)

and the map

(x, y, b, k) 7→ (f, g, tr(J),det(J)) (2.15)

is nonsingular, where tr and det refer to the trace and determinant.

First note that since fy = − ax2

(x+y)2
6= 0, (2.12) is always true in the interior of P . We

also have gxx = − 2by2

(x+y)3
6= 0 and (2.14) is always true in the interior of P .

To check (2.4), we compute fxx + gxy = −2 + 2ay(y−x)
(x+y)3

, which is nonzero precisely when

ay(y − x) 6= (x+ y)3.

Finally, we need to consider the map in (2.15). We need to analyze the Jacobian of that

map:

1− 2x− ay2

(x+y)2
− ax2

(x+y)2
0 0

by2

(x+y)2
−d+ by2

(x+y)2
xy
x+y −1

−2(x3−bxy+3x2y−ay2+3xy2+y3)
(x+y)3

−2x(bx+ay)
(x+y)3

x2

(x+y)2
0

2(−bx3+dx3+bxy−3bx2y+3dx2y−ady2+3dxy2+dy3)
(x+y)3

2x(bx(−1+2x)+ady)
(x+y)3

(1−2x)x2

(x+y)2
0


,
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which has determinant:

2ax3(−bx3 + dx3 + bxy − 3bx2y + 3dx2y − ady2 + 3dxy2 + dy3)

(x+ y)6
.

Since the terms we factored out are known to be nonzero, this is equivalent to the

condition bx3 − dx3 − bxy + 3bx2y − 3dx2y + ady2 − 3dxy2 − dy3 6= 0.

We combine these results into the following theorem:

Theorem 2. Let (x, y) with x, y > 0 be an equilibrium of (2.4) with parameter values

a, b, d, h, k > 0, and define q := d/b. Then (x, y) is a Takens-Bogdanov bifurcation point

with bifurcation parameters b and k if all of the following conditions hold:

q =
x3(2x− 1)

(x+ y)(x2(2x− 1) + (−h+ x2)y)

b =
−x3 + 2x4 − hxy − x2y + 3x3y − hy2 + x2y2

x(x2 − qx2 − 2qxy − qy2)

ay(y − x) 6= (x+ y)3

bx3 − dx3 − bxy + 3bx2y − 3dx2y + ady2 − 3dxy2 − dy3 6= 0

Note that numerical calculation shows that the nondegeneracy conditions at x = 0.3, y =

1, h = 0.1, a ≈ 0.477, b ≈ 0.926, d ≈ 0.167, k ≈ 0.046 become 0.334 6= 2.197 and −0.291 6= 0,

which are both satisfied, so nondegerate Takens-Bogdanov bifurcations occur for (2.4).

There is always a curve of Hopf bifurcations and a curve of homoclinic bifurcations near a

Takens-Bogdanov bifurcation. Those two bifurcations will be important in our limit cycle

continuation in Section 2.5.
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Table 2.1: Comparison of results for model with a positive harvest of both species to special
case results without one or both of the harvests.

h = k = 0 h = 0, k > 0 h > 0, k = 0 h, k > 0

reference [57] [56] [55] this dissertation

simultaneous
extinction yes no no yes

equilibrium
at origin yes no no no

equilibrium
on x-axis 2 0-2 0 0

equilibrium
in interior 0-1 0-2 0-2 0-4

limit cycle stable stable or stable or stable or
stability unstable unstable unstable

non-extinct
global possible not possible not possible not possible

attractor

Is x-axis
invariant? yes yes no no

Is y-axis
invariant? yes no yes no

Is P
invariant? yes no no no

Takens-Bogdanov
bifurcation no yes yes yes

Notable a = 2, d = 0.5 a = 1 none a = 0.1, h = 0.2
parameter b = 0.782 to simplify d = 0.3 and

choices to show Takens-Bogdanov a = 2, h = 0
limit cycle analysis d = 0.5 for

preliminary
numerical
indications
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2.3 Comparison to models with h = 0 or k = 0

In this section, we compare the properties of the model (2.4) with the results from the

papers [55], [56], and [57], which considered the special cases of the model where h = 0

or k = 0 or both, respectively. A nonhyperbolic equilibrium at the origin exists if and

only if h = k = 0. The origin is not an equilibrium if either h or k is positive. Excepting

the origin, equilibria do not exist on the y-axis in any case. Another equilibrium on the

boundary of P exists when h = k = 0, on the x-axis at (1,0). Between 0 and 2 equilibria

exist on the x-axis when h > 0 and k = 0. No equilibria exist on either axis when k > 0.

The number of equilibria in the interior can be 0 or 1 when h = k = 0. There can anywhere

from 0 to 2 equilibria in the interior of P when exactly one of the harvests is positive, and

there can be 0 to 4 equilibria in the interior of P when both harvests are positive. Limit

cycles may exist in all four cases, but when h = k = 0, it is known that the limit cycle

must be unique and stable. Unstable limit cycles exist for some parameter values when

either harvest is positive. We are not aware of any analytical result for uniqueness of the

limit cycle when either harvest is positive. When both harvests are 0, P is an invariant set

and it is possible for there to be a global attractor other than extinction, but when either

harvest is positive, there is some portion of P where forward orbits leave P and extinction

is predicted in forward time. Takens-Bogdanov bifurcations exist when either harvest is

positive. They do not exist when h and k are 0. When h = k = 0, simultaneous extinction

is possible: a forward orbit may approach the origin. When exactly one of the harvests is

positive, simultaneous extinction is impossible. However, when both harvests are positive,

simultaneous extinction again becomes possible, since the first order approximation of the

slope of trajectory at the origin is the positive value k/h. The y-axis is invariant if and only

if h = 0. The x-axis is invariant if and only if k = 0.

As noted in Section 2.1, the rather precise parameter choices a = 2, d = 0.5, b = 0.782

were used in [57] to plot a limit cycle and the simplification a = 1 was used to reduce (2.6)

to normal form in [56]. We will use the limit cycle choice from [57] (a = 2, h = 0, d = 0.5)

in our preliminary numerics in the next section as well as the completely arbitrary choice

26



a = 0.1, h = 0.2, d = 0.3.

2.4 Preliminary Numerical Indications

In this section, we create bifurcation diagrams for some parameter values of (2.4). As

mentioned in Section 2.2.1, solving for the equilibria of (2.4) involves solving a quartic

equation, so (2.4) can have up to 4 solutions. In fact, there are typically 0, 2, or 4 solutions,

depending on the parameters. We created phase portraits in pplane [50], a package for

creating phase portraits in MATLAB. A detailed description of pplane and its methods is

available in [6]. Some phase portraits are shown in Figure 2.1.

We now turn to bifurcation analysis. Setting (by completely arbitrary choice) a = 0.1,

h = 0.2, d = 0.3, we get the bifurcation diagrams shown in Figure 2.2 using AUTO [24].

The qualitative changes that occur as b increases correspond to passing through Takens-

Bogdanov points which create Hopf bifurcations. The Hopf and saddle-node bifurcations

(on the same branch) are always extremely close to each other (in k).

We have also conducted further numerical experiments, allowing d to vary. We found

that the picture is qualitatively similar to that described above as long as d > 0.2 (keeping

our arbitrary choice of a = 0.1 and h = 0.2). As d decreases, the b-value of the Takens-

Bogdanov point increases. At d = 0.2, one Takens-Bogdanov point occurs when b = ∞

(i.e., it no longer exists), the b-value for the second Takens-Bogdanov point reaches infinity

when d is slightly less than 0.2.

Letting kHopf and ksn denote the k-values at the Hopf and saddle-node bifurcations,

kHopf/ksn is 1 at the Takens-Bogdanov point, decreases as b increases, remaining between

0.99 and 1, and then kHopf/ksn increases as b goes to infinity, or at least several orders of

magnitude beyond the Takens-Bogdanov point or any other observed interesting behavior,

whenever a = 0.1 and h = 0.2. In other words, the Hopf and saddle-node bifurcations are

quite close to each other on each branch in this case, and the limit cycles formed at the Hopf

points form away from the saddle-node and disappear quickly in a homoclinic bifurcation.
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(a) (b)

(c) (d)

Figure 2.1: Phase portraits for (2.4): the ratio-dependent predator-prey system with con-
stant harvests of both species from pplane. Only forward orbits are shown and all equilibria
are marked. In all portraits, we use the parameter choices a = 0.1, d = 0.3, b = 0.4. We
use h = 0.2, except in (a) where h = 0.3 to show a portrait where the prey harvest is too
large to support any prey population. The parameter k decreases from 6e-3 in (b) to 3e-3
in (c) to 2e-3 in (d).
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(a) b = 0.4

(b) b = 50

(c) b = 600

Figure 2.2: Bifurcation diagrams for (2.4) created in AUTO. In all diagrams, we use the
parameter choices a = 0.1, h = 0.2, d = 0.3. The top diagram shows the general outline.
When b > 18.7 a change in stability occurs on the top branch that is only visible on
extreme close-up. When b > 187, a similar phenomenon happens on the bottom branch.
These values of b correspond to passing through Takens-Bogdanov bifurcations.
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Figure 2.3: A bifurcation diagram created in AUTO for the parameter values a = 2, h = 0,
d = 0.5, b = 0.782.

These behaviors are seen for many Hopf points of the model, which inspired the limit cycle

continuation discussed below in the next section.

We now consider the parameter choices a = 2, h = 0, d = 0.5. The parameters are

chosen because they are the values that led to the limit cycle shown in Figure 4.7 of [57].

A bifurcation diagram using the b-value from that figure, b = 0.782, is shown in our Figure

2.3. Note that now the Hopf bifurcation is no longer close to a saddle-node, but it is close

to the boundary of our region of interest at k = 0. Some more bifurcation diagrams for

a = 2, h = 0, d = 0.5 are shown in Figure 2.4. Here we see a different pattern than with

our previous choice of a, h, and d. First, the diagram consists of one connected curve rather

than two. Perhaps more interestingly, the changes as k increases are different. As before,

a Hopf point begins to be seen as k increases. However, this change does not represent

a Takens-Bogdanov bifurcation. The change represents a Hopf that enters the parameter
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region of interest by passing through k = 0. In the middle diagram (where b = 1), we see

a Hopf bifurcation that is neither near a saddle-node nor the boundary where k = 0. As

b increases further, we pass through a Takens-Bogdanov, after which the Hopf is no longer

seen. As seen in the middle diagram, we have a parameter choice showing a Hopf can be

seen away from the saddle point, which, as we discussed above, wasn’t observed for any b

or d when we fixed a = 0.1 and h = 0.2.

2.5 Limit cycle continuation

In this section, we describe a limit cycle procedure created in MATLAB. All the MATLAB

files are included in the supporting online materials available at mason.gmu.edu/~mcrone.

We begin in Section 2.5.1 with further analytical results that were needed to support our

implementation. Section 2.5.2 describes the algorithm employed in MATLAB. Section 2.5.3

describes how we confirmed the accuracy of the results on a subset of points. Finally,

Section 2.5.4 gives the numerical results that we obtained.

2.5.1 Analytic results for limit cycle continuation

We begin with some further analysis of the Hopf surface. Since (2.4) has two variables and

five parameters, and a Hopf bifurcation of (2.4) has three equality constraints ẋ = 0, ẏ = 0,

and f1 = 0, this is a four-dimensional surface. We want to create a finite grid of mesh

points to cover the region, but the region is unbounded. However, some of the dimensions

are bounded, as we found in Lemma 1:

• From the equation ẋ = x(1− x)− axy
x+y − h: x < 1 and h < x(1− x).

• From the equation ẏ = y
(
−d+ bx

x+y

)
− k: d < b.

• We set q = d/b. We treat q as a parameter: ẏ = y
(
−qb+ bx

x+y

)
− k. This “cheat”

creates a third bounded dimension.
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(a) b = 0.7

(b) b = 1

(c) b = 1.3

Figure 2.4: Bifurcation diagrams for (2.4) created in AUTO. In all diagrams, we use the
parameter choices a = 2, h = 0, d = 0.5. When b > 0.781, a change in stability occurs along
the curve. This value corresponds to where the Hopf bifurcation crosses the value k = 0.
When b > 1.203, there is no longer a change in stability on the curve, and there is now
no stable portion of the curve. The value of b ≈ 1.203 corresponds to a Takens-Bogdanov
bifurcation.
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Note that if x, h, q, and y are given, the three equality constraints become linear in the

remaining parameters. Calculation shows that the equality constraints are solved by:

a =
(x(1− x)− h)(x+ y)

xy

b =
−x3 + 2x4 − hxy − x2y + 3x3y − hy2 + x2y2

x(x2 − qx2 − 2qxy − qy2)
(2.16)

k = −qby +
bxy

x+ y
.

By further calculation using Mathematica, we can find a point on our Hopf surface iff q

is greater than exactly one of the following functions:

x
x+y (where k = 0)(

x
x+y

)2
(where b =∞)

x3(2x−1)
(x+y)(x2(2x−1)+(−h+x2)y)

(The Takens-Bogdanov surface: f1 = f2 = 0).

Thus, we have a one-to-one correspondence between points in (x, h, q, y)-space that

satisfy this property and the Hopf surface of (2.4). Which inequalities form the boundary

of the slice of the Hopf surface depends on x and h. There are three non-null cases depending

on whether x > 1/2,
√
h < x < 1/2, or x <

√
h. Graphs of two-dimensional slices of this

region are shown in Figure 2.5. Since all of the formulas approach the x-axis as y → ∞,

the Hopf surface becomes infinitely thin in y as y → ∞, and for any finite grid size, there

will be a finite number of points on the grid in x, h, q, y-space. We used such a grid to track

the limit cycles formed at each grid point. The details of our search are given in the next

section.

Our continuation described below in Section 2.5.2 is based on Poincaré sections and the

Poincaré map, a theory which is described in detail in [48], a method based on the map

from the points on a line segment. We summarize here. In a planar system such as (2.4),

the Poincaré map is a function in one dimension. Consider a point (x1, y1) along some line
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Figure 2.5: Slices of the Hopf surface representing three cases for the bounding functions
of the slice.
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segment in phase space, and suppose that the forward flow from (x1, y1) under (2.4) returns

to the line segment at (x2, y2). Then the Poincaré map (for (2.4) and that line segment)

maps (x1, y1) to (x2, y2). It is typical to identify the points on line segment with a single

number (for example, their x-coordinate or their distance from some point) and treat this

map as a function of a single variable. A fixed point of this map means that a limit cycle

crosses the line segment at this point. For an analytic system, the Poincaré map is analytic,

and the lowest-order nonzero coefficient in the Taylor expansion of the Poincaré map is of

particular importance:

Definition 1. The lowest order coefficient in the Taylor expansion of the Poincaré map is

called the Liapunov number.

Generically, the Liapunov number at a limit cycle is a coefficient on an odd power.

In this case, a negative Liapunov number means the limit cycle is stable, and a positive

Liapunov number means the limit cycle is unstable. A general formula for the Liapunov

number at a Hopf bifurcation is given in [3]. Specifically, this source provides the third

derivative of the Poincaré map using a Poincaré section that extends horizontally to the

right of the equilibrium. The formula, in the notation of [3], is:

− π

4bβ3
{[ac(a211 + a11b02 + a02b11) + ab(b211 + a20b11 + a11b20)+

c2(a11a02 + 2a02b02)− 2ac(b202 − a20a02)− 2ab(a220 − b20b02)−

b2(2a20b20 + b11b20) + (bc− 2a2)(b11b02 − a11a20)] (2.17)

−(a2 + bc)[3(cb03 − ba30) + 2a(a21 + b12) + (ca12 − bb21)]}

where

a b

c d

 is the Jacobian at the Hopf point, β2 is the determinant of the Jacobian,

amn is the coefficient of xmyn in the Taylor expansion of ẋ at the Hopf point, and bmn is
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the coefficient of xmyn for ẏ. We determine the direction in which the limit cycle opens

from the derivative of the trace of the Jacobian with respect to k as shown below:

Theorem 3. Let k0 be the k-value at a Hopf bifurcation and let L be the Liapunov number

at the Hopf bifurcation as defined in the previous paragraph. As k varies, there will be a

branch of equilibria (x(k), y(k)) near k = k0. Let T (k) be the trace of the Jacobian of the

equilibrium along that branch as a function of the parameter k. Let E = −sign(LT ′(k0)).

Then, provided E is nonzero, E gives the opening direction of the limit cycles at k0. That

is, the limit cycles form to the left of k0 when E = −1 and to the right of k0 when E = 1.

Proof. From [48], the Hopf bifurcation is non-degenerate when L 6= 0. Thus, by our formula

for E, the Hopf is non-degenerate since by hypothesis E 6= 0.

The trace is zero and the eigenvalues are purely imaginary at a Hopf point of a planar

system. Now consider the eigenvalues. Let D(k) be the determinant of the Jacobian of

the continuation. From basic linear algebra, the eigenvalues of the Jacobian are (T (k) ±√
T (k)2 − 4D(k))/2. These values are purely imaginary, so T (k0)

2 − 4D(k0) < 0. By

continuity,
√
T (k)2 − 4D(k) is purely imaginary in some neighborhood of the Hopf and the

real part of the eigenvalues (which gives the stability of the equilibrium) is T (k)/2. Thus,

in some neighborhood of k0, T
′(k0) gives the stability of nodes on either side of the Hopf.

Combining this with the fact that the limit cycle surrounds a node of opposite stability, we

then have our claim.

Note: Plugging in k0 and T (k0) = 0 to the formula (T (k) ±
√

(T (k)2 − 4D(k)))/2, we

actually know the values of the eigenvalues at the Hopf bifurcation: ±i
√
D(k0). The period

of the eigenvalues (by linearization) is 2π over the imaginary part at an equilibrium. Thus

the period of the spiraling at the Hopf point is 2π/
√
D(k0).

Note: The formula for L, as reprinted in [48], p. 353, contains an error and an omission.

The error is that the term a11b20 at the end of the first line of the equation is reprinted in

[48] to be a11b02, which basic calculation shows can cause the formula to change sign under
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scaling transformations (i. e., x 7→ cx with c a positive constant). The omission is that

[48] fails to indicate the stipulation in [3] that this formula only works as a third derivative

along a certain horizontal segment, as described above. This omission is not relevant for

determining stability.

Definition 2. The word criticality is used to refer to the stability of the limit cycles formed

at a Hopf bifurcation. If the limit cycles are stable, the bifurcation is supercritical. When

the limit cycles are unstable, the bifurcation is subcritical.

We now include some other theorems that were useful for the implementation of our

limit cycle continuation. In our next theorem, we find a bounded region that must contain

all limit cycles.

Theorem 4. Let parameter values for (2.4) be given and let R be the open rectangle in

(x, y)-space bounded by the lines x = 0, y = 0, x = 1, y = b/d − 1. Then any limit cycle(s)

of (2.4) that lies partially in P must lie entirely within R.

Proof. We first note that along the x-axis, ẋ = −h and along the y-axis, ẏ = −k, so that

there is no flow in forward time from these axes to the interior of P . Thus, any limit cycle

that lies partially within P , must lie entirely within the interior of P . (The axes themselves

may not contain a limit cycle since they are one-dimensional and do not form a closed

loop.) We may now restrict our attention to the interior of P , and it suffices to show that

a limit cycle entirely within the interior of P must lie entirely within R. We show this by

showing no orbit can cross in forward time the two line segments from R to δP −R. When

x = 1, x(1−x) ≤ 0, so, in the interior of P , ẋ = x(1−x)−axy/(x+y)−h < 0, meaning there

is no flow in forwards time out of R across the line where x = 1. Finally, straightforward

calculations show that if y = x(b/d−1) and 0 < x < 1, then ẏ = y(−d+bx/(x+y))−k < 0,

and there is no flow in forward time out of R across this line segment either.

In the next theorem, we find that a path of limit cycles must terminate either at a set

including an equilibrium point or at k = 0 (which for our purposes is the end of the path,

although theoretically some of these paths could be continued).
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Theorem 5. Consider (2.4), and treat a, b, d, and h as fixed, and consider a path of limit

cycles formed at H, a Hopf point with k > 0. This family of limit cycles must approach

k = 0 or terminate at a set including an equilibrium of (2.4).

Proof. Consider a path of limit cycles where the parameter k does not approach 0. Then

there is some kmin > 0 achieved on the path. By Theorem 4, any limit cycle is contained

in the open set R (which does not depend on k) in which (2.4) is analytic. We begin

by showing that the path of limit cycles does not approach the point x = y = 0, where

(2.4) is not analytic. From [57], the system without the harvests (2.3) is continuous at

x = y = 0 with ẋ = 0 and ẏ = 0. Thus, there is some ball, B, around the origin where

ẋ > −1 and ẏ < kmin/2, and we can choose B to exclude the Hopf point. Since (2.3) is

obtained from (2.4) by subtracting h and k, as long as k ≥ kmin, ẋ < −1 − h ≤ 1 and

ẏ < kmin/2 − k ≤ kmin/2 − kmin = −kmin/2. There is, within B, some line segment, l,

of slope −2/kmin that connects the x- and y-axis. For any k ≥ kmin, the flow of (2.4)

across l is given by ẋ − 2ẏ
kmin

< 1 − 1 = 0. Thus, the flow across l is always toward the

origin in forward time, and by arguments similar to Theorem 4, there is no limit cycle that

crosses l. Since our initial Hopf point was outside of B which contains l, l serves as a bound

preventing the path of limit cycles from approaching the origin.

Now we can limit our consideration to a set where (2.4) is analytic, and, by the Planar

Termination Principle in [47], a family of one-parameter limit cycles in an analytic planar

system must terminate in one of the following ways: the parameter or the cycles become

unbounded, the limit cycles approach a critical point, or the limit cycles approach a (possibly

compound) separatrix cycle. As defined by [47], a separatrix cycle is a homoclinic orbit

(and the equilibrium on the orbit). A compound separatrix cycle is a cycle of connected

heteroclinic orbits (and the saddle equilibria they connect). Any separatrix contains an

equilibrium, so it suffices to rule out the case where the parameter or the limit cycles

become unbounded. The limit cycles may not be unbounded since they are contained in

R, by Theorem 4. We now show that limit cycles cannot exist for sufficiently large k,
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specifically when k > b. Since −d < 0, ẏ = y
(
−d+ bx

x+y

)
− k < bxy

x+y − k in R. Since

bxy
x+y < bx < b in R, ẏ < b− k on a periodic orbit. Since any limit cycle must contain some

point where y is increasing, no limit cycles can exist when k > b.

Note: Paths can also change direction in k. Generically, this bifurcation is known as a

saddle-node of an invariant circle, and is discussed more below.

Note: “Approach a critical point” as used here and in [47] means collapse in size to a

single point. Since the continuation of the node from the Hopf point cannot cross outside

the limit cycle, the limit cycle must collapse to this continuation (although the continuation

of the node may reverse direction in k at values where the continuation of the limit cycle

does not reverse direction). Also note that any (compound) separatrix cycle contains a

saddle point. These two possibilities correspond to the two manners of destruction that our

code checked for, as seen in the next section. Generically, they are Hopf and homoclinic

bifurcations.

2.5.2 Implementation in MATLAB

We now describe how we numerically continued the limit cycles formed on the Hopf surface.

We will describe the grid we overlaid on the Hopf surface, and our procedure, implemented

in MATLAB, that we used to continue limit cycles. The procedures and functions for this

implementation are available online at mason.gmu.edu/~mcrone.

We will use the language that the limit cycle is created at a grid point on the Hopf

surface, and disappears when our tracking no longer finds a fixed point on the Poincaré

section. This terminology of creation and destruction is, of course, completely arbitrary.

Our code tracks limit cycles from a Hopf bifurcation to the destruction of the limit cycle,

or until k = 0. Of particular interest is some relationship of values k1 and k0, where k0

is the k at the Hopf point, and k1 is the k where the limit cycle disappears, to measure

whether a limit cycle persists when the harvest changes. The most natural choice might be

|k1−k0|, but this difference is not very meaningful, since (2.4) is scale-free and the predator
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populations where interesting behavior occurs vary by orders of magnitude, depending on

the parameters. Inspired by the ratio discussed in Section 2.4, we considered k1/k0, but

the Hopf surface includes points where k = 0 and this ratio is meaningless. In practice,

tiny k-values did, for some points on the Hopf surface, lead to high values for this ratio

when the limit cycles were still short-lived. The statistic we chose was |k1 − k0|/y0, where

y0 is the y at the Hopf point. By Theorem 4, Hopf bifurcations do not occur on the axes,

so this ratio is always defined. Also, it ties persistence to the exploitation rate, a ratio of

the harvest to the population, a statistic frequently considered in fisheries management. If

this ratio is far from 0, we will say that the limit cycle is persistent. If it is close to 0, we

will say that the limit cycle is not persistent. Note that “persistent” as we have defined

it is a matter of degree, not a binary trait. We will use the terminology “persistent to

0.02” to mean that this ratio is at least 0.02. For this project, we are interested in how

prevalent persistent, stable limit cycles are, as this would indicate that the model predicts

asymptotically oscillating behavior in the biological population.

We tracked the limit cycles formed at the Hopf bifurcations of (2.4), using a grid in

(x, h, q, y)-space of width 0.03. This width was chosen to keep the total computing time of

the procedure in the vicinity of one day. In fact, the code on this grid takes approximately

19 hours. Since there are four dimensions, computing would be expected to be roughly

inverse quartic with grid width, so a grid with of 0.01 would have taken about 81 times as

long.

From Section 2.5.1, we know that both h and q have bounds: 0 ≤ h < 0.25 and

0 < q < 1. We place a grid of width 0.03 over these two variables starting at 0 in h and

0.03 in q. Of the four variables h, q, x, and y, h is the only variable where we start on the

boundary of our region, since h = 0 is meaningful and corresponds to a lack of a harvest.

All other variables start one grid width in from the boundary. For any h, we have bounds

in x, and we establish grid points in x using the width 0.03. Fixing h, q, and x bounds y,

and we place a grid on y in the same manner. In each variable except h, we start one grid

point away from the lower bound.
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In a few cases, points fell exactly on the upper bound, where the value of b goes to 0 or

infinity. Due to rounding error, the computer would attempt a value of b in the hundreds

of trillions or near the machine epsilon. Remember, from (2.16), the formula for b is a

rational function of x, h, q, and y. We inserted code checking for a very small numerator

or denominator. Our cutoff was derived based on the orders of magnitude that could be

expected to be seen. Consider first the numerator. We chose our cutoff based on the order

of magnitude of our grid width (e-2) and the degree of the numerator as a polynomial in

x, h, q, and y (cubic). With these in mind, we chose a number less than (1e-2)3=1e-6. In

fact, we chose 9e-7. For similar reasons, our cutoff for the denominator was 9e-9, since the

denominator is a quartic polynomial.

For each Hopf point, we conduct natural continuation in the parameter k. Once we have

a Hopf point, we track the limit cycle by the procedure given below. We provide our choice

of algorithm constants in the line by line notes after the algorithm. We also provide a brief

summary of the algorithm after that.

Data: ODEsystem, Hopf point: (k0, x0, y0), nodeprime (derivative of the node with

respect to k), direction (left= −1, right= 1), stability (unstable= −1, stable= 1)

Result: kend (the k-value where limit cycle disappears)

Initialize node to (x0, y0)

Initialize kold to k0

5: Initialize sold to 0

Initialize fence to Inf ∗ direction (fence indicates a value has been checked and no

limit cycle was found. We do not let k pass fence in future steps.)

Initialize grewmore to 0 (grewmore will increase by 1 each time we find a limit cycle

and move on to a new k-value. We loop again if this happens every iteration, since we

have not seen the end of the path.)

Initialize δk to direction ∗ kerror (kerror is our error tolerance: heuristically, not analyt-

ically.)

Initialize k to k0 + δk
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10: for i = 1 : 1 :maxindex do

Let nodeguess = node+ δk ∗ nodeprime

Algebraically find all equilibria of ODEsystem with parameter k

if less than 2 equilibria then

Let s = 2∗sign(sold − sclosetohopf )

15: else

Let node be the closest equilibrium to nodeguess

Let saddle be the closest distinct equilibrium to node

Let s be the fixed point of the Poincare map scaled to [0,1] on the line segment

from node to saddle, or 2 if none exists

end if

20: if s < sold then

if s < stiny then

Check numerically for a Hopf bifurcation, Hend, for a parameter value near k

if Hend exists then

Let kend be the k-value at Hend

25: break

end if

end if

Let starget = min(s/2, snearnode)

Let ktarget = (k−kold)/(s− sold)∗ (starget− sold) +kold (Extend linearly to where

s would be starget.)

30: if |ktarget − k| is outside the interval [kerror, 2 ∗ kerror] then

Adjust ktarget so |ktarget− k| falls on the closest endpoint of [kerror, 2 ∗ kerror]

end if

if ktarget < 0 then

Let ktarget = 0

35: end if
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if ktarget ∗ direction > fence ∗ direction then

Let ktarget = (fence+ k)/2

end if

else

40: if s > 1 then

Let ktarget = (k + kold)/2

Let fence = k

else

if s < snearsaddle then

45: Let starget = (snearsaddle + 1)/2

Let ktarget = (k − kold)/(s− sold) ∗ (starget − sold) + kold (Extend linearly

to where s would be starget.)

if |ktarget − k| > 2 ∗ kerror then

Adjust ktarget so |ktarget − k| = 2 ∗ kerror

end if

50: if ktarget < 0 then

Let ktarget = 0

end if

if ktarget ∗ direction > fence ∗ direction then

Let ktarget = (fence+ k)/2

55: end if

else

Let starget = 1

Let ktarget = (k − kold)/(s− sold) ∗ (starget − sold) + kold (Extend linearly

to where s would be starget.)

if |ktarget − k| < kerror then

60: if ktarget ∗ direction > fence ∗ direction then
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Let ktarget = (fence+ k)/2

end if

kend = ktarget

break

65: else

ktarget = k + direction ∗ kerror

if ktarget ∗ direction > fence ∗ direction then

Let ktarget = (fence+ k)/2

end if

70: end if

end if

end if

end if

if s < 1 then

75: Let kold = k

Let sold = s

Let grewmore = grewmore+ 1

end if

Let k = ktarget

80: Let δk = k − kold

if grewmore = maxindex then

Let i = 0 (start the for loop over)

end if

end for

Line 1: Note that all these inputs are known. Our Hopf point is our grid point,

nodeprime is based on standard multivariate calculus, stability from (2.17), and direction

from Theorem 3.

Line 8: The variable kerror is a heuristic error bound, since we do not in later steps
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predict the destruction of a limit cycle unless we expect to be within kerror of the destruction.

We set value kerror is set to max {(1e-2)k0, (1e-4)y0}. Initially, we only we set a value based

on k, (1e-2)k0, which represents a goal of being close (within 1%) in k, but the second y0-

based bound was added to allow larger steps when k0 was tiny.

Line 10: We chose maxindex = 26. This value was chosen so that paths which decrease

in k without approaching either node or saddle will reach k = 0 in 2 for loops. Initial

attempts with maxindex = 51 (which would reach k = 0 in one for loop) had a runtime

error for some points for which δk reached 0 in machine arithmetic. The smaller value

maxindex = 26 did not have this error.

Line 12: In our code, we eliminate equilibria not in P . Because of machine epsilon

issues, we ignore imaginary parts smaller than 1e-8. We chose 1e-8 because it is near the

order of the square root of machine epsilon.

Line 14: We will see later that s is a value between 0 and 1 when a limit cycle is found.

Here we assign ±2 to s as a flag that no equilibrium exists. The value snearnode represents

a value below which our fixed point is close enough to the node that destruction in a Hopf

bifurcation is expected if the equilibrium disappears. We chose snearnode to be 0.2.

Line 17: Again, we use the constant 1e-8 to correct for machine epsilon issue. We let

saddle be the closest equilibrium outside a ball of radius 1e-8 in the infinity norm of node.

Line 18: Since (2.4) is a planar system, there is one time direction in which orbits will

be attracted to the limit cycle initially. We ran simulations in that time direction, which we

determined using the formula from Theorem 3. We used a Poincaré section based technique

to search for limit cycles. For any given k, we searched along the line segment in phase

space between node and saddle using MATLAB ode45 with an event function that found

when (if at all) the orbit intersects again the line through node and saddle, while the orbit

was crossing in the same direction as it was initially. For any point s on the line, I will call

this return point P (s). If the orbit does not intersect that ray after for 20π/
√
D(k0) time

units, the code stops. Recall that 2π/
√
D(k0) is the period of the limit cycle near H. We

chose this upper bound to be an order of magnitude higher than the initial period.
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Our code makes an adjustment to the default settings of ode45 and two other changes

in the implementation. One is to change the relative tolerance to 1e-5 (from a default of

1e-3). Our reasons for this change are discussed later in this section. The other is to add

a nudge of (2e-3)π/
√
D(k0) time units to prevent MATLAB from stopping integration in

ode45 immediately because the starting value is on the line. Only a very small nudge was

needed, so we chose 3 orders of magnitude below the initial period. Recall that limit cycles

cannot leave the rectangle R by Theorem 4. As implemented in MATLAB, my code adjusts

(2.4) to stop an orbit when either x or y falls more than 1e-2 outside of R.

When an orbit fails to return to the line, my code assumes that no limit cycle exists

across our test segment at that k-value. When an orbit returns to the line, we try another

point along the segment, which we will call sn+1. If P (sn) moves towards node from sn,

we try sn+1 closer to node than sn. If P (sn) moves towards saddle from sn, we try sn+1

closer to saddle than sn. If P (sn) = sn, the search stops and returns sn as a fixed point. In

practice, exact equality has not been observed after the nudge was introduced to eliminate

improper stopping of ode45.

In this way, we conduct a binary search for the fixed point associated with the limit

cycle. In our code, the search goes for 7 steps, so the error associated with the binary search

at most 1/128th the length of the line segment. In this way, for any k, our code returns a

fixed point, if (our code believes) one exists, that we will call s, that matches the stability of

the limit cycle. In coding, and in what follows, we associate s with a real number between

0 and 1, representing the proportion of the way from node to saddle that the fixed point

occurs with 0 being node and 1 being saddle.

Note on how we came up with the relative tolerance we used in the “options” set for our

code: Our method is dependent on ode45 being sufficiently accurate to determine whether

orbits are spiraling in or out from the node. At the default relative tolerance, there were a

lot of orbits which spiraled in ways inconsistent with theory (crossing orbits, etc.). A test

was derived using the 50 grid points of the case where x = 0.45, h = 0.09, and y and k vary

on a grid with width 0.06. This slice of the Hopf surface was chosen, because the limit cycles
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formed on this slice showed a variety of behaviors in terms of stability and persistence. At

each of these 50 grid points, we considered 9 values of k evenly spaced along the interval

from k0 to a rough guess of kend using the estimates for the first derivative on a limit cycle

in [48] and the third derivatives of Poincaré map from [3] (even though these derivatives

are for a different line segment than we use). We then found the value of the Poincaré map

at the point where s = 0.01, to provide us with a start point near the node. Some of these

k-values were negative, and were not used. All positive k-values were tested, and there were

at least 300 of these. Using the default tolerances, all MATLAB ode solvers showed some

failure to get the spiraling direction correct. However, with a relative tolerance of 1e-4, one

order of magnitude more fine, ode45 got the right spiraling direction for all points. That

is, for all points that spiraled in the wrong direction based on the stability of the node

near the known Hopf, it could be found algebraically using MATLAB’s solve that another

Hopf occurred on the same branch, reversing the stability of the node (and ode45 with this

tolerance was actually right). However, we brought the relative tolerance down to 1e-5 and

instituted the algebraic Hopf finder using solve, when we found one point (using a different

k than in the test) where the direction failed to be correct near a Hopf point with sn slightly

more than 0.01. With the new relative tolerance, the spiral direction became accurate for

this value.

Binary search was chosen here because it has known error bounds, and because Newton’s

Method had several difficulties including the inexactness of a derivative found using ode45

and the tangent method, convergence to the fixed point at s = 0, and attempted iterates

outside the interval [0,1]. Binary search and natural continuation also seemed, in practice,

to reduce the number of calls to ode45, speeding up the code.

Line 21: Some points fail to be accurate when tested at smaller values of sn than 0.01,

which is why we test for destruction at a Hopf whenever s < sold and is less than 0.02, since

0.02 > 0.01 + 1/128. (1/128 is the error of the binary search.) Thus, we use stiny = 0.02.

Line 22: Near, in this context, is taken to be within 3kerror. This constant was chosen

because it smallest value that will detect almost immediate destruction in a Hopf bifurcation
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based on our algorithm. We check for a Hopf by numerically solving the algebraic Hopf

conditions of the Jacobian (trace is 0, determinant is positive) using MATLAB’s solve

command.

Line 44: We chose snearsaddle to be 0.8, since we decided observing a limit cycle crossing

in the last 20% of the line segment was close enough the reaching the saddle point that we

would report a homoclinic bifurcation if, by linear extension, one was expected that was

close in k.

Summary of algorithm

In sum, we begin at a known Hopf point H, a grid point on the Hopf surface. Based on

Theorem 5, the path of limit cycles emanating from H, if it terminates without reaching

k = 0, may only do so in two ways: collapsing back to the node that is the continuation of

H or expanding to touch another equilibrium. We begin by finding the nearest equilibrium.

We then see how far along the line segment to the node the limit cycle crosses. If it’s close

enough to the node, we check the algebraic Hopf conditions for a nearby Hopf point. If it’s

close enough to the saddle, we extend linearly to where we expect to hit the saddle. If we

somehow pass the k-value when the limit cycle disappears, we use fence to not pass that

value again.

Note that the code does not search for a change of direction in k. This omission is real,

but is justified for our system (2.4) by the numerical comparison in the next section.

2.5.3 Comparison to results from AUTO

We verified the results of this limit cycle tracker using a grid of width 0.12, because this

grid had only 82 points, which was tractable for the manual checks we discuss below. Also,

because 0.12 is a multiple 0.03, with this choice of grid width, our test grid points will

also be points on the larger grid. Our values for these points were compared against those

obtained by AUTO [24], a commonly used dynamical systems software. AUTO continues

limit cycles by a completely different method than our MATLAB procedure. Whereas we

48



continue limit cycles by the Poincaré section technique described above, AUTO converts

the continuation problem to a boundary value problem where the period of the limit cycle

becomes one of the parameters, and discretizes the boundary value problem. The other

difference is that our technique conducts natural continuation, meaning continuation in a

single parameter (k), whereas AUTO conducts pseudo-arclength continuation in the period

of the limit cycle and one of the parameters (which we chose to be k). Specifically, given a

Hopf point or a limit cycle, AUTO finds a solution to the boundary value problem where

a weighted magnitude of the change in both k and the period is within some step size. Of

note, in our practice, if this step size was too small, AUTO would not find the limit cycle

and would return a “continuation” consisting of k-values very close to the Hopf point, with

the period changing.

We did not have success in AUTO starting our limit cycle tracking at the Hopf surface,

instead we needed to adjust the Hopf point by finding a nearby equilibrium and then letting

AUTO find the Hopf point. Instead of re-creating our quartic solver in AUTO, we found

an equilibrium by replacing the x at the Hopf point with 0.99x. The value of 0.99x was

chosen because it provides a slight nudge and allows AUTO to find the Hopf point, but,

did not, in practice, introduce any other topological change that we observed between the

start point and the Hopf point.

Given 0.99x, finding the corresponding y and k becomes a linear system, which we used

to find an equilibrium at 0.99x. Then we searched for a Hopf point by increasing k. That

an increase in k bring us back to our Hopf point is known by Lemma 3. This is also a

continuation procedure in AUTO and finding the Hopf point depended on step size just as

the limit cycle tracking did. If the step size was too large, AUTO would skip over the Hopf

point and not find it.

From the previous few paragraphs, we have conditions requiring us to fine-tune the step

size. If the step size was too small, AUTO would not find the limit cycle and if the step size

was too large, AUTO would not find the Hopf point. The step size in AUTO is adaptive,

but it depends on a user-defined initial step size and minimum step size. No choice of these
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two values was found that worked for the entire 82-point grid, but some choice worked at

each point, and we were able to find continuations in AUTO that avoided both of these

problems for all 82 points.

The results from AUTO confirm the accuracy of our limit cycle tracker. The k-values of

the end of the path of limit cycles were within kerror on the entire grid, and our persistence

ratios for all points matched within less than 0.01. We will show persistence results for

the finer grid using our limit cycle tracker in Section 2.5.4. The match to AUTO on the

coarse grid is demonstrated here as confirmation of those results. The full results for the

comparison on the test grid are posted online at mason.gmu.edu/~mcrone.

Even for results where our code found no valid reason for the limit cycle to disappear,

our k-value matched those given by AUTO. AUTO frequently finished with a near vertical

completion in these cases: that is, the limit cycles grew very fast with respect to x. Figure

2.6 shows the output for a point on the test grid where x = 0.12, h = 0, q = 0.24, and

y ≈ 0.245, a grid point for which our code had no known reason for the destruction of

the limit cycle. Note the near verticality of the branch representing the limit cycles. The

labeled points along the vertical section represent points where the path of limit cycles

changed direction in k. Due to verticality, the k where this behavior begins is quite close to

the end of the branch. Bifurcation diagrams for some of the other points on the test grid

are shown in Figure 2.7.

We found that the saddle-node of the invariant circles were reported in AUTO, but that

the end of the bifurcation branch and the end of the range in k where limit cycles were very

close to the same value, varying by no more than (3e-4)k. This justifies not considering

these bifurcations in our program, although in future work, we propose to search for these

using our code.

2.5.4 Numerical Results

We conducted the limit cycle tracking in MATLAB described in the previous section on

a grid on width 0.03, a grid that has 31,122 grid points. The results are posted online at
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Figure 2.6: A bifurcation diagram created in AUTO for a grid point on the test grid where
our code had no known reason for the destruction of the limit cycle.
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(a) h = 0, q = 0.12, x = 0.6, y ≈ 0.74

(b) h = 0.12, q = 0.12, x ≈ 0.50, y ≈ 0.60

(c) h = 0, q = 0.12, x = 0.12, y ≈ 0.47

Figure 2.7: Bifurcation diagrams for (2.4) created in AUTO tracking limit cycles on the
test grid. The top diagram shows the most typical behavior, a limit cycle that quickly
disappears in a homoclinic bifurcation. The middle diagram shows a limit cycle that tracks
to another Hopf bifurcation. The final diagram shows a limit cycle we found to be persistent
(to 0.06) and stable, the second most persistent stable limit cycle path on the test grid after
the parameter choices for Figure 2.6, which we found to be persistent to 0.11.
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Figure 2.8: Criticality on the slice of the Hopf surface where h = 0 and q = 0.24, with points
forming persistent, stable limit cycles highlighted. This slice contains 205 grid points.
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mason.gmu.edu/~mcrone. We found that persistent, stable limit cycles do exist, although

they exist primarily when h = 0 and were quite rare when h > 0.

We will focus in our discussion of the results on limit cycles that were persistent to

0.05, which we motivate in this paragraph. In fisheries science, the exploitation ratio is the

proportion of a fish population that is harvested each year. Our persistence ratio would

relate directly to the exploitation ratio except for the fact that time in (2.4) is made scale-

free by making the growth rate, r, of the prey 1. Returning scale to our model, a limit

cycle which is not persistent to 0.05 would represent a population where the small change of

0.05r (typically, smaller than 0.05) in the exploitation ratio would represent passing over the

entire region of oscillatory behavior. In practice, this is a small change in the exploitation

ratio, and, thus, by considering a cut-off at 0.05, we will not exclude any limit cycles of

practical relevance.

We found that 232 grid points (0.7%) formed stable limit cycles that were persistent to

0.05, with 226 of these points occurring when h = 0. 226 is 3% of the total number of grid

points where with h = 0 (6,758). The q for these points varied among all values on the grid

that were less than or equal to 0.75. (Recall that q = d/b is the ratio that we defined in

Section 2.2.3.)

We will visualize the Hopf surface by taking two-dimensional slices in h and q of the

four-dimensional surface. The number of grid points on each slice were observed to vary

considerably, from a maximum of 1,054 when h = 0 and q = 0.03, to a minimum of 0

for all slices where q ≥ 0.9. For any given h, the number of grid points was observed to

be nonincreasing in q. For any given q, the minimum number of grid points was always

observed to be achieved when h = 0.21 or h = 0.24, and the maximum achieved when h = 0

or h = 0.03.

The four-dimensional Hopf surface has hundreds of these slices for our grid width of

0.03. We provide graphs of eight of these slices in this section: four showing the stability

and persistence for slices without a harvest (since that is where most stable, persistent limit

cycles are formed) and four showing stability and persistence with a harvest. For the graphs
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with a harvest, we chose h = 0.03, to maximize the number of grid points in the graphs.

Figure 2.8 shows persistence and criticality (see Definition 2) for the two-dimensional

slice of the Hopf surface where h = 0 and q = 0.24, the slice in h and q that shows the most

stable limit cycles that were persistent to 0.05. As seen in the figure, the Hopf surface has

a pinch point where its height shrinks down to nothing. Numerically, we observe such a

pinch point in all slices with a sufficient number of grid points to see the structure of the

grid. We also note that a band of stable, persistent limit cycles occurs in the left piece of

the slice, extending just past the pinch point. The band is near a curve through the center

of the slice where stability reverses. For other choices of q, the picture remains qualitatively

similar as long as h = 0. The band of stable, persistent limit cycles shifts to the left as

q increases, and becomes thinner as q moves either direction from 0.24. When q ≥ 0.66,

subcritical Hopf bifurcations are no longer observed in the left hand side of the slice, and

the stable, persistent limit cycles are observed on the lower boundary of the Hopf slice.

Plots for h = 0 and q = 0.03, q = 0.45, and q = 0.66 are shown in Figure 2.9.

When h > 0, we found far fewer stable, persistent limit cycles. In fact, only six (0.02%)

out of 24,364 grid points with h > 0 formed stable limit cycles that were persistent to 0.05,

and no stable limit cycles were persistent to 0.06 with h > 0. There is also a qualitative

change in the shape of the region where limit cycles are stable with a positive h from the

graphs with h = 0. The Figure for h = 0.03, q = 0.03 is shown in Figure 2.10. Stability in

the left hand portion of the surface now appears to depend mostly on x alone, as the curve

of stability change is near vertical. For all but one choice of x on the left hand side of slice,

stability of limit cycles was not observed to vary with y. When x is small, the limit cycles

are stable. Call this apparently connected region of stable limit cycles Sl. When x becomes

large enough, as long we remain in the left portion of the slice, the limit cycles are unstable.

The right hand portion of the slice remains qualitatively similar for all values of x and h,

including those where h = 0. Keeping h fixed at 0.03 and increasing q, we find that the

criticality on the surface follows a qualitatively similar pattern until q = 0.21, when a new

manifold of stable limit cycles is observed to the right of the unstable ones, but on the left
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Figure 2.9: Criticality on the slice of the Hopf surface where h = 0 and q = 0.03, 0.45, and
0.66 from top to bottom. Points forming persistent, stable limit cycles are highlighted.
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Figure 2.10: Criticality on the slice of the Hopf surface where h = 0.03 and q = 0.03. The single grid point forming a persistent,
stable path of limit cycles is highlighted on the bottom left.
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side of the slice. We will call this new region Sc. As q increases further, the boundary of Sc

becomes less vertical, and the boundary the region Sl becomes smaller until by q = 0.54, Sl

is no longer observed. (See Figure 2.11.) As Sl approaches the point on the left hand

side of the Hopf slice, it becomes difficult to ascertain whether the boundary of Sl remains

near-vertical due to the lack of grid points. With larger values of h as well as q, it appears

that this boundary as well is losing its verticality. As q increases further, the slices remain

qualitatively similar until they contain few enough points that features cannot be discerned.

For other positive values of h, the behavior as q changes is similar in terms of Sl, which the

region shrinking as q increases, but by h ≥ 0.15, Sl is not observed to disappear until the

slice has 25 or fewer grid points, when it becomes difficult to discern the slice’s features.

The region Sc is more intermittent for larger h, and is not observed for any q when h ≥ 0.15.

In summary, we find that stable limit cycles are only persistent to changes in the predator

harvest when the prey harvest, h, is small. Almost all observed stable, persistent limit cycles

occurred when h was 0. Given that equilibrium population of the prey is 1 in the absence

of predation or harvest, the minimum positive harvest considered of 0.03 is relatively small.

While stable limit cycles are possible with a positive prey harvest, they appear to be an

unlikely phenomenon. Further investigation of the region where h is small is needed.

2.6 An observation regarding predator harvesting

Suppose a, h, d, and b are fixed and consider (2.4) with k as varying. We have numerical

indications that show that several qualitatively different bifurcation schema (in k) are pos-

sible for our system, depending on our choice of the other parameters. For simplicity, we

will only consider a, h, d, and b that satisfy conditions (3.ii) or (3.iii) of Lemma 2.1 in [55],

which by simple calculation can be combined into the condition:

b− a(b− d)

2b
<
√
h <

1

2
. (2.18)
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Figure 2.11: Criticality on the slice of the Hopf surface where h = 0.03 and q = 0.24, 0.45,
and 0.66 from top to bottom. No points formed persistent, stable limit cycles.
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Then by that lemma and Theorem 2.3 also in [55], we know that when k = 0, all orbits

move toward extinction of the predator: they either go to an equilibrium on the x-axis as

t→∞ or hit the y-axis in finite time. In either case, we have y → 0 as t→∞, since once

x = 0, we have ẏ = −dy.

It might be expected that a strictly positive k could not “improve” this result. In other

words, keeping a, h, d, and b constant and satisfying (2.18), but using a strictly positive k,

it might be expected that predator extinction remains inevitable. However, this intuition

only considers the immediate, direct consequences and proves incorrect. We have found

several examples of parameter values that show this phenomenon in the model and include

one such example here.

It is easily seen that the parameter values a = 0.6, h = 0.05, d = 5e-3, and b = 1 satisfy

(2.18), so when k = 0, extinction of the predator species occurs in (2.4) for any initial

condition. However, when k = 0.3, linearization shows that the equilibrium that occurs at

approximately x ≈ 0.378, y ≈ 1.681 is stable, so it has some region of attraction for which

the solution approaches the equilibrium, and extinction is averted. In fact, there is a sizeable

region of attraction as seen in the phase portrait in Figure 2.12. This result supports the

insight that under certain conditions, culling a resource population may actually improve

the long-term health of the population.

2.7 Application to the oyster and black drum fisheries in

Louisiana

In this section, we apply (2.4) to the oyster and black drum populations of Louisiana. To

match population data to real world data, we must now convert (2.4) out of its scale-free

form. With constant harvests, our model becomes:

ẋ = rx(1− x

M
)− axy

x+ cy
− h (2.19)
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Figure 2.12: Phase portraits of (2.4), the ratio-dependent predator-prey model with con-
stant harvests. The only parameter that is changed from the top portrait to the bottom
one is k, representing the predator harvest. In the top one, k = 0, and all orbits lead to
extinction. In the bottom one, k = 0.3, and some orbits approach a stable equilibrium (red
dot) and extinction is averted.
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ẏ = y

(
−d+

bx

x+ cy

)
− k.

We modeled the period 1986-2008 inclusive, the longest period for which landing and

population data were available for both species. In reality, harvest of neither species was

constant over the period. We used harvest data to find the h and k for each species

each year. While in theory this should remove both constants from the model, in reality,

proportionality constants returned for each species due to reasons described below, and our

system becomes:

ẋ = rx(1− x

M
)− axy

x+ cy
− hc1,t (2.20)

ẏ = y

(
−d+

bx

x+ cy

)
− kc2,t,

where the constants c1,t and c2,t with t a year between 1986 and 2008 are the harvest data.

In consultation with Dr. Kim DeMutsert of the George Mason University Environmental

Science and Policy Department, black drum and oysters were chosen as an approximation

to a pure predator-prey system for which population surveys and landing data were avail-

able. For oysters, we obtained population and landing data from [44]. For black drum, we

obtained population and landing data from [9]. We will discuss each population and the

data available in the next two paragraphs.

Louisiana contains both public oyster grounds and private leased waters where oysters

are harvested [44]. The public oyster grounds are harvested for small oysters, known as

“seed” oysters: oysters smaller than three inches which are moved to private leases. There

are also large oysters, those greater than three inches, which are known as “sack” oysters,

and are taken directly to market. Population estimates are available in [44] for both types of

oysters. We use the total oyster population from Figure 4 in [44]. We convert these figures

to numerical data using the tool, WebPlotDigitizer [52], available online. These surveys are

62



conducted during the summer [22]. We treat the populations as point estimates occurring

in the midpoint of the each. Landing data are only presented in [44] for sack oysters. For

this reason, we assume that seed oyster removal from the public grounds was proportional

to sack oyster removal. The constant of proportionality is a parameter that we fit to the

data, by leaving the harvest rate unknown. The landing data given in Figure 3 in [44] are

again converted using WebPlotDigitizer.

Black drum in Louisiana are harvested both commercially and recreationally [9]. We

used the total harvest from an unnumbered figure the executive summary in [9] for the

harvest in our model. For population estimates, we modeled population as proportional to

catch per unit effort in trammel net surveys conducted by the Louisiana Department of Fish

and Wildlife and shown in Figure 6 in [9]. Although we could not find documentation of the

timing of the estimates, the most likely case based on [22] is that they occur year-round. As

an approximation, we used them as point estimates for the midpoint of each year. Again,

these figures were converted to numerical data using WebPlotDigitizer.

2.7.1 Parameter estimation: methods

In implementation, we first normalized our population and harvest data so that the average

for each of the four data sets is 1. We seek to minimize a normed difference between observed

and calculated data, specifically:

√√√√ 2008∑
t=1987

(xo(t)− xc(t))2 +
2008∑

t=1987

(yo(t)− yc(t))2, (2.21)

where xo(t) and yo(t) are the observed population at time t, and xc(t) and yc(t) are the

population values obtained by taking the population observed in the previous year and

running the ODE (2.19) in ode45 for one year. We then estimated the parameters for our

data by a three-part procedure:

• We found 20 sets of parameters that will not cause either population to soar or crash
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within one year,

• We use particle swarm optimization (described below) to find parameters that match

the data, and

• We use method of steepest descent to further refine our parameter estimate.

We discuss each of these steps in the following sections. This gave us a set of parameters

optimized to our data. Because of the random elements in the procedure, it can be repeated

and, at least potentially, achieve different results. We found 50 sets of parameters which we

compare in Section 2.7.2.

Initialization of parameters

We find a set of initial parameters in the following way: For each parameter, we chose a

random number, s, from a uniform distribution on [0,1], and set the parameter to s/(1−s),

which translates [0,1] to [0,∞). We will adjust this choice to parameter values such that

both the oyster and black drum populations stay within the interval I := [0, 3] for one year.

We chose [0, 3] for I since it was the smallest integer interval that the actual data stayed

within. We ran 22 one-year simulations of the model using ode45 starting from each of the

22 data points corresponding to the observed populations in 1986-2007 inclusive. If none

of the simulations fell outside I, our current parameter estimates would be good enough to

be considered initial data for the particle swarm optimization. If not, we would consider

the year where a population left I the fastest. There are four possibilities for how the

population left I : x < 0, x > 3, y < 0, or y > 3. Suppose x falls below 0. We want to

increase x. There are four parameters that relate only to x : r,M, a and h. The formula for

ẋ increases with r and M and decreases with a and h. We choose one of these parameters

at random and change it by multiplying it by a random number. We choose our random

number from [0,1] if we want the parameter to go down, and we choose our random number

from [1,2] if we want our random number to go up. In this way, we change a parameter

in a way that (naively, at least) increases x and try again. Similarly, if x > 3, we make a
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parameter change to decrease ẋ. If y falls outside I, we similarly use the parameters b, d,

and k, and the fact the ẏ increases with b and decreases with d and k. Trials runs indicated

that this procedure found an initial point within 50 steps over 95% of the time. We set our

code to stop after 100 steps to avoid long delays.

Particle Swarm Optimization

Particle swarm optimization is a nonlinear optimization technique motivated by a model

of human behavior [40]. We chose particle swarm optimization because it was convenient,

and when we tried it, we got good answers, but this technique has no known performance

guarantees. In our implementation, each of the 20 parameter choices represents a “particle”

which moves about parameter space searching for a point that minimizes (2.21). We number

the particles from 1 to 20, and define the neighbors of a particle to be those within 1 of

the particle mod 20. Particles will act based on the point in parameter space where either

the particle or its neighbors have been that minimized the objective function (2.21), in the

manner described below. The movement of each particle is given by:

0.7298η + U(0, 1.4961)(pi − α) + U(0, 1.4961)(pg − α) 7→ η

α+ η 7→ α,

where η is particle’s velocity, α is the particle’s position, U(m,n) is a uniform distribution on

[m,n], pi the position where the particle has seen the lowest value of the objective function,

and pg is the position where the minimum value of the objective function has been observed

by either the particle or its neighbors. We move the particle through parameter space

according to this formula for 100 steps. At each step, we evaluate (2.21), and update each

particles pi and pg as appropriate. At the end of the procedure, the location in parameter

space where the lowest value of (2.21) ever observed is retained and refined further by the

method of steepest descent as discussed in the next section. The choice of function was

based on [40], which indicates that this formula has been standard since the analysis in [18].
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The definition of neighbors varies in usage, and can even expand in implementations in other

settings to where all particles are neighbors. As indicated in [40], larger neighborhoods are

more subject to getting stuck in local minima.

Method of Steepest Descent

Finally, we refine the parameter choices further by a form of the method of steepest de-

scent, which we describe in this section. We begin with initial parameter choices p0 =

{a0, b0, c0, d0, h0, k0,M0, r0} and evaluate (2.21) at these points. We then evaluate (2.21)

at each of 16 points, changing one parameter at a time by 1% in each direction. The 1%

changes were chosen to represent a small nudge each step. If, for a given parameter, (2.21)

increases when that parameter is increased and increases as well when it is decreased, we do

not change that parameter that step. If one of the changes results in a decrease of (2.21),

we move that parameter in the direction of the decrease. We then change our parameter

choices by the formula p+γ · p 7→ p, where γ is a vector of norm 0.01 whose nonzero entries

are proportional to the derivate of (2.21) with respect to γ as determined by the tangent

method and the values when multiplying the current value by 0.99 and 1.01. (On the off

chance that the value of (2.21) decreases in both directions, we use twice the minimum

decrease in the direction of the maximum decrease.) In this way, we have our next iterate,

and we continue for 50 steps in this way.

2.7.2 Numerical Results

Since the procedure described above contains stochastic elements, different runs of the

procedure can give different results. As indicated above, we ran the procedure 50 times.

We found that while the value of the objective function was quite similar for most runs

and the predicted forward orbits using the parameters given were rather similar for each

run, the actual values of the parameters chosen showed a large amount of variation over the

runs. This appears to indicate that the behavior of the model over the observed population

ranges in 1986-2008 is quite similar for very different values of the parameters.
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Table 2.2: Observed parameter ranges for 50 runs of parameters fitted to oyster and black
drum system in (2.20). See Figure 2.13 to see the similarity that these different parameters
show in their forward orbits.

parameter min max

a 0.03 8.31
b 0.13 33.63
d 5e-3 0.74
h 2e-3 0.29
k 2e-5 0.08
c 0.50 113.60
m 1.43 3.19
r 0.53 1.67

Figure 2.13: Population data for the period 1986-2008 and forward orbits of (2.19) for
50 years (2008-2058) using 50 different sets of parameters derived from our optimization
routine. One run goes off the top of the figure and by year 50 reaches a black drum
population of 3.45.
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The observed range of parameters after treatment by the minimization scheme is shown

in Table 2.2. All parameters show a large range of values, and most parameters show a

range of more than an order of magnitude. The 1986-2008 population data and the forward

time projections for 50 years (2008-2058) of all 50 runs are shown in Figure 2.13. The

forward time evolutions began from the 2008 population data and used the average harvest

over 1986-2008 as the harvest rate. One run goes off the top of the figure and by year 50

reaches a black drum population of 3.45. Two other runs show relative high final black

drum population around 2. All others have a similar black drum population roughly near

1.5 and an oyster population between 1.2 and 1.5.

The population data show a large variation from year to year, a behavior not seen in

the forward time orbits modeled by (2.20). This level of noise does not fit the data that can

be predicted by the model. Based on [22], at least for the black drum, this noise is mostly

observation error, rather than noise in the actual population over the period.

The value of the objective function for each run was quite similar, varying from 2.22

to 2.28. This is quite close to the minimum value that we have seen in any context,

2.21, which we found exploring the system using the optimizer “snopt” in the mathe-

matical programming language AMPL [27] at the highly unrealistic choice of parameters

a = 39, 606.3, b = 106.72, d = 0.22, h = 0.08, k = 0, c = 466.71,M = 165.89, r = 85.39.

Despite being clearly unrealistic, especially in terms of the growth rate, r, the forward orbit

using these parameters is similar to the 50 orbits in Figure 2.13, consistent with our indica-

tions that different looking parameters can lead to similar values of our objective function

and similar population predictions over several decades.

2.8 Conclusions

We found that the ratio-dependent predator-prey model with constant harvests, (2.4), can

exhibit rich dynamical behavior, including the Takens-Bogdanov bifurcation. Depending

on the parameter values, universal extinction, a single attractor, or multiple attractors are

possible for the model. A global attractor other than extinction is only possible in the
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absence of any harvest. Otherwise, there is always some initial condition where at least one

of the harvests is too large for the initial population.

Limit cycles exist for the model with both harvests nonnegative, as had been found in

the earlier papers ([57, 55, 56]) that considered the special cases, but we found numerical

indications that stable limit cycles are a lot less persistent when the prey harvest is at

least 0.03 than in the case without a prey harvest. Further investigation of the region of

persistent limit cycles is proposed.

We also found that under (2.4) the predators may be saved from extinction by an

increase in their harvest. This may be counterintuitive to some, but is consistent with the

sense that many wildlife managers have that culling a population can be good for its future

health.

Finally, we apply (2.4) to the oyster and black drum system on the public oyster grounds

in Louisiana. Our numerical indications are that widely different choices for the parameter

values can fit the data near optimally and produce similar forward projections under the

model. It would be interesting to compare these predictions under (2.4) to predictions under

other predator-prey models, to see if those results would be similar. If disparate models

also act similarly over the observed range of data, that would explain some of the failure

of consensus in the modeling community. It would also argue against extrapolation beyond

the range of observed data under any particular model. We also propose comparison of our

results to those of the more complex modeling software Atlantis.
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Chapter 3: Single-species difference equation model

In this chapter, we consider a single-species difference equation model:

x 7→ x+ rx(1− x)−mxc, (3.1)

with r,m > 0 and c > 1. This model is an adaptation of the discrete logistic model for

biological population growth

x 7→ x+ rx(1− x). (3.2)

In this case, we have subtracted a variable human harvest mxc from (3.2) to obtain (3.1),

which we will motivate more below, but which roughly represents a resource user or manager

who reacts to a declining population by decreasing the harvest. We developed the model

(3.1) ourselves, and to our knowledge, it has not been previously seen or analyzed in the

literature.

3.1 Background

Recall from the introduction that standard economic models predict over-exploitation in a

fishery. Typically, this is used to argue for centralization of control. To avoid the sunken

costs associated with open access and for general ecological health, fishery managers set

a total allowable catch. However, centralization may also act against the future health of

the resource. Behavioral research has shown that respect for regulations of a common pool

resource declines when the decision makers are more distant from the resource users [46].

With this in mind, we consider an agent model where actors are incentivized to care

about the future value of the resource stock. In this model, agents would purchase quota

for multiple seasons: as modeled here, the right does not expire at all, but they could then
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sell the rights back in the future for some fraction of the original cost. The remaining rights

for this stock would only be re-sold under conditions described below. In this way, when

a stock becomes depleted, agents would be incentivized to sell their rights and discontinue

fishing, which would reduce the pressure on the fish stock. In other words, the fishery would

be stabilized, since agents would respond to their perception of a poor future for a stock by

allowing the stock to recover.

For our initial test of this sort of regulation, we created a simple model of both fish and

fisher dynamics. Building on the suggestion of Hilborn in [35], our purpose with the model

is to capture all important behavior in the simplest framework possible, for tractability and

comprehensibility, so that reasonable conclusions could be drawn from the model. With this

choice, we are moving in the opposite direction of Atlantis and similar computer models.

Since most commercially harvested species actually have seasons where fishers can either

participate or not, we choose a discrete model, specifically the model 3.2 as the simplest

model that captures the major dynamics of a single population. For the harvest, we needed

to model the agents’ response to changes in resource population. Initially, we assume that

agents do not completely drop out. Imagine a single agent that responds in some way to a

declining population with a decline in harvest. We will use a discrete model where the time,

t, is an integer. We seek a natural choice for a total harvest, h(t), that varies over time in

a manner related to x(t). The harvest, h(t), should change in the direction of the change

in population x(t). In other words, the harvest should decrease in response to a declining

population and increase in response to a recovering population. I chose h(t) to change by

a factor that is a function of x(t)/x(t− 1). The simplest such function would be to let h(t)

actually equal h(t− 1)x(t)/x(t− 1), but this would keep the proportion harvested constant

over time. In a classic modeling assumption (for example, in [8]), yield is proportional to

effort times population. With this assumption and h(t) = h(t−1)x(t)/x(t−1), effort would

remain constant regardless of return, which is not anticipated in most economic models.

It seems reasonable, then, that a harvester or manager might respond to a continually

declining population by decreasing the proportion harvested. I model this with h(t) =
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h(t − 1)(x(t)/x(t − 1))c with c > 1. To my knowledge, this choice of h(t) has not been

previously studied, although it is arguably the simplest function that satisfies the desired

modeling properties. Subtracting this harvest from (3.2), we obtain:

x(t+ 1) = x(t) + rx(t)[1− x(t)]− h(t)

h(t) =

(
x(t)

x(t− 1)

)c

h(t− 1)

which, letting m = h(0)/x(0)c, simplifies to become (3.1). Note that nothing prevents x

from becoming negative in (3.1). I treat any negative population as extinct, consistent with

the interpretation in the continuous models in [55] and [56].

Previous discrete models involving variable harvest are generally much more compli-

cated. Many involve maximizing some form of explicit profit function [53, 7]. The model in

[28] combines random search theory and the variable quota, Q, given by Q 7→ Qea+bx−dQ

where a, b, d are constants and x is the population. However, our more tractable model

captures the important dynamics of both the population and the harvesters and we use this

model, so that the factors leading to its conclusions remain understandable.

3.2 Analytical Results

First, we analyze the dynamics of (3.1).

Theorem 6. The map (3.1) has 2 fixed points: 0 and a unique strictly positive fixed point.

Proof. Let g(x) = rx(1 − x), h(x) = mxc. A value y is a fixed point of (3.1) if and only

if g(y) = h(y). Clearly, g(0) = 0 = h(0), so 0 is a fixed point. To prove the existence

of the unique, strictly positive fixed point, note first that g′(0) = r and h′(0) = 0. Since

g′(0) > h′(0) and g(0) = h(0), there exists a small ε > 0 such that g(ε) > h(ε). Now,

g(1) = 0 and h(1) = m. Since g(1) < h(1), there must be some x̃ between ε and 1 such that

g(x̃) = h(x̃), giving us a strictly positive fixed point. To see that x̃ is unique, note that g is
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concave and h is convex.

Note: The concavity arguments in the above proof also show that (3.1) belongs to a

class of maps known as unimodal maps, whose mapping function has a single extremum.

We will use x̃ to denote the positive fixed point of (3.1) and let f(x) = x+rx(1−x)−mxc.

The fixed point of (3.1) at 0 is unstable since f ′(0) = 1 + r and |1 + r| > 1. Biologically,

this means that extinction cannot occur by slow decline. Extinction, if it is possible, can

only occur as an over-reaction to a high population.

We now turn our attention to the stability of x̃, which depends on our choice of c, m,

and r. We have determined the region in c,m, r-space where this positive fixed point is

stable (except for knowing stability on the boundary of the region). We first note that it is

a basic calculation to show that for c = 2, x̃ is stable if r < 2 and unstable for r > 2. For

all other values of c > 1, the stability is demonstrated in the following theorem:

Theorem 7. Suppose c < 2. Let q = (cr − r − 2)/(cr − 2r) and B = r(1−q)
qc−1 for q > 0, ∞

for q ≤ 0. Then the positive fixed point x̃ of (3.1) is:

(i) stable if m > B

(ii) unstable if m < B.

The inequalities for these conditions reverse when c > 2.

Proof. f ′(x) = r − 2rx− cmxc−1 + 1.

Since x̃ is a fixed point, mx̃c = rx̃(1 − x̃). Dividing through by x̃, we have mx̃c−1 =

r(1− x̃) = r − rx̃.

Thus, f ′(x̃) = r − 2rx̃− c(r − rx̃) + 1.

Let j(y) = r − 2ry − c(r − ry) + 1. Since x̃ ∈ (0, 1) and j is linear, f ′(x̃) is between

j(0) = r − cr + 1 and j(1) = 1 − r. Since r > 0 and c > 1, both j(0) and j(1) are less

than 1, so f ′(x̃) < 1 and stability occurs whenever f ′(x̃) > −1. Simple calculation shows

that j(y) = −1 ⇐⇒ y = q. We now assume that q > 0 and return to our previously

defined functions g and h. We know that g(0) = h(0) and that g(x̃) = h(x̃). Thus, from the
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fact that g is concave and h is convex, g(x) < h(x) whenever 0 < x < x̃ and g(x) > h(x)

whenever x > x̃. Specifically, x̃ < q ⇐⇒ g(q) < h(q), for which basic calculation shows

the condition is true if and only if m > r(1−q)
qc−1 . Similarly, x̃ > q ⇐⇒ m < r(1−q)

qc−1 . Clearly,

when q < 0, x̃ > 0 > q.

The slope j′(y) = −2r + cr, which is negative for c < 2. Thus, for c < 2, combining

with the above analysis, j(x̃) > −1 if m > B and j(x̃) < −1 if m < B. When c > 2, the

slope of j reverses and j(x̃) > −1 if m < B and j(x̃) < −1 if m > B.

3.3 Numerical Results

There are also many numerical indications for (3.1). Based on trial runs, it appears that

asymptotic behavior of (3.1) can be a steady state, a periodic orbit, chaos or extinction,

only depending on the choice of c,m, and r as long as the initial population, x(0), is positive

and does not immediately lead to extinction. (f(x(0)) > 0.) Results for some choices of

different parameter values are shown in Figure 3.1, and a bifurcation diagram with m

varying and r = 0.08, c = 100 is shown in Figure 3.2. The value r = 0.08 was chosen for all

our implementations of this model since it is the growth rate the National Marine Fisheries

Service uses to model fur seals [45]. As a marine mammal estimate, 0.08 should provide

low growth and, thus, be a conservative estimate for recovery in our simulations seen in

later sections. The value c = 100 is used to show a value where chaos is evident. The

c-value is not intended to be realistic. For each value of m in the diagram, we ran for 1,000

transient iterates and plotted the next 1,000 iterates, which appeared sufficient to show the

bifurcations of the model.

3.4 Agent-based models using the single species equation

There are multiple adaptations to the single-species equation (3.1) that can be made. One

such adaptation is to have heterogeneous agents. Suppose there are N harvesters of the
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(a) Population over time for the single species equation (3.1) with a r = 0.08
and a stable fixed point

(b) Population over time for the single species equation (3.1) with r = 0.08
and without a stable fixed point

(c) Population over time for the single species model (3.1) with r = 0.08
and parameters chosen that appear numerically to result in a chaotic orbit

Figure 3.1: The population over time for model (3.1) with the parameter choices indicated.
In 3.1a, the population becomes fixed asymptotically. In 3.1b, the population tends to a
2-cycle. In 3.1c, the dynamics appear chaotic.
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Figure 3.2: Bifurcation diagram of the model (3.1) with r = 0.08 and c = 100. The plot
shows the 1,000 iterates after 1,000 transient iterates for each m-value.
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same resource, each harvesting as in (3.1), but each with a different m and c, that is

x 7→ x+ rx(1− x)−
N∑
i=1

mix
ci (3.3)

The agent model, by its structure, inherits similar properties to (3.1): an unstable fixed

point at 0, unimodality, and a unique positive fixed point.

For any given year, we will use the notation h(t) =
∑N

i=1mix
ci . In a multi-year simu-

lation, we will use the notation H for the total harvest, that is H =
∑M

t=0 h(t), where M is

final year of the simulation. We use the relatively slow growth rate of r = 0.08 for all the

following runs.

3.4.1 Stability

The region of stability for (3.3) is not clear analytically, so we analyze the agent model

numerically. In particular, we ask: if the positive fixed point were to be stable for some

harvesters acting alone, but not for others, how would it be overall? We create a simulation

as follows. When r = 0.08, it follows by simple calculation and Theorem 6 that the fixed

point must be stable when c < 26, and may be stable or unstable (depending on m) when

c > 26. For each agent, we determine a ci by dividing 26 by a random number chosen by

MATLAB from a uniform distribution between 0 and 1. By Theorem 6, this ci determines

a bound Bi for m above which the fixed point would be stable if the agent were acting

alone. We choose another random number (say a1) from a uniform distribution between 0

and 1, and we let mi = Bi/ai if we want the agent to be stable and mi = Biai if we want

the agent to be unstable. In this way, we can determine the stability if the harvester acted

alone. We conducted an experiment with 50 stable agents and 50 unstable agents.

As seen in Figure 3.3, we observe intermediate behavior in the agents in terms of dynam-

ics: somewhere heuristically less stable than a single agent whose behavior leads to a stable

equilibrium and a single agent whose behavior leads to an unstable equilibrium. In fact, it
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Figure 3.3: Population over time for the agent model (3.3) with 100 agents where the
fixed point would be stable for half of the agents acting alone and unstable for the other
half of the agents acting alone. The harvested species’ growth rate, r, is 0.08 and the
harvest parameters for each agent were chosen randomly as we described. The dynamics
are intermediate with respect to stability of the positive fixed point. In fact, even by t=1,000
(not pictured in the figure), the population neither settles on a 2-cycle nor a fixed point.

is unclear in simulations whether the fixed point is stable. By several lifetimes (t = 1, 000),

the population has still not settled on a fixed point, but the width of the oscillations is still

decreasing. The asymptotic population value of the agent model is much smaller than that

for (3.1), which would be expected, since there are 100 times more harvesters.

3.4.2 Runs of (3.3) starting from x(0) = 0.75 and h(0) = 0.09

We first consider the starting point with a single agent, i.e. using (3.1). For this simulation,

we chose an initial population (0.75) between the unharvested equilibrium (x = 1) and the

maximum sustained yield population (x = 0.5) to represent a population in the early stages

of harvest. We also the initial harvest, h(0), is unsustainable. The maximum growth rate

achieved by the model is 0.02, so it will not be possible to continue to harvest at that rate.

In fact, the proportion initially harvested, 0.12, was also chosen to be unsustainable. If the

proportion harvested is constant, then c = 1, and with our initial harvest, h(x) = 0.12x, the

only fixed point for our model is a stable fixed point at 0 (f ′(0) = −0.04). The population
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will be driven to 0 for a single agent with c = 1. These values were chosen to allow extinction

by slow decline in these two cases.

For c > 1, extinction is only possible when f(fmax) ≤ 0 where fmax is the maximum

value obtained by f . For these initial assumptions, numerical calculation shows f(fmax) ≤ 0

only for unrealistically large values of c (c > 334). For the values of c that we consider, the

population will drift towards a stable fixed point. We chose 1,000 year simulations, since

that length is enough to see the asymptotic behavior of the model, if it can recover from

the initial overfished condition. Numerical indications show that for 1,000 year simulations,

H is maximized at about 20.24 when c is about 3.7 (which implies m = 0.2609).

In all our multi-agent runs, when we create heterogeneity among the agents, we will do so

using an even distribution in all dimensions where the agents differ. For the initial harvest,

we divide a chosen initial harvest among the agents as follows: each agent is assigned

a random number from a uniform distribution on [0,1]. The initial harvest is divided in

proportion to these random numbers. We expand our range of c considered for the model to

include the limiting case c = 1, modeling agents whose fishing effort is entirely unresponsive

to payoff. As seen above, when c = 1 for a single agent, extinction is expected for our initial

conditions since the fixed point at 0 becomes stable. For that reason, we label these agents

as “extinction” harvesters. The agents are then divided in two categories: “extinction”

harvesters (with ci = 1), and “efficient” harvesters (with cis for efficient harvesters chosen

by MATLAB from a uniform random distribution on [1,6.4]). “Efficient” harvesters are

given that name since the most efficient c value, 3.7, is the midpoint of the interval [1,6.4].

Individually, the members of this group may not be acting efficiently, but, in some sense, the

average harvester is efficient. Calculation of f ′(0) shows that the fixed point may or may

not be stable for this agent model depending on how much of the initial harvest was owned

by extinction harvesters. The dynamics continue to show a drift towards a single fixed

point, the value of which decreases with the number of extinction harvesters, reaching 0

when all the harvesters are extinction harvesters. The values of H for 1,000 year simulations

with 100 agents are shown in Table 3.1. We chose 100 agents since it is roughly (order of
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Table 3.1: Total harvest (H) by proportion of harvester agents (E) who have ci > 1 for
runs starting from x = 0.75 and h = 0.09. The case where ci = 1 corresponds to constant
effort.

E H

100% 20.16
90% 19.98
80% 19.52
70% 18.61
60% 15.30
50% 11.19
40% 6.36
30% 2.44
20% 1.62
10% 1.54
0% 1.36

magnitude) correct for many fisheries.

From the first line of the table, we see that 100 agents with ci’s chosen randomly from

[1,6.4] gives a very similar result to a single agent with c = 3.7. We also see that efficiency

is fairly robust to even a sizeable minority of extinction harvesters, but begins to drop off

noticeably after about 30 extinction harvesters. We also see that inefficiency is robust to a

similar minority of efficient harvesters.

It may seem unusual from typical price theory, but a study of cab drivers in [11] found

that a simple heuristic of a constant income per day may result in more effort when profit

is lower. Using a similar heuristic of a constant harvest no matter what the effort required,

we now repeat this using a different definition of extinction harvesters (ci = 0) and efficient

harvesters (ci chosen from a uniform distribution on [0,7.4]). The results are shown in Table

3.2. In this case, efficiency is not robust to a minority of extinction harvesters, but does

continue to be robust to ci’s chosen from [0,7.4], rather than actually 3.7.
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Table 3.2: Total harvest (H) by proportion of harvester agents (E) who have ci > 0 for
runs starting from x = 0.75 and h = 0.09. The case where ci = 0 corresponds to constant
harvest.

E H

100% 20.14
90% 2.68
80% 1.41
70% 1.17
60% 1.04
50% 1.01
40% 0.99
30% 0.95
20% 0.94
10% 0.93
0% 0.91

3.4.3 Runs of the agent model with x(0) varying

Here, we vary x(0), and, to retain the value of 3.7 as the most efficient c in long-term

simulations, we tie the initial harvest, h(0), to x(0) by the formula h(0) = 0.2609x(0)3.7.

This formula keeps the location of the fixed point at the maximum sustained yield value of

x = 0.5. It also means that the initial harvest remains unsustainable as long as x(0) > 0.5.

We seek to determine whether starting closer to a sustainable harvest will allow efficiency

to remain in the presence of a sizeable minority of extinction harvesters. In this section,

we use the definition of extinction harvesters as ci = 0 and efficient harvesters as ci chosen

from a uniform distribution on [0,7.4], as before, still centered on the most efficient values.

Call the proportion of efficient harvesters (out of 100 total harvesters) E. We ran 1,000

year simulations with E varying from 0.01 to 1. As the population of the harvested species

declines, efficient harvesters lower their harvest and extinction harvesters do not, so it not

surprising that the runs that avoid extinction are the runs with the highest E. This is

typically, but not always, observed. The results are shown in Table 3.3. Since on that time

scale, extinction was quite common for all initial conditions, we also ran our simulations on
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Table 3.3: Percent (p) of runs that avoid extinction in 1,000 year simulations by initial
population (x(0)) using ci = 0. 100 runs were performed with E varying from 0.01 to 1.

x(0) p

1.00 0%
0.95 0%
0.90 0%
0.85 1%
0.80 4%
0.75 5%
0.70 9%
0.65 17%
0.60 29%
0.55 49%

the more foreseeable time scale of 100 years. Results for 100 year runs are shown in Table

3.4.

In the 1,000 year time window, the majority of runs went extinct even when starting

at x(0) = 0.55, near the maximum sustained yield population of 0.5. So, in the end, this

system is sensitive to a combination of initial harvests that are too high and/or a minority

of fishers that continue with a constant harvest as the population declines.

3.4.4 Runs with a stochastic fish population, x(0) = 0.5, h(0) = r/4.

These runs start with harvest and population at the theoretical maximum sustained yield

(MSY) value, which is a fixed point for the deterministic system. All agents have the

same c (which is mathematically equivalent to having a single agent). Note that the MSY

equilibrium is stable for 0 < c < 50 (when r = 0.08). In the 100 year runs shown in Table

3.5, we added a random number from a normal distribution with mean 0 and standard

deviation 0.05 is added to the population each year. We chose the standard deviation of 0.05

rather arbitrarily. In future work, we propose repeating these experiments with a standard

deviation derived from population data. Because any stochasticity makes extinction in the

long term likely, we chose the foreseeable time scale of 100 years. In each run, c was fixed
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Table 3.4: Percent (p) of runs that avoid extinction in 100 year simulations by initial
population (x(0)) using ci = 0. 100 runs were performed with E varying from 0.01 to 1.

x(0) p

1.00 1%
0.95 0%
0.90 0%
0.85 3%
0.80 6%
0.75 11%
0.70 17%
0.65 27%
0.60 38%
0.55 65%

for the run. From each run, H and xmin (the minimum value attained by x over the run)

were recorded. There was variation over the runs due to stochasticity. Thus, we performed

1,000 runs for each value of c, and the median values for H and xmin are recorded in the

table. We chose 1,000 runs because we could run all our experiments of this type within

several hours of computing time with that value. For a deterministic model, beginning at a

fixed point would mean the population and harvest would remain constant over time, and

H for the deterministic model would be 100h(0) = 200 and xmin would be x(0) = 0.5 for

any choice of c. We find that, for c ≥ 1, similar values of the total harvest are obtained for

the simulation as would be seen in a deterministic model.

3.5 Drop-outs and New Fishers

We now make two adjustments to all of the models in the previous subsection, and run the

results again. The first is that agents have a threshold population, and when the population

drops below that threshold, the agents drop out permanently from harvesting. This is

consistent with the possibility of selling back the right to fish as discussed in Section 3.1,

and a further assumption that the price of fish does not increase enough as the fish become
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Table 3.5: Total harvest (H) and minimum population (xmin) by c

c H xmin

0 1.83 0
1 1.98 0.20
2 2.00 0.23
3 1.99 0.25
4 1.99 0.25
5 2.00 0.27
6 2.04 0.27
7 2.01 0.27
8 1.99 0.27
9 1.97 0.27

10 1.99 0.27
11 1.99 0.27

rare to offset the increased effort. This assumption would be satisfied, for example, by the

modeling of price as constant (such as in [8]) for a species where replacements are available

in the market. Each agent has a threshold chosen from a uniform distribution between 0

and x(0) below which they will stop fishing (and not return). This prevents extinction in

the vast majority of agent runs without a stochastic element, and makes extinction less

likely in runs with a stochastic element. However, it does not return efficiency to the model

since once fishers drop out, they do not re-enter, even when the population rebounds, so

another addition to the model was introduced. New fishing rights are created and sold to

new agents. These new agents have a c chosen in the same way as the initial population, but

the threshold population for the new agents is on a uniform distribution between 0 and the

population at the time of their re-entry, rather than between 0 and x(0). A rule that was

found to balance efficiency and extinction concerns was used to determine when new fishing

rights were sold. If for 3 consecutive years, the increase in population was greater than

the harvest, then 40% of the minimum population increase over the 3-year period would be

sold to new fishers, with the division of the new fishing rights done in the same stochastic

way as the division among the original fishers. The number of years and percentage in
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this rule were found to work, in practice, for our rather arbitrary choice of stochasticity of

0.05. When we have stochasticity available from real-world data set(s), we propose further

analysis of the effect of these two numbers on performance of the rule. The number of new

fishers would be equal to the number of current fishers, up to a maximum of 5,000 fishers,

the most fishers we could plausibly imagine in a fishery. We will refer to this method in the

sections below as “drop-outs and new fishers”.

3.5.1 Runs of (3.3) with drop-outs and new fishers starting from x(0) =

0.75 and h(0) = 0.09

We conduct a similar experiment as in 3.4.2, with drop-outs and new fishers. As before,

the agents are then divided in two categories: “extinction” harvesters (with ci = 1), and

“efficient” harvesters (with ci’s chosen from a uniform random distribution on [1,6.4]). We

retain the name efficient harvesters even though the midpoint 3.7 is no longer expected to

maximize H. The agents who drop out and the unknown population where new agents

might be added make the calculation of the most efficient c less trivial, but 3.7 gives results

in the ballpark of the optimal H. The logical maximum H for this scenario, based on

standard MSY analysis as in [15] is 20.25. The dynamics again show a drift towards a

single fixed point, but the value of the fixed point varies much more noticeably due to the

random elements. For that reason, we conduct 100 runs and report median values for each

proportion of harvester agents. The values of H for 1,000 year simulations with 100 agents

are shown in Table 3.6. Total harvest in all cases is shown in Figure 3.4. Note that the

fishery is pretty efficient for all choices of E, even in the case where all fishers have constant

effort (E = 0%).

We repeated this experiment using the constant harvest definition of extinction har-

vesters (ci = 0) and efficient harvesters (ci’s chosen from a uniform distribution on [0,7.4]).

The results are shown in Table 3.7. Efficiency remains relatively strong, even when effi-

cient harvesters become a minority, less so than when ci ≥ 1, but much more so than with

constant harvest agents and no drop-outs or new fishers. See Figure 3.4 for a comparison
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Table 3.6: Median total harvest (H) by proportion of harvester agents (E) who have ci > 1
for runs starting from x = 0.75 and h = 0.09 for the model with drop-outs and new fishers.

E H

100% 20.15
90% 20.21
80% 20.23
70% 20.22
60% 20.15
50% 19.97
40% 19.77
30% 19.53
20% 19.11
10% 18.75
0% 18.21

Figure 3.4: Total harvest for the agent model by percent of efficient harvesters with and
without drop-outs and new fishers (DNF) and with both the constant effort and constant
harvest definition of extinction harvesters.
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Figure 3.5: Population of the target species with drop outs and new fishers using an agent
model where all fishers continue a constant harvest until they drop out, and the initial sum
total of the agents is 4.5 times too high for MSY stability. The model shows a several-decade
long crash, followed by a similarly slow recovery. It is likely that modeling some drop-outs
due to retirement would limit the length of the crash and the resulting recovery.
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Table 3.7: Total harvest (H) by proportion of harvester agents (E) who have ci > 0 for
runs starting from x = 0.75 and h = 0.09 for the model with drop-outs and new fishers.

E H

100% 20.21
90% 20.20
80% 19.96
70% 19.77
60% 19.62
50% 18.51
40% 16.78
30% 16.05
20% 15.19
10% 12.59
0% 11.43

of these modeling assumptions. We also note that when the number of efficient harvesters

is low, the fish population crashes and recovers before stabilizing, and that this process

usually takes a long period: more than 100 years. (See Figure 3.5.) We anticipate that, in

reality, this process of recovery would occur more quickly, since drop outs due to retirement

would occur and quicken the time scale of recovery.

3.5.2 Runs of the agent model with x(0) varying with drop-outs and new

fishers

We now repeat the simulations from Section 3.4.3 with drop-outs and new fishers. We

assume 100 agents and let c = 0 for all agents. Again, we vary x(0) and find an h(0) that

in the single-agent case gives m = 0.2609 when c = 3.7). As seen in Tables 3.8 and 3.9,

extinction is now rare.

Figure 3.6 shows a comparison to the similar simulation without drop-outs and new

fishers. In the end, the drop outs and new fishers model allows the species to survive in the

simulation.
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Table 3.8: Percent (p) of runs that avoid extinction in 1,000 year simulations by initial
population (x(0)) using ci = 0 with drop-outs and new fishers. 100 runs were performed
with E varying from 0.01 to 1.

x(0) p

1.00 100%
0.95 98%
0.90 100%
0.85 100%
0.80 99%
0.75 100%
0.70 98%
0.65 100%
0.60 97%
0.55 99%

Table 3.9: Percent (p) of runs that avoid extinction in 100 year simulations by initial
population (x(0)) using ci = 0 with drop-outs and new fishers. 100 runs were performed
with E varying from 0.01 to 1.

x(0) p

1.00 100%
0.95 100%
0.90 99%
0.85 100%
0.80 100%
0.75 100%
0.70 99%
0.65 99%
0.60 98%
0.55 99%
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Figure 3.6: Percent of runs that avoid extinction for the agent model by initial population
when initial population is tied to initial harvest. Results are shown with and without
drop-outs and new fishers (DNF) and for 100 and 1,000 year simulations.
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Table 3.10: Total harvest (H) and minimum population (xmin) by c with drop-outs and
new fishers

c H xmin

0 1.83 0.01
1 1.98 0.15
2 2.00 0.19
3 1.99 0.21
4 1.99 0.24
5 2.00 0.24
6 2.04 0.25
7 2.01 0.25
8 1.99 0.25
9 1.97 0.24

10 1.99 0.23
11 1.99 0.23

3.5.3 Drop-outs and new fishers with a stochastic fish population, x(0) =

0.5, h(0) = r/4.

We repeat the stochastic runs using 100 agents with the same c. Median results for 1,000

runs are shown in Table 3.10. Comparisons of the minimum population seen and the total

harvest are shown in Figures 3.7 and 3.8 respectively. We find that extinction is less likely

in the c = 0 case, but otherwise the minimum population achieved is typically a little less

with drop outs and new fishers. The total harvest, H, tends to be higher with drop outs

and new fishers.

3.6 Conclusions

We have created a simple model 3.1 for initial evaluation of management tools. Leading

fisheries scientist Ray Hilborn suggested in [35] that simple management rules can prevent

some of the drawbacks of accuracy and access that have affected the more complex man-

agement tools in use today, in particular the lack of knowledge about the parameters of the
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Figure 3.7: Minimum population seen during a 100 year simulation, for different values of
c. Results shown are the median of 1,000 simulations.
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Figure 3.8: Total harvest for a 100 year simulation, for different values of c. Results shown
are the median of 1,000 simulations.
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model. We use 3.1 to test a simple management rule that assumes no knowledge of the un-

derlying model on the part of managers, and find that this tool can return efficiency under

some assumptions, particularly that of a proportion of harvesters who continue to fish the

same amount or with the same effort as a population changes. We test efficiency against

heterogeneity of agents, and find that the model retains efficiency against heterogeneous

agents as long as the agents’ behavior is centered on a correct value.

We tested further with harvesting classes that overfish initially and continue to fish with

either constant effort or a constant harvest, and find that a sizeable minority of the former

group and even a small minority in the latter group led to significant and economically

inefficient overfishing. We found that fishers who drop out can prevent overfishing, but

retain economic inefficiency since the resource becomes under-exploited over time. Thus,

we demonstrated a simple management rule that returns efficiency in our hypothetical

scenario.

The drop-outs and new fishers rule, in itself, has two dimensions on which it can be

changed, the number of years of excess growth (in our case, 3 years) and the percent of

excess growth that is sold back (in our case, 40%). These two parameters were found to

work in our model, which has the rather arbitrary choice that stochastic element of the

population should have a standard deviation of 0.05. In future work, we propose finding a

reliable estimate of the standard deviation in one or more actual populations and finding

the effect of changing these two dimensions.

While results suggest benefits to this rule, we present drop-outs and new fishers as a

first step. We would like to see future work in the area of suggesting simple management

rules under different assumptions. Work could also consider more complicated models as a

verification of the robustness of the rule, as Hilborn also suggested in [35].
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Chapter 4: Conclusions

We introduced these two different models of population levels of natural resource popula-

tions under harvesting with different emphases in mind in their application to commercial

fisheries. For our first model, (2.4), the emphasis was on the dynamics of the underlying

population of fish. For (3.1), the emphasis was more on the behavior of the fishers through

its adaptation to the agent model (3.3).

We found that the dynamical structure of (2.4) included the Takens-Bogdanov bifurca-

tion. We also found a wide variety of behavior in phase space, including universal extinction,

a single attracting equilibrium, multiple attractors and, in a few cases, stable cyclical be-

havior. In addition, we found a pattern in the types of equilibria based on their prey

populations, and that a predator harvest may actually prevent predator extinction in the

long term.

We studied in particular the limit cycles of (2.4). We found that, especially with any

positive harvest for both species, most stable limit cycles do not persist when the predator

harvest changes.

In our application to the oyster and black drum populations in Louisiana, we found

that the model predicts similar behavior for widely different parameter values. In fisheries

management, this suggests that the model could be a useful tool over the observed range of

population, but we would caution against its use to predict outside that range. We should

also note that stochasticity is obviously present in the actual population.

Finally, we suggest further work in the area of model fitting. We remain interested to

see whether entirely different models would show similar predictions for the oyster-black

drum system that we applied (2.4) to. It would also be worthwhile to consider how this and

other models fit other predator-prey systems, or even, using the same functional response,

how the model behaves when applied to more than two species.
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In Chapter 3, we modeled harvesting behavior. While previous work has either avoided

modeling the harvest or focused on much more complicated ways of modeling it, we believe

that our simple model has the advantage of having some tractability to analysis, but also

models the important expected behavior of the model.

We were able to find a fairly simple rule that allowed agents, as a class, to behave near

efficiency in the absence of any prior knowledge of what behavior would be most efficient.

In this way, we contribute to a growing field of study along with [5], [54], and [8].
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