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2.1 Two-compartment Pinsky-Rinzel model neuron with electric field. Arrows

denote the direction of the currents during stimulation from rest. Differences

in potential along the body of a neuron outside the neural membrane induces

a polarization within the neuron. Polarization induces a current between the

two model compartments. All the active currents in the model involve cations

so inward arrows are depolarizing and outward hyperpolarizing. Active cur-

rents in the soma are the depolarizing sodium (Na) and the hyperpolarizing

potassium-delayed rectifier (K-DR). In the dendrite the calcium (Ca) current

is depolarizing while the potassium after-hyperpolarization and potassium-

calcium (K-C) are hyperpolarizing. Is and Id include any constant baseline

currents as well as any stimulating currents. . . . . . . . . . . . . . . . . . . 13

2.2 Summary schematic of computational protocols used to characterize how

polarization affects excitability. Is,inj(t) is the ramp current injected into the

soma and is equal to Is +M(t− t0) where M is in µA/(cm2sec). The Time

To First Spike (TTFS) is defined as the time it takes for the model neuron’s

somatic membrane potential to pass through a predefined threshold value.

This work will be concerned only with the dynamics driving the polarized

neuron from rest to first spike. The TTFS was insensitive to soma potential

thresholds above 10 mV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 For decreasing values of V out
ds , the TTFS increases linearly until about −4

mV . As V out
ds continues to decrease below this value, the TTFS curves display

either sublinear (a, b, d) or superlinear (c) behavior depending on the rate

of current injection (M) and the potassium reversal potential EK . Here,

as for all the computations in this work, Is = −0.5µA/cm2. The weak,

intermediate, and strong, polarization regions are labeled. . . . . . . . . . . 19
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2.4 Spike behavior for two sublinear profiles, A and B. For both profiles M =

0.8µA/(cm2s). EK = −45 mV for A and EK = −25 mV for B. All parameter

values are the same as that used in Fig. 2.3 (a) and (b). Here, however, the

integration is continued past the TTFS with a constant current injection

= M · TTFS. Filled symbols denote periodic spiking or busting, and open

symbols denote an isolated spike or burst, or that activity was at such a

low frequency that no other spikes appeared during the 10 second run-time.

Shapes symbolize number of spikes within a particular waveform (< 20ms):

diamond denotes a single spike, circle denotes a spike doublet, and triangle

denotes 3 or more spikes (e.g. a burst). The third column of plots is a

magnification around a spike in the second column of plots. . . . . . . . . . 21

2.5 Spike behavior for a sublinear profile, A, and superlinear profile, B. Both pro-

files use a slow injection rate, M = 0.3µA/(cm2s). For profile A EK = −25

mV and for profile B EK = −45 mV. All parameter values are the same as

that used in Fig. 2.3 (a) and (b). Here, however, the integration is contin-

ued past the TTFS with a constant current injection = M · TTFS. Filled

symbols denote periodic spiking or busting while open symbols are isolated

spike or bursts or, at least, with a period greater than 10 s. Shapes symbolize

number of spikes within a particular waveform (< 20ms): diamond denotes

a single spike, circle denotes a spike doublet, and triangle denotes 3 or more

spikes (e.g. a burst). The third column of plots is a magnification around

a spike in the second column of plots. Notice how the superlinear profile

exhibits isolated spikes at weak polarizations and periodic spiking near the

end of the intermediate region. While the sublinear profile exhibits periodic

spiking/bursting at weak polarizations and isolated spikes in the intermedi-

ate region. Superlinear and sublinear profiles show qualitative differences in

both spike behavior and TTFS (see Fig. 2.6). . . . . . . . . . . . . . . . . . 22

2.6 The EK − M parameter-space boundary that separates sub- and super-

linear behavior exhibits an inverse relationship. Below the line the profile

is superlinear and above it is sublinear. As discussed in section 2.2.2 sub-

linear and superlinear profiles were associated with the sign of the numer-

ical second-derivative computed over the intermediate polarization region,

V out
ds ∈ [−15mV,−4mV ]. Parameter values are as in 2.3 . . . . . . . . . . . 23
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2.7 The strong polarization region begins where the TTFS starts to decrease as

V out
ds decreases. Here the TTFS values are calculated for a fast injection rate

(M = 0.8µA/(cm2s)) at four different EK . . . . . . . . . . . . . . . . . . . . 24

2.8 Here we plot the total somatic and dendritic currents, the right-hand sides

of dVs/dt and dVd/dt. Even at the fastest injection rates the somatic and

dendritic potentials change at the same rate. This holds true during the soma

injected current for all EK , M , and V out
ds we examined. . . . . . . . . . . . 28

2.9 Soma shunting to dendrite. M = 0.4 µA/cm2. Iinds is defined to be the

current out of the dendrite and into the soma. Thus, negative values of Iinds

indicate that this current flows from the soma to the dendrite. The curves

terminate when a somatic membrane potential spike occurs. Compared to

the sublinear case the superlinear shunting is increased by approximately 20

percent. This increase in shunting is enough to not only delay a somatic spike,

but to cause significant dendritic hyperpolarization. For the case shown, the

TTFS increases by approximately 30 % for V out
ds = −10 mV to a factor of

two for V out
ds = −15 mV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10 The active dendritic currents for sublinear and superlinear profiles. Here

M = 0.4µA/cm2s) and Is,inj = −0.5µA/cm2. In (a) EK = −27.5 mV and

the profile is sublinear. In (b) E(K= −40 mV and profile is superlinear. The

total active dendritic currents are plotted and are equal to the sum of the

hyperpolarizing potassium currents, K-AHP and K-C, as well as the depo-

larizing calcium. Id,active = IK−AHP + IK−C + ICa. For the sublinear profile

the total active dendritic currents are monotonic in time and for increasingly

negative V Out
ds . For the superlinear profile with it’s stronger hyperpolarizing

currents the total active dendrite currents become non-monotonic with time

for polarization below around −12 mV. Furthermore for polarizations below

around −13 mV the total active dendritic currents become net hyperpolarizing. 30

2.11 Plots of the active dendritic membrane currents (left), and for comparison,

the total dendritic membrane current (right). The parameters are the same

as in Figure 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.12 The superlinear and sublinear profiles emerge only at stronger polarizations

which primes the activation of the dendritic channels. For the same param-

eters as in Fig. 2.11 but at weak polarizations while there is some increase

in the hyperpolarization and longer TTFS there is no qualitative difference

in the currents as there is when it is at stronger negative polarizations. . . 32

2.13 The q gating variable is the only gating variable sensitive to M over the

range considered here. The five gating variables of the polarized PR neuron

are shown as the neuron is taken from rest to a somatic potential spike in

response to a range of injected ramp currents. In each case V out
ds = −12 mV

and Ek = −45 mV . For each plot, the equilibrium value is denoted by a

solid line, and the computational results are denoted by dashed lines. There

are ten different dashed lines corresponding to M from 0.1 µA/(cm2s) to 1.0

µA/(cm2s). Only the slowly-activating q gating variable exhibits significant

deviation from the equilibrium curve. In all other plots, the gating variables

track the equilibrium curve so closely, regardless of the injection rate, that the

lines can barely be distinguished. Note that although q is a function of Ca the

fact that Ca equilibrates with changing Vd well over an order of magnitude

faster than q equilibrates with changes in Ca allows us to approximate the q

kinetics q(Ca(Vd)) by q(Ca∞(Vd)). . . . . . . . . . . . . . . . . . . . . . . 33

2.14 In the strong polarization region, where TTFS decreases, a dendritic spike

precedes the somatic potential spike. Somatic and dendritic potential spikes

are revealed when plotting Iinds . Plots of the current flow between compart-

ments, gc(Vd−Vs +V out
ds ) are shown in (b) for the corresponding V out

ds shown

in (a). Spikes in Vd result in positive current spikes in (b) while spikes in Vs

result in negative current spikes in (b). Since for each polarization the ap-

plied current ramp grows until the somatic potential spike in all cases the Iinds

ends with a negative spike. The appearance of dendritic spikes (positive Iinds

) coincides with the decreasing TTFS. Evidently the increase in depolarizing

current coming from the dendrite back into the soma more than compensates

for the increased soma-hyperpolarizing V out
ds . . . . . . . . . . . . . . . . . . . 34

2.15 TTFS profiles for various values of gc, the electrotonic coupling between the

soma and the dendrite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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2.16 The proportion of the total membrane area allocated to the soma compart-

ment, ρ, is varied over a range from 0.1 to 0.9. . . . . . . . . . . . . . . . . 38

2.17 For our synaptic AMPA protocol (gAMPA = 0.3 mS/cm2) we find a clear

split in the gKAHP − EK parameter space into neurons that fail to spike at

some point in the intermediate range and those that have a spiking solution

into the strong polarization region. In (a) we have plotted the maximum

TTFS obtained in the intermediate polarization region, which we defined as

V out
ds ∈ [−12.5, 0] mV since this encompassed all of the polarization values

capable of producing a maximum TTFS. Polarization values were stepped by

0.075 mV. In (b) we plot the TTFS profiles for four sets of EK−gKAHP values.

Two of them are in the ”Fail to spike” region in (a) (white) and two are in the

shaded region indicating that they spike throughout the intermediate region

and into the strong region. The line marked with circles (EK = −35 mV and

gKAHP = 0.1 ms/cm2) is close to the boundary and reaches a maximum at

around −10 mV at which point by our definition it reaches the end of the

intermediate region and the beginning of the strong region. . . . . . . . . . 40

2.18 For the AMPA current protocol, the neurons that fail to spike in the interme-

diate region and those that do is correlated with a qualitative change in the

total active dendritic current. The sets of EK − gKAHP values in (a)-(d) are

the same as in Fig. 2.17 (b). For the two neurons that spike throughout the

intermediate region, (a) and (b), The total active dendritic current grows lin-

early and at nearly the same rate regardless of the polarization. In contrast,

for the two neurons that failed to spike the total active dendritic current,

after about 10 ms, grows at a much slower rate and shows more pronounced

polarization dependence. These observations are consistent with our obser-

vations and hypothesis made using the ramp injected protocol about the role

of the active dendrite currents. One difference between the ramp injected

protocol and the AMPA protocol is that for the ramp injected protocol the

total active dendritic current become net hyperpolarizing in the superlinear

case (Fig. 2.10 and Fig. 2.12). . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.19 This figure shows V out
ds versus Vs, Vd, and i for the resting state (a)-(c) re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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2.20 The ramp injected protocol with polarized PR model plus Ih current. The

differences between the polarized PR without Ih (square) and the different

regulated states of Ih (triangle, circle, star) are most apparent at larger V out
ds

and at more hyperpolarized dendritic membrane potentials. Also apparent is

the significant gap between what has been treated as the high up-regulated

state from serotonergic studies [1] (circle) and the most active state used in

[2] (star). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.21 TTFS for different levels of Ih, where darker is faster spiking and white

denotes spike failure. The spike failure profile persists with added Ih, but

the depolarizing effect of Ih causes quicker TTFS and decreases the size of

the spike failure region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Pinsky-Rinzel polarized model neuron . . . . . . . . . . . . . . . . . . . . . 58

3.2 Schematic of chain of synaptically coupled PR neurons embedded in a resis-

tive lattice. The resistive lattice forms a continuous grid. However, the nth

and 1st neurons are not synaptically connected. The resistive grid (i.e. the

number of neurons) typically consisted of 51 model neurons. The duration

of the computations were often such that only 10 or so neurons spiked. . . . 60
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3.3 Shown is the polarization induced between the soma and dendrite compart-

ments by the ECC of a single spike and the resulting transmembrane po-

tentials. There is no synaptic connectivity. Computations are with 51 PR

neurons in a chain embedded in a resistive lattice as in Fig. 3.2. The Nth

neuron is stimulated through its synaptic (AMPA) conductance (see meth-

ods). As a result the stimulated neuron responds with a single isolated spike.

The changing membrane potentials produce ECC that flow to either side of

the lattice. In the figure, results are shown only on one side of the stimulated

neuron as the results are symmetric around N. (a)-(f) show the polariza-

tion, V out
ds , (red) and the somatic and dendritic membrane potentials (blue

and black respectively) for the stimulated neuron and its five closest neigh-

bors. In (a) the soma and dendrite spike sharply to above 80 mV and 40

mV respectively (The y-axis is cut off to show the much smaller polariza-

tion) in only 1-2 ms. The ECC during this period dominates that produced

over the prior 25 ms of subthreshold depolarization. The ECC propagate in-

stantaneously through the lattice but diminishes significantly with distance

from the stimulated neuron (b-f). The polarization, V out
ds , and the resulting

induced membrane potentials are shown for the five nearest neighbors (g-

i). The amplitude decreases with neuronal position, however, the temporal

profile of the signal does not change through the purely resistive lattice. . 69
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3.4 Time Between Spikes (TBS) down a sequentially excited chain. Results are

shown with (b) and without (a) the resistive lattice. The symbol indicates

the level of inhibition, Is. The less inhibition the shorter the TTFS. Notice

that in both cases the gap in TBS grows with increasing inhibition with

a dramatic jump going from Is = −0.295 µA/cm2 to Is = −0.3µA/cm2

especially in the resistive lattice case where the TBS more than doubles.

This rapid increase in TBS near the bifurcation is shown more explicitly in

Figs 3.5 and 3.7 and is characteristic of Type I neurons as discussed in Sec.

3.3.3. Next notice how there is little variation in TBS down the chains except

for Is = −0.3 µA/cm2. Without the resistive lattice only small differences,

proportional to the integration step size, are observed. This is as expected

since the only coupling between neurons (without the resistive lattice) is

synaptically which by design was made to be nearest-neighbor only. The

inclusion of the resistive lattice does provide a global coupling that could

introduce variability in the TTFS down the chain. However, in this case

(sequentially excited architecture with standard resistances), greater than

nearest-neighbor ECC effects are evidently negligible except for Is = −0.3

µA/cm2 which is close to the point where spike failure occurs. . . . . . . . 70

3.5 The TTFS down a synaptically (AMPA) connected chain as a function of

excitability (Is) with no resistive lattice and thus no ECC. In (a) the black

triangles (lying on the x-axis below Is = −0.3 µA/cm2) denote failure to

spike. The TTFS is seen to increase rapidly as Is decreases to the threshold

for spiking. In (b)-(e) we plot the somatic potential as a function of time for

four different Is values. In (b) for Is = −0.32 µA/cm2, the stimulation from

the AMPA conductance (gAMPA = 0.142 mS/cm2) is not sufficient to elicit a

spike. In (c)-(e) as the neurons become more excitable the period of latency

—a prolonged period of almost constant membrane potential —shrinks. The

TTFS here is actually the mean of the differences in consecutive spiking

neurons in the chain. The differences in the computed time to pass through 30

mV is nearly identical down the chain (Fig. 3.4) as would be expected given

that all PR neurons are identical and the synaptic connectivity is nearest-

neighbor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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3.6 The flow of trajectories projected onto the Vs − n plane is characteristic of

dynamics near a SNIC bifurcation. Shown are many different trajectories for

three different Is. X marks the beginning of a trajectory and in (a) and (b)

the red square makes the stable equilibrium. The influence of the unstable

equilibrium is evident in the divergent trajectories where for two nearby

initial conditions one takes a more direct path towards the stable equilibrium

and the other takes a more round about way. In (a) and (b), regardless of our

initial conditions, all trajectories end at the stable equilibrium (red square).

In (b) as Is increases to −0.1 µA/cm2 the two equilibrium points approach

each other. Then, in (c), for slightly positive Is the two equilibrium have

vanished and the unstable manifold has formed a limit cycle. All trajectories

eventually lead to the limit cycle and the neuron spikes periodically. . . . . 74

3.7 Far from the threshold to non-spiking the sequentially excited (SE) archi-

tecture has the same TTFS with or without the resistive array. Whereas,

very near to the threshold the SE with resistive array has a higher TTFS

and right at the threshold it has a much higher TTFS. This is shown in (a)

where the average TTFS as a function of excitability, Is, with (red squares)

and without (blue squares) the resistive array are plotted. The black triangle

on the x-axis denotes failure to spike. In (b) we plot the difference in TTFS

with and without the resistive array. In this figure, the resistive array is

set to standard values (see Methods) and here and for all computations we

use gAMPA = 0.142 µA/cm2. The addition of the resistive array and thus

the ECC has an inhibitory effect on the SE architecture. For the SE, the

timing of the ECC from the action potential is always fixed and precedes the

synaptic current by ≈ 0.2 ms. In (c),(e),(g),and (i) Vs is plotted showing

the response to the pre-synaptic spike. (d),(f),(h), and (j) show the same

computations but are zoomed in to highlight the effects of the ECC. In (c)

and (d), we have spike failure. (e), (g), and (i) demonstrate the characteris-

tic latency associated with the excited PR neurons near the critical point of

spike failure. This property of latency is present with or without the ECC.

In (h) and (j), we can see not only the ECC from the pre-synaptic neuron

but also from the preceding spiking neurons. . . . . . . . . . . . . . . . . . . 76
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3.8 Shown in (a)-(c) are the inter-compartment currents, gcV
out
ds (dash-dot), the

AMPA current (dots), and the soma membrane potential, Vs (solid), for

three different values of Rout
ds . For each Rout

ds the polarization and its current

increase in amplitude for increased resistance but the purely resistive lattice

maintains the waveform. It is not immediately obvious how the ECC and

its resulting polarization effects the TTFS. For example (a) and (c) result

in practically the same TTFS even though the amplitude of the polarization

current differs by at least a factor of four. The explanation of these effects is

the primary subject of the remaining chapter. . . . . . . . . . . . . . . . . . 78

3.9 (a) Shows the response of the resistive lattice (no neurons) as a function

of Rout
ds . The transmembrane currents are replaced by constant currents at

the junctions where the somatic and dendritic compartments would be. In

this case Id = 4 nA and Is = 0 nA so that there is 4 nA of current flowing

outside the source neuron from the dendrite to the soma. Shown are the

polarizations at the source and the next three posts in the chain. Polarization

is symmetric around the source neuron (i.e. V out
ds (N + x) = V out

ds (N − x) ).

In all cases the neuron-neuron resistances are fixed to the standard values

( Rdd = Rss = 0.01Rin
ds). Filled symbols denote standard resistance values

of Rout
ds . The monotonicity persists over increased Rout

ds and increased neural

distance from source. (b) We consider the transmembrane currents during

an action potential for a single neuron by plotting Is (black), Id (blue) and

Id − Is (red). Notice that the constant 4 nA current used in (a) is only

exceeded for a fraction of a millisecond . . . . . . . . . . . . . . . . . . . . . 80
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3.10 For the SE architecture with a resistive array the TTFS is unimodal with

increasing resistance along the soma-dendrite axis, Rout
ds . In (a) we plot the

mean time between spikes as Rout
ds is varied for a range of Is. As expected

the higher Is and the more intrinsically excitable the neurons are, the less

noticeable the effect of the extracellular resistance. Interestingly, the TTFS

has a peak at about the standard resistance values. The filled symbols on

the left y-axis at Rout
ds = 0.1Rin

ds are the TTFS for the SE architecture with

no resistive lattice. In (b) we draw a schematic for the scenario used in the

figure. The resistance in red denotes that these values are varied over the

range along the x-axis of (a). In this picture, the soma lies beneath the den-

drite and the arrows denote that the presynaptic soma triggers the AMPA

current in the postsynaptic dendrite. Above we only vary the Rout
ds fixing

the resistances connecting neuron to neuron to their standard values of 0.01

Rout
ds . In (c) we plot Vs versus time for three Rout

ds at Is = −0.30 µA/cm2

and correspond to the squares of like colors in (a). As Rout
ds increases, the

resulting time-varying polarization, V out
ds due to the action potential associ-

ated ECC increases in amplitude while maintaining its shape (Fig. 3.3). The

effect of this monotonically increasing polarization amplitude on the TTFS

is, however, not monotonic and the reasons for this will become clear through

the work that follows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 With the neuron-to-neuron resistances removed the TTFS with respect to

Rout
ds is monotonically increasing. (a) plots TTFS as a function of Rout

ds for

a range of Is. The filled symbols along the left y-axis are the TTFS for

no resistive lattice. (b) shows a schematic for the scenario in this figure.

Notice the complete absence of neuron-to-neuron resistance and thus, no

neuron-to-neuron flow of ECC. The only effect the extracellular currents of

each neuron has is due to self-polarization (referred to as source loading in

the Introduction). In (c) we plot Vs versus time for the same three Rout
ds

values sampled in Fig. 3.10 and correspond to the squares of like colors in

(a). We conclude that the source loading component of the ephaptic effect

is inhibitory and from Fig. 3.10 the remaining synaptic coupling and/or the

non-synaptic membrane currents must have an excitatory component. . . . 82
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3.12 The case of no neuron-to-neuron resistance as depicted in Fig. 3.11 (b). Here

we show the induced polarization V out
ds (solid) and Vs (at 1/40th scale) (dot-

ted) for three different Rout
ds due to a neurons own action potential in (a)

and the resulting decrease in spike width in (b). The polarization current

associated with the repolarization of the soma results in further hyperpo-

larization of the soma and subsequent shorter time above the threshold for

AMPA conductance (20 mV). Although the difference in spike width is only

several percent, near the threshold to failure to spike the slight difference in

AMPA current can make substantial difference in the TTFS. . . . . . . . . 93

3.13 This figure illustrates the strong reaction of the sodium current compared

to other nonsynaptic membrane currents. Here, a chain of PR neurons is

embedded in a full resistive array (as in Fig. 3.10) but without any synaptic

connectivity. Depicted are the membrane currents (a) and the polarization

current, gcV
out
ds , (b) of a neuron in response to a nearest neighbors’ spike.

The polarization due to an action potential is a short pulse of less than 2 ms

and thus contains high-frequency components that are filtered out by slowly

activating currents. Also, the response of a given current will be dependent

on the activation state of the potential-dependent channels prior to the spike

and associated ECC. This is just one possible state existing at the moment

the ECC occurs. In this case, the neuron depicted was completely at rest

without any synaptic input and Vs ≈ −3.75 mV, and all of the currents are

at a very low activation level. We see in (a) that the very fast activating

sodium current dominates the somatic Kdr, the dendritic Ca and KAHP

currents. The dendritic KC current is negligible and remains constant due

to the depletion of Ca2+. We will show (see for example Fig. 3.17) that the

overall effect of the ECC on the membrane currents is excitatory and that

the dominant response of the sodium current offers an explanation. . . . . . 94
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3.14 The response of the non-synaptic membrane currents and the polarization-

dependent AMPA to a polarization induced by a neighboring AP on a resting

neuron is characterized by integrating from when the neuron is at rest through

the AP generated ECC and a sufficient time afterward until the neuron re-

turns to rest. In this particular case, in (1) for the non-synaptic quantities we

plot the total charge per cm2 from t = 0 to t = 600 ms. Q =
∫ 600
0 Iion(t)dt.

In (b) we plot the total charge per cm2 for the polarization-dependent, that

is Vd dependent, AMPA conductance, Qsa = −gAMPA

∫ 600
0 W (t)Vd(t)dt. We

see in (a) that the total integrated non-synaptic membrane charge (black line

with circles) is positive and increases superlinearly with increasing Rout
ds and

that the biggest contributor is the sodium current. In (b) we see that the

increasing polarization with increasing Rout
ds leads to increasing depolariza-

tion of the post-synaptic dendritic potential and thus a decrease in AMPA.

In summary, for the full lattice the response to increasing polarization due

to a neighboring AP is excitatory and increases superlinearly with resistance

while synaptic coupling term is inhibitory and increases linearly. For the

lowest Routs
ds the linearly increasing inhibitory synaptic coupling is dominant

then as the Rout
ds continues to increase the superlinear the excitatory effect of

the non-synaptic currents overtakes the inhibitory effect. . . . . . . . . . . . 95

3.15 The TTFS using the single neuron model with interpolated V out
ds . TTFS

is computed as a function of both polarization amplitude and the differ-

ence in time, τ , from the polarization due to a neighboring neuron’s action

potential and the initiation of synaptic AMPA. On the y-axis τ is plotted

along with graphical representation of the ECC induced polarization (blue)

and the AMPA current red. The x-axis displays the amplitude which is a

unitless scalar multiplying the V out
ds (t) due to a neighboring neurons action-

potential at standard resistances. Main features include peak inhibitory re-

sponse around τ = τ∗ surrounded by several milliseconds of relatively exci-

tatory responses. For a fixed τ the response is always more excitatory with

increased polarization amplitude and thus extracellular resistance. . . . . . 96
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3.16 This figure shows different views of the single neuron model with interpolated

V out
ds shown in Fig. 3.15. In (a) is a three dimensional view of TTFS showing

the change in TTFS as a projected height. In (b) we show for five different

τ ’s around τ∗ TTFS as a function of Amp. Although the curves resemble the

non-monotonic curve found using the full resistive lattice notice that the total

difference in TTFS is only about 0.2 ms. In (c) for Amp=1 corresponding to

Rout
ds = 0.1Rin

ds we see the pronounced dependence on τ arounf τ∗. Alos note

that by τ = 4 ms the sensitivity to τ is greatly diminished. . . . . . . . . . 97

3.17 The dependence of TTFS on polarization amplitude and spike timing with

synaptic coupling and source loading removed. The response is due to the

non-synaptic component of localized ephaptic effect. This single-neuron

model uses a linear interpolation function for both V out
ds and AMPA. Here

Is = −0.3 µA/cm2. The region of inhibition seen in Fig. 3.15 around τ = τ∗

is now absent. What remains is an excitatory response due to the non-

synaptic currents around τ around τ∗. This single-neuron model with inter-

polated V out
ds and with synaptic coupling eliminated is perhaps most similar to

experiments of bulk spike propagation in pathologically excited hippocampal

tissues with synaptic currents blocked which show increasing spike propaga-

tion with increasing EC resistance. . . . . . . . . . . . . . . . . . . . . . . . 98

3.18 These are different views of the same data shown in Fig. 3.17. In (a) we can

also visualize the response in three-dimensional projection. (b) shows that

for τ close to τ∗ the TTFS decreases linearly with increasing polarization

amplitude. In (c) for Amp=1 equivalent to Rout
ds = 0.1Rin

ds the TTFS is at a

minimum at τ∗ and increases as the polarization induced by a neighboring

neurons spike stops overlapping the input from the interpolated AMPA. . . 99
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3.19 Here we show that with the full resistive lattice the spike propagation times

for six sequentially excited neurons is similar to our single neuron model.

Fig. 3.20 shows for a higher resolution of I1 spike times the detail when

the ECC and the AMPA are within 10 ms of each other. In (a) the net-

work architecture and stimulation protocol are illustrated in the schematic

and timeline respectively. Here, we use the full resistive array with neurons

C0−C5 unidirectionally connected to their neighbors except for the synaptp-

tic connection between C1 and C2 which bypasses the synaptically isolated

randomly spiking neuron I1 (filled blue). The timeline shows the sequentially

spiking C1 − C5 (spike times are denoted with an asterisk) and a range of

spiking times for the isolated neuron I∗1 . By varying I∗1 we are changing the

relative time between the ECC and the AMPA current analogous to varying

τECC for the single neuron models Fig. 3.16. (b) and (c) plot C∗5 for five and

six different Rout
ds respectively. As with the TTFS in Fig. 3.10, the mean level

of the C5 TTFS is unimodal with respect to increasing Rout
ds . The unimodal

profile is hard to recognize since (b) and (c) split the results into increas-

ing and decreasing TTFS. Observe that in (b) C5 TTFS at Rout
ds = 0.02Rin

ds

(square) the TTFS is slightly above 300 ms. Then as Rout
ds increases up to

Rout
ds = 0.1Rin

ds (down triangle) so does the TTFS. . . . . . . . . . . . . . . 100

3.20 A step size of 0.01 ms for I∗1 reveals important structure not evident in Fig.

3.19. Shown here is a zoomed in look of the TTFS with open circles in Fig.

3.19 (c) with Rout
ds = 0.16Rin

ds. At the top of what we called the parabolic

feature for the single-neuron model around 84 ms spike propagation has failed

at C2. This again shows the importance of the AMPA-ECC coupling effect.

For a difference of a fraction of a millisecond in the spike time of I1 C2 goes
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An electric field can polarize a neuron, especially a neuron with elongated dendrites, and

thus modify its excitability. In this dissertation, we use computational models, experimental

data, and analysis to investigate the effects on neural excitability due to externally applied

static electric fields and the extracellular currents generated by a spiking neuron. We apply

our results to individual and small networks of neurons. This work has potential implications

in the areas of neural prosthetics and therapies to treat a number of neurological conditions

such as Depression and Epilepsy. This work also contributes to our understanding of the

effects of electric fields endogenous to the brain. We first address the effects of polarization

induced by non-weak electric fields on elongated neurons with active dendrites. We find

that our model agrees with experimental observation for both weak and strong polariza-

tion. For intermediate polarization, we identify novel behavior that should be amenable

to experimental verification. Through analysis and modeling, we determine the underlying

mechanisms for the observed behavior. Currents that are negligible at weak polarizations

and associated with the spiking or bursting phase of a neuron play an important role in the

response of a resting neuron to either injected or synaptically generated stimulus. For weak

polarizations, small differences in model parameters such as extracellular potassium and

rate of current injection yield proportionally small differences in the trajectory of the state



variables of the neuron. However, as polarization strength increases the trajectories begin to

diverge falling into either a sublinear or superlinear response categories with respect to po-

larization. We identify the relative strengths of the hyperpolarizing and depolarizing active

dendrite currents as a predictor of polarization-dependent excitability. In the second part

of the dissertation we look at localized ephaptic effects due to a single spiking neuron on

spike propagation in a chain of synaptically connected neurons. Modeling the extracellular

currents using a resistive lattice we observe a non-monotonic relationship between excitabil-

ity and extracellular resistance. Furthermore, this surprising result is evident for a range of

resistances that fall within those estimated using experimentally measured parameters. We

define three mechanisms of the localized ephaptic effects; source loading, synaptic coupling,

and non-synaptic membrane currents. Through computational experiment and analysis we

are able to analyze these effects as a function of the time between the ephaptic polarization

and synaptic input as well as extracellular resistance.



Chapter 1: Introduction

Neurons are often well-described by potentials and currents. Many of the most important ion

channels are sensitive to the electric fields that arise from an imbalance of charge on either

side of the membrane. The opening and closing of potential-dependent gates that control the

flow through these channels and the natural drive towards an electrochemical equilibrium

are largely responsible for the observed excitability of a neuron. Directed communication

between neurons usually involves the generation of a spike in membrane potential that

propagates through neural processes triggering a release of neurotransmitters. The release of

neurotransmitters from the presynaptic neuron migrates a short distance to a postsynaptic

neuron creating either an excitatory or inhibitory current. It is not surprising then that

neurons have been found to be responsive to electromagnetic devices. Long before we knew

about ion channels, and several decades before Mary Shelley’s Frankenstein, Luigi Galvani

[3] observed disembodied frog legs spontaneously contracting when touched with a scissors

during an electrical storm. Even earlier, electricity was being used in medicine. Benjamin

Franklin described treating a women’s convulsions with a static charge (probably from a

Leyden jar). Currently, electromagnetic therapies and procedures are being used to treat

a number of conditions like depression and Parkinson’s disease. However, there are many

unanswered questions as to the biophysical mechanisms behind these therapies. In this

work, we use computational models to study the interactions between neurons and electric

fields. Chapter 2 concerns neurons in non-weak static electric fields, a scenario most likely

to be found in experiments in vivo or in vitro and possibly in neurological therapies. While

Chapter 2 deals with non-weak static fields Chapter 3 is concerned with weak oscillating

currents generated by neurons themselves.

In Chapter 2 we use a computational model to explain how an applied constant electric

field can polarize a neuron and affect its excitability. Our computational model agrees
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with experimental measurements in the literature for weak and strong polarizations while

predicting novel behavior for intermediate polarizations. Using these results we are able to

give a mechanism for this behavior. Our analysis reveals how increasing polarization can,

during subthreshold stimulation, lead to significant changes in currents that are negligible

when unpolarized. Moreover, these currents only had to be activated very slightly for

them to have an effect. In the intermediate polarization region we find that the somatic

membrane potential would take one of two qualitatively different trajectories. We find the

reason behind such a divergence of trajectories is competition between depolarizing and

hyperpolarizing currents in the dendrite.

Often extracellular factors are not modeled. However, there are a number of cases where

a cells environment needs to be accounted for. For example, extracellular potassium ion con-

centration, which can readily affect excitability, is known to depend on both neural activity

and glial cells. The motion of charged particles in and out of the cellular membrane results

in an extracellular current. Chapter 3 addresses how extracellular currents generated from

neural activity affects other neurons. In Chapter 3 we ask the following questions: (1) How

is a neuron’s excitability affected by the extracellular currents generated by another nearby

spiking neuron? (2) How are these effects dependent on the relative timing between when a

neuron is polarized by the extracellular current and when that same neuron receives synap-

tic input? (3) How does this effect depend on the conductivity of the extracellular space?

We find that an understanding of the effects of the extracellular currents (i.e. ephaptic

effects) benefit from segregating the model into three components. These components are:

(1) the coupling between synaptic current and the extracellular currents, (2) the response

of the non-synaptic membrane currents, and (3) the effect of a neurons own extracellular

currents on spike generation. We find that the synaptic coupling is a complicated function

of spike timing and extracellular resistance. The coupling can be either inhibitory or exci-

tatory, and it can transition from one to the other with spike timing changes of fractions

of a millisecond. The effect on the non-synaptic membrane currents is always excitatory,

and the effect due to source loading is always inhibitory. Using analysis and computational
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experiments we are able to give the mechanism for the excitatory and inhibitory behaviors.

Our work predicts novel spike propagation times as a function of extracellular resistance

and are consistent with experimental results when synapses are blocked.

The primary neuron model used throughout this thesis is an eight-dimensional (or nine

when we include synaptic AMPA) nonlinear coupled ordinary differential equation. Origi-

nated by Pinsky and Rinzel [4]. The model has the advantage of being low dimensional while

still comparing favorably to a high dimensional model of Traub [5]. We use a modification

derived in [6–8]. In these works, the two-compartment Pinsky-Rinzel model was modified

to allow interactions with an external field, namely an applied extracellular difference. The

modification of the two-compartment Pinsky-Rinzel model to allow interactions with an

external field, or more precisely, an applied extracellular potential difference had been de-

rived previously [6–9]. The solution to the polarized Pinsky-Rinzel model was simply the

addition of a current equal to the imposed polarization times the internal conductance of

the neuron. gcV
out
ds , running between the dendritic and the somatic compartments. In the

first part of this dissertation, the polarization is constant whereas for the second part the

polarization is a brief oscillation. This oscillation mirrors the flow of current into and out

of a neuron during an action potential. The modeling of the extracellular currents relies on

a resistive lattice as in [6–9].

The thesis proceeds as follows: Chapter 2 Effect of Non-Weak Polarization on the Ex-

citability of Elongated Neurons With Active Dendrites has been published and is available

online [10]. The code, written in Matlab, is archived at https://senselab.med.yale.edu/ModelDB/

showModel.cshtml?model=185512 and can be searched for under Non-Weak E-Fields Pyra-

midal Neurons(Reznik et. al.,2015). The code for Chapter 3 contains both Matlab and code

for the software XPPAUT [11]. This code will be stored and is accessible at https://sites.google.com

/site/reznikthesis.
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Chapter 2: Effect of Non-Weak Polarization on the

Excitability of Elongated Neurons With Active Dendrites.

If the Lord almighty had consulted me
before embarking on creation I should
have recommended something simpler.

Alphonso X (Alphonso the Wise),
1221-1284 King of Castile and Leon

(attributed). Appears opposite Preface
in J.D. Murray’s Mathematical Biology

2.1 Introduction

Neurons, whether in the intact nervous system or in experimental preparations, are com-

monly subjected to electric fields. These electric fields may be external or endogenous.

External sources may be environmental (e.g. power lines, wireless transmissions), or be

clinically or experimentally applied. Electric fields are applied to the surface of the brain

to affect cortical regions, and probes have been implanted to stimulate sub-cortical regions.

Electrical stimuli are currently being used in a number of therapies including those to alle-

viate depression and the effects of Parkinson’s disease. In addition, the search for a viable

means of controlling seizures has led to a number of experiments involving electrical stimuli,

both in vitro and in vivo, as well as human trials (for a review see [12]).

Existing therapies using Deep Brain Stimulation (DBS) for Parkinson’s disease, de-

pression, and experimental human trials for seizure control use oscillating electric fields.

However, there have been some promising experiments where epileptiform activity was sup-

pressed through the application of constant electric fields or constant fields applied in pulses

at very low frequencies. These experiments include placing a hippocampal slice between
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electrodes to establish a DC field [13–16], and applying a single DC pulse onto a Cs+ model

of epilepsy [17]. In vivo experiments include polarizing low-frequency electric fields (PLEF)

in a rat model of epilepsy [18,19].

Therapeutic methods that are applied proximally to the scalp and act on the cortex

are attractive since they are non-invasive. One such method is Transcranial Direct Current

Stimulation (tDCS). Typically tDCS uses two electrodes positioned on top of the head,

and current flows from them through the skull, with a fraction of the current reaching the

cortex. The electric fields and induced polarization on cortical neurons due to tDCS are

estimated to be low, with fields of less than 1V/m and cell membrane polarization less than

1mV [20, 21]

Endogenous electric fields include those associated with the normal rhythmic activity of

populations of neurons (e.g., the theta and gamma rhythms). In the hippocampus, endoge-

nous field strengths range from about 2− 70 mV/mm in amplitude [22]. The susceptibility

of the somatic transmembrane potential to be polarized has been estimated for both DC and

AC fields. The polarization of CA3 pyramidal somata to a DC field has been found to be

nearly linear up to, at least, 16 mV/mm, yielding a constant susceptibility or polarization

length of 0.18 mm. [23] and [24, 25] have measured hippocampal and cortical pyramidal

neurons and found their polarization lengths to be between about 0.1 mm and 0.5 mm, and

most frequently near 0.2 mm. For AC fields, the susceptibility is frequency dependent with

higher frequencies being less polarizing as the neuron acts as a low-pass filter. At 10 Hz, the

polarization length is about 0.225 mm, and at 100 Hz it is 0.05 mm [23]. In addition, near

constant uniform fields have been detected up to 7.5 mV/mm and associated with changes

in the potassium concentration that emerge along with neural hyperactivity [26].

Despite its importance, our understanding of how electric fields interact with and af-

fect the functioning of neural populations remains incomplete. An understanding of such

phenomena and their potential medical implications requires a careful analysis of effects

on both single neurons and populations due to electric fields with a range of amplitudes,

frequencies, and waveforms. Here we focus on the simplest case of a single neuron subject to
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a constant uniform field. This study serves as a step towards understanding the excitability

of elongated neurons with active dendrites subject to electric fields. The results here may

be relevant to in vivo and in vitro work involving DC fields.

In response to a uniform electric field, charge within a cell spreads out along the field

lines until an obstruction such as a cell wall is encountered. The resulting charge distribu-

tion creates polarization within the neuron. Here, when we speak of polarization, we are

referring to the shift in membrane potential due to imposed differences in the extracellular

potential along the neuron. The sensitivity of neurons, particularly elongated pyramidal

neurons, to even low amplitude electric fields has been shown experimentally ([27]). Compu-

tational models of polarization and its effects on single neurons have ranged from a detailed

finite-element model ([28]) to single-compartment models ([29, 30]). Another approach has

employed multi-compartment models with an electric potential applied across the com-

partments. These compartment models have varied in complexity from two-compartment

models ([6–8]) to a 19-compartment model ([9, 31]). Several studies, including this one,

use the model of [4], which is itself a simplified version of the 19-compartment model of

[32]. Recently a bifurcation study of neural excitability in response to polarization has been

applied to a two-compartment modified Morris-Lecar model with passive dendrites [33]

Experiments ([13, 24, 25]) have shown that as long as the polarization is not too great,

the somatic transmembrane potential of pyramidal neurons at rest is linearly proportional

to the degree of polarization. In addition, changes in spike timing in response to an injected

ramp current were found to vary linearly with polarization in the range studied, which was

3 − 5 mV . These results could be explained by a simple leaky (i.e. passive conductance)

integrate-and-fire model. Accordingly, we define the weak polarization region as those values

of polarization for which the neuron behaves passively, i.e., the membrane conductances

remain constant. Systematic measurements of the size of this linear response region are

lacking, as they have not been the focus of previously published work.

The emphasis on smaller electric fields is understandable. Many medical applications

seek the least invasive methods. Also, endogenous field effects such as the gamma and
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theta oscillation in the hippocampus are often only several millivolts in amplitude [34] and

thus probably within the passive region. We may estimate, however, that there exist some

instances for which a neuron might experience polarization outside the passive region. As

mentioned above, the length over which the electrical polarization is relevant in a uniform

field has to be between 0.1 mm and 0.5 mm. Experiments on hippocampal slices have used

field strengths exceeding 100 mV/mm [13, 35] implying that pyramidal neurons may have

experienced polarizations in excess of 50 mV. Very low frequency pulses were applied to

the Rat hippocampus yielding an estimated 16-20 mV/mm electric field [18]. For moderate

to high polarization lengths, such a field would induce a polarization outside of the weak

region. The polarization of a pyramidal neuron in the hippocampus due to oscillating

endogenous fields is harder to estimate. As noted above, the polarization decreases with

increasing frequency and the largest amplitude endogenous fields, sharp waves, and epileptic

discharges are associated with higher frequencies (> 50 Hz). To exceed the outer limit of

the weak polarization region,5 mV , at the maximum estimated endogenous field amplitude

of 70 mV/mm, a sensitivity of at least 0.07 mm is required. The 0.07 mm is, in fact, what

was measured for a CA3 pyramidal cell at 50 Hz [23].

In this study, we explore the effects and underlying mechanisms over a broader range

of polarizations, with emphasis on the effects beyond the weak polarization regime. We

use the model of [4] and modify it to allow for an imposed extracellular potential differ-

ence between the two compartments. Polarization is then parametrized by this potential

difference. With this model we study how polarization affects excitability and how changes

in the extracellular potassium concentration and the rate of stimulating current injection

modifies these effects. We chose the Pinsky-Rinzel (PR) model because it has the min-

imum number of compartments (two) needed to explore the effects of polarization on a

neuron with distinct and spatially segregated ion channels. Furthermore, the PR model

uses experimentally-derived ion channel kinetics to model specific currents, allowing for a

more physiological interpretation compared to simplified lower-dimensional models.
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In section II (Models and Methods) we derive the polarized PR model, present our stim-

ulation protocol, define the time-to-first spike (TTFS), and discuss our numerical methods.

In section III (Results) we present curves of TTFS as a function of polarization for differ-

ent injection rates and extracellular potassium concentrations. We perform our computa-

tions over a range of inter-compartmental conductances and ratios of somatic to dendritic

membrane surface area. These results are first computed using a commonly-used current

injection protocol that might be amenable to experiment. To examine a more biologically

plausible model, we subject the polarized model neuron to synaptic (AMPA) excitation.

Lastly, we see how our results change when we introduce Ih currents into the dendritic

compartment. In section IV (Discussion), we summarize our results and consider how they

might be generalized to biological neurons.

2.2 Models and Methods

2.2.1 Polarizable Pinsky-Rinzel model: approach and computational meth-

ods

In the PR model, the primary ionic mechanisms for depolarization are the sodium ion chan-

nels of the soma and the calcium channels of the dendrite. Hyperpolarizing currents are

provided by the IK−AHP and IK−C in the dendrite and IK−DR in the soma. Current be-

tween the somatic and dendritic compartments flow passively in proportion to the potential

difference. The somatic and dendritic membrane potentials, the calcium level in the den-

drite, four voltage-dependent gates, and one calcium-dependent gate constitute a system

of eight coupled ordinary differential equations. In this work, we focus on the effects that

polarization induced by electric fields have on a neuron’s dynamics. The source for the elec-

tric field, how it couples into the extracellular medium and how charge redistributes itself

around the neural membrane will not be considered (for details into field calculations see

for example [36–38]). The component of the electric field relevant to the neural dynamics

is along the soma-dendrite axis and is modeled by the outside potential difference between
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the soma and the dendrite, V out
ds . The polarization is then parameterized by V out

ds .

We modify the PR model to accommodate this polarization between compartments as

was done in [6–8]. The transmembrane potential is defined by the difference in potential

across the cell membrane.

Vs = V in
s − V out

s (2.1a)

Vd = V in
d − V out

d (2.1b)

Membrane channels are functions of the transmembrane potentials. However, current flow-

ing passively between the two compartments is proportional to the difference in their in-

tracellular potentials, V in
s and V in

d . The original PR model, as in most models, implicitly

assumed a constant extracellular potential, V out
s = V out

d . In this case, the intracellular

potential between compartments, (V in
d − V in

s ), is equal to the difference in transmembrane

potentials, (Vd − Vs).

Allowing for our compartments to have two different extracellular potentials, we define

the potential difference directly outside the dendrite and soma as V out
ds ≡ V out

d −V out
s . With

the inter-compartment conductance given by gc and ρ defined as the fraction of somatic

surface area to the total cell surface area, the current out of the dendrite and into the soma

is defined as Iinds and is given by:

Iinds =
gc
ρ

(V in
d − V in

s ) (2.2)

=
gc
ρ

(Vd − Vs + V out
ds ).
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The polarized PR model follows,

Cm · dVs/dt = IsLeak(Vs) + INa(Vs, h)+

IK−DR(Vs, n) + Iinds + Is,inj(t)/ρ, (2.3a)

Cm · dVd/dt = IdLeak(Vd) + ICa(Vd, s)+ (2.3b)

IK−AHP (Vd, q) + IK−C(Vd, Ca, c)−

Iinds
ρ

1− ρ

dCa/dt = −0.13ICa − 0.075Ca (2.3c)

Ca represents a unitless measure of the amount of intra-cellular calcium, Ca2+. In

the equation governing intra-cellular calcium levels, the coefficient −0.075 is based on op-

tical measurements of the decay of calcium in Purkinje dendrites (−0.075s−1 = 1/τCa =

1/13.33ms) [32, 39]. The sign of the coefficient −0.13 multiplying ICa means that current

into the dendritic compartment results in an increase in intracellular calcium [32] 1 The

only difference between the polarized PR model and the original one is the addition of the

terms Iinds and −Iindsρ/(1− ρ) in the equations for the somatic and dendritic compartments,

respectively. Note that since we define ρ as the fraction of somatic surface area to total

surface area, Iinds is then defined as current per total soma area. In this work, as in the

original PR model and the models used in the Park et al. works referenced above, we shall

assume that the somatic and dendritic compartment surface areas are equal, so that ρ = 0.5

and the flow of current from the soma to the dendrite is −Iinds . The individual currents with

1[32]. presents an abstract model of intracellular calcium where each compartment’s rate of absorption
can be varied by varying the thickness of an imagined sub-cellular membrane. This coefficient was fine-tuned
to best match experimental data.
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their dependencies on the dynamic gating variables h, n, s, c, and q follow.

IsLeak = −gL (Vs − EL) (2.4)

IdLeak = −gL (Vd − EL)

INa = −gNam
2
∞h(Vs − ENa)

IK−DR = −gK−DRn(Vs − Ek)

ICa = −gCas
2(Vd − ECa)

IK−AHP = −gK−AHP q(Vd − Ek)

IK−C = −gK−Ccχ(Vd − Ek)

These currents and whether they flow inward (depolarizing) or outward (hyperpolariz-

ing) at typical steady-state values are depicted by arrows in Fig. 2.1. Note that for our

model, a cathode is imagined to be placed near the soma and the anode near the apical

dendrites, so that a positive (negative) field depolarizes (hyperpolarizes) the soma and hy-

perpolarizes (depolarizes) the dendrite. Note that this convention is a reversal in field sign

from that found in [13,24,25], and [29] , but follows that used in [7,8]. There are five gating

variables (h, n, s, c, and q) whose kinetics take on the standard Hodgkin-Huxley form. The

gating variables h and n are functions of Vs, s and c are functions of Vd, and both q and χ

are functions of the intracellular calcium concentration Ca. Equations 3.3 and 3.4 are thus
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coupled with the five first-order gating kinetics given below:

dh/dt = (h∞(Vs)− h)/τh(Vs) (2.5a)

dn/dt = (n∞(Vs)− n)/τn(Vs) (2.5b)

ds/dt = (s∞(Vd)− s)/τs(Vd) (2.5c)

dc/dt = (c∞(Vd)− c)/τc(Vd) (2.5d)

dq/dt = (q∞(Ca)− q)/τq(Ca). (2.5e)

For our model, the stimulus is a ramp current, Iramp, injected into the soma. The term

Is,inj in Equation 3.3 is the sum of the ramp current and a constant bias current, Is. For

the computations reported here, Is = −0.5µA/cm2, which was used as the standard value

in the original PR model.

Is,inj(t) = Is + Iramp(t) (2.6)

where Iramp is defined as the following linearly increasing function with ramp rate M .

Iramp(t) = M(t− t0). (2.7)

The ramp protocol, illustrated in Fig. 2.2, calls for the current density to be steadily

increased until the soma is depolarized to 30 mV . Note that in Traub’s 19-compartment

model and the PR model, the potentials are normalized such that the resting potential of

the unpolarized neuron is 0 mV. In our numerical experiments, we estimate the TTFS as

the time when the somatic membrane potential reaches 30 mV . The metric TTFS is used

since it is relevant to excitable but resting neurons, and pyramidal neurons are typically

associated with such states.

We adopt the numerical values for the reversal potentials and conductances as given in
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Figure 2.1: Two-compartment Pinsky-Rinzel model neuron with electric field. Arrows
denote the direction of the currents during stimulation from rest. Differences in potential
along the body of a neuron outside the neural membrane induces a polarization within
the neuron. Polarization induces a current between the two model compartments. All
the active currents in the model involve cations so inward arrows are depolarizing and
outward hyperpolarizing. Active currents in the soma are the depolarizing sodium (Na)
and the hyperpolarizing potassium-delayed rectifier (K-DR). In the dendrite the calcium
(Ca) current is depolarizing while the potassium after-hyperpolarization and potassium-
calcium (K-C) are hyperpolarizing. Is and Id include any constant baseline currents as well
as any stimulating currents.
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Figure 2.2: Summary schematic of computational protocols used to characterize how polar-
ization affects excitability. Is,inj(t) is the ramp current injected into the soma and is equal

to Is +M(t− t0) where M is in µA/(cm2sec). The Time To First Spike (TTFS) is defined
as the time it takes for the model neuron’s somatic membrane potential to pass through
a predefined threshold value. This work will be concerned only with the dynamics driving
the polarized neuron from rest to first spike. The TTFS was insensitive to soma potential
thresholds above 10 mV.
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the original PR model:

ENa = 120 mV, EL = 0 mV (2.8)

ECa = 140 mV, Cm = 3 uf/cm2

gL = 0.1 mS/cm2, gNa = 30 mS/cm2

gK−DR = 15 mS/cm2, gK−AHP = 0.8 mS/cm2

gK−C = 15 mS/cm2, gCa = 10 mS/cm2

gc = 2.1 mS/cm2, ρ = 0.5, Is = −0.5µA/cm2

The extracellular potassium concentration, [K+]o, controls the reversal potentials of the

somatic hyperpolarizing potassium-delayed rectifier current IK−DR, the dendrite-hyperpolarizing

calcium-activated potassium current IK−C , and the after-hyperpolarizing potassium cur-

rent IK−AHP . Extracellular potassium levels are known to increase with increased neuronal

activity [40], and the increasing extracellular potassium in turn excites the surrounding

neurons. However, the positive feedback between neural hyper-activity and extracellular

potassium is modulated by Glia cells which tend to suppress high extracellular potassium

through uptake and spatial buffering. For more on the dynamics of the ion concentrations

and its effects on neuronal behavior see [41–43]. EK in the polarized PR model is related

to the extracellular potassium concentration through the Nernst equation. Since the ex-

tracellular potassium is known to vary in vivo and can be manipulated in the laboratory

we examined the excitability of the polarized PR model over a range of physiologically

plausible EK and corresponding extracellular potassium concentrations. The higher the

extracellular potassium concentration the higher the reversal potential. Here we varied EK

from −25 mV to −45 mV . To place these values in context note that a reversal poten-

tial of EK = −38.56 mV has been associated with a normal potassium environment [8]

14



corresponding to [K+]o = 3.5mM assuming [K+]i = 140mM and T = 36.9 ◦C. A high

extracellular potassium concentration is [K+]o = 8.45mM corresponding to EK = −15

mV and is associated with spontaneous periodic bursting. Such high potassium levels have

been measured in hippocampal slices exhibiting epileptic like activity [44] and in vivo in

seizing cats [40].

In section 3.6 we replace the ramp current stimulus with synaptic AMPA input modeled

as in Pinsky and Rinzel (1994) and Park et al. (2003, 2005). This class of model for synaptic

conductance assumes that the transmitter release is always at a maximum as long as the

pre-synaptic potential Vs,pre exceeds a certain threshold potential. The equation for the

AMPA synaptic conductance is as follows:

IAMPA = gAMPAW (t)(Vd − Vsyn) (2.9)

W ′ = H(Vs,pre − 20)−W/2,

where H denotes the Heaviside function. We apply the AMPA current by defining Vs,pre

as follows:

Vs,pre = AH(t− ti)H(ti + tspkdur − t) (2.10)

tspkdur = 1.2ms

A > 20mV

In section 3.7, we include a model of the Ih current into our polarized PR model. We

model Ih model as in [2] and [45]. The family of Ih currents have a unique set of char-

acteristics including an inward current activated at hyperpolarized membrane potentials,

significant current at rest, moderately long time constants, and various regulated states

characterized by changes in channel density and activation potentials. Here, we use i to
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denote the Ih gating variable. The model is

Ih = ghi(Vd − Eh) (2.11a)

di/dt = (i∞(Vd)− i)/τi(Vd) (2.11b)

i∞ =
ai(Vd)

ai(Vd) + bi(Vd)
(2.11c)

τi =
500

ai(Vd) + bi(Vd)
(2.11d)

ai (Vd) = exp (0.1054 (Vd − Vi−half )) (2.11e)

bi (Vd) = exp (0.1581 (Vd − Vi−half )) (2.11f)

a and b determine the steady-state value, i∞, τi is the time constant, and Vi−half

is the half-activation parameter. Also as in [2] we adopted four pairs of gh and Vi−half

parameter values representing a control state (0.03 mS/cm2, -21 mV ), a low level of Ih

up-regulation (0.035 mS/cm2, -18 mV ) and a high level of up-regulation (0.04 mS/cm2,

-15 mV ) in accordance with serotonergic modulation of Ih [1]. To this we also added the

most highly-regulated state looked at by [2] (0.06 mS/cm2, -11 mV ). Here, as before the

reversal potentials are normalized to correspond with a resting potential of 0 mV for the

unpolarized neuron.

2.2.2 Numerical Methods

Computing the TTFS

When performing calculations on excitability, we used only those polarizations for which a

stable resting equilibrium exists. The polarized Pinsky-Rinzel neuron was coded in MAT-

LAB. MATLAB’s ODE23 was used for integrating the eight-dimensional coupled nonlinear

ODE of Eqs. 3.3 – 2.7 with the parameter set given in Eq. 2.8. For a given choice of EK
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and M , a TTFS profile was generated over a range of V out
ds for which the model neuron was

stable prior to any injected current. The range of V out
ds for which the resting equilibrium is

stable varied with EK , but was found to be continuous and generally ranged from around

+15 mV to −30 mV . Stability was first calculated using a nonlinear root-finding method

after setting the gating variables and Ca to their equilibrium values. As a further measure

to insure stability, the solutions were integrated for 50 ms prior to the start of ramp injec-

tion. To estimate the sensitivity to numerical methods, MATLAB’s higher order ODE45

was used in the integration and these were shown to yield TTFS values that differed less

than 10−9 from those of the faster ODE23. We define a single run of our system to be the

computation of the TTFS for a particular V out
ds , EK and M .

Numerical analysis of TTFS profiles

In the intermediate polarization region, it was observed that either the TTFS grew sublin-

early or superlinearly with V out
ds depending on EK and M . To quantify the curvature found

in the resulting TTFS profiles with respect to the imposed V out
ds , we computed a second-

order centered difference using the TTFS data points. These were calculated at every V out
ds .

It was observed that within the intermediate polarization region, V out
ds ∈ [−4mV,−15mV ],

the numerically-calculated second derivatives did not change sign as we varied V out
ds . This

means that for a particular EK and M , the solution remained either sublinear or superlinear

over the intermediate polarization, thus allowing us to unambiguously define a sublinear

and superlinear profile by the sign of the second derivative at any of the intermediate po-

larizations. To bound the values for M at a given EK at which the profile transitioned

between sublinear and superlinear, we increased M starting at the very slow injection rate

of 0.05µA/(cm2s). At this value, the second derivative was always found to be negative,

indicating a superlinear profile. As M increased, we determined when the second derivative

became positive. The second derivative was computed at 0.25 mV steps over the intermedi-

ate polarization and over a grid of EK and M values. EK was varied from −20 mV to −45
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mV in steps of 2.5 mV , while M varied from 0.1 µA/(cm2sec) to 0.8 µA/(cm2sec) in steps

of 0.05 µA/(cm2sec). For each EK , the lowest M value for which the second derivative of

the profile became positive was used to estimate the boundary curve separating sublinear

and superlinear profiles. Sensitivity to step size was evaluated by performing the same

algorithm but for a much smaller step size of 0.075 mV . The smaller step sizes resulted in

small changes in the second derivative and did not qualitatively change the boundary curve

in the EK −M parameter space.

Code for computations, analysis, and graphics were written in MATLAB and are avail-

able online at ModelDB (http://senselab.med.yale.edu/modeldb/)

2.3 Results

2.3.1 TTFS profiles

Fig. 2.3 shows four plots of TTFS as a function of V out
ds . Each data point on the plot is

obtained by integrating Eqs. (3.3–2.7) (see Methods) with parameters as in Eq. 2.8 for the

specific values of V out
ds , M , and Ek indicated in the figure, and measuring the time until Vs

exceeds 30 mV . Each of the plots is obtained using either a high (−25 mV ) or low (−45

mV ) Ek, and a slow (0.3 µA/(cm2s)) or fast (0.8 µA/(cm2s)) current injection rate M . In

each case there is a range of polarization for which the TTFS is linear with V out
ds , and a

range at stronger soma-hyperpolarizing fields for which the TTFS is no longer linear with

polarization. We call the linear range the weak polarization region. We define the extent

of the weak polarization region by noting the most negative polarization for which the R2

measure 2 stays above 0.99. In all four cases the TTFS profile deviates from our R2 criterion

at V out
ds = −4 mV , which is consistent with experimental observation (i.e., departure from

linearity between −3 mV and −5 mV ; see Introduction). Outside the weak polarization

region, we see in Fig. 2.3 that both Ek and M affect how TTFS varies with polarization.

For Ek = −45 mV , the fast current injection rate yields a sublinear TTFS profile (Fig. 2.3

2R2 ≡ 1- (sum square of residuals)/ (sum square of differences of the dependent variable from the mean)
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Figure 2.3: For decreasing values of V out
ds , the TTFS increases linearly until about −4

mV . As V out
ds continues to decrease below this value, the TTFS curves display either

sublinear (a, b, d) or superlinear (c) behavior depending on the rate of current injection (M)
and the potassium reversal potential EK . Here, as for all the computations in this work,

Is = −0.5µA/cm2. The weak, intermediate, and strong, polarization regions are labeled.
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a), while the slower ramp injection yields a superlinear one (Fig. 2.3 c). For Ek = −25 mV ,

the profile is sublinear for both injection rates (Fig. 2.3 b and d).

In Figs. 4 and 5 we show the behavior of the transmembrane potential of the soma

versus time, where we continue to integrate our model past the occurrence of the first spike,

maintaining a constant current injection at the soma equal to the ramp current at the time

of the first spike. Results are shown in Fig. 2.4 for M = 0.3 µA/(cm2s) and Fig. 2.5 for

M = 0.8 µA/(cm2s). In both cases, we examine the situations with EK = −25mV and

−45mV . We classify the spiking behavior of the soma using two characteristics: (1) whether

or not a particular waveform (a single spike or burst of activity) repeats periodically over a

long duration (> 20ms) or if it is limited to a single spike or burst of activity, and (2) by

the number of individual spikes occurring within a particular waveform. For periodicity, we

classify the activity as a single burst or spike if there is only one occurrence of a particular

waveform within our run-time of 10 seconds and is denoted by an open symbol. The number

of somatic membrane potential spikes in each waveform are encoded by the symbol shapes

(see figure caption). A number of spiking behaviors are observed over the EK and M values

chosen. In particular, note that the sublinear profiles at weak polarizations exhibit periodic

spikes or bursts, and at intermediate to strong polarizations, show only isolated spikes or

bursts. In contrast, the superlinear profile exhibits isolated spikes at weak polarizations and

becomes periodic towards the end of the intermediate polarization region. Thus, qualitative

differences between sublinear and superlinear profiles appear in spiking behavior as well as

the TTFS.

Fig.2.6 shows how the occurrence of sub- or super-linear TTFS profiles in the interme-

diate region depend more generally on Ek and M . The data points divide the parameter

space into regions in which the system exhibits sub- and superlinear behavior in the inter-

mediate polarization region where the second-derivative test is unambiguous (see 2.2.2).

Note that the accuracy of the line dividing the sublinear and superlinear regions is limited

by our choice of discretization in M (i.e., steps of size 0.05µA/(cm2s)).

Note that for the sublinear case shown in Fig. 2.3 b the TTFS curve turns over and
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Figure 2.4: Spike behavior for two sublinear profiles, A and B. For both profiles M =
0.8µA/(cm2s). EK = −45 mV for A and EK = −25 mV for B. All parameter values are
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Figure 2.5: Spike behavior for a sublinear profile, A, and superlinear profile, B. Both pro-
files use a slow injection rate, M = 0.3µA/(cm2s). For profile A EK = −25 mV and for
profile B EK = −45 mV. All parameter values are the same as that used in Fig. 2.3 (a)
and (b). Here, however, the integration is continued past the TTFS with a constant cur-
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symbolize number of spikes within a particular waveform (< 20ms): diamond denotes a
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of plots. Notice how the superlinear profile exhibits isolated spikes at weak polarizations
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diate region. Superlinear and sublinear profiles show qualitative differences in both spike
behavior and TTFS (see Fig. 2.6).
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begins to decrease with increasingly negative V out
ds . A more complete view of this behavior

is shown in Fig. 2.7, which shows the TTFS over a full range of stable polarizations for the
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Figure 2.7: The strong polarization region begins where the TTFS starts to decrease
as V out

ds decreases. Here the TTFS values are calculated for a fast injection rate (M =

0.8µA/(cm2s)) at four different EK .

fast injection rate (M = 0.8µA/(cm2s)). Even for the superlinear case the overall tendency

is for the TTFS to decrease in the strong polarization region. For a superlinear profile the

TTFS reaches several seconds or more in the strong polarization region. An interesting

pattern emerges which includes sudden changes in TTFS (not shown). This complex profile

occurs due to interactions of the very slow decay rate of the IK−AHP and the ramp injection

protocol. While interesting, these results might be difficult to replicate experimentally.

We define the polarization at which the TTFS begins to decrease with increasingly

negative V out
ds as the beginning of the strong polarization region. We then refer to the

region between the weak and strong polarization as the intermediate region.

Figs. 2.3, 2.6, and 2.7 show how the polarization-dependent excitability varies over a
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range of extracellular potassium and current injection rates. In summary, we catergorize

polarization as follows:

1. Weak polarization – in this region, the TTFS increases linearly with increasingly

negative polarization (i.e. increasing somatic hyperpolarization). This corresponds

to a V out
ds ranging from about 10 mV to −4 mV .

2. Intermediate polarization – In this region, the TTFS departs from its linear depen-

dence on polarization. The TTFS increases either sublinearly or superlinearly with

polarization, depending on the values of M and EK .

3. Strong polarization – In this region, the TTFS decreases with increasingly negative

polarization. The strong polarization region begins around a V out
ds equal to about −15

mV , but this onset depends on the chosen parameters.

We now take a closer look at the three regions, and most significantly, identify the mecha-

nisms that give rise to the observed TTFS behavior in the intermediate and strong regions.

2.3.2 Weak polarization region

The TTFS behavior of our polarized PR model is linear at weak polarizations and is in

agreement with experimental observations [13,24,25].

2.3.3 Intermediate polarization region

As V out
ds becomes more negative, the resting potential of the dendrite becomes more depo-

larized. Starting from a more depolarized state, more of the dendritic channels are open,

and the dendrite as a whole is primed for activity with the incoming soma current injection.

We will show that the division of the solutions into either sublinear or superlinear profiles

is due to the active currents in the dendrite. We note that IKAHP and IKC are functions of

EK , while ICa does not have any explicit dependence on EK . In addition, M only affects

the slow q-gating variable of IKAHP . It is the modulation, through EK and M , of the

strength of the hyperpolarizing dendritic currents that is responsible for the occurrence of
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sub- or superlinear TTFS profiles. The following observations and deductions lead us to

this conclusion:

(1) Except for the strong polarization case, the soma was always found to spike before

the dendrite.

(2) Prior to an action potential, the somatic and dendritic membrane potentials rise

at the same rate in response to the soma-injected current ramp for all parameters tested

in our numerical simulations. This is to be expected due to the high inter-compartment

conductance, gc, and rapid equilibration compared to the current injection rate. The mem-

brane potentials continue to rise at the same rate until a spike occurs 3, To show that

indeed dVs/dt ≈ dVd/dt, we examined the right-hand side of dVs/dt and dVd/dt for various

values of EK , M , and V out
ds . We found that the total somatic and dendritic currents are

indistinguishable for even the fastest ramp we explored, M = 0.9 µA/(cm2s) (see Fig.2.8).

(3) Significantly more current is shunted away from the soma and into the dendrite for

the superlinear case compared to the sublinear case. This is shown in Fig. 2.9. It might

be inferred that the increase in the shunting current in the superlinear cases is due to an

increase in hyperpolarizing outward dendritic current. Support for this assertion can be

found by plotting the total active dendritic current for the sublinear and superlinear cases,

respectively. Fig. 2.10 shows how differently the active dendritic currents of a sublinear

and superlinear profile vary with time and over a range of intermediate polarizations. For

the sublinear cases, the active dendritic currents monotonically increase and result in a net

depolarizing effect over the range of intermediate polarization. However, for the superlinear

case, the active dendritic currents depolarize very slowly from −10mV to −12mV and

become non-monotonic, eventually resulting in a net hyperpolarizing effect at negative

polarization values below -13 mv.

(4) The effect that polarization has on the rate at which the soma depolarizes can be

analyzed by examining the active and total dendritic currents (since dVs/dt ≈ dVd/dt). At

3The rate of change of the somatic and dendritic membrane potentials are appreciably different only in
a 1-2 millisecond period after the TTFS and during an action potential.
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intermediate polarization (Fig. 2.11) we see that the total dendritic current is significantly

reduced for the superlinear case and delays the TTFS as compared to the sublinear case.

In contrast, at weak polarization, when the voltage-activated gating variables are minimal

and have yet to begin their rapid ascent we see in Figure (Fig. 2.12) that the sublinear and

superlinear cases do not exhibit such qualitative differences in their dendrititic currents.

(5) Finally, we note that the division of the EK −M parameter space into sublinear

and superlinear profiles corresponds to a separation into stronger and weaker dendritic

hyperpolarizing currents. The effect of lowering the potassium reversal potential EK can be

understood by examining the equations for the polarized PR neuron (Eqs. 3.3, 3.4, 3.5) and

noting that for all potassium currents in both the dendrite and the soma, a more negative

EK corresponds to a stronger drive for positive current to flow out of the compartments.

The role of M is made clear by examination of the gating kinetics. We plotted the gating

variables during our ramp-stimulation protocol over a range of M and we see that M only

affects the very slow q-gating variable of the IK−AHP current (Fig. 2.13). With a lower M ,

the slow equilibrating q-gating variable has more time to reach its equilibrium value. Since

q is monotonically increasing with Vd, and Vd is always increasing during the ramp somatic

current injection (at least for the range of parameters we examined), q will always be in the

process of equilibration to a higher value. Thus the lower M is, the greater q gets, and the

greater the hyperpolarizing IK−AHP current will become.

In summary: As polarization becomes increasingly negative, the dendritic calcium cur-

rents increasingly depolarize the dendrite. Simultaneously, the dendritic potassium currents

increasingly hyperpolarize it. Thus, these currents have competing effects: one works to

excite, the other to inhibit. If the calcium current dominates, then we observe a sublinear

response, and if the potassium current dominates, we observe a superlinear response.

2.3.4 Strong polarization region

The mechanism behind the decrease in the TTFS (as V out
ds decreases) at strong polarizations

is revealed by examining the shunting current from the soma to the dendrite. Fig. 2.14
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Figure 2.8: Here we plot the total somatic and dendritic currents, the right-hand sides of
dVs/dt and dVd/dt. Even at the fastest injection rates the somatic and dendritic potentials
change at the same rate. This holds true during the soma injected current for all EK , M ,
and V out

ds we examined.
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Figure 2.9: Soma shunting to dendrite. M = 0.4 µA/cm2. Iinds is defined to be the current

out of the dendrite and into the soma. Thus, negative values of Iinds indicate that this current
flows from the soma to the dendrite. The curves terminate when a somatic membrane
potential spike occurs. Compared to the sublinear case the superlinear shunting is increased
by approximately 20 percent. This increase in shunting is enough to not only delay a somatic
spike, but to cause significant dendritic hyperpolarization. For the case shown, the TTFS
increases by approximately 30 % for V out

ds = −10 mV to a factor of two for V out
ds = −15 mV.
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Figure 2.10: The active dendritic currents for sublinear and superlinear profiles. Here
M = 0.4µA/cm2s) and Is,inj = −0.5µA/cm2. In (a) EK = −27.5 mV and the profile

is sublinear. In (b) E(K= −40 mV and profile is superlinear. The total active dendritic
currents are plotted and are equal to the sum of the hyperpolarizing potassium currents,
K-AHP and K-C, as well as the depolarizing calcium. Id,active = IK−AHP + IK−C + ICa.
For the sublinear profile the total active dendritic currents are monotonic in time and for

increasingly negative V Out
ds . For the superlinear profile with it’s stronger hyperpolarizing

currents the total active dendrite currents become non-monotonic with time for polarization
below around −12 mV. Furthermore for polarizations below around −13 mV the total active
dendritic currents become net hyperpolarizing.
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Figure 2.11: Plots of the active dendritic membrane currents (left), and for comparison, the
total dendritic membrane current (right). The parameters are the same as in Figure 10.
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Figure 2.12: The superlinear and sublinear profiles emerge only at stronger polarizations
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Figure 2.13: The q gating variable is the only gating variable sensitive to M over the range
considered here. The five gating variables of the polarized PR neuron are shown as the
neuron is taken from rest to a somatic potential spike in response to a range of injected
ramp currents. In each case V out

ds = −12 mV and Ek = −45 mV . For each plot, the
equilibrium value is denoted by a solid line, and the computational results are denoted by
dashed lines. There are ten different dashed lines corresponding to M from 0.1 µA/(cm2s)

to 1.0 µA/(cm2s). Only the slowly-activating q gating variable exhibits significant deviation
from the equilibrium curve. In all other plots, the gating variables track the equilibrium
curve so closely, regardless of the injection rate, that the lines can barely be distinguished.
Note that although q is a function of Ca the fact that Ca equilibrates with changing Vd
well over an order of magnitude faster than q equilibrates with changes in Ca allows us to
approximate the q kinetics q(Ca(Vd)) by q(Ca∞(Vd)).
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Figure 2.14: In the strong polarization region, where TTFS decreases, a dendritic spike
precedes the somatic potential spike. Somatic and dendritic potential spikes are revealed

when plotting Iinds . Plots of the current flow between compartments, gc(Vd − Vs + V out
ds )

are shown in (b) for the corresponding V out
ds shown in (a). Spikes in Vd result in positive

current spikes in (b) while spikes in Vs result in negative current spikes in (b). Since for each
polarization the applied current ramp grows until the somatic potential spike in all cases the

Iinds ends with a negative spike. The appearance of dendritic spikes (positive Iinds ) coincides
with the decreasing TTFS. Evidently the increase in depolarizing current coming from the
dendrite back into the soma more than compensates for the increased soma-hyperpolarizing
V out
ds .

from the soma to the dendrite and positive values indicating the reverse. Since in all cases

the stimulus ends when the soma spikes, all the curves end with a sharp negative drop.

However, corresponding to the strong polarization values at which the TTFS begins to

decrease, positive deflections in Iinds are seen in increasing magnitude (see the two right

lower panels in Fig. 2.14). These positive deflections result from dendritic spikes back-

propagating into the soma. These then act as a depolarizing trigger which induces a soma
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spike. ICa is the only active depolarizing dendritic current, and it is this current that is

responsible for the dendritic potential spikes and subsequent decrease in the TTFS.

2.3.5 Effects of Morphology On Excitability

We have used only one value for gc (2.1 mS/cm2) and one for ρ (0.5) in our simulations

so far. These values were used as standard values in [4]. Biological pyramidal neurons are

most likely not so electro-tonically “close”, and the dendritic and somatic areas may vary

substantially. To gauge the sensitivity of our results to variation of these morphological

parameters, we systematically varied gc and ρ for the ramp injection protocol. Results are

shown in Figs. 2.15 and 2.16 respectively. To understand how gc effects the TTFS in Fig.

2.15 it helps to think of the path of the injected soma current: (1) out of the soma through

the membrane (i.e., leak) (2) into the dendrite, and (3) from the dendrite out through the

dendritic membrane. We can neglect (1) since the leak current is small compared to the

inter-compartment conductance and the membrane currents. For very small gc (see circles

and squares in Fig. 2.15 (a-d)) the linearity of the TTFS as a function of V out
ds can be

explained by the inter-compartment current, Ids = gc(Vd−Vs +V out
ds ), becoming dominant.

For moderate and higher levels of gc, the current leaving through the dendrite via the

nonlinear active dendritic membrane currents play an increasing role as we go through the

intermediate and strong polarization regions. In this case, the calcium and hyperpolarizing

potassium currents become increasingly active, and the TTFS profiles display the same

qualitative shapes we saw earlier for gc = 2.1 mS/cm2 (Fig. 2.3).

Fig. 2.16 shows how varying the proportion of total membrane area allocated to the

soma, ρ, affects the TTFS as a function of V out
ds . The qualitative features of the TTFS

profiles are consistent with the profile for ρ = 0.5. Because of the mismatch in load at

ρ = 0.9 (stars in (a-d)), more of the current remains in the soma, and it is the linear

dependence of Ids on V out
ds that contributes to a more linear TTFS profile. As ρ → 0,

the current flows increasingly into the dendrite where the nonlinear dendritic membrane
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currents affect the TTFS.

2.3.6 Polarization-dependent Excitability Using Synaptic AMPA

The preceding results were based on the use of an injected ramp current, delivered at various

rates, primarily to facilitate comparison with experiments. The ramp injected current is a

commonly-used protocol for characterizing neural excitability. However, it is also of interest

to examine how polarized neurons respond to synaptic inputs.

Accordingly, we replaced the ramp current injection with synaptic AMPA currents in

the dendritic compartment using the same synaptic model for AMPA as in Pinsky and

Rinzel (1994) and Park et al. (2003, 2005). In the intermediate region, the shape of

somatic spikes change somewhat with increasing polarization, as was shown in Figs. 4 and

5. Thus, we would expect polarization-dependent effects on the synaptic current based

on the model described above. However, to facilitate the following analysis, we fix the

pre-synaptic activity to consist of a single spike such that Vs,pre is above 20 mV for 1.2 ms.

The main difference between this approach and the ramp current protocol is that in the

synaptic input case, a failure to spike is an important possible outcome. This is illustrated

in Fig. 2.17, using gAMPA = 0.3 mS/cm2 and Is,inj = 0.5µA/cm2. Panel (a) shows the

TTFS versus V out
ds profiles for two cases (with parameters EK and gKAHP ) in which the

curve terminates because the neuron fails to spike. The same panel shows two other cases

in which the TTFS profile could be obtained throughout the range of V out
ds studied.

Panel (b) shows the maximum TTFS obtained over V out
ds ∈ [−12, 0] mV, as a function

of gKAHP and EK , noting the cases in which the neuron fails to spike somewhere in the

V out
ds range. Polarization values were stepped by 0.075 mV. We find a clear division of this

parameter space into a region corresponding to spike failure, and a region for which spikes

occur throughout the V out
ds range and a value of the maximum TTFS can be obtained. The

values of gKAHP at the boundary increase with increasing EK , as the increased excitability

due to extracellular potassium is somewhat balanced by an increase in hyperpolarizing

KAHP conductance.
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In Fig. 2.18, we see that the segregation of cases that fail to spike and those that do spike

is correlated with a qualitative change in the total active dendritic currents. The sets of EK

and gKAHP values in (a)-(d) are the same as in Fig. 2.17 (a). For the two cases without

spike failure (panels (a) and (b)), the total active dendritic current grows linearly and at

nearly the same rate roughly independently of the polarization. In contrast, for the two

cases with spike failure (panels (c) and (d)), the total active dendritic current after about

10 ms grows at a much slower rate and shows more pronounced polarization dependence.

These observations are consistent with our previous observations using the ramp current

protocol regarding the role of the active dendritic currents. In particular, neurons that were

superlinear for the ramp protocol and those that failed to spike for the AMPA protocol were

associated with similar total active dendritic currents. Namely, the total active dendritic

currents are significantly suppressed, polarization-dependent, and were modulated by the

potassium-dependent hyperpolarization currents.

2.3.7 Inclusion of Ih current.

The concentration of Ih channels is many times higher in the dendritic portion of pyramidal

cells than in the somatic region [46]. We therefore equip our existing polarized PR model

with an Ih current in the dendritic compartment. The Ih current is activated at hyperpo-

larizing potentials, is active at rest, has moderately long time constants, and can obtain

various regulated states. These regulated states are simulated by adopting various values of

the maximal conductance gh and the channel half-activation voltage Vi−half .The equations

and parameters are given in the Methods section.

In the following computations, except for the inclusion of the Ih current, all other pa-

rameters and currents remain the same as in previous ramp-injected and AMPA-injected

computations. First, we show how the resting membrane potentials change with the in-

clusion of Ih at different levels of regulation. Fig. 2.19 depicts the somatic and dendritic

potential and the Ih gating variable i ( (a)-(c) respectively) as a function of V out
ds . The

changes in resting membrane potential coincide with the activation of i at hyperpolarized
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In (a) we have plotted the maximum TTFS obtained in the intermediate polarization region,

which we defined as V out
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values capable of producing a maximum TTFS. Polarization values were stepped by 0.075
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that they spike throughout the intermediate region and into the strong region. The line
marked with circles (EK = −35 mV and gKAHP = 0.1 ms/cm2) is close to the boundary
and reaches a maximum at around −10 mV at which point by our definition it reaches the
end of the intermediate region and the beginning of the strong region.
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Figure 2.18: For the AMPA current protocol, the neurons that fail to spike in the inter-
mediate region and those that do is correlated with a qualitative change in the total active
dendritic current. The sets of EK − gKAHP values in (a)-(d) are the same as in Fig. 2.17
(b). For the two neurons that spike throughout the intermediate region, (a) and (b), The
total active dendritic current grows linearly and at nearly the same rate regardless of the
polarization. In contrast, for the two neurons that failed to spike the total active dendritic
current, after about 10 ms, grows at a much slower rate and shows more pronounced polar-
ization dependence. These observations are consistent with our observations and hypothesis
made using the ramp injected protocol about the role of the active dendrite currents. One
difference between the ramp injected protocol and the AMPA protocol is that for the ramp
injected protocol the total active dendritic current become net hyperpolarizing in the su-
perlinear case (Fig. 2.10 and Fig. 2.12).
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values of Vd occurring at more positive V out
ds . The effect is greater at more up-regulated

states when gh and Vi−half are increased. We next examine how the various regulated

states of the Ih current affect our ramp-injected protocol results. In Fig. 2.20 we performed

computations analogous to those of Fig. 2.3 depicting the polarization-dependent TTFS

for high and low EK and for fast and slow M . The results are qualitatively similar to those

in Fig. 2.3, which had no Ih currents. The small differences between the polarized PR

without Ih (square) and with Ih (circle, triangle, star) are most apparent for larger V out
ds ,

corresponding to more hyperpolarized dendritic membrane potentials. Also apparent is the

significant gap between what has been treated as the high-level up-regulated state from

serotonergic studies [1] (circle) and the most active state used in [2] (star).

In Fig. 2.21, the AMPA protocol is used as in Fig. 2.17. We compare the polarized PR

neuron without Ih (a) to the polarized PR neuron with Ih at two up-regulated levels (b) and

(c). The clear split in the gKAHP -EK plane into those neurons that have a spiking solution

throughout the intermediate region and those that fail at some intermediate polarization

is present both without Ih (a) and with Ih currents at both the control state (b) and the

extreme activation range used in [2] (c). In (b) and (c) the depolarizing effect of Ih is

apparent in the diminishing area of spike failure and the decreasing TTFS.

2.4 Discussion

There is experimental evidence of a weak polarization region where the excitability decreases

linearly with increasing soma-hyperpolarizing polarization [13,24,25]. In addition, a strong

polarization region has been found where the excitability increases with stronger soma-

hyperpolarizing polarization [13]. We are unaware of any theoretical or experimental work

exploring excitability at intermediate polarizations. Our results provide experimentally-

testable predictions of how neuronal excitability is affected by polarization. The boundaries

of the polarization regions and the EK −M bifurcation values will undoubtedly vary from

neuron to neuron, reflecting variations in their density of channels and even changes in
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Figure 2.19: This figure shows V out
ds versus Vs, Vd, and i for the resting state (a)-(c) respec-

tively.
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Figure 2.20: The ramp injected protocol with polarized PR model plus Ih current. The
differences between the polarized PR without Ih (square) and the different regulated states

of Ih (triangle, circle, star) are most apparent at larger V out
ds and at more hyperpolarized

dendritic membrane potentials. Also apparent is the significant gap between what has been
treated as the high up-regulated state from serotonergic studies [1] (circle) and the most
active state used in [2] (star).
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their activation potentials. However, the qualitative structure of polarization-dependent

excitability that we have shown might well serve as an initial working hypothesis.

Several consequences follow from our results. First, once outside the weak polarization

region, efforts to control the dynamics of a neuron or a network of neurons may depend

critically on whether the neuron(s) has (have) a sublinear or superlinear TTFS sensitivity to

polarization. In particular, the ability of [K+]o to drive the neuron to and from a sublinear

and superlinear dependence on polarization might suggest that the extracellular potassium

and its dynamics may need to be considered when trying to modulate neural activity with

electric fields. As we have mentioned, neural hyperactivity has been shown to lead to an

increase in [K+]o, thus increasing EK [26, 47, 48] which in turn further increases neural

excitability. The neural activity and extracellular potassium levels by themselves form a

positive feedback loop. However, application of increasingly soma-hyperpolarizing fields

will, in the intermediate and strong regions, decrease excitability. The decreased excitabil-

ity would be expected to decrease [K+]o and hence decrease the polarization-dependent

excitability induced by soma-hyperpolarizing fields, thus resulting in a negative feedback

loop. Further still, if the decrease in [K+]o is sufficient to draw neurons from a sublinear to

superlinear profile, then we might expect to see a sudden step-down in excitability and a

qualitative change in the rate at which excitability is decreased with polarization strength.

Second, outside the weak polarization region we found that channels and their currents,

which are normally associated with a neuron in its active spiking or bursting state, can

also significantly influence its subthreshold excitability. Third, we found that although the

values of q (gating variable for the dendritic KAHP current) obtained during subthreshold

stimulus are small (being no more than about 0.05 of the maximum, compared to near 1

during the burst), results in Fig. 2.6 indicate that the variation in q with M is significant

enough to effect a transition between sublinear and superlinear TTFS profiles.

The observation that a small fraction of activated channels can have significant in-

fluence on the excitability of a polarized neuron places a particular importance on the

nascent stages of channel activation. For computational ease many models truncate the
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early stages of channel activation (or simply replace more complex functions with sigmoidal

or step functions). These modifications may have little effect on spike trains of unpolar-

ized or weakly polarized neurons, however, they will most likely fail to accurately depict

polarization-dependent excitability outside of the weak polarization regime.

The ramp injection rate M may model actual applied ramp currents, or it may ap-

proximate the convolution of many pre-synaptic inputs to the dendrite. Results differ only

slightly when the somatic injection is replaced by dendritic injection in the model and is

less significant when gc is larger (data not shown). For the ramp injected current protocol,

we have shown that slower sustained input allows for more time for the very slow KAHP

gates to open, thus facilitating hyperpolarization and potential superlinear profiles. These

superlinear profiles may also be obtained by varying either or EK and gKAHP . In addition,

we showed further evidence that the dendritic spikes at strong polarization cause a reversal

in excitation (i.e., decreasing TTFS with decreasing V out
ds ) and we note that this is due

to the same calcium currents that are responsible for the back-propagation that sustains

a burst [49]. In summary, our results suggest that the activation or partial activation of

dendritic currents critical to pyramidal cell burst dynamics also play an important role in

shaping the polarization-dependent excitability of a neuron.

We chose a two-compartment model to facilitate our analysis. It would be interesting

to see how a more complex multi-compartment model would behave. For example, a model

with apical and basilar dendritic compartment on either end of a soma compartment would

allow for the possibility of injected current taking two paths out of the soma. Although the

degree of polarization from the soma to the apical dendrites may be significantly reduced.

A possible extension of this study would include a multi-compartment model such as [32]’s

19-compartment CA3 pyramidal model with a graded distribution of currents and possibly

additional types of currents.

Finally, looking at our results abstractly beyond the framework of a particular neuron or

model neuron, we speculate on the question of what it takes for a neuron to exhibit the char-

acteristics of the weak, intermediate, and strong polarization regions observed in our study
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using the polarized PR-model. We conjecture that (1) without a depolarizing dendritic

current any reversal in excitability seen at strong polarization would be impossible, (2) the

ranges of the weak, strong and intermediate regions depend on how the channels activate

with membrane potential, and (3) that the clear division in the polarization-dependent ex-

citability seen in the intermediate region requires two competing currents, one depolarizing

and one hyperpolarizing.
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Chapter 3: Effects of Localized Ephaptic Currents On the

Spike Timing of Small Networks of Neurons

I go among the Fields and catch a
glimpse of a Stoat or a fieldmouse
peeping out of the withered grass - the
creature hath a purpose and its eyes
are bright with it. I go amongst the
buildings of a city and I see a Man
hurrying along - to what? the Creature
has a purpose and his eyes are bright
with it.

Keats

3.1 Introduction

The conduction of ions back-and-forth between the intracellular and extracellular space

drives the transmembrane potentials that defines neural activity. However, most models

ignore the effects of the extracellular current (ECC). In essence, these models treat the cell

membranes as perfectly insulated, dependent on specific anatomical connections such as

synapses or gap-junctions for interactions between neurons. Theory and experiments have

shown that the ECC due to electrical activity in one neuron may induce a polarization

within surrounding cells. As discussed in Chapter 2 the polarization due to electric fields

has been shown to affect neurons in several ways including; the resting membrane potential,

the time to first spike and spike frequency [13,14,25]. In particular, there have been a num-

ber of experiments suggesting that the spike propagation through neural tissue can occur

solely due to endogenous electric fields. Most recently Qiu et al. [50] has experimentally

and computationally shown that the speed of spike propagation through a hippocampal

slice is inversely proportional to the distance between cells and thus proportional to the

49



corresponding increase in extracellular resistance and field amplitude. Importantly, in Qiu

el al and preceding work, the effects of endogenous fields on spike propagation were studied

using pathological models of neural tissue [51]. These experiments raised the excitability of

the neurons by immersing the tissue in a low Ca2+ solution with Mn2+ or through applica-

tion of convulsants like AP-4 as a model of epileptic activity. In addition, both inhibitory

and excitatory synaptic conduction was blocked. The effects of endogenous fields have been

probed experimentally by assessing the ability of the endogenous field to synchronize neural

populations. These experiments have also been performed with epileptic like models and

synaptic activity blocked [15,52–54]. Snow [55] demonstrated that endogenous electric fields

could also synchronize with pathologically excitable spike activity in the presence of func-

tional excitatory chemical synapses (picrotoxin was used to suppress inhibitory synapses).

To the best of our knowledge there has not been any experimental demonstration of ephap-

tic effects on physiologically normal tissue models with intact synaptic architecture. In

contrast to the waves of propagating spikes found in the aforementioned pathological slices,

in vivo measurements of pyramidal cell field potentials within the Rodent Hippocampus

during several behavioral states reveal selective, sparse, and isolated spiking activity. These

selectively spiking pyramidal cells include place cells that encode spatial memory for nav-

igation [56–58]. Here, we focus on the localized effects of polarization induced by ECC,

mainly due to the action potentials of neighboring neurons, on the propagation of spikes in

a synaptically coupled chain of neurons. We also uncover the underlying mechanisms that

relate the induced polarization to cell dynamics and their effect on spike timing.

In this chapter, we are interested in the impact of the ECC due to individual neurons

within a network. We first utilize a model where two-compartment pyramidal neurons

are embedded in a resistive lattice. The resistive lattice transmits the ECC generated by

membrane currents from one neuron throughout the resistive lattice, inducing a polariza-

tion in neighboring neurons. Our primary synaptic architecture is where each neuron is

synaptically connected to only its neighboring neuron (in one direction). This connectiv-

ity we refer to as the sequentially excited (SE) architecture. The SE architecture has the
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properties that (1) localized ephaptic effects are limited to nearest-neighbor and (2) the

timing between the polarization induced by the neighboring neurons action potential and

the synaptic current is fixed. For the SE architecture we find that the time-to-first-spike

(TTFS) is non-monotonic with increasing extracellular resistance. This result is contrasted

with experimental results showing a monotonically decreasing TTFS with increasing extra-

cellular resistance. The experimental results, however, are with synapses blocked and where

the neruons are in a hyper-excited state. Our model is similar to that used by Gluckman [6]

in a study of stochastic resonance. Our model is also an extended version of the embedded

pair of two-compartment models employed by Park [7, 8] to study synchronization effects

between two synaptically and resistively coupled neurons. This model was also used in

Cong [59] to explore the effect of DC fields on firing patterns. In these models, the extra-

cellular currents and their effect on the neurons are explicitly solved for at each time step.

To both freely vary the timing between action-potential (AP) generated polarized currents

and synaptic AMPA current as well as to differentiate mechanisms we developed two single-

neuron models. one uses t u where we vary the resistances and relative timing between a

synaptic current and the polarization induced by ECC associated with neighboring action

potentials.

The terminology used for the electrical properties of the extracellular space and its

effects has varied over time and among authors. Anastassiou [60] uses the term ephaptic

to refer to any effects due to changes in extracellular potential anywhere along the cell

membrane, while Jefferys [61] uses ephaptic only when referencing local effects such as that

due to the biphasic high-frequency pulses of action potentials. Here we adopt Anastassiou’s

over-arching definition of ephaptic, ephaptic effects occur at a variety of spatial scales;

synapses (microscale), neurons(mesoscale) and networks (macroscale). This work focuses

on ephaptic effects at the mesoscale and microscale involving neurons and synapses. The

source of the ephaptic current is the transmembrane currents of a single neuron in an active

state 1.

1We use the term active state to describe any form of sustained depolarization whether it be a single
spike or burst. However, under the conditions presented here the active state consists of a single isolated
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Previous authors considered the effects of ECC on neurons by combining external elec-

tric fields with the endogenous ephaptic effects. However, external fields tend to obscure the

relatively small ephaptic effects. Therefore, we focus solely on the endogenous ephaptic ef-

fects due to the current sources from individual neurons. Our emphasis on localized current

sources at the neuron and synaptic scales differs from a number of previous computational

studies, which have focused on the network-wide local field potentials (LFP) that oscillate

throughout the hippocampus [51, 62–65]. Note that despite its name LFP’s are not local

but global in extent and will not be considered here. In Park et al. [7,8] the ephaptic effects

from a single action potential were considered in the context of two coupled continuously

spiking Pinsky-Rinzel neurons under an external applied field and found to have important

synchronizing effects. Also, Holt and Koch [36] estimated the extracellular potentials asso-

ciated with an action potential in a cortical pyramidal cell. We are interested in uncovering

physiologically plausible conditions for ephaptic currents due to individual neurons in order

to have significant neuro-computational effects.

The geometry and physiology of many, if not most neurons, minimizes both the ECC

transmitted by a neuron and that neuron’s susceptibility to polarization. Neurons whose

active channels are localized and not well aligned with their neighbors generate less ephaptic

polarization and have less of an effect on its neighbors. Pyramidal cells are the primary

excitatory neurons in the hippocampus and neocortex. They have elongated dendrites

with active channels. In the hippocampus, they are arranged in a laminar fashion, and the

somatic-dendritic axis of neighboring pyramidal cells are well-aligned. Pyramidal cells of the

hippocampus are well-suited for a study on ephaptic effects. As in the previous chapter we

adopt a model consisting of Pinsky-Rinzel CA3 pyramidal neurons [4] synaptically connected

and embedded in a resistive array to approximate the flow of currents in the extracellular

space (ECS) and subsequent polarization. The Pinsky-Rinzel model has previously been

used in a number of studies involving electric-field induced polarization [7, 8, 10,16].

We may view the neurons as current sources and sinks to the extracellular space (ECS).

spike.
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The resistance of the ECS modulates the polarization potentials imposed on the neurons.

Resistance is a product of the fluid properties of the ECS and the path the ions must

navigate. Kuffler [66] describes this path as being like the thin streams of water that

surround the bubbles in a foam of soap. Several factors have been found to change either the

path that the ions flow or the resistivity of the fluid. For example, extracellular potassium

levels have been shown to influence cell volume and thus affect the extracellular volume

(ECV) and EC resistance [67]. The resistivity of the fluid will also vary depending on

concentrations of macromolecules and an associated change in tortuosity in the ECS [68].

The ECS was observed to act as a low-pass filter so that higher frequency components

of a signal diminish as the signal passes through the ECS. This fact has been used to

explain the dominance of the lower-frequency synaptic sources and the apparent absence

of the high-frequency action potentials in scalp recordings [69]. Based on computations by

Bedard [70] dispersive effects should be minimal over the short distance between pyramidal

cells while there may be more significant dispersion along the soma-dendrite axis. In this

work, we do not model frequency-dependent conductance.

Ephaptic effects with synaptic conduction blocked, have been shown to induce synchro-

nized firing in a hippocampal slice [53]. However, this appears to be true only for neurons

that are in a highly excitable state (see for example [53]). Here, we compute the sensitivity

of the time-to-first-spike (TTFS) driven by chemical synapses with respect to the timing

of action potential generated ECC and the extracellular resistance. The significance of the

ECC is dependent on the synaptic excitatory current relative to the excitability of the neu-

ron in its resting state. In other words, the level of effect of the ECC on TTFS depends on

how close the synaptically excited neuron is to a bifurcation between spiking and a failure

to spike.

To help understand the underlying mechanisms responsible for our results we found it

useful to divide the localized ephaptic effects due to the activity of individual neurons into

three components: (1) Source loading: which refers to the polarization of the source neuron

by its own transmembrane currents. (2) The response of a neurons’ non-synaptic membrane
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currents to a neighboring neuron’s action potential. (3) Synaptic coupling: The ECC

polarizes the post-synaptic dendrite which alters the synaptic currents driving potential.

Source loading is not an independent component rather it depends on both the synaptic

coupling and the interactions with the non-synaptic currents. The dominant mechanism for

source loading is the effect of the polarizing current to shorten slightly the spike width and

thus the AMPA current delivered to the next neuron.

In this work, we explicitly compute the excitability through computational modeling

and simulation. We may also understand excitability in the context of dynamical systems

and bifurcation theory. A bifurcation occurs when there is a qualitative change in the

solution as one or more parameter values are varied. Hodgkin [71] classified the repetitive

firing of axons into three types: Class I exhibits spiking at arbitrarily low frequency, Class

2 only has a minimum spiking frequency and Class 3 neurons only spike once . Later, it was

established that Class 1 or Class 2 excitability may be placed in the context of a saddle-node

on an invariant circle (SNIC) or Andronov-Hopf type bifurcations [72]. Neurons with Type

I excitability are described as being integrators and those with type 2 as resonators [73,74],

and each has there own neural-computational properties. It is important to realize that

real neurons and many model neurons may switch from one type to another. Often, this

switch occurs in response to changes in the baseline excitability through higher or lower

levels of synaptic input [75, 76]. Also, relating real or multi-dimensional model neurons to

an SNIC or Andronov-Hopf bifurcation may not be straightforward or even possible since

these bifurcations are defined for one- and two- dimensions respectively. In some cases, we

may neglect a variable or treat it as a constant and formally reduce the dimensions. Here

we use the full eight-dimensional PR model and project the state of the neuron onto the

Vs−n plane to see if we can observe a qualitative change in the trajectories. By projecting

the eight-dimensions onto the two soma variables we are effectively saying that nothing

interesting happens in the other six dimensions.

Our results suggest that spike timing and synaptic coupling through the polarization

of the post-synaptic dendrite could play an important role in ephaptic effects on spike
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timing. When we remove synaptic coupling, our modeling is consistent with experimental

results showing decreasing TTFS with increasing extracellular resistance and associated

increase in field potential amplitude. Furthermore, we found that we were able to employ

single-neuron models to compute the response of a pyramidal neuron to the ECC from a

neighboring neurons action potential for a range of amplitudes and timing relative to some

external synaptic input. These computed responses predicted well the spiking behavior

found using our full resistive lattice subject to randomly spiking and synaptically isolated

neurons.

In section 3.2 we describe our methodology including numerical methods and physiolog-

ical basis for our choice of parameters. In section 3.3 we present our results in the form of

time-to-first-spike (TTFS) calculations for a range of extracellular resistances. In section

3.4 we discuss our results and potential future work.

3.2 Methods

3.2.1 Polarized two-compartment PR model neuron

For the two-compartment PR model, we modify the equations to accommodate the polar-

ization between compartments as was done in [7, 8]. The transmembrane potentials are

defined by the difference in potential across the cell membrane.

Vs = V in
s − V out

s (3.1a)

Vd = V in
d − V out

d (3.1b)

Membrane channels are functions of the transmembrane potential. However, current flow-

ing passively between the two compartments is proportional to the difference in their in-

tracellular potentials, V in
s and V in

d . The original Pinsky-Rinzel model, as in most models,

implicitly assumed a constant extracellular potential, i.e V out
s = V out

d . In this case, the

intracellular potential between compartments, (V in
d − V in

s ), is equal to the difference in
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transmembrane potentials, (Vd − Vs). Allowing our compartments to have two different

extracellular potentials, we define the potential difference directly outside the dendrite and

soma as V out
ds = V out

d − V out
s . The current out of the dendrite and into the soma is defined

as Iinds and is given by:

Iinds =
gc
ρ

(V in
d − V in

s ) (3.2)

=
gc
ρ

(Vd − Vs + V out
ds ).

The parameter gc is the inter-compartment conductance, and ρ is the fraction of soma

surface area to the total cell surface area. The polarized PR model is given by

Cm · dVs/dt = IsLeak(Vs) + INa(Vs, h)+

IK−DR(Vs, n) + Iinds + Is(t)/ρ, (3.3a)

Cm · dVd/dt = IdLeak(Vd) + ICa(Vd, s)+ (3.3b)

IK−AHP (Vd, q) + IK−C(Vd, Ca, c)−

Iinds
ρ

1− ρ
+
IAMPA(Vd)

1− ρ

dCa/dt = −0.13ICa − 0.075Ca. (3.3c)

The parameter Ca represents a unitless measure of the amount of intracellular calcium.

For the equation governing intracellular Ca levels, the coefficient −0.075 is based on optical

measurements of the decay of Ca in Purkinje dendrites (−0.075s−1 = 1/τCa = 1/13.33ms)

from [32,39]. The sign of the coefficient −0.13 multiplying ICa means that current into the

dendrite compartment results in an increase intracellular Ca. This coefficient represents an
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exchange of coulombs provided by the ICa current for moles of Ca2+. Traub [32] presents

an abstract model of intracellular Ca2+ where each compartment rate of absorption can be

varied by varying the thickness of an imagined sub-cellular membrane. Traub fine-tuned

this coefficient to best match experimental data. The polarized PR model differs from the

original only in the addition of the terms Iinds and −Iindsρ/(1 − ρ). In this work, we fix the

morphology of the model neurons by setting ρ = 0.5 for all neurons in the chain. We

also hold fixed the electrotonic relationship between soma and dendrite by setting gc = 2.1

ms/cm2. The individual currents with their dependencies on the dynamic gating variables

h, n, s, c, and q are as follows:

IsLeak = −gL (Vs − EL) (3.4)

IdLeak = −gL (Vd − EL)

INa = −gNam
2
∞h(Vs − ENa)

IK−DR = −gK−DRn(Vs − Ek)

ICa = −gCas
2(Vd − ECa)

IK−AHP = −gK−AHP q(Vd − Ek)

IK−C = −gK−Ccχ(Vd − Ek)

IAMPA = −gAMPAW (t)(Vd − Vsyn).

Fig. 3.1 depicts the flow of currents, either inward (depolarizing) or outward (hyperpo-

larizing), at typical steady-state values. In our model, a cathode is imagined to be placed

near the soma and the anode near the apical dendrites. Thus, a positive (negative) field

depolarizes (hyperpolarizes) the soma and hyperpolarizes (depolarizes) the dendrite. Note

that this convention is a reversal in field sign from that found in [13, 24], and [29] , but

follows that used in [7, 8].
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Figure 3.1: Pinsky-Rinzel polarized model neuron

There are five gating variables (h, n, s, c, and q) whose kinetics take on the standard

Hodgkin-Huxley form. The gating variables h and n are functions of Vs, s and c are

functions of Vd, and both q and χ are functions of the intra-cellular calcium concentration

Ca. Equations 3.3 and 3.4 are thus coupled with the five first-order gating kinetics given

below:

dh/dt = (h∞(Vs)− h)/τh(Vs) (3.5a)

dn/dt = (n∞(Vs)− n)/τn(Vs) (3.5b)

ds/dt = (s∞(Vd)− s)/τs(Vd) (3.5c)

dc/dt = (c∞(Vd)− c)/τc(Vd) (3.5d)

dq/dt = (q∞(Ca)− q)/τq(Ca) (3.5e)

dW/dt =
∑
j

H(Vs,j − 20)−W/2. (3.5f)

In eq. 3.5(f) the index j refers to any pre-synaptic neurons connected to the dendrite

compartment. In this case the synaptic conductance does not activate until the pre-synaptic
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soma of the neuron has exceeded 20 mv.

3.2.2 Modeling the extracellular conductance

We use a resistive lattice to model the ECC. Our lattice is similar to that used to embed

the chain of PR neurons found in Gluckman et al. [6] and the pair of PR neurons in Park

et al. [7, 8]. For each neuron in the chain the two PR compartments act as current sources

and sinks. Here, the top and bottom of the lattice is set to ground. In our model, the

resistive lattice forms a ring of N neurons. A diagram of our embedded chain of PR neurons

is shown in Fig. 3.2. For most of the results presented here N=51 while for the hgih

resolution computations involving the randomly spiking neuron (Sec. 3.3.7) N=25. Due

to our synaptic architecture, limited runtime, and the attenuation of the current through

the lattice additional neurons did not change our results. All of the dynamic variables in

each neuron in the chain are coupled through the currents in the lattice. More specifically,

the neurons are coupled through V out
ds = Ioutds R

out
ds , the imposed potential difference outside

the dendrite and soma of each neuron. Thus the system is a large set of coupled linear

equations. The currents in the lattice satisfy Kirchoff laws at junctions and over loops. The

ODEs of the polarized PR neurons and the linear equations to solve the currents constitute

a differential algebraic equation. As in Park et al. [7,8], Gluckman et al.[6], and Traub et al.

[9] the ODE describing the polarized PR neurons are updated using the V out
ds ’s calculated

at the prior time step. Such a methodology means that the solution may be unstable at a

certain step size. Our problem is inherently stiff in the sense that we have vastly different

time-scales. Specifically, we have over three orders of magnitude difference in the kinetics of

the gating variables and have an effectively instantaneous algebraic condition due to solving

the resistive array. Nonetheless, we found that our solution stabilized for reasonable step

sizes. We employed the ODE45 Matlab integrator with an absolute error of 1e−6 and a

relative error of 1e−11. However the TTFS converged to about 1e−4 of its value for a 1e−12

relative error. Thus when computational time is limited we relaxed the relative tolerance

down to 1e−6.
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Figure 3.2: Schematic of chain of synaptically coupled PR neurons embedded in a resistive
lattice. The resistive lattice forms a continuous grid. However, the nth and 1st neurons
are not synaptically connected. The resistive grid (i.e. the number of neurons) typically
consisted of 51 model neurons. The duration of the computations were often such that only
10 or so neurons spiked.

Extracellular Properties of the Hippocampus and Our Model.

Most previous studies explored the ephaptic effects assuming a fixed value for the extracel-

lular resistance [6–9]. Wei [65] recently investigated the effects of extracellular resistance

on the dependence of spike threshold and frequency as a function of a constant applied

electric field. 2 Anatomical studies and experiment have revealed substantial variation in

the geometry of the ECS as well as the properties of the interstitial fluid, thus implying

2Park (2005) related the [K+]o to the resistance, but this paper did not present any systematic results.
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significant variation in the EC resistance [77–80]. Also, there is evidence that age, disease,

and activity levels in the hippocampus can affect the extracellular resistance [68, 81, 82].

Thus we try to gauge the significance of changing extracellular resistance when it comes to

spike timing and spike propagation.

Gluckman [6] and Park [7, 8] specified the extracellular resistances in their lattices

in terms of fractions of the internal dendritic-somatic resistance, Rin
ds, which is equal to

1/ (gcArea). These papers all used the same resistances: Rout
ds = 0.1Rin

ds, Rdd = Rss =

0.1Rout
ds , and top and bottom resistances Rtd = Rsg = 12Rout

ds . Here, we will refer to these

resistances as the standard. As in [7,8] we use Rin
ds ≈ 80MΩ meaning that for the standard

resistance, Rout
ds ≈ 8MΩ. To understand how the geometry and interstitial media effect the

resistance we first assume as in [9] that the space between pyramidal neurons is a rectan-

gular parallelpiped. Then if we assume a uniform flow we can apply the familiar formula,

R = ρl/A. Where A is the cross-sectional area, l is the length parallel to the current, and

ρ is the resistivity. In general, there is a great uncertainty in the parameters that deter-

mine resistance. These uncertainties include the actual flow of current. (For example, an

unknown fraction of current is known to take transglial paths [79].) Furthermore, these

characteristics change due to different mechanisms operating over a number of different

time-scales. At a slow time-scale these mechanisms include changes in cell morphology with

age and the effects of disease [81]. At a much faster time scale [79] has shown in vivo that

localized resistivity in the ECS surrounding CA1 layer is activity-dependent increasing from

20-50%. The same study [79] found that resistivity measured about 30% greater in slices

than in vivo. Pyapali [78] performed measurements of the CA1 morphology in the Rat

using intracellular staining in vivo and in vitro and found that the total length had mean

of about 700 µm with standard deviation of ≈ 100 µm. Systematic measurements of the

cross-sectional area relevant to Rout
ds are lacking. This is the area between pyramidal cells,

or the square of the distance between cells. A number of studies use 20 µm for this quantity,

however, Traub [9] notes that the distance could easily be smaller and photomicrographs of
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the hippoampus pyramidal cell layer suggests distances as low as 10 µm. For the purposes

of estimating the variance in resistance we shall assume A = (20 + /− 5µm)2. Applying

a 25% variance in the in vivo measured apical dendritic resistivity of 287 Ω-cm [79] we

estimate a range of Rout
ds between 0.025Rin

ds and 0.16Rin
ds

3.This range of Rout
ds values may be

compared to the parameterized range of Rout
ds used in our results.

Frequency Dependent Conductivity in the ECS

The extracellular conductivity is frequency dependent [70, 83, 84]. The extracellular space

behaves as a low-pass filter. Higher frequency components of a signal decay rapidly. In our

model the ECC associated with the action potential of the polarized PR model is biphasic

and occurs over a period of about 2 ms. The bulk of the power in the signal occurs above 500

Hz. Our action potential generated ECC is very similar to that computed by [70] using a one

compartment conductance based model. Applying Bedard’s [70] results to our model suggest

very little attenuation over short distances ≈ 5µm but more substantial attenuation of the

higher frequency components over 100 µm. We conclude that the longitudinal polarization

will be little altered although there might be more substantial changes along the soma-

dendrite axis. As in [6–8,59] we use a purely resistive array.

3.2.3 Synaptic strength and soma bias current modulate excitability

Constant bias currents such as Is in the PR model adjust the excitability of the neuron.

The more negative Is, the longer it takes a given synaptic input to elicit a spike or the

stronger the minimum synaptic strength needed simply spike at all. Physiologically, the

bias current may be thought of as a crude approximation of inhibitory synaptic input

without the feedback dynamics. Together, the synaptic AMPA conductance and the bias

current establish a level of excitability in the chain of neurons. Close to a bifurcation,

ephatic effects are amplified.

3What we are calling the standard value for Rout
ds of 8MΩ differs from the Rout

ds obtained using the mean

values cited. Specifically, for ρ = 287Ω − cm, l = 700µm, and A = 20 µm2 Rout
ds ≈ 5MΩ
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3.2.4 Network Architecture

We first use a very simple chain of identical neurons as in Fig. 3.2. This network of identical

neurons is nearest-neighbor and uni-directionally synaptically coupled. We initiate our

computations by stimulating a single neuron. With no resistive lattice the neurons spike

sequentially at fixed intervals and the computed TTFS between any two neurons in the chain

should be identical (within numerical precision). We refer to this synaptic architecture as

being sequentially excited SE.

To model the ECC we embed the sequentially excited chain in a resistive lattice. The

ECC due to transmembrane current is global and attenuates with distance. In principal,

this greater than nearest-neighbor ECC effect may lead to variance in the TTFS within

the embedded chain. However, by implementing a sequentially excited architecture, the

active states of nearby neurons will be separated in time by approximately the TTFS. If

the TTFS is sufficiently long and the induced polarization sufficiently weak, then a neuron

will have time to re-equilibrate in response to greater than nearest-neighbor spikes. In such

cases, for a sequentially excited network the effects of the ECC are approximately nearest-

neighbor as well. In addition, the SE architecture imposes a fixed relative timing between

the polarization due to the ECC generated by a potential spike and the synaptic input.

While it is reasonable to assume that the ECC propagates instantaneously, the synaptic

(AMPA) current only begins to activate when the presynaptic somatic potential exceeds 20

mV , meaning that AMPA current trails the ECC by about 0.2 ms.

3.2.5 Simplified models

We used XPPAUT to compute and analyze our single-neuron models. To freely vary the

timing of the ECC and to segregate effects by their causes we model the polarization by

applying an interpolating function to two single-neuron models. To avoid possible confusion

with the polarization, V out
ds , obtained by solving the currents in the resistive lattice every

time step, we denote the interpolated polarization by using all capitals and specifying that

it is an explicit function of time, V DS(t). The interpolating function for the polarization
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is obtained by computing V out
ds for the nearest neighbor of a spiking neuron using the full

resistive lattice model (Eqs. 3.3-3.4). The polarizations from the full resistive model is then

output at evenly spaced intervals using MATLAB’s deval function. For the VDS(t) used

here polarizations were calculated every 1e-6 seconds over a duration of 16 ms 4.

In the first single neuron model the AMPA current was defined as in our chain of

polarized neurons, with the active channel conductance W being a variable in the ODE.

The equations follow:

Cm · dVs/dt = IsLeak(Vs) + INa(Vs, h) + IK−DR(Vs, n) (3.6a)

+
gc
ρ

(Vd − Vs +Amp ∗H(t− τECC) ∗H(τECC + 16− t) ∗ V DS(t− τECC)) + Is(t)/ρ,

Cm · dVd/dt = IdLeak(Vd) + ICa(Vd, s)+ (3.6b)

IK−AHP (Vd, q) + IK−C(Vd, Ca, c)+

gc
ρ

(Vs − Vd −Amp ∗H(t− τECC) ∗H(τECC + 16− t) ∗ V DS(t− τECC))

+ Iinds
ρ

1− ρ
+
IAMPA(Vd)

(1− ρ)

dCa/dt = −0.13ICa − 0.075Ca (3.6c)

IAMPA = −gAMPAW (t)(Vd − Vsyn) (3.7)

W ′ = H(Vs,pre − 20)−W/2.

Where H denotes the Heaviside function. We apply the AMPA current by defining Vs,pre

as follows

4A full 16 ms far exceeds the time needed as after more than 2-3 ms the polarization due to the action
potential is negligible.
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Vs,pre = AH(t− tpre)H(tpre + tspkdur − t) (3.8)

tspkdur = 1.2ms

A > 20mV

Results are given in terms of the relative time between the presynaptic pulse, τpre, and

the time of the ECC polarization, τECC , due to the neighboring action potential. Thus, we

define τ = τECC−τpre as the relevant parameter to describe timing effects. Amp modulates

the amplitude of V out
ds to parameterize the effects of changing extracellular resistance. The

Heaviside functions on either side of VDS(t) in Eqs. 3.9 is there to make sure we do not

use and extrapolated values beyond the 16 ms of data.

For the second single neuron model, we use the an interpolating function for IAMPA as

well as for V out
ds . The data for the interpolated AMPA function is taken for a chain of PR

neurons without any resistive lattice. The significance of the interpolated AMPA currents is

that it will not be affected by hyperpolarization or depolarization of the postsynaptic den-

drite due to the ECC, thus eliminating the synaptic-ECC coupling component. In addition,

since the polarization used for the interpolation, V DS(t), captures only the polarization

due to a neighboring neurons’ action potential source loading is absent from both single

neuron models. The absence of source loading will have the effect of raising the excitability.

For the second model we have:
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Cm · dVs/dt = IsLeak(Vs) + INa(Vs, h) + IK−DR(Vs, n) (3.9a)

+
gc
ρ

(Vd − Vs +Amp ∗H(t− τECC) ∗H(τECC + 16− t) ∗ V DS(t− τECC)) + Is(t)/ρ,

Cm · dVd/dt = IdLeak(Vd) + ICa(Vd, s)+ (3.9b)

IK−AHP (Vd, q) + IK−C(Vd, Ca, c)+

gc
ρ

(Vs − Vd −Amp ∗H(t− τECC) ∗H(τECC + 16− t) ∗ V DS(t− τECC))

+ Iinds
ρ

1− ρ
+
SY N(t− τpre)

(1− ρ)

dCa/dt = −0.13ICa − 0.075Ca (3.9c)

The second single neuron model has the IAMPA replaced by the interpolated function

SY N(t), W is eliminated and there is no longer a need for Vs,pre as defined in Eq. 3.8. As

mentioned, the data for the AMPA interpolations was obtained using calculations without

the resistive lattice over a duration of 32.78 ms at a resolution of 1e-6 s. Both models used

XPPAUT’s lookup table function with the linear interpolation option. We denote τ for the

SE architecture by τ∗ ≈ 0.2 ms.

We then systematically explore the effects of the relative timing between the ECC from

a spiking neuron and synaptic AMPA. This approach allows us to freely and easily adjust

both the timing as well as the amplitude of the imposed polarization. This is similar to

a phase-response analysis, however, in this case the unperturbed model is at rest rather

than periodically spiking. Our phase-and amplitude- response of a resting neuron confirms,

clarifies, and expands our understanding of the underlying mechanisms first observed with

the one-dimensional sequentially excited embedded chain.
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3.2.6 Integrals of currents to evaluate neural response to polarization.

To quantify the contributions and dependence on extracellular resistance, Rout
ds we integrated

ionic currents and the dendritic membrane potential dependent part of the AMPA current

over time to get a total charge per membrane area. These totals were computed for a range

of Rout
ds . We isolated the response of the non-synaptic currents by using a full resistive

lattice with no synaptic connectivity between neurons. One neuron was stimulated to spike

and we computed the currents of a neighboring neuron. The neurons were initially at rest

and the polarization induced currents but quickly returned to equilibrium.

Qion(Rout
ds ) =

∫ tf

t0

(Iion(t;Rout
ds )− Iion(0))dt, . (3.10)

Qsc(R
out
ds ) = −

∫ tf

t0

gAMPAW (t)Vd(t;Rout
ds )dt (3.11)

3.2.7 Addition of a synaptically isolated and randomly spiking neuron.

We now consider the effect of a randomly spiking neuron within a chain of neurons in a

SE architecture. The isolated neuron is resistively connected but synaptically isolated (see

Fig. 3.19 (a)). One objective of this simulation is to explain the effects of this isolated and

randomly spiking neuron on its neighbors through our previous analysis involving simpler

models.

3.3 Results

3.3.1 The ECC from an isolated spike of a single neuron

In our resistive lattice (Fig. 3.2) the flow of current through the cellular membrane is

modeled by currents connecting the soma and dendrite to the lattice. The total current
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flowing between the compartments and the resistive lattice is proportional to the rate of

change of their membrane potentials. Thus, if the neuron is at rest, then there is no net flow

of current into or out of the lattice. Moreover, any gradual change in membrane potential,

as might occur during a subthreshold stimulus, is bound to be small. Consequently, the

dominant contribution to the ECC comes from active spiking or bursting neurons when

the membrane potentials change rapidly. Indeed, the waveforms characteristic of action

potential spikes is evident in field potential recordings [85–87]

In our model, the ECC affects neurons in the chain by imposing a polarization, V out
ds ,

between the compartments. V out
ds = Ioutds R

out
ds , where Ioutds is the current flowing in the

extracellular space between the dendrite and soma (positive current means positive charge

flows from the dendrite to soma). Rout
ds is the resistance along the dendritic-somatic axis.

Fig. 3.3 shows the polarization and membrane potentials for a single spiking PR neuron

embedded in a resistive array with standard resistance values. The only connectivity be-

tween neurons is through the resistive lattice. The polarization induces a current between

the soma and dendrite that redistributes the charge. This polarization does not directly al-

ter the current flow in and out of the membrane and if the membrane is passive there is no

change in the total charge stored in the neuron. However, membrane potential-dependent

conductances are sensitive to polarization and the change in conductance alters the net

charge. Notice that when one compartment depolarizes the other hyperpolarizes (compare

(h) and (i) of Fig. 3.3). Since we use a purely resistive lattice the shape of the polarization

does not change, however, the amplitude diminishes with distance from the source. For

positive V out
ds the potential of the ECS outside the dendrite is higher than that outside the

soma. Positive V out
ds occurs at the start of a spike when the rapid influx of sodium into the

soma results in more net positive charge outside the dendrite than the soma. The shape of

the polarization reflects the flow of current during a spike; initial fast depolarizing sodium

current followed by the slower hyperpolarizing potassium delayed-rectifying current. Also,

the polarization current flowing between compartments is small compared to the currents

during an action potential.
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Figure 3.3: Shown is the polarization induced between the soma and dendrite compartments
by the ECC of a single spike and the resulting transmembrane potentials. There is no
synaptic connectivity. Computations are with 51 PR neurons in a chain embedded in a
resistive lattice as in Fig. 3.2. The Nth neuron is stimulated through its synaptic (AMPA)
conductance (see methods). As a result the stimulated neuron responds with a single
isolated spike. The changing membrane potentials produce ECC that flow to either side of
the lattice. In the figure, results are shown only on one side of the stimulated neuron as the
results are symmetric around N. (a)-(f) show the polarization, V out

ds , (red) and the somatic

and dendritic membrane potentials (blue and black respectively) for the stimulated neuron
and its five closest neighbors. In (a) the soma and dendrite spike sharply to above 80 mV
and 40 mV respectively (The y-axis is cut off to show the much smaller polarization) in
only 1-2 ms. The ECC during this period dominates that produced over the prior 25 ms of
subthreshold depolarization. The ECC propagate instantaneously through the lattice but
diminishes significantly with distance from the stimulated neuron (b-f). The polarization,

V out
ds , and the resulting induced membrane potentials are shown for the five nearest neighbors

(g-i). The amplitude decreases with neuronal position, however, the temporal profile of the
signal does not change through the purely resistive lattice.
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Figure 3.4: Time Between Spikes (TBS) down a sequentially excited chain. Results are
shown with (b) and without (a) the resistive lattice. The symbol indicates the level of
inhibition, Is. The less inhibition the shorter the TTFS. Notice that in both cases the gap
in TBS grows with increasing inhibition with a dramatic jump going from Is = −0.295
µA/cm2 to Is = −0.3µA/cm2 especially in the resistive lattice case where the TBS more
than doubles. This rapid increase in TBS near the bifurcation is shown more explicitly in
Figs 3.5 and 3.7 and is characteristic of Type I neurons as discussed in Sec. 3.3.3. Next notice
how there is little variation in TBS down the chains except for Is = −0.3 µA/cm2. Without
the resistive lattice only small differences, proportional to the integration step size, are
observed. This is as expected since the only coupling between neurons (without the resistive
lattice) is synaptically which by design was made to be nearest-neighbor only. The inclusion
of the resistive lattice does provide a global coupling that could introduce variability in the
TTFS down the chain. However, in this case (sequentially excited architecture with standard
resistances), greater than nearest-neighbor ECC effects are evidently negligible except for

Is = −0.3 µA/cm2 which is close to the point where spike failure occurs.
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3.3.2 Sequentially excited chain with resistance is dominated by nearest-

neighbor interactions.

By design, in the sequentially excited chain without resistance, propagation between any

two neurons should be identical. The addition of the ECC, modeled by the resistive lattice,

adds a global component. In principle, the addition of the ECC may result in a cumula-

tive effect and spike propagation between neurons may vary. In Fig. 3.4, we computed

the TTFS for ten consecutively spiking neurons sequentially excited with and without the

resistive lattice. Computations were made for fixed maximal gAMPA and over a range

of inhibition, Is. Without resistance (a), any variation in the TTFS’ appears negligible.

With resistance (b), noticeable variation is found only at a level of inhibition that places

the neurons near spike failure (Is = −0.3 µA/cm2, filled, downward triangles). As would

be expected, any variability in the TTFS for the sequentially excited architecture without

resistance is attributable to numerical precision and are step-size dependent.

To quantify the variance in Fig. 3.4 we compute the percent difference (100*(std.

dev/mean)) in the TTFS for the ten neurons for each Is (not shown). The variance in

TTFS is quite low and decreases with increasing Is. For example, at Is = −0.295 µA/cm2

the TTFS is around 42 ms and the percent difference is 0.028 equating to about 0.01 ms.

The percent difference for Is = −0.3 µA/cm2, very near the threshold to non-spiking, is

about 3.7% with resistance and 0.7% without. These larger errors occur near the spike

bifurcation and are consistent with increased sensitivity to both numerical accuracy and

greater than nearest-neighbor ECC effects.

Since the variations in TTFS from neuron to neuron are due to numerical accuracy all

results for the sequentially excited architecture are given in terms of the mean TTFS.
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Figure 3.5: The TTFS down a synaptically (AMPA) connected chain as a function of
excitability (Is) with no resistive lattice and thus no ECC. In (a) the black triangles (lying

on the x-axis below Is = −0.3 µA/cm2) denote failure to spike. The TTFS is seen to
increase rapidly as Is decreases to the threshold for spiking. In (b)-(e) we plot the somatic

potential as a function of time for four different Is values. In (b) for Is = −0.32 µA/cm2,

the stimulation from the AMPA conductance (gAMPA = 0.142 mS/cm2) is not sufficient
to elicit a spike. In (c)-(e) as the neurons become more excitable the period of latency
—a prolonged period of almost constant membrane potential —shrinks. The TTFS here
is actually the mean of the differences in consecutive spiking neurons in the chain. The
differences in the computed time to pass through 30 mV is nearly identical down the chain
(Fig. 3.4) as would be expected given that all PR neurons are identical and the synaptic
connectivity is nearest-neighbor.
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3.3.3 Sequentially excited architecture without extracellular resistance

and Type I excitability.

Fig. 3.5 shows the TTFS as a function of Is for fixed gAMPA. As expected the TTFS

increases with decreasing Is and does so at an increasing rate (Fig. 3.5 (a)). At Is = −0.32

µA/cm2 the inhibition is too strong and a spike is not generated (Fig. 3.5 (b)). In Fig.

3.5 (b-d) the TTFS increases with increasing inhibition. The increased TTFS is associated

with a prolonged period at a near constant soma potential of around two mV (compare

Fig. 3.4 (b)-(d)). We refer to this period of near constant membrane potential as a plateau

potential, and it occurs near an unstable equilibrium where the dynamic flow approaches

zero. This increasing spike latency is suggestive of a Type I neuron with an arbitrarily long

period (see Introduction). This type of behavior is also characteristic of a loss of stability of

equilibrium through a saddle-node bifurcation. Neuro-computationally, the significance is

that the long latency allows for the encoding of small changes, such as the oscillating pulse

in the membrane potentials due to the ECC from the action potential of a neighboring

neuron (Fig. 3.3). In contrast, a Type II neuron will have a maximum TTFS that may not

provide the dynamic range to differentiate such small differences in input.

We approach the complex dynamics of the eight-dimensional PR neuron by first asserting

that the dendritic compartment remains mostly passive, and the interesting dynamics occur

in the somatic compartment. We project the trajectories of the eight-dimensional model

onto the Vs − n plane. By doing this for a number of initial conditions using the same

parameter set we may observe stable and unstable points, or limit cycles. If the trajectories

in the Vs − n plane are qualitatively different when we change a parameter value, then we

have a strong suspicion that a bifurcation has occurred. As mentioned, the saddle-node on

the invariant circle (SNIC) bifurcation has been associated with very long spike latency and

arbitrarily long periods. A SNIC bifurcation implies that as a parameter varies two saddle-

node equilibrium (one stable and one unstable) approach and annihilate one another. It is an

invariant circle because both equilibrium are heteroclinic trajectories connecting the stable

and unstable nodes. At the SNIC bifurcation, the two nodes vanish leaving only a limit
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Figure 3.6: The flow of trajectories projected onto the Vs − n plane is characteristic of
dynamics near a SNIC bifurcation. Shown are many different trajectories for three different
Is. X marks the beginning of a trajectory and in (a) and (b) the red square makes the
stable equilibrium. The influence of the unstable equilibrium is evident in the divergent
trajectories where for two nearby initial conditions one takes a more direct path towards
the stable equilibrium and the other takes a more round about way. In (a) and (b), regardless
of our initial conditions, all trajectories end at the stable equilibrium (red square). In (b)

as Is increases to −0.1 µA/cm2 the two equilibrium points approach each other. Then, in
(c), for slightly positive Is the two equilibrium have vanished and the unstable manifold
has formed a limit cycle. All trajectories eventually lead to the limit cycle and the neuron
spikes periodically.
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cycle. When a neuron is at rest in the proximity of a saddle-node bifurcation on the invariant

circle (SNIC), we would expect to see one stable and one unstable equilibrium. Then as

we approach the bifurcation, the two equilibria approach one another, eventually coalescing

and annihilating each other at the bifurcation point. What remains is the unstable manifold

that forms the periodic orbit.

We use the software XPPAUT [11] to help capture the changing flow of trajectories as

our model solution passes from resting to periodically spiking. In Fig. 3.6 we sample the

initial conditions for the PR model at three different levels of inhibition Is. For both of

the two most inhibited cases, the trajectories converge to a single stable equilibrium (a and

b) while the least inhibited results in periodic spikes (c). In (a) and (b) the region about

Vs = 0 mV and n=0 is near both a stable and unstable equilibrium. In (a) and (b), the

stable equilibrium occurs at the lower membrane potential. In (b) we see the gap close and

then in (c) there are no remaining equilibrium and all trajectories eventually fall onto the

limit cycle and spike periodically. This observation, the identification of a characteristic

flow associated with a SNIC bifurcation, is dependent on our parameter values and is

observed here for normal potassium levels and no polarization. In this work, we treat the

small transient polarization due to the ECC as a parameter with no other polarization.

Changes in EK and the polarization could potentially move the dynamics away from the

SNIC bifurcation and towards the influence of some other bifurcation and thus change the

characteristic excitability.

3.3.4 Sequentially excited architecture with resistive lattice.

As explained in the introduction, data on the extracellular resistance in the hippocampus

is sparse and the values that have been obtained, either directly or indirectly, have varied

substantially. Here, we treat the extracellular resistance as a free parameter. However, to

establish a point of reference we define the resistances used in the one-dimensional lattice of

Gluckman and Park [6–8] as standard. How these standard resistances relate to physiological

states of either slice preparations or in-vivo experiments, remains to be determined.
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Figure 3.7: Far from the threshold to non-spiking the sequentially excited (SE) architecture
has the same TTFS with or without the resistive array. Whereas, very near to the threshold
the SE with resistive array has a higher TTFS and right at the threshold it has a much
higher TTFS. This is shown in (a) where the average TTFS as a function of excitability,
Is, with (red squares) and without (blue squares) the resistive array are plotted. The black
triangle on the x-axis denotes failure to spike. In (b) we plot the difference in TTFS with and
without the resistive array. In this figure, the resistive array is set to standard values (see

Methods) and here and for all computations we use gAMPA = 0.142 µA/cm2. The addition
of the resistive array and thus the ECC has an inhibitory effect on the SE architecture. For
the SE, the timing of the ECC from the action potential is always fixed and precedes the
synaptic current by ≈ 0.2 ms. In (c),(e),(g),and (i) Vs is plotted showing the response to
the pre-synaptic spike. (d),(f),(h), and (j) show the same computations but are zoomed
in to highlight the effects of the ECC. In (c) and (d), we have spike failure. (e), (g), and
(i) demonstrate the characteristic latency associated with the excited PR neurons near the
critical point of spike failure. This property of latency is present with or without the ECC.
In (h) and (j), we can see not only the ECC from the pre-synaptic neuron but also from
the preceding spiking neurons.
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To model the dependence of the spike propagation on extracellular resistance we began

by computing the propagation of synaptic (AMPA) spikes down a chain of neurons using

the sequentially excited network with and without resistance (see Methods and Fig. 3.2 for

schematic diagram).

Spike propagation in the resistively embedded, sequentially excited network, is shown

in Fig. 3.7 for the standard resistances and a range of Is. For all Is, the inclusion of

the resistive lattice retards the TTFS (see Fig. 3.7 a and b). As we saw previously (Fig.

3.5) the increase in TTFS with Is is steep as we near the threshold to spike. Fig. 3.7

(c-j) plots somatic potential over time for four different Is. Plots (c,e,g, and i) highlight the

increased spike latency with increased inhibition. Plots (d,f,h, and j) are zoomed in views of

plots (c,e,g,and i) respectively, to resolve the small pulses of oscillatory somatic membrane

potential associated with the action potential of neighboring neurons.

The relative timing between the ECC due to neighboring action potentials and

the synaptic AMPA current.

Fig. 3.8 shows the somatic potential (solid, plotted against the right y-axis), the AMPA cur-

rent (dots), and the inter-compartment current (dash-dot) due to the induced polarization,

V out
ds , for three different values of the extracellular resistance along the somatic-dendritic

axis, Rout
ds . For the sequentially excited networks, the relative timing between the ECC and

the AMPA is fixed, with the soma-depolarizing phase of the ECC starting slightly (≈ 0.2

ms) before the AMPA current. The amplitude of the ECC due to the neighboring action

potential is monotonically increasing with increased Rout
ds while the AMPA current is unaf-

fected by Rout
ds . Although the amplitude of the V out

ds increases from (a) to (c) the resulting

TTFS is nearly equal at the low and high Rout
ds values and is greatest at the intermediate

Rout
ds (b) (TTFS not visible in figure). The reason for this unimodal behavior (seen more

clearly in Fig. 3.10) is explained in the remaining chapter.
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Figure 3.8: Shown in (a)-(c) are the inter-compartment currents, gcV
out
ds (dash-dot), the

AMPA current (dots), and the soma membrane potential, Vs (solid), for three different

values of Rout
ds . For each Rout

ds the polarization and its current increase in amplitude for
increased resistance but the purely resistive lattice maintains the waveform. It is not imme-
diately obvious how the ECC and its resulting polarization effects the TTFS. For example
(a) and (c) result in practically the same TTFS even though the amplitude of the polar-
ization current differs by at least a factor of four. The explanation of these effects is the
primary subject of the remaining chapter.
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Response of the lattice to trans-membrane current: R-V curves,

We can understand how the current flows in the resistive lattice by simply replacing the

neurons with constant current sources. Fig. 3.9 (a) shows how the polarization from con-

stant currents Itotd and Itots varies with Rout
ds and position from the source. The polarization

is monotonically increasing for increasing Rout
ds . For the constant injected currents we use

Itotd = 0.4 nA and Itots = 0 nA which may be placed into context by Fig. 3.9 (b). In (b)

we plot the transmembrane currents from both the dendritic and somatic compartments

during a single action potential.

Sensitivity of TTFS to extracellular resistance.

The TTFS for the resistively embedded SE architecture is unimodal with respect to resis-

tance along the somatic-dendritic axis, Rout
ds . Fig. 3.10(a) plots the TTFS as a function

of Rout
ds for a series of Is values. As might be expected the sensitivity to Rout

ds increases

the lower Is and the closer the neuron is to the threshold for firing. As noted above the

unimodal profile is somewhat surprising and much of the remaining chapter is dedicated

to explaining this and the mechanisms behind the observed dependence of spike timing on

ECC. Fig. 3.10(a) is unimodal with respect to Rout
ds even though we saw in Fig. 3.9 that

the amplitude of the polarization is monotonically increasing with Rout
ds . Thus, the effects

of the localized ephaptic ECC are increasingly inhibitory for increasing ROut
ds and increasing

polarization current up until a certain point, after which, continually increasing the Rout
ds

and polarization amplitude now increases the excitability. The unimodal profile disappears

with the removal of neuron-to-neuron resistors (Fig. 3.11).

3.3.5 Initial observations on how the ECC effects TTFS.

We divide the total localized ephaptic effect into three components: (1) source loading, (2)

the response of non-synaptic membrane currents of neighboring neurons and (3) synaptic

coupling. The source loading component depends on both non-synaptic membrane currents
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Figure 3.9: (a) Shows the response of the resistive lattice (no neurons) as a function of Rout
ds .

The transmembrane currents are replaced by constant currents at the junctions where the
somatic and dendritic compartments would be. In this case Id = 4 nA and Is = 0 nA so
that there is 4 nA of current flowing outside the source neuron from the dendrite to the
soma. Shown are the polarizations at the source and the next three posts in the chain.
Polarization is symmetric around the source neuron (i.e. V out

ds (N + x) = V out
ds (N − x) ).

In all cases the neuron-neuron resistances are fixed to the standard values ( Rdd = Rss =

0.01Rin
ds). Filled symbols denote standard resistance values of Rout

ds . The monotonicity

persists over increased Rout
ds and increased neural distance from source. (b) We consider

the transmembrane currents during an action potential for a single neuron by plotting Is
(black), Id (blue) and Id − Is (red). Notice that the constant 4 nA current used in (a) is
only exceeded for a fraction of a millisecond .
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Figure 3.10: For the SE architecture with a resistive array the TTFS is unimodal with
increasing resistance along the soma-dendrite axis, Rout

ds . In (a) we plot the mean time

between spikes as Rout
ds is varied for a range of Is. As expected the higher Is and the more

intrinsically excitable the neurons are, the less noticeable the effect of the extracellular
resistance. Interestingly, the TTFS has a peak at about the standard resistance values.

The filled symbols on the left y-axis at Rout
ds = 0.1Rin

ds are the TTFS for the SE architecture

with no resistive lattice. In (b) we draw a schematic for the scenario used in the figure.
The resistance in red denotes that these values are varied over the range along the x-axis
of (a). In this picture, the soma lies beneath the dendrite and the arrows denote that the
presynaptic soma triggers the AMPA current in the postsynaptic dendrite. Above we only
vary the Rout

ds fixing the resistances connecting neuron to neuron to their standard values

of 0.01 Rout
ds . In (c) we plot Vs versus time for three Rout

ds at Is = −0.30 µA/cm2 and

correspond to the squares of like colors in (a). As Rout
ds increases, the resulting time-varying

polarization, V out
ds due to the action potential associated ECC increases in amplitude while

maintaining its shape (Fig. 3.3). The effect of this monotonically increasing polarization
amplitude on the TTFS is, however, not monotonic and the reasons for this will become
clear through the work that follows. 81
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Figure 3.11: With the neuron-to-neuron resistances removed the TTFS with respect to
Rout

ds is monotonically increasing. (a) plots TTFS as a function of Rout
ds for a range of Is.

The filled symbols along the left y-axis are the TTFS for no resistive lattice. (b) shows a
schematic for the scenario in this figure. Notice the complete absence of neuron-to-neuron
resistance and thus, no neuron-to-neuron flow of ECC. The only effect the extracellular
currents of each neuron has is due to self-polarization (referred to as source loading in the

Introduction). In (c) we plot Vs versus time for the same three Rout
ds values sampled in Fig.

3.10 and correspond to the squares of like colors in (a). We conclude that the source loading
component of the ephaptic effect is inhibitory and from Fig. 3.10 the remaining synaptic
coupling and/or the non-synaptic membrane currents must have an excitatory component.
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and synaptic coupling but serves to make the distinction between the effects of ECC due to

other neurons and those that are self-generated. Since all of these components are coupled

physiologically as well as in the model’s ODE, we employed various modifications to tease

out their relative contributions. These modifications included: disconnecting the neuron-

neuron resistance and utilizing linearly interpolated functions based on the polarization and

AMPA currents in the embedded chain.

Effects of source loading in the SE Architecture

By severing the conductivity between neurons, we eliminate the neuron-neuron interactions.

In this way, we isolate the effects of the ECC on a neurons TTFS due to that own neurons

transmembrane currents. We refer to this type of effect as source loading. The situation is

depicted in Fig. 3.11(b) and the TTFS as a function of Rout
ds for various levels of inhibition

are plotted in Fig. 3.11(a). For all levels of inhibition the TTFS increases with increasing

Rout
ds (and increasing polarization amplitude). We thus consider the source loading to be

inhibitory. There are only two transmembrane events that generate significant ECC. One

corresponds to the injection of synaptic AMPA to the dendrite and the other is the action

potential. Without extracellular resistance and thus without polarization the AMPA current

delivered to the post-synaptic dendrite is proportional to the post-synaptic Vd. As the

dendrite is depolarized this synaptic drive diminishes the total AMPA current delivered.

With extracellular resistance the internal polarization current further depolarizes the post

synaptic dendrite and thus further diminishes the total AMPA current. This effect is a form

of synaptic coupling which takes on a greater role, as discussed below, when coupled with the

ECC due to neighboring action potentials. For source loading the synaptic coupling due to

the polarization induced by the depolarizing AMPA current is small compared to that which

occurs when the synaptic drive is coupled to the AP generated ECC. The other effect is the

induced polarization due to the action potential. The TTFS is defined when Vs first passes

through 30 mV . This phase of the action potential is dominated by the rush of depolarizing

Na+ atoms into the soma. Such a strong depolarizing somatic current would only enhance
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further depolarization of the soma through the intercompartmental current and would thus

be slightly excitatory. Neither of these effects explain the increasing inhibitory effect on the

neuron with increasing Rout
ds .

To explain the inhibitory effect we need to look at how the polarization effects the spike

width and thus the total AMPA current delivered to the neighboring neuron. Fig. 3.12 (a)

plots Vs and V out
ds for individually polarized neurons as depicted in Fig. 3.11. In this case

the ECC currents that induce the polarization are entirely self-generated. The plot displays

three Vs and V out
ds pairs for three Rout

ds for Is = −0.3µA/cm2 shown in Fig. 3.11 (a). This

plot shows the growing amplitude of the polarization and the fact that the positive V out
ds

occurrence during the leading sodium depolarizing phase followed by a negative V out
ds as the

soma membrane potential repolarizes. The polarization current during the repolarization

has the effect of further hyperpolarizing the soma and thus brings the somatic potential

down below the threshold for AMPA conductance slightly sooner. The result of this can

be seen in Fig. 3.12 (b) where we plot spike width verses Rout
ds . Although the spike width

decreases only about two-percent over the range of resistances this results in significant

differences in TTFS especially near the threshold to failure to spike.

The effect of coupling between the ECC and synaptic AMPA

In the sequentially excited architecture, the time between the ECC and the AMPA current

is fixed and is shown in Fig. 3.8. We see that for this relative timing the ECC associated

with a neighboring neurons’ action potential is significant only for the beginning portion of

the rising slope of the AMPA current. The AMPA current is proportional to the potential

difference between the post-synaptic dendritic potential and a reversal potential. Thus,

for a given level of synaptic conductance, W , the current into the dendrite is reduced by

depolarization and increased by hyperpolarization of the postsynaptic dendrite. In the case

of the SE architecture, the dendrite depolarizing phase of the ECC coincides with the higher

levels of synaptic conductance. Thus, for the SE architecture, the inhibitory effect of the

ECC-AMPA coupling outweighs the excitatory effect due to the hyperpolarizing phase of
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the ECC. Further, we see from Fig. 3.8 that the inhibitory effect of the ECC on the AMPA

current is amplified with increasing polarization due to increasing Rout
ds . The fact that both

source loading and the synaptic drive are inhibitory and Fig. 3.10 is unimodal implies that

the response of the non-synaptic membrane currents of neighboring neurons must have an

overall excitatory effect, at least for the SE architecture.

Non-synaptic membrane currents and their response to action potential gener-

ated ECC.

The ECC from an isolated potential spike lasts only several milliseconds (Fig. 3.3). In the

cell, response to such a high-frequency pulse would depend on currents with fast membrane

time constants and ion-channel kinetics. The depolarizing sodium current of the Soma has

a fast membrane time constant and very fast channel kinetics. In fact, the sodium gating

channel kinetics in the PR model are assumed instantaneous. Fig. 3.13 shows the response of

the non-synaptic membrane currents to the polarization induced by a neighboring neurons’

action potential. The response of the sodium current is clearly more pronounced then for

the other non-synaptic membrane currents.

The contributions of synaptic coupling and non-synaptic membrane currents to

the localized ephaptic effect and their dependence on extracellular resistance.

As detailed in the Methods section we estimate the contributions of the coupled non-synaptic

membrane currents and synaptic coupling by integrating the currents for the range of Rout
ds .

Specifically, we integrate over the non-synaptic currents in response to a full lattice model

with no synaptic connectivity. Here we stimulate one neuron to spike then see how the

currents react. This is exactly the situation shown in Fig. 3.13 (a) and here we integrate

each of the currents for each Rout
ds . The result is shown in Fig. 3.14 (a). Here, each

data point for each current is the integrated current density or charge density for a given

extracellular resistance, Rout
ds . We see that the leading contribution comes from the sodium

current and that while there are hyperpolarizing currents the total active charge density
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is positive. The total net charge will, of course, be zero as the neuron starts from rest

and ends at rest. However, the passive leak currents act so slowly as to be insignificant

in the course of synaptic AMPA current. Importantly the increase in the active non-

synaptic currents with Rout
ds is superlinear. In Fig. 3.14 (b) to quantify the contribution

of synaptic coupling we integrate over the dendritic membrane potential dependent part of

the AMPA conductance, −gAMPAW (t)Vd. Here it is impossible to separate the synaptic

effects from the non-synaptic current effects as they each affect one another. However, we

can compute how the synaptic effect grows with increasing Rout
ds . As we have mentioned,

for the SE architecture the net effect of the synaptic coupling is inhibitory and in (b) we

show that the inhibition increases linearly with increasing Rout
ds . We are now prepared

to explain the non-monotonicity found in Fig. 3.10 (a). At low resistances the TTFS is

increasing with increasing Rout
ds and thus the increased polarization is inhibitory. At these

resistances the inhibitory synaptic coupling dominates the excitatory response of the non-

synaptic currents. For further increasing resistances the TTFS decreases. In this case, the

non-synaptic currents, whose conductances generally increase nonlinearly, start dominating

over the inhibitory synaptic coupling effect.

3.3.6 Generalization of AP related ephaptic effects using single-neuron

models.

As detailed in Sec. 3.2.5 we utilize two single-neuron models solved using XPPAUT to

explore how changes in timing and amplitude of the induced polarization effects the ex-

citability. In both models, we represent the polarization, V out
ds , as an interpolated function

that may be applied freely at any time and strength. In the second single-neuron model,

we also represent the AMPA current by an interpolated function. With these simplified

models, we re-affirm our conclusions drawn from the sequentially excited network, general-

ize them to pertain to a wider range of synaptic architectures, and further clarify the role

of the different components of localized ephaptic effects.

Using the single-neuron model with interpolated V out
ds we computed TTFS for a range of
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τ , defined as the difference in time between the ECC and AMPA, as well as the amplitude

of the polarization, defined as Amp (see Methods). The excitability profile is shown in

Fig. 3.15 as a function of τ and Amp. To help visualize the parameters τ and Amp we

provided plots along the y and x axis to show the relative timing and polarization amplitude

respectively. We point out two features: (1) An interval around τ = 0 ms of increasing TTFS

surrounded by regions of higher excitability. (2) With the exception of the interval around

τ = 0 ms the TTFS decreases with increasing Amp. In Fig. 3.16 we look at alternate

views of the same data as in Fig. 3.15. In (a) of Fig. 3.16 we show a projection of the

three-dimensional TTFS versus τ and Amp data. In (b) we show five series of points for τ

about τ∗ as a function of polarization amplitude, Amp. In (c) for Amp=1 (corresponding to

Rout
ds = 0.1Rin

ds we see how TTFS varies with τ . Figs. 3.15 and 3.16 are the result of a single

neuron model equipped with a polarization term V out
ds for which we apply an interpolating

function based on the polarization felt by a neuron in the full resistive lattice due to the

action potential of a neighboring neuron. As in the resistive lattice models the spike is driven

by an AMPA synaptic current which couples to the ECC via the post-synaptic dendritic

membrane potential. Unlike the resistive lattice models, however, there is no source loading

due to self-polarization or feedback between the neurons own transmembrane currents and

and the extracellular space. So for this single-neuron model the localized ephaptic effects

are limited to synaptic coupling and non-synaptic currents due only to the polarization

matching the shape of that induced by the action potential of a nearest-neighbor. In Fig.

3.15 and Fig. 3.16 (a) and (c) the response due to τ reflects the effect of the varying overlap

between the bi-phasic V out
ds which alternately hyperpolarizes then depolarizes the dendrite.

This effect can either enhance or diminish the total flow of AMPA current into the post-

synaptic dendrite and thus decrease or increase the TTFS. For τ greater than about 4 ms

the ECC polarization ceases to overlap with the AMPA current and dependence on τ and

synaptic coupling is eliminated. Outside of the parabolic TTFS profile due to synaptic

coupling the TTFS is monotonically decreasing with increasing Amp. This response to

increasing Amp must then be due to effects of the non-synaptic membrane currents. A key
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part of the non-synaptic membrane currents is the voltage dependent conductance of the

ion-specific channels. As mentioned V out
ds does not directly add current to the neuron and

if the compartments were totally passive then internal current would flow back and forth

between the compartments for several ms but then would quickly equilibrate. With voltage

dependent conductances however the oscillating internal current could momentarily raise

the membrane potential and thus change the conductance and allow more total current to

flow into the neuron.

In our second single-neuron model we eliminate synaptic coupling by using an interpo-

lating function of AMPA without any dependence on the post-synaptic dendritic potential.

The absence of the synaptic coupling is immediately evident in Fig. 3.17, The only response

to the interpolated polarization is through the non-synaptic membrane currents. This par-

ticular model is most like the Hippocampal slice experiments when all synaptic current is

blocked. Since in those experimental models we would expect the ephaptic effects to be

dominated by non-synaptic membrane currents. Here as in Qiu [50] we see increasing spike

propagation speed (decreasing TTFS) with increasing Amp (and increasing Rout
ds . We can

now see that the region of increased excitability that surrounded the parabolic increase in

TTFS was not due to synaptic coupling but due to non-synaptic membrane currents. That

there is an increased sensitivity to the polarization around τ = 0 ms may be explained that

the effect of added internal current on potential-dependent conductances will have greater

effect when coupled with the peak of the AMPA current.

In Fig. 3.18 we take different views of the same data shown in Fig. 3.17. In (b) as

we did for the first single-neuron model for several fixed values of τ around τ∗ we plot

TTFS versus Amp. Clearly, the response of the non-synaptic currents to increasing Amp

is excitatory and, in this region, linear. In (c) for Amp=1 (and Rout
ds = 0.1Rin

ds) we see that

the ephaptic effect due to non-synaptic membrane currents is most excitable near τ∗ which

from the figures on the y-axis of Fig. 3.17 occurs when the peak of the AMPA current and

the peak of the polarization coincide.

We can now identify the mechanisms behind the non-monotonic TTFS profile with
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increasing Rout
ds seen in Fig. 3.10 for the full lattice model. In Fig. 3.16 (b) for τ around

τ∗ the TTFS does exhibit a non-monotonic relationship with increasing Amp. However,

this effect is not pronounced as the total change in TTFS is less than 0.2 ms. This single-

neuron model has both synaptic coupling which is inhibitory for τ about τ∗ and non-

synaptic membrane current effects which from our second single-neuron model we know to

be clearly excitatory with increasing Amp. We conclude that in the full model at τ = τ∗

there is both an inhibitory effect due to the synaptic coupling and an excitatory effect

due to the non-synaptic membrane currents. For smaller values of Amp and Rout
ds the

inhibitory synaptic coupling dominates, however, as Rout
ds increases further the excitatory

effect of the non-synaptic membrane currents becomes greater than the inhibitory synaptic

coupling effect. That the strength of the synaptic coupling and non-synaptic membrane

currents would grow at different rate is not surprising since the synaptic coupling is linearly

dependent on membrane potential while active currents, such as the sodium current, have a

nonlinear (superlinear) dependence on membrane potential. It is also apparent that the SE

architecture resulted in a rather special τ and that synaptic time delays and more complex

synaptic architectures may make it difficult to experimentally observe the non-monotonicity

in Fig. 3.10.

3.3.7 Effects of the ECC associated with a randomly spiking, synaptically

isolated, neuron on spike-timing.

We now consider a randomly spiking and synaptically isolated PR neuron along with a

chain of PR neurons embedded in a resistive lattice. A schematic diagram of the scenario is

drawn in Fig. 3.19 (a). In the figure the synaptically isolated neuron, I1, is colored blue and

is sandwiched between C1 and C2 of a six neuron (C0 −C5) SE network. After stimulating

C0 to spike C1 − C5 spike sequentially as depicted in the timeline.

In (b) and (c) of Fig. 3.19 the same unimodal profile of TTFS as a function of Rout
ds is

evident with a peak at the standard Rout
ds = 0.1 Rin

ds. These plots are very low resolution

in the sense that I∗1 was stepped in 2 ms increments, which is too large of a step size to
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capture the detail seen in Fig. 3.16 (c), especially the parabolic feature found right around

the peak of the AMPA current. A higher resolution plot is shown in Fig. 3.20 and shows

the τECC dependence seen in Fig. 3.16 (a and c). Here, unlike in Fig. 3.16 (c), at the top

of the parabolic profile the neuron fails to spike.

3.4 Discussion

We find that the excitability, as measured by the TTFS, is non-monotonic with respect

to increasing resistance along the somatic-dendritic axis. The non-monotonicity occurs

over a range of resistance values consistent with the variance in geometry and resistivity

observed in and around pyramidal cells of the hippocampus. To further understand these

surprising results we segregate the components of this nonlinear coupled ODE. We define

three components of the localized ephaptic effects: (1) source loading; (2) synaptic coupling,

and (3) nonsynaptic membrane currents. Source loading refers to the effects of a neurons’

ECC on its spike generation. To isolate this effect, we simply removed the neuron-to-neuron

resistors in the lattice. With only source-loading our computations showed that the neuron

was increasingly inhibited with increasing Rout
ds Fig. 3.11. The coupling of the synaptic

current and the ECC is through the dependency of the AMPA current on the membrane

potential of the post-synaptic dendrite. Within two milliseconds The induced biphasic

polarization current, gcV
out
ds , first hyperpolarizes than depolarizes the dendrite. Meanwhile,

the AMPA current first rises to its peak value in under 2 ms then begins a slow decay

over about 7 ms. For the SE architecture, the relative timing is fixed (Fig. 3.8) and is

inhibitory. Using the single-neuron model we see that the effect of the synaptic coupling

depends on the relative timing parameterized by τECC Fig. 3.16 (c). The effect is inhibitory

for about 2 ms until the ECC crests the peak of the AMPA at which point it becomes

excitatory. Finally, we capture the contributions from the non-synaptic membrane currents

by applying an interpolated function for the AMPA current as well as for the polarization
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in a modified single-neuron model. Our results show that the contributions of the non-

synaptic effects are excitatory with respect to increasing resistance and the closer in time

the ECC is to the onset of the AMPA current Fig. 3.17. The explanation for the monotonic

excitatory response can be largely attributed to the very fast kinetics of the depolarizing

sodium current which drives an overall depolarizing non-synaptic current response. The

dominance at higher extracellular resistance is due to the fact that the voltage-dependent

gating channels increase superlinearly with increase membrane potential and thus increased

Rout
ds .

Additional future work would include the effects of other synaptic currents. In particu-

lar, NMDA has a more complicated dependency on the post-synaptic dendritic membrane

potential that results from the need for the postsynaptic neuron to knock out blocking

Mg2+ ions [88]. It would also be interesting to see if other currents such as Ih would

qualitatively change our results. Additional analysis would consider changes to the neuron-

to-neuron resistances and frequency-dependent conductivity of the ECS. The fact that the

soma-depolarizing phase of the ECC has higher frequency components than the hyperpo-

larizing phase should have interesting consequences when we consider frequency-dependent

conductivity.

Perhaps the most interesting future work would involve extensions to the isolated spiking

neuron simulations. In particular, a situation where a population of synaptically isolated

neurons spike synchronously and are interspersed among a chain of neurons might be reveal-

ing. It is possible that these dynamics might be predicted and explained through repeated

application of our response curves computed with the single-neuron model. Also, it would

be interesting to extend this work using a three-dimensional lattice.

The effect of extracellular resistance on spike timing may have implications for certain

neurological conditions, aging, and development [68, 81, 89]. Changes in tortuosity and

volume fraction impacts the extracellular resistance. As we have noted some of these changes

occur at the millisecond level while others appear to occur gradually with age or disease.

In vivo measurements and computational modeling of the interstitial space is challenging
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and is the subject of current research [90, 91]. The models used here should be revisited

with the improved and expanded knowledge of the extracellular conduction.
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(a) 
 

(b) 

 

Figure 3.12: The case of no neuron-to-neuron resistance as depicted in Fig. 3.11 (b). Here

we show the induced polarization V out
ds (solid) and Vs (at 1/40th scale) (dotted) for three

different Rout
ds due to a neurons own action potential in (a) and the resulting decrease in

spike width in (b). The polarization current associated with the repolarization of the soma
results in further hyperpolarization of the soma and subsequent shorter time above the
threshold for AMPA conductance (20 mV). Although the difference in spike width is only
several percent, near the threshold to failure to spike the slight difference in AMPA current
can make substantial difference in the TTFS.
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Figure 3.13: This figure illustrates the strong reaction of the sodium current compared to
other nonsynaptic membrane currents. Here, a chain of PR neurons is embedded in a full
resistive array (as in Fig. 3.10) but without any synaptic connectivity. Depicted are the

membrane currents (a) and the polarization current, gcV
out
ds , (b) of a neuron in response

to a nearest neighbors’ spike. The polarization due to an action potential is a short pulse
of less than 2 ms and thus contains high-frequency components that are filtered out by
slowly activating currents. Also, the response of a given current will be dependent on the
activation state of the potential-dependent channels prior to the spike and associated ECC.
This is just one possible state existing at the moment the ECC occurs. In this case, the
neuron depicted was completely at rest without any synaptic input and Vs ≈ −3.75 mV,
and all of the currents are at a very low activation level. We see in (a) that the very
fast activating sodium current dominates the somatic Kdr, the dendritic Ca and KAHP
currents. The dendritic KC current is negligible and remains constant due to the depletion
of Ca2+. We will show (see for example Fig. 3.17) that the overall effect of the ECC on
the membrane currents is excitatory and that the dominant response of the sodium current
offers an explanation.
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Figure 3.14: The response of the non-synaptic membrane currents and the polarization-
dependent AMPA to a polarization induced by a neighboring AP on a resting neuron is
characterized by integrating from when the neuron is at rest through the AP generated ECC
and a sufficient time afterward until the neuron returns to rest. In this particular case, in (1)

for the non-synaptic quantities we plot the total charge per cm2 from t = 0 to t = 600 ms.

Q =
∫ 600
0 Iion(t)dt. In (b) we plot the total charge per cm2 for the polarization-dependent,

that is Vd dependent, AMPA conductance, Qsa = −gAMPA

∫ 600
0 W (t)Vd(t)dt. We see in (a)

that the total integrated non-synaptic membrane charge (black line with circles) is positive

and increases superlinearly with increasing Rout
ds and that the biggest contributor is the

sodium current. In (b) we see that the increasing polarization with increasing Rout
ds leads

to increasing depolarization of the post-synaptic dendritic potential and thus a decrease
in AMPA. In summary, for the full lattice the response to increasing polarization due to
a neighboring AP is excitatory and increases superlinearly with resistance while synaptic
coupling term is inhibitory and increases linearly. For the lowest Routs

ds the linearly increas-

ing inhibitory synaptic coupling is dominant then as the Rout
ds continues to increase the

superlinear the excitatory effect of the non-synaptic currents overtakes the inhibitory effect.
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Figure 3.15: The TTFS using the single neuron model with interpolated V out
ds . TTFS

is computed as a function of both polarization amplitude and the difference in time, τ ,
from the polarization due to a neighboring neuron’s action potential and the initiation of
synaptic AMPA. On the y-axis τ is plotted along with graphical representation of the ECC
induced polarization (blue) and the AMPA current red. The x-axis displays the amplitude

which is a unitless scalar multiplying the V out
ds (t) due to a neighboring neurons action-

potential at standard resistances. Main features include peak inhibitory response around
τ = τ∗ surrounded by several milliseconds of relatively excitatory responses. For a fixed
τ the response is always more excitatory with increased polarization amplitude and thus
extracellular resistance.

96



( (a) 
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(c) 

Figure 3.16: This figure shows different views of the single neuron model with interpolated
V out
ds shown in Fig. 3.15. In (a) is a three dimensional view of TTFS showing the change

in TTFS as a projected height. In (b) we show for five different τ ’s around τ∗ TTFS as a
function of Amp. Although the curves resemble the non-monotonic curve found using the
full resistive lattice notice that the total difference in TTFS is only about 0.2 ms. In (c) for

Amp=1 corresponding to Rout
ds = 0.1Rin

ds we see the pronounced dependence on τ arounf τ∗.
Alos note that by τ = 4 ms the sensitivity to τ is greatly diminished.
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Figure 3.17: The dependence of TTFS on polarization amplitude and spike timing with
synaptic coupling and source loading removed. The response is due to the non-synaptic
component of localized ephaptic effect. This single-neuron model uses a linear interpolation
function for both V out

ds and AMPA. Here Is = −0.3 µA/cm2. The region of inhibition seen in
Fig. 3.15 around τ = τ∗ is now absent. What remains is an excitatory response due to the
non-synaptic currents around τ around τ∗. This single-neuron model with interpolated V out

ds
and with synaptic coupling eliminated is perhaps most similar to experiments of bulk spike
propagation in pathologically excited hippocampal tissues with synaptic currents blocked
which show increasing spike propagation with increasing EC resistance.
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(a) 
(b) 

(c) 

Figure 3.18: These are different views of the same data shown in Fig. 3.17. In (a) we can
also visualize the response in three-dimensional projection. (b) shows that for τ close to
τ∗ the TTFS decreases linearly with increasing polarization amplitude. In (c) for Amp=1

equivalent to Rout
ds = 0.1Rin

ds the TTFS is at a minimum at τ∗ and increases as the po-
larization induced by a neighboring neurons spike stops overlapping the input from the
interpolated AMPA.
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Figure 3.19: Here we show that with the full resistive lattice the spike propagation times for
six sequentially excited neurons is similar to our single neuron model. Fig. 3.20 shows for
a higher resolution of I1 spike times the detail when the ECC and the AMPA are within 10
ms of each other. In (a) the network architecture and stimulation protocol are illustrated in
the schematic and timeline respectively. Here, we use the full resistive array with neurons
C0 −C5 unidirectionally connected to their neighbors except for the synaptptic connection
between C1 and C2 which bypasses the synaptically isolated randomly spiking neuron I1
(filled blue). The timeline shows the sequentially spiking C1 −C5 (spike times are denoted
with an asterisk) and a range of spiking times for the isolated neuron I∗1 . By varying I∗1
we are changing the relative time between the ECC and the AMPA current analogous to
varying τECC for the single neuron models Fig. 3.16. (b) and (c) plot C∗5 for five and six

different Rout
ds respectively. As with the TTFS in Fig. 3.10, the mean level of the C5 TTFS

is unimodal with respect to increasing Rout
ds . The unimodal profile is hard to recognize

since (b) and (c) split the results into increasing and decreasing TTFS. Observe that in (b)

C5 TTFS at Rout
ds = 0.02Rin

ds (square) the TTFS is slightly above 300 ms. Then as Rout
ds

increases up to Rout
ds = 0.1Rin

ds (down triangle) so does the TTFS.
100



Time I
1
 spikes (ms)

70 75 80 85 90 95 100

T
T

F
S

 C
5
 (

m
s)

360

370

380

390

400

410

420

430

440
R

ds
out = 0.16R

ds
in

Figure 3.20: A step size of 0.01 ms for I∗1 reveals important structure not evident in Fig.
3.19. Shown here is a zoomed in look of the TTFS with open circles in Fig. 3.19 (c) with

Rout
ds = 0.16Rin

ds. At the top of what we called the parabolic feature for the single-neuron
model around 84 ms spike propagation has failed at C2. This again shows the importance
of the AMPA-ECC coupling effect. For a difference of a fraction of a millisecond in the
spike time of I1 C2 goes from spiking about 30− 40% faster to failing to spike.
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Chapter 4: Conclusion

Using computational models drawn from experimental data, we consider both the effects

of uniform constant electric fields and the brief oscillating currents associated with a sin-

gle spiking neuron, on neural excitability. In Chapter 2 we identified novel polarization-

dependent excitability that should be amenable to experimental verification. One of the

main findings was the significance of the relative strength of depolarizing and hyperpolar-

izing currents as the polarization is increased. Slight changes in physiological parameters

would yield slight changes in the TTFS at weak polarizations but at stronger polariza-

tion these trajectories could diverge significantly. In Chapter 3 we investigated the effects

of extracellular currents generated from a neurons’ action potential on the excitability of

neighboring neurons in a chain. We used the same computational model for a single neuron

used in Chapter 2 but created a synaptically connected chain that was then embedded in

a resistive lattice. This work was driven largely by the observation of non-monotonicity

in the spike propagation times with increasing extracellular resistance. The findings were

especially compelling since the range of resistances for which the non-monotonicity was

well-defined fell within the range of resistance inferred by measured resistivity and extra-

cellular dimensions. To explain the non-monotonicity we segregate the localized ephaptic

effects described by the high-dimensional nonlinear coupled ODE into three components.

The segregation into source loading, synaptic coupling, and nonsynaptic membrane currents

proved fruitful. We found that the source loading was always inhibitory and the nonsynap-

tic membrane currents always excitatory. The synaptic coupling could be either excitatory

or inhibitory with a complex response to both timing and extracellular resistance.

This work contributes to our understanding of the complex interactions of electric fields

and neurons. We have utilized similar computational methods to investigate both strong
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static fields and very weak oscillating endogenous fields. Our results have a number of im-

plications and insights into the modulation of neural activity using applied DC fields. This

work is relevant to existing and future medical applications. Our work on localized ephaptic

effects due to individual action potentials sheds a light on an often overlooked aspect of the

general problem of endogenous fields and ephaptic effects. Our work qualitatively predicts

and explains how spike propagation times vary in response to both changes in extracel-

lular resistance and the timing of excitatory synaptic input relative to the extracellular

currents. Implications for our work on localized ephaptic effects include memory encoding

and retrieval and neural synchrony.
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