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1 Introduction

The phase separation phenomenon known as nucleation occurs in multiple component
metal alloys. These alloys are seen in material sciences; therefore, understanding their
properties is an important topic for discussion. For the purpose of this research, the two
component metal alloy was examined in hopes to understand from a phenomenological
stand point, how these composition of metals behave. Learning the characteristics of the
binary case will allow for intuition and insight into more complex models.

In a 2011 volume of the SIAM Applied Dynamical Systems Journal, this idea of nucleation
in a stochastic system for a three component metal alloy was examined using topological
approaches and much discovery was made [2]. The approach taken in this research on
the binary case, follows the same methods used in the three component case. The binary
case focuses on the formation and behavior of the droplets, which can be described as
the separation of one metal from the other within an alloy. After analyzing the behaviors
of these droplets, the aim is to find an equation or method that will allow for accurately
predicting droplet behavior based on the characteristics of the alloy.

The purpose of this research is to be able to provide explanation through analysis, as well
as a prediction method for the two component alloy with Neumann Boundary Conditions.
After this is accomplished, the same path will be followed, with regards to approach, to
make discoveries in the case of periodic boundary conditions.

2 Background and Research Methods

2.1 Methodologies

In order to understand the concept of nucleation, which is a technical term for droplet
formation, and how the calculation of this phase separation is done, one must understand
the geometric interpretations and numerical methods behind it. This research included
and relied on topological aspects, theorems and theories and their connection to numerical
methods. The numerical methods behind calculating these topological spaces is crucial to
understand. One important topological aspect is the Euler Characteristic; which directly
corresponds to the betti number calculations. The betti number calculations is how the
number of droplets are counted. Performing numerical calculations on the gathered data
also brings up an important feature involved, which is the occurrence of large deviation
and the use of the stochastic process.The stochastic process implies that the equation
being used is including additive noise.

The topological and geometric aspects one needs to be familiar with, revolves around this
idea of betti numbers. β0 can be interpreted as the number of connected components in
a geometric figure, β1 represents the number of “holes” in the connected component, and
β2 is the number of “voids” in the connected component. The β2 can be thought of as
the holes in the holes, or the enclosed cavities [3]. In this research the β2 was equal to
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zero. As seen in the figures 1 and 2, there are corresponding β0 and β1 for each of the
components in the alloy.

Figure 1: β0 and β1 are shown for each component in the mixture. For the purpose of basic
understanding, disregard the light blue and yellow colors in this figure. Assume the image is
either red or blue (yellow will be considered red and light blue will be considered blue).

Figure 2: β0 and β1 are shown for each component in the mixture. Disregard the light blue and
yellow colors in this figure, assume the image is either red or blue.
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These geometric figures can also be transformed into a numerical matrix to be made ma-
chine readable. For the sake of explanation let the red area in the figures be referred to
as component one and the blue area, as component two (also referred to as droplets). A
grid is made on top of the figures and a dot is placed in the middle of each square. If
the dot lies within a droplet (component two) then a one is assigned to that location on
the grid. If the dot lies in component one then a zero is placed at that location. The
logic behind this process is to make a matrix that is filled with zeros everywhere there is
component one and ones placed everywhere there is component two. Through this process
the computer is able to count the groups of ones which directly reflects the number of
droplets or what is technically known as the β0. Figure 4 is a visual representation where
the ones are denoted as X’s and the blank boxes as zeros.

Taking these concepts and combining them together along with using machine technology,
specifically the software Matlab, data was able to be generated. This occurred through
the combination of integration and supporting functions that were created. Matlab also
allowed for data to be stored, and ultimately was used to preform numerical analysis.
Matlab’s graphical capabilities allow for visual analysis to be performed along side the
numerical computations.

2.2 Equations

The primary equation used in this research was the Cahn-HIlliard, fourth ordered partial
differential equation with additive noise:

ut = −∆(ε2∆u− f(u)) + σnoiseξ, (1)

with Neumann Boundary Conditions:

∂u

∂v
=
∂∆u

∂v
= 0 on ∂Ω.

Where v = the outward unit normal vector. Also f(u) takes the nonlinear form as follows,

f(u) = u− u3.

When discussing the phenomenon that is phase separation, it is key to understand that
the components in the alloy have energy states and ideally want to minimize that energy.
The following equation represents the energy solution to the Cahn-Hilliard equation at a
specific time; the energy is a general statement and is not unique. The energy equation
is also not physical, it is merely a formula that is decreasing over time. Figure 3 puts a
visual to this concept.

Eε[u] =

∫
Ω

(
ε2

2
· | 5 u|2 + F (u)

)
dx. (2)
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Figure 3: Visual representation on the generic energy equation. Each point in this graph repre-
sents a function in infinite-dimensional space. This means depending on the specific function at
a specific point in space may have a different level of energy, where these energies can be local
or global minimums.

A secondary equation used and also very important to the research, was the calculation
of the Euler Characteristic:

χ = V − E + F = β0 − β1 + β2 (3)

The visual representation of this equation was seen in earlier Figures 1 and 2. This equa-
tion points out the relationship between the vertices, edges, and faces of a polyhedra, and
its connection to the betti numbers. This equation allows for a calculation to be made on
a smooth surface object through identifying topological characteristics. Similar to how
a geometric figure is transformed into a matrix for numerical calculations, this equation
is used to take the location of numbers from matrix and identify if a droplet lives at
that location. As mentioned before β0 is the number of connected components, β1 is the
number of one dimensional holes, and β2 is the number of two dimensional holes (voids).

In order to take topological surfaces, such as the droplets seen in the previous figures, and
numerically calculate their Euler Characteristic, a systematic approach is taken. First,
the figures are discretized on grid and then translated into a matrix in the form of ones
and zeros. Ones occur if part of a droplet is in the grid and a zero if it is not. From there
the vertices are calculated by tracing through the matrix, picking a location, checking its
value, and compares it to the neighboring values. If a one exists in the neighbor above
and to the left, a vertex exists. If the neighbor above and to the right holds a one a vertex
exists, and similar is done for the bottom, left, and bottom, right neighbors. Then this
process moves two places over and repeats. To calculate the edges a similar process is
performed. A location is picked, it is checked if it holds a one or zero value, then checks
if there is a neighbor above, below, left, or right that is occupied by a one. If a neighbor
holds a one then an edge exists. As before this process continues throughout the matrix.
Finally, to calculate the faces, a location is picked and if the space is occupied by a one
then a face exists at that location. Figure 4 is a visual representation of this process.
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Figure 4: The X’s in this grid represent the discretized droplets and the resulting Euler Char-
acteristic is found to be 2. This means that the matrix represents 2 droplets.

Built within the code used for this research were functions, one designed specifically to
trace through the matrix given to it and calculate the Euler Characteristic (findEuler.m),
which essentially does the process described earlier with calculating the vertices, edges,
and faces. There is another important function that then takes what is found in find-
Euler.m and computes the betti numbers for both components one and two (compute-
Betti.m).

It is also important to understand the derivation of the partial differential equation that
was used in performing this research. The variational form being used is that of, Eε[u].
For simplicity, the Cahn-Hilliard equation is first being considered without noise, for
0 < x < 1 and 0 < y < 1,

∂u

∂t
= −4 (ε2n4 u+ f(u)). (4)

4 =
∂2u

∂x2
+
∂2y

∂y2
.

Let =

 t̃ = γ2t
x̃ = γx
ỹ = γy

where γ is some constant. Notice that if 0 < x < 1 and 0 < y < 1 then 0 < x̃ < γ and
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0 < ỹ < γ. Now using the notation 4̃u =
∂2u

∂x̃2
+
∂2y

∂ỹ2
, the left hand side of the original

Cahn-Hilliard equation becomes
∂u

∂t
=
∂u

∂t̃

∂t̃

∂t
and

∂t̃

∂t
=

∂

∂t
[γ2t] = γ2. Thus resulting in,

∂u

∂t
= γ2∂u

∂t
. (5)

Doing similar manipulation to the right hand side of the Cahn-Hilliard equation, the
following equations are obtained,

∂u

∂x
= γ

∂u

∂x̃
, (6)

4u = γ24̃u.
Combining the left and right hand sides of the Cahn-Hilliard manipulation equations (5)
and (6), the follow equation is obtained on [0, γ]2,

∂u

∂t
= −4̃(ε2nγ

24̃u+ f(u)) (7)

let γ2 =
ε0
εn

then we have the equation on

[
0,
ε0
εn

]2

is as follows,

∂u

∂t̃
= −4̃(ε204̃u+ f(u)). (8)

This implies that changing the value of ε can also be seen when fixing ε = ε0 and changing
the domain size.

2.3 Parameters

Within this research, parameters were established which allowed the use of equations (1)
and (2) as well as the machine software. These parameters allowed for the equations to
be tailored for the specific binary alloy case. Changing the parameters that were used,
resulted in an energy change of the components within the alloy. Thus, effecting the
equilibrium solution equation and the ultimate phase separation characteristics. The pa-
rameters specified in this research are µ, which represents the mass of the components.
The mass of the components can also be thought of as the difference between the two
concentrations of the components in the alloy (

∫
udx where u = concentration of com-

ponent 1 − concentration of component 2). Component is another way to say a type of
metal. Since this was the binary case if µ = 0 that meant there was equal mass in the
alloy between component one and component two. ε represents the interaction lengths of
the molecules. The ε value is the major factor that effects the number, size, and the rate
at which droplets form. To make a more realistic model, σ was established to represent
the noise intensity level. There are also parameters established which allow for numerous
iterations of the code and provide a larger supply of data to ultimately run analysis on.
There is also a variable d, which is the thickness of the boundary droplets. For the pur-
pose of this preliminary research the parameters were set to µ = 0.6, σ = .09, and the ε
value was being varied.
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2.4 Models

Figure 5: The multiple subplot model for the two component metal alloy. The 3 dimensional
view of the cross-section of U shows how the concentration of the metals changes at each location
for a specific time. The yellowish and light blueish colors seen in these figures were among the
concentrations that were thresholded to equal either red or blue in order to accurately calculate
the droplets.

The above image, Figure 5 is the multiple subplots model used in this research. The
top left hand subplot labeled ‘U’ is a top view of the the three dimensional cross-section
seen in the subplot on the top right hand side. The three dimensional cross-section ‘U’
is a visual of the two components separating within the alloy. The bottom left subplot
displays the image associated with the matrix comprised of ones and negative ones. The
bottom left hand subplot shows the betti curves, the green is β0 (total droplets), the red is
boundary droplets (β0n− β1p) and blue is the interior droplets (β1p); where n represents
the negative space (the blue area/component two) and p represents positive space(red
area/component one). The betti curve subplot also shows the time step associated with
the formation of the first droplet as well as the last droplet. Since nucleation is the phase
separation that is occurring in the alloy, the betti curve subplot allows for association
between a time step and nucleation. This is a behavior of the binary case that will be
highly focused on in this research.
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3 Results and Discussion

3.1 Time Horizon for Decomposition

In order to learn the behaviors associated with the two component metal alloy, this idea
of finding the alloy’s nucleation point was the first area to be explored. Due to the fact
that nucleation occurs in a somewhat stochastic (random) way, it was realized that the
nucleation point would be better looked at as a time horizon of decomposition. For the
purpose of this research the µ was kept at 0.6 and σ at 0.09. Since the amount of mass
for each component in the alloy was not equal, using conventional methods to identify a
droplet was causing inaccurate readings. Specifically this was an issue in the early time
steps. Every little fluctuation away from the starting mass (the concentration of metal
one − concentration of metal two) was being considered a droplet which is not true and
as a result, was effecting the betti number calculations. The importance of correct betti
number calculation is because β0 represents the total number of droplets and when a true
droplet forms, then nucleation has begun. Therefore, to combat the issue of premature
droplet counting, the data that was being use became thresholded before betti calcula-
tions were performed. This is explained by Figure 5. Remembering the energy equation
mentioned earlier in equation (2), the droplets only truly form when an equilibrium state
is reached for a component. The thresholding allowed for the initial insignificant fluctua-
tions (where a equilibrium state was not reached) to be ignored and for the actual time
horizon of decomposition to be calculated using the new, accurate betti numbers.

Once the thresholding was done, looking at the betti curves allowed for intuition to be
made on the approximate time horizon. At first, both the start time of decomposition
(the first time step where β0 = 1) and the end time of decomposition (the first time
step where β0 = the max β0) was calculated. Remembering that the motivation behind
this project is to find when nucleation occurs in a two component alloy, the end time
of decomposition became the main focus. After the max β0 is reached nucleation has
ended and a process called coarsening occurs, thus stressing the importance of calculating
the ending time of decomposition. Once the end time decomposition of the time horizon
was calculated for one run, then numerous runs where done with the same parameters
and an average was taken. This average time step was used as a parameter referred
to as tend within the Matlab code; this governed the run time of the data, making it
less computational expensive. Averaging the time decomposition for the many different
ε values over numerous runs allowed for a smoother curve of the betti numbers to be
made and better approximation of prediction to occur. The code written to calculate the
average decomposition step is as follows.

1 function [avgStep] = getTimeDecompStep(mu,epsilon,sigma,startRun,endRun)
2

3 %initialize varaiables
4 finalStep = 498;
5

6 t decompArray = zeros(1, endRun−startRun+1);
7 bettiArray = zeros(endRun−startRun, finalStep+1);
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9 %create bettiArray from saved data
10 %for loop startRun:endRun
11 %load saved data
12 for run=startRun:endRun
13 for step = 0:finalStep
14

15 S= load(sprintf('../../../data/neumannBC/U mu%0.5f eps%
16 ...0.5f sg%0.5f step%05d r%04d.mat',
17 ...mu,epsilon,sigma,step,run));
18 step = step+1;
19 bettiArray(run−startRun+1, step)= S.betti0n;
20 end
21 %finds the time step that holds the largest element
22 max(bettiArray(run−startRun+1));
23

24 %find(bettiArray == max b0n);
25 newArray = find(bettiArray(run−startRun+1,:) == ...

max(bettiArray(run−startRun+1, :)));
26 run t decompElement = min(newArray);
27

28 %vector of the t decomp values of each run
29 t decompArray(run−startRun+1)= run t decompElement;
30

31 end
32

33 %t decompArray
34 avgStep= mean(t decompArray)
35

36 end

Once the getTimeDecompStep code was made then the code to calculate the average
time decomposition step (getAvgTimeDecompStep.m) was made on the same premise, to
take in the µ, ε, σ, startRun, and endRun and calculate the average time decomposition
step for these parameters. This code was then integrated into the integrator function
designed for this research (ch2d noise neumannIntegrator.m) and allowed for the max
iterations through the data to be three times the amount of the average decomposition
time that was found for the specified parameters. This was another way to save time
while still obtaining the critical information that was being sought. The theory behind
incorporating these codes was to be able to interpolate a function that describes the
behavior of the data which ultimately allows the data to become normalized, to a certain
extent.

3.2 Average Betti Curves/ Droplet Curves

As mentioned earlier, once the data was able to be thresholded and correct betti numbers
calculated, betti curves were able to be plotted on the real time run model. This was
seen in Figure 5, in the bottom left hand corner. This allowed for a clear representation
numerically, of how the droplets were forming and a relative time step for when nucleation
was beginning and ending. From here, the getAvgTimeDecompStep was used as a tool to
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create and plot the average betti curves associated with parameters that were specified.
The code that was created to implement this was plotBettiZero Averages.m. The plot
has three different curves that are being plotted; the blue curve represents the β0n (total
droplets), the red curve is the β1p (interior droplets), and the green is β0n−β1p (boundary
droplets). Since the data used in this research was run twenty times per parameter the
average betti curves still appear somewhat jagged. Running 60 runs the curves begin to
smooth out. The theory is with more runs, such as one hundred, the average betti curves
would become smooth. This means the average number of droplets that are forming would
become smoother as well since the betti curves are the droplet counts. The code that was
created to implement this was AvgerageDrops withPlot. There is control within this code
to run it only to as far as the average decomposition time step, which was found while
examining the time horizon. This allows for a visual check of the numerical output of
interior and boundary droplets that the code calculates. The below figures show the plots
associated with the average betti curves for ε = 0.006 Figure 6, and the corresponding
average droplets image Figure 7.

Figure 6: Average Bettie Curve before smoothing data with ε = 0.006.
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Figure 7: Average drops with ε = .006, interior drops = 21, boundary drops = 11.

3.3 Calculating d

After being able to calculate the average interior and boundary droplets from Average-
Drops withPlot.m for the different ε values, this idea of calculating the boundary droplet
thickness d, was examined. Identifying d which is related to the domain mentioned in
equation (8), is important when attempting to predict the average droplets. Using the
manipulation done on the Cahn-Hilliard equation seen in section 2.2, the number of in-
terior and boundary droplets for εn on [0, 1]2 is the same as at ε0 on [0, ε0

εn
]2. Using this

fact for ε0, it is assumed that there are i0 droplets in the interior region [d, 1− 2d]2 and b0

droplets in the boundary, doing some substitutions the following equations are obtained,
where the i0, b0, ε0 are fixed and the εn changes:

in = i0

(
ε0
εn
− 2d

)2

(1− 2d)2
(9)

bn = b0

ε0
εn

(10)
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After manipulation and substitutions of these equations (9) and (10), the resulting equa-
tion to calculate d is as follows:

d =

√
e0
en
−
√
in
i0

2− 2

√
in
i0

(11)

3.4 Predicting Interior and Boundary Droplets

Obtaining the d calculation describe in the previous section as well as the initial values
that are found, paves the way to predict boundary and interior droplets. This was done
with varying ε so that analysis of the binary alloy case could be done and compare its
results to what was found in the three component case. The idea behind this was using
the following two equations, where equation (12) predicts the average boundary droplets
and equation (13) predicts the average interior droplets.:

bn = b0

e0
en

(12)

in = i0

(
ε0
εn
− 2d

)2

(1− 2d)2
. (13)

Manipulating equation (13), d was calculated with a specific e0 and en and the i0 cor-
responding to the e0. Then d is used to predict the in for any given εn. Once the
prediction droplets were calculated, the accuracy of the calculation needed to be found.
For the sake of readability, let the actual average droplets that were calculated in Aver-
ageDrops withPlot.m be represented by Aa and let the predicted average droplets that
were calculated by equations (12) and (13) be represented by Ap. Calculating the relative
error, which is proof of accuracy in the prediction calculation,

|Aa − Ap|
Ap

is the next step. The relative error is critical to have when analyzing if the equations
(12) and (13) are accurate to predict these droplets. Numerous ε ranges were set and the
interior and boundary droplet averages with actual and predicted amounts were made.
This was done for eight runs, then twenty runs, then sixty runs to see if the increased
data would reduce the relative error since the predictions were done on averages. Thus
with more data, a better read and prediction should occur.
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Initial Parameters for Tables 1 and 2:
Average Fixed Step = 90

Total Runs = 20
ε0 = 0.0110 and εn = 0.0105

d = 0.2301

Table 1: Interior Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.0110 3.8 3.8 0.0000%

.0105 4.5 4.5 0.0000%

.0010 5.15 5.3383 3.5273%

.0095 6.5 6.3482 2.3912%

.0090 7.8 7.5727 3.0016%

.0085 8.35 9.0691 7.9291%

Table 2: Boundary Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.0110 5.05 5.05 0.0000%

.0105 5.5 5.05 0.0000%

.0010 6.05 5.555 8.9108%

.0095 5.75 5.8474 1.6657%

.0090 5.9 6.1722 4.4100%

.0085 5.95 6.5353 8.9559%

Tables 1 and 2 are the actual and predicted droplets that form in the interior and on the
boundary. For these tables a finer mesh of ε was calculated over. Also the average time
step of decomposition that was found over these specific ε values was calculated to be 90.
Running the AverageDrops withPlot.m code for each ε the actual average droplets were
found. From there, using ε0 = 0.011 and εn = 0.0105 and the corresponding i0 and in, d
was calculated to be 0.2301. As seen in the tables the relative error isn’t as low as one
would hope; the aim is to get the relative error to closer to zero, 10−4 would be ideal. The
boundary droplet calculations are even more unsatisfying than the interior predictions.
One thought for the inaccuracy in prediction values is the low number of runs on the
data.
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Initial Parameters for Tables 3 and 4:
Average Fixed Step = 150

Total Runs = 60
ε0 = 0.0110
d = 0.1653

Table 3: Interior Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.011 6.3333 6.3333 0.0000%

.010 8.3667 8.3667 0.0000%
.0090 11.05 11.2362 1.657%
.0080 15.3 15.4167 0.7570%

Table 4: Boundary Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.011 6.650 6.650 0.0000%

.010 8.0833 7.3150 10.503%
.0090 8.4833 8.1278 4.374%
.0080 9.15 9.1438 0.067%

Focusing on four ε values but for triple the number of runs, Tables 3 and 4 show that the
interior droplet prediction got better since the relative error decreased. However, in the
boundary droplet prediction something peculiar is occurring. The substantial increase in
the relative error at ε = 0.01 is disturbing and leads to discussion of the cause for this
drastic jump.
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Initial Parameters for Tables 5 and 6:
Average Fixed Step = 81

Calculated by averaging the time decomposition step over the runs and different ε
Total Runs = 60
ε0 = 0.0110
d = 0.3090

Table 5: Interior Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.011 2.9 2.9 0.0000%

.010 4.6167 4.6167 0.0000%
.0090 6.3833 7.2555 12%
.0080 7.3833 11.3884 35%

Table 6: Boundary Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.011 3.5667 3.5667 0.0000%

.010 4.9667 3.9234 26%
.0090 5.8 4.3593 33%
.0080 5.5167 4.9042 12%

For Tables 5 and 6 the same ε values, number of runs, and d value were used but the
fixed time step that the averages were taken at were changed from 150 to 81. The fixed
time step was set to 81 because 81 was the average time step calculated between the
four ε values. The interior and boundary droplet predictions increased even more. This
provoked the idea that the fixed time step was causing the increase in relative error. After
further investigation into the code it was realized that the average time steps for each ε
referred to a different actual time; thus the notation to go off of the actual average time
and not the time step may prove to be a better strategy.
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Initial Parameters for Tables 7 and 8:
Average Fixed Step = final time step

Calculated by averaging the time decomposition over the runs and different ε
Average Decomp Time = 0.020255 Total Runs = 60

ε0 = 0.011
d = 0.1189

Table 7: Interior Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.011 5.4833 5.4833 0.0000%

.010 7.0167 7.0167 0.0000%
.0090 8.7667 9.1468 4.1555%
.0080 12.2833 12.2061 0.6324%

Table 8: Boundary Average Droplet Counts

ε Actual Average Predicted Average Relative Error

.011 6.5500 6.5500 0.0000%

.010 7.3667 7.2050 2.2443%
.0090 7.7333 8.0056 3.4013%
.0080 8.7000 9.0062 3.3999%

Following the new strategy of calculating the average actual time between the ε val-
ues, the time was calculated to be 0.020255. This number was then set within the
ch2d noise neumannIntegrator.m code as tend, where tend = 3 ∗ 0.020255. Then the
average droplet count was made by calculating the average at the final time step of 500
since all the time steps now go out to the same actual time. Tables 7 and 8 show the
results gained through this process and it is seen that the relative error for the droplets are
more constant and have decreased slightly. From here, there is intuition that smoothing
of the data prior to calculating the droplets could reduce the relative error being seen in
these tables.

4 Conclusion and Future Work

4.1 Analysis of Neumann Boundary Conditions

The purpose of this research was to examine the phase separation phenomenon, also
known as nucleation in a binary alloy. Along with examining the nucleation time, the
hope was to identify behaviors of this alloy. Using the three component metal alloy case as
a template [2] along with topological theory [3], the Cahn-Hilliard equation with additive
noise was chosen to be used as this research’s model. Incorporating Euler Characteristic
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into the model, the betti number calculations were performed. Identifying that small fluc-
tuations at the early time steps were incorrectly calculating betti numbers, thresholding
the data was implemented to correct this problem. Using topology, it can been seen that
these betti curves represent the droplet formation numbers. From there, the calculation
of the time horizon of decomposition was pin pointed for µ, σ, and the varying ε val-
ues and a narrower scope on when nucleation was occurring, was seen. Using the data
gathered, averages of the time decomposition were calculated and then used to calculate
the thickness of the boundary drops, d. Once d was calculated, equations to calculate
the average interior (12) and boundary droplets (13) were used to construct the average
prediction tables.

There remains future work to be done for the Neumann Boundary Conditions. Since there
remains a relatively high relative error for the boundary drops, it would be worth wild
to research it in further detail. Running analysis using the average time decomposition
versus the average time decomposition step may decrease the relative error as seen in
Table 7 and 8. Applying a smoothing function which can be done in Matlab, to the data
prior to calculating the number of droplets is being looked into; this too may reduce the
error being seen in the actual/prediction tables. Also examining the rate of nucleation
for a given set of parameters seems to be an area of interest.

4.2 Periodic Boundary Conditions

Similar to the research done in the Neumann Boundary Condition case, the same pro-
cedure will be done for the Periodic Boundary Conditions. This means manipulation of
the matrix padding in the initial coding step will need to be done. The manipulation will
govern what will be considered what, and essential where a droplet will be counted. Ana-
lyzing how the parameters changing correspond to nucleation in the Periodic Conditions
is an area to be research as well.
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