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Abstract

One particular theory in Biology is that the formation of mammalian animal coat patterns is due

to concentrations of activator and inhibitor chemicals called morphogens. These morphogens react

and diffuse within the cell clusters; concentrations of the morphogens are the key to the spatial

patterns formed in the animal coat.

The purpose of this thesis is twofold. The first purpose is to study a particular Reaction-

Diffusion equation to see when it exhibits instability in its homogeneous equilibrium. These insta-

bilities, known as Turing instabilities, are where the animal coat patterns form. The second purpose

is the determine via Numerical Methods the stability of the solutions of the Reaction-Diffusion

equation near these Turing instabilities. These solutions are the key as to the actual patterns that

form. We will compare the stability of these solutions to published data by Murray.

v



I do not know what I may appear to the world; but to myself I seem to have been only

like a boy, playing on the sea-shore, and diverting myself, in now and then finding a

smoother pebble, or a prettier shell than ordinary, whilst the great ocean of truth lay all

undiscovered before me.

— Sir Isaac Newton
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Chapter 1

Background

1.1 Motivation

The development of animal coat patterns in mammals has been an area of study by biologists. A

theory of how these patterns occur was introduced by a mathematician, Alan Turing [13]. Turing

introduced a model by which spacial patterns can grow in a particular type of equation from a

homogeneous equilibrium under certain circumstances. We will discuss the model by which these

patterns form mathematically.

1.1.1 Natural Motivation

Morphogenesis is the biological process by which form and structure is created during embryonic

development. Once the egg is fertilized, it begins to divide. At a certain period during gestation, the

cells begin to differentiate (biologically speaking). Cell differentiation is based on location within

the group of cells [9]. This process is not enough, however, to determine how the spots are formed

on a leopard, or the stripes on a zebra.

The notion of how animal coat patterns are formed is a process that occurs well after cell divi-

sion and differentiation. The color of hair in animal coats is due to pigment cells called melanocytes.

These cells are found in the innermost layer of the skin. The melanocytes create pigment, known as

melanin, which passes into and thus colors the hair. There are essentially only two types of melanin,

one that produces black and brown hair color, and one that produces yellow and red hair color.

Some Biologists believe that melanocytes produce melanin based on the presence of certain

activator and inhibitor chemicals [9]. Each animal coat pattern is thought to be the product of some

chemical pattern of these activators and inhibitors [8].

1
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1.1.2 Mathematical Motivation

In 1952, the mathematician Alan Turing published a paper in Theoretical Biology on the Chemical

Basis of Morphogenesis [13]. This paper put forth a model for spatial pattern formation which

is studied to this day. The model states that a set of chemicals reacting and diffusing throughout

tissue may exhibit spatial patterns under the proper circumstances. The model is that of a system

of partial differential equations aptly named a Reaction-Diffusion Model. The condition is that the

equilibrium solution, in the absence of diffusion, be linearly stable and unstable in the presence

of diffusion. Much study has been conducted as to the particulars of patterns formed [9], and the

mechanisms by which the patterns are selected in higher dimensions [12].

Spatial instabilities close to this homogeneous equilibrium produce patterns in the concentra-

tions of the chemicals in the system. These patterns can be thought of as the key to the actual

patterns of an animal coat, such as zebra stripes or leopard spots. These spatial instabilities are

known as Turing instabilities, or diffusion-driven instabilities. These patterns are the subject of this

thesis.

1.2 Reaction-Diffusion Model

A model under considerable study to explain the formation of mammalian coat patterns is the

Reaction-Diffusion Model. In this model, a set of objects are able to react with each other, and

move, or diffuse, through the domain. Applied to animal coat patterns, a system of two morphogens

are modelled by the following system of equations on a domainΩ⊂ Rn

ut = ∆u+ γ · f (u,v)

vt = d∆v+ γ ·g(u,v),
(1.1)

whereu(x, t),v(x, t) : Ω → R represent the concentrations of the two morphogens, withf andg,

the reaction kinetics ofu andv respectively. This system of partial differential equations is mod-

elled as an isolated system, meaning no external influences are present. To formalize this notion,

homogeneous Neumann boundary conditions [11] are applied to the model, namely

(∇u·n)(x) = 0

(∇v·n)(x) = 0,
(1.2)

∀x∈ ∂Ω andn the unit outward normal of∂Ω.
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1.2.1 Applicability to Situation

The reaction kinetics that we will study are those described by equation (1.3). This set of non-

linearities was proposed by Thomas and thus will be referred to as the Thomas system. Much

research has been done with various reaction kinetics. Murray [9] provides much data using the

Thomas system with constants (1.4). We will use this non-linear system for comparison with pub-

lished data.

f (u,v) = a−u−h(u,v)

g(u,v) = α(b−v)−h(u,v)

h(u,v) =
ρ ·u·v

1+u+Ku2

(1.3)

a = 150, b = 100, α = 1.5, ρ = 13, andK = 0.05. (1.4)

1.2.2 Derivation

In deriving the reaction-diffusion system (1.1), we will employ a continuum approach, as in [6].

There are many other approaches to deriving the model, including combinatoric and probabilistic

methods ( [6] and [9]).

Let c(x, t) : Ω×Rn → R be the concentration of morphogens in the system. LetQ(x, t) be the

net creation rate of morphogens atx ∈ Ω at time t. Let J(x, t) be the flux density. For any unit

vectorn ∈Rn, J ·n is the net rate at which morphogens cross a unit area in a plane perpendicular to

n. For our purposes, we will assumeJ to be smooth, that isJ ∈C1.

Let B⊂Ω be closed and integrable. We denote the morphogen mass inB by

∫

B
c dV,

wheredV = dx1 · · ·dxn for x = (x1, . . . ,xn)T . If we assume the rate of change of the morphogen

mass is due to particle creation and degradation inB and flow though∂B, then

d
dt

∫

B
c dV =

∫

∂B
J ·n dA+

∫

B
Q dV.

Differentiating through the left hand side, and applying the Divergence Theorem to the right

hand side, we obtain ∫

b
ct dV =

∫

B
(−∇ ·J+Q) dV.

SinceB is an arbitrary subset of the domain, it must hold that

ct =−∇ ·J+Q. (1.5)
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Equation (1.5) represents a conservation law.

For the model, we must specify bothJ andQ. For the flux density we will apply Fick’s Law [6].

Thus

J =−D∇c.

D ∈Mn(R) is has positive entries and is called the diffusivity. Applying Fick’s Law to (1.5) results

in

ct = D∆c+Q.

Q is the reaction kinetics, and thus for our system, is a function of the concentration levels of the

morphogens;Q is a function ofc. Thus, the general form for the reaction diffusion model is

ct = D∆c+Q(c). (1.6)

The specific model we will be studying is a two morphogen system. Thus we have

c(x, t) =

(
u(x, t)
v(x, t)

)
, (1.7)

D =

(
1 0

0 d

)
, (1.8)

and

Q(u,v) = γ

(
f (u,v)
g(u,v)

)
. (1.9)

By applying (1.7), (1.8) and (1.9) to (1.6), we obtain (1.1).

1.2.3 Equilibrium Solution

One type of solution of particular interest is the equilibrium solution of a partial differential equa-

tion. Specifically of interest are attracting equilibrium solutions. These are time-independent solu-

tions which are stable to small perturbations. Stability comes in many forms. We wish to classify

equilibria which are linearly stable.

Equilibrium solutions to (1.1) are solutions(u0,v0)
T such thatut = vt = 0. Thus, (1.1) turns

into
0 = ∆u+ γ · f (u,v)

0 = d∆v+ γ ·g(u,v).
(1.10)

For the modelling of animal coat patterns, equilibria in the absence of diffusion are of key
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importance. A system without diffusion would have∆u = ∆v = 0. Thus, (1.10) becomes

0 = f (u,v)

0 = g(u,v).
(1.11)

So, for our model, equilibrium solutions in the absence of diffusion are those solutions(u0,v0)T

which solvef (u0,v0) = g(u0,v0) = 0. Note that the definition of the reaction kinetics in (1.3) is not

dependent onγ or d. Thus, the equilibrium solution is independent of these parameters.

Since (1.10) is a non-linear system, we must employ numerical methods to solve the roots of

this system. Newton’s Method for systems of non-linear systems [7] was used to solve this system.

The equilibrium solution is calculated to be

(
u0

v0

)
=

(
37.73821081921373

25.15880721280914

)
. (1.12)

Now, the question of stability of the equilibrium solutions is addressed. An equilibrium solu-

tions is linearly stable if its linearization attracts small perturbations. We define a perturbation of

the equilibrium solution as

w =

(
u−u0

v−v0

)
.

Equation (1.3) can be linearized about(u0,v0) by the following

f (u,v)≈
[

=0
f (u0,v0)

]
+ fu(u0,v0) · (u−u0)+ fv(u0,v0) · (v−v0)

= fu(u0,v0) · (u−u0)+ fv(u0,v0) · (v−v0),

and similarly,

g(u,v)≈
[

=0
g(u0,v0)

]
+gu(u0,v0) · (u−u0)+gv(u0,v0) · (v−v0)

= gu(u0,v0) · (u−u0)+gv(u0,v0) · (v−v0),

If we remove diffusion from (1.1) we obtain

ut = γ · f (u,v)

vt = γ ·g(u,v).
(1.13)
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Linearizing (1.13) about(u0,v0), we obtain the following system

ut = γ · [ fu(u0,v0) · (u−u0)+ fv(u0,v0) · (v−v0)]

vt = γ · [gu(u0,v0) · (u−u0)+gv(u0,v0) · (v−v0)]

which can be written in matrix form

wt = γ ·A·w, A =

(
fu(u0,v0) fv(u0,v0)
gu(u0,v0) gv(u0,v0)

)
. (1.14)

In linearizing (1.13), we have reduced the partial differential equation into a linear ordinary

differential equation. The solutionw is said to be linearly stable if|w| → 0 ast → ∞. We wish to

determine the conditions on the eigenvalues ofγ ·A which make the solutionw linearly stable. The

proof of the following theorem is an adaptation of a proof from [10].

Theorem 1.1. The solution,w, of equation (1.14) is linearly stable if and only if all eigenvalues of

γ ·A have negative real part.

Proof. Given an initial perturbation,w(0) = wo, the Fundamental Theorem for Linear Systems [10]

states that there exists a unique solution given byw(t) = eγAtw0. Thus,w(t) is linearly stable if and

only if

lim
t→∞

w = lim
t→∞

eγAtw0 = 0.

(⇒) Assume one eigenvalue ofγA, λ = a+ ib has positive real part(a > 0). Then by [10], there

existsw0 ∈ R2 such thatw0 6= 0 and
∣∣eγAtw0

∣∣≥ eat |w0|. Clearly
∣∣eγAtw0

∣∣→ ∞ ast → 0, and thus

lim
t→∞

eγAtw0 6= 0.

Assume one eigenvalue ofγA, λ = ib, has zero real part. Then by [10], there existsw0 ∈ R2 such

thatw0 6= 0 and one component of the solution is of the formctk cosbt or ctk sinbt for k≥ 0. Again,

lim
t→∞

eγAtw0 6= 0.

Thus, if any eigenvalue has real part greater than or equal to zero, we can not have a stable solution.

We will now show that if the real part of the eigenvalue is negative, we obtain stability.

(⇐) If all eigenvalues ofγA have negative real part, then by [10], there exist positive constants

a,m,M1 andk≥ 0 such that

m|t|ke−at|w0| ≤ |eγAtwo| ≤M1(1+ |t|k)e−ct|w0|

for all w0 ∈ R2 andt ∈ R. We see that(1+ |t|k)e−(a−c)t is bounded when0 < c < a. Thus we have
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when0 < c < a, there existsM > 0 such that

m|t|ke−at|w0| ≤ |eγAtwo| ≤Me−ct|w0| (1.15)

for all w0 ∈ R2 andt ∈ R.

If we take the limit ast → ∞ to both sides of inequality (1.15), we see by the Squeeze Theorem

that

lim
t→∞

∣∣eγAtw0
∣∣ = 0.

¥

1.2.4 Diffusion Equation

Now we will consider solutions (1.1) in the absence of reactions, purely diffusion. With no reaction

kinetics, f (u,v) = g(u,v) = 0, and thus we have

ut = ∆u

vt = d∆v.
(1.16)

Let w = (u,v)T . We can rewrite (1.16) in the matrix form

wt = D∆w , whereD =

(
1 0

0 d

)
. (1.17)

Equation (1.17) is sometimes called the Heat equation or the Diffusion equation. It is a model for

the physical process of heat flow or diffusion through a body.

To solve this equation, we must prescribe both boundary and initial conditions. Homogeneous

Neumann boundary conditions onΩ = [0,1] will be used, thus

wx(0) = wx(1) = 0

The initial conditions will be specified generically;

w(x,0) =

(
Ψ0(x)
Φ0(x)

)
.

The equilibrium solutions previously solved were independent of domain. The solutions to the

Diffusion equation are, however, not so simple. Thus, it is important to note again that the domain

under which our system is modelled isΩ = [0,1]⊂ R.

The method of Separation of Variables will be used to solve the 1-dimensional diffusion equa-

tion with homogeneous boundary conditions. First, we assume the solution to (1.17) can be written
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as the product of two functions, one time-dependent, and the other space-dependent. Formally, this

is stated as

w(x, t) = ϕ(x)s(t) (1.18)

with ϕ(x) 6≡ 0 ands(t) 6≡ 0. Substituting this into (1.17) we obtain

ϕ(x)s′(t) = s(t)ϕxx(x). (1.19)

We can now write (1.19) as
s′

s
=

ϕxx

ϕ
.

Sinceϕxx/ϕ is independent of time, ands′/s is independent of space, then each must be independent

of both, thus we can write
s′

s
=

ϕxx

ϕ
=−k

for somek∈ R.

Thus, we have reduced the second order partial differential equation to a system to the two

ordinary differential equations
s′ =−ks

−ϕxx = kϕ.
(1.20)

1.2.4.1 Time Dependent Solution

The first step in solving the Diffusion equation is to solve the time dependent part, namelys(t). We

wish to write down the general solution to

ds
dt

=−ks. (1.21)

Equation (1.21) is a first order linear homogeneous differential equation with constant coefficients.

It has characteristic polynomialr =−k2, which has one real root. Thus by [2], the general solution

to (1.21) is

s(t) = ce−kt. (1.22)

It is important to note that at this point the constantk is arbitrary, with no restrictions. However,

the solution to the spatial equation will restrict the values of whichk can take. Ifk < 0, then the

solution exponentially increases ast → ∞. The physical reality prevents this case from happening,

as we will see in the next section.
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1.2.4.2 Spatial Solution (Eigenvalue Problem)

The second equation to solve for the separation of variables method is the spatial dependent solu-

tion,

−∆ϕ = kϕ (1.23)

under homogeneous Neumann boundary conditions. Solutions to equation (1.23) can be considered

eigenfunctions of the operator−∆ with eigenvaluek. Thus, we refer to equation (1.23) as an

eigenvalue problem.

Since our domain isΩ = [0,1]⊂ R, we can rewrite equation (1.23) as

−ϕxx = kϕ, (1.24)

which is a second order linear homogeneous ODE with constant coefficients. The characteristic

polynomial for equation (1.24) is−r2 = k which has roots±√−k.

If k > 0, then the roots to the characteristic polynomial are purely imaginary,r =±i
√

k. By [2],

the general solution to equation (1.24) is

ϕ(x) = c1cos(
√

kx)+c2sin(
√

kx). (1.25)

The boundary conditions can be written asϕ′(0) = ϕ(1) = 0. We can see that by applying the

boundary condition atx = 0, we obtain

ϕ′(x) =−c1

√
ksin(

√
kx)+c2

√
kcos(

√
kx)

ϕ′(0) = c2

√
k = 0

⇒ c2 = 0 sincek > 0.

The general solution can now be simplified toϕ(x) = c1cos(
√

kx). By next applying the boundary

condition atx = 1 we will see that we get a restriction on the valuesk may obtain.

ϕ′(1) =−c1

√
ksin(

√
k) = 0

⇒
√

k = nπ,n∈ Z\{0}
⇒ k = n2π2.

We do not consider the case ofc1 = 0, since this would result in an eigenfunctionϕ ≡ 0, which

can not be an eigenfunction by definition. Thus, fork > 0 we have eigenfunctionsϕk(x) =
c1cos(

√
kx) = c1cos(nπx) with eigenvaluek = n2π2.

If k = 0, the characteristic polynomial of equation (1.23) isr2 = 0 with repeated real rootr = 0.

Thus the general solution of equation (1.23) isϕ(x) = c1+c2x. Under the boundary conditions, we
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haveϕ′(0) = ϕ′(1) = c2 = 0. Thus the general form of the solution is simplyϕ(x) = c1.

If k < 0, then we want to solve the second order linear homogeneous ODE

ϕxx = k∗ϕ

wherek∗ = −k > 0. The characteristic polynomial for this ODE isr2 = k∗ which has two real

roots r = ±√k∗. The general solution to this equation isϕ(x) = c1e
√

k∗x + c2e−
√

k∗x. If we ap-

ply the boundary condition atx = 1, we see a problem with this solution.ϕ′(x) = c1
√

k∗e
√

k∗x−
c2
√

k∗e−
√

k∗x = 0 implies thatc1 = c2 = 0, sincee
√

k∗x 6= 0 ande−
√

k∗x 6= 0∀x∈Ω. Thus, fork < 0

we only obtain trivial solutions to the eigenvalue problem. Thus, we will note thatk 6≤ 0.

So, we have the eigenvalues and eigenfunctions of the−∆ operator under homogeneous Neu-

mann boundary conditions are

k = n2π2,n∈ Z
ϕk(x) = c1cos(

√
kx) = c1cos(nπx).

(1.26)

It is important to note that forn∈ Z, n2π2 ≥ 0, and thusk≥ 0.

1.2.4.3 General Solution to the Diffusion Equation

Equation (1.18) describes the solution to the Diffusion equation as the product of two functions, one

time dependent and one space dependent. As described in the previous two sections, the general

form of the solution for the Diffusion equation is

w(x, t) =
∞

∑
n=0

cnϕn(x)sn(t)

=
∞

∑
n=0

cne−n2π2t cos(nπx)
(1.27)

where the coefficient termscn are determined from the Fourier expansion of the initial conditions

w0 =
∞

∑
n=0

cncos(nπx).

The method of separation of variables is not guaranteed to find all solutions to the Diffusion

equation in general. However, for the one-dimensional Diffusion equation with homogeneous Neu-

mann boundary conditions, separation of variables gives all solutions [3]. Thus, equation (1.27)

fully describe the solutions to the Diffusion equation.
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1.3 Turing Instability

Patterns are formed through the instability of the homogeneous steady-state solution to small spa-

tial perturbations. If the homogeneous steady-state solution was stable, then small perturbations

from the steady-state would converge back to the steady-state. Alan Turing, in [13], showed how a

Reaction-Diffusion system can exhibit such instabilities to form patterns. We will present the con-

ditions under which Turing instabilities can occur (as described in [9]), and show that the Thomas

system meets these conditions, and thus will exhibit Turing instabilities.

1.3.1 Existence of Turing Instabilities

This section will present a derivation of the necessary and sufficient conditions for Turing instabil-

ities to be present in a Reaction-Diffusion model, as presented in [9]. For completeness, we will

define the Reaction-Diffusion model as

wt = D∆w+ γ ·F(w) (1.28)

with

w =

(
u(x, t)
v(x, t)

)
, D =

(
1 0

0 d

)
, F(w) =

(
f (w)
g(w)

)

and d,γ > 0 on the domainΩ = [0,1] with initial conditionsu(x,0) and v(x,0), and Neumann

boundary conditions. If Neumann boundary conditions are not chosen, then the solutions to equa-

tion (1.28) will be partially determined by the boundary conditions. We choose to model an isolated

system with no external influences, hence the choice of Neumann boundary conditions.

The first condition under which Turing instabilities form is a condition imposed on the steady-

state solution in the absence of diffusion. For diffusion-driven instability to occur, the homogeneous

steady-state solution must be linearly stable in the absence of any spatial variation [9]. In Theorem

1.1, we proved the linear stability of the homogeneous steady-state solution(u0,v0) to be exactly

when Reλ1 < 0 and Reλ2 < 0 for λ1 andλ2 being the eigenvalues of the stability matrix

γA = γ

(
fu(u0,v0) fv(u0,v0)
gu(u0,v0) gv(u0,v0)

)
= γ

(
fu fv
gu gv

)

u0,v0

.
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To calculate the eigenvalues ofA, we simply solve

|γA−λI |=
∣∣∣∣∣

(
γ fu−λ γ fv

γgu γgv−λ

)∣∣∣∣∣ = 0

⇒ (γ fu−λ)(γgv−λ)− γ2 fvgu = 0

⇒ λ2− γ( fu +gv)+ γ2( fugv− fvgu) = 0

⇒ λ1,λ2 = γ
( fu +gv)±

√
( fu +gv)2−4( fugv− fvgu)

2

Linear stability is guaranteed if
tr A = fu +gv < 0

|A|= fugv− fvgu > 0.
(1.29)

We will now consider the full Reaction-Diffusion equation. Linearizing equation (1.28) about

the steady-state(u0,v0) in the same manner as done to derive equation (1.14) we get

wt = γAw+D∆w, A =

(
fu fv
gu gv

)

u0,v0

, D =

(
1 0

0 d

)
. (1.30)

Substituting (1.27) into (1.30) results in

wt = γAw+D∆w
∞

∑
n=0

cnλne−λnt cos(nπx) =
∞

∑
n=0

γAcne−λnt cos(nπx)+
∞

∑
n=0

−Dcne−λntn2π2cos(nπx).

For eachn∈ Z, we have

cnλneλnt cos(nπx) = γAcne−λnt cos(nπx)−Dcne−λntn2π2cos(nπx)

λncos(nπx) = γAcos(nπx)−Dn2π2cos(nπx)

λnϕn(x) = γAϕn(x)−Dk2ϕn(x)

0 = (λn− γA+Dk2)ϕn(x).

Sinceϕn(x) is non-trivial∀n by construction, we must have that
∣∣λnI − γA+k2D

∣∣ = 0. For conve-
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nience we will drop the subscript onλ. Thus,

∣∣λI − γA+k2D
∣∣ = 0∣∣∣∣∣

(
λ− γ fu +k2 −γ fv
−γgu λ− γgv +k2d

)∣∣∣∣∣ = 0

⇒ (λ− γ fu +k2)(λ− γgv +k2d)− (−γ fv)(−γgu) = 0

⇒ λ2 +λ
[
k2(1+d)− γ(tr A)

]
+h(k2) = 0,

whereh(k2) = dk4− γ(d fu +gv)k2 + γ2 |A|.
We have already imposed restrictions (1.29) to the steady-state solution in the absence of diffu-

sion, which must be applied to the general solution as well. Consider the conditions under which the

steady-state solution is unstable to with respect to perturbations, namely Reλ > 0 for somek 6= 0.

This instability with respect to spatial perturbations is exactly what is needed for the formation of

patterns. Without this instability, small spatial perturbations would converge to the homogeneous

steady-state solution.

This can occur if the coefficient ofλ is negative, or ifh(k2) < 0. However, by (1.29), trA < 0,

and sinced > 0, k2(1+d) > 0. So,

k2(1+d)− γ(tr A) > 0.

So, the only possibility for Reλ > 0 comes whenh(k2) < 0.

The only possibility forh(k2) < 0 is if |A| < 0 or d fu +gv > 0. But by (1.29),|A| > 0, so the

only condition is ifd fu + gv > 0. We can see clearly thatd 6= 1, since if it did, thenfu + gv > 0

which contradicts (1.29). Thus, a third criterion for Turing instabilities is

d fu +gv > 0. (1.31)

Criterion (1.31) is sufficient, but not necessary, for Reλ > 0. Forh(k2) to be negative for some

k > 0, the minimum must be negative. With a change of variables,z= k2, and simple calculus, we

can calculate the minimum ofh(k2) as follows

h(z) = dz2− γ(d fu +gv)z+ γ2 |A|
dh
dz

= 2dz− γ(d fu +gv)

dh
dz

= 0⇒ 2dz− γ(d fu +gv) = 0

⇒ z∗ =
γ(d fu +g+v)

2d
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It is clear thath is concave up on it’s entire domain, by the second derivative test, and thush will

attain it’s minimum atz∗. Thus

hmin = h(z∗)

= d

[
γ(d fu +gv)

2d

]2

− γ(d fu +gv)
[

γ(d fu +gv)
2d

]
− γ2 |A|

=
γ2(d fu +gv)2

4d
− 2γ2(d fu +gv)2

4d
− γ2 |A|

= γ2
[
|A|− (d fu +gv)2

4d

]
.

Thus, the condition thath(k2) < 0 for somek∈ N is

hmin < 0

γ2
[
|A|− (d fu +gv)2

4d

]
< 0

|A|− (d fu +gv)2

4d
< 0

(d fu +gv)2

4d
> |A| .

Thus, the necessary and sufficient conditions for the presence of Turing instabilities in (1.28) are

fu +gv < 0

fugv− fvgu > 0

d fu +gv > 0

(d fu +gv)2−4d( fugv− fvgu) > 0,

(1.32)

recalling that all partial derivatives are evaluated at(u0,v0).

1.3.2 Existence of Turing Instabilities in the Thomas System

The Reaction-Diffusion model specified by equation (1.1) is quite general, and without specifying

the reaction-kinetics, would be impossible to study numerically. Thus, the work presented here

focuses on the study of the Thomas System. We will now show that it is possible for the Thomas

System to exhibit Turing instabilities by verifying it meets the criteria of (1.32).

From equation (1.3) we can calculate the first order partial derivatives evaluated at the homoge-
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neous steady state solution (1.12) as

fu = 0.89958351470112

fv =−4.46212685010084

gu = 1.89958351470112

gv =−5.96212685010084

(1.33)

We will now determine for whatd the criteria of (1.32) are met. It is clear to see thatfu + gv =
−5.06254333539971< 0 and fugv = fvgu = 3.11275157804915> 0, thus the first two conditions

are met. For the third condition, the functionf (d) = fu ·d+gv is a linear increasing function (since

d > 0) with x-intercept ofd = −gv
fu

= 6.62765241099565. Thus, for alld > 6.62765241099565,

d fu +gv > 0.

The last condition forms a quadratic equationf (d) = f 2
u · d2 + (4 fvgu− 2 fugv)d + g2

v. f is

concave up and has roots atd1 = 1.31581376525321and d2 = 21.86205460075870. Thus we

know that f (d) > 0 for all d ∈ (−∞,d1)
⋃

(d2,∞). Since the restrictions for condition 3 to hold are

d > 6.62765241099565, we conclude that for all four conditions to hold,d > 21.86205460075870.

Thus, we have the conditions for which Turing instabilities occur in the Thomas system.

1.4 Purpose of Thesis

The purpose of this thesis is the develop some quantitative notion of the solution to equation (1.1)

on the domainΩ = [0,1]⊂R. In this first part of this thesis, the bifurcation structure of (1.1) under

the reaction kinetics (1.3) will be developed. Both analytical and numerical methods will be used

to develop the structure. The bifurcations from equilibrium can be developed analytically. The

branches from the bifurcations are developed numerically using AUTO.

The second part of this thesis is the verification of results based on Murray [9]. In his develop-

ment of the relationship of scale and geometry to the solution of the Thomas system, he provides the

solutions of the system as a function ofγ andd. It is my contention that this depiction is not accu-

rate. The last part of this thesis will develop a more accurate diagram, developed through numerical

methods.
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Numerical Methods

Two software systems are utilized in the numerical calculations of this thesis. To calculate bifur-

cation branches and equilibrium solutions, we utilize AUTO. To compute time-dependent solu-

tions and analyze stability of the calculated solutions, we utilize custom written MATLAB software

termed the Stability System.1 Solutions calculated by AUTO are used as input into the Stability Sys-

tem. The Stability System evolves solutions over time at fixed spatial intervals. AUTO computes

solutions using adaptive methods, and provides solutions at non-fixed intervals. Clamped cubic

splines are utilized to approximate the solutions calculated by AUTO at the fixed spatial intervals

required by the Stability System.

2.1 Bifurcation Analysis with AUTO

AUTO [5] uses Pseudo-arclength continuation with Newton’s Method as a Predictor-Corrector

scheme to trace solution branches bifurcating off of the homogeneous equilibrium [4], described in

the following section. AUTO is also used to compute equilibrium solutions for the Thomas system.

These solutions are input for the Stability software, described in the following section.

2.1.1 Thomas System for AUTO

AUTO can do limited bifurcation analysis of systems of ordinary differential equations of the form

u′(t) = f (u(t), p), f (·, ·),u(·) ∈ Rn, (2.1)

wherep denotes one or more free parameters [5]. Since we want to have AUTO calculate bifur-

cations along the equilibrium of the Thomas system, we must rewrite equation (1.10) to be of the

form of equation (2.1).

1The code used for the time-dependent simulations was developed by Sander and Wanner for [12].

16
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To rewrite a system of second order ODEs as a system of first order ODEs, we employ a standard

trick of introducing new equations to the system. We will utilize the following equations

w(x) = u′(x)

z(x) = v′(x)
(2.2)

and thus can write equation (1.10) as

u′(x) = w(x)

w′(x) =−γ · f (u,v)

v′(x) = z(x)

z′(x) =−γ ·g(u,v)
d

.

(2.3)

2.1.2 Arclength Continuation

Equation (2.3) contains two system parameters,γ andd. For the computations of this thesis, we

will fix d and varyγ, referred to as the continuation parameter. We can write equation (2.3) as

ω̇ = F(ω,γ), γ ∈ R, ω = (w,u,z,v)T .

To calculate the equilibrium solutions to equation (2.3), we need to solve the non-linear system

0 = F(ω,γ). (2.4)

AUTO uses Predictor-Corrector continuation to solve equation (2.4), specifically Pseudo-

arclength continuation (predictor) with Newton’s method (corrector). The use of Predictor-

Corrector continuation instead of relying on some simple numerical method, such as Newton’s

method alone, is the difficulty Newton’s method has with turning points. Solution branches can

fold and turn in ways that would make Newton’s method diverge.

We parameterize equation (2.4) by arclengths. Thus,(ω,γ) =
(
(w(s),u(s),z(s),v(s))T ,γ(s)

)

and (
dw
ds

)2

+
(

du
ds

)2

+
(

dz
ds

)2

+
(

dv
ds

)2

+
(

dγ
ds

)2

= 1. (2.5)

Given a solutions along the solution branch,(ω(si),γ(si)), we predict the next solution

(ω(si+1),γ(si+1)) along the tangential vector at(ωi ,γi) of fixed length∆s.
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We can approximate equation (2.5) by

1 =
(

dw
ds

)2

+
(

du
ds

)2

+
(

dz
ds

)2

+
(

dv
ds

)2

+
(

dγ
ds

)2

=
(

w−w(si)
s−si

)2

+
(

u−u(si)
s−si

)2

+
(

z−z(si)
s−si

)2

+
(

v−v(si)
s−si

)2

+
(

γ− γ(si)
s−si

)2

=
(w−w(si))2 +(u−u(si))2 +(z−z(si))2 +(v−v(si))2 +(γ− γ(si))2

(s−si)2

(2.6)

and thus have

(w−w(si))2 +(u−u(si))2 +(z−z(si))2 +(v−v(si))2 +(γ− γ(si))2− (s−si)2 = 0. (2.7)

Thus, we have the system of equations





F(ω,γ) = 0

(w−w(si))2 +(u−u(si))2 +(z−z(si))2 +(v−v(si))2− (s−si)2 = 0

w = u−u(si)
s−si

z= v−v(si)
s−si

s−si = ∆s,

(2.8)

five equations and five unknowns. Newton’s Method is used to solve this system, the solution(
(w,v,z,v)T ,γ

)
= (ω(si+1),γ(si+1)).

AUTO actually uses pseudo-arclength continuation. The difference between arclength and

pseudo-arclength continuation is that weights can be utilized in equation (2.7). We did not uti-

lize this weighting, and thus for our calculations, AUTO essentially used arclength continuation.

2.2 Stability Analysis

Let ω(x, t) = (u(x, t),v(x, t))T be an equilibrium solution of the Thomas System. If small pertur-

bations ofω converge toω ast → ∞, then we sayω is stable and attracting. The Stability System

computes solution of the Thomas System over time. One can see if a particular solution is non-

attracting by viewing the solutions over time evolving away from the equilibrium solution. If the

solutions over time converge to the equilibrium solution, then we can only suspect that the equilib-

rium is stable and attracting. We can only assume, since we do not know that for at a later time the

solutions would evolve away from the equilibrium.

Figure 2.2 shows a sample run of the Stability System starting withγ = 200andd = 500. In

this run, the Stability System began with a perturbation of the homogeneous equilibrium and over
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time solved the system. Figure 2.2 shows the solution evolution over time.

Figure 2.1: Sample run of the Stability System
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Figure 2.2: Evolution of Solutions from Stability System (color indicates value ofu(x, t))
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The Stability System is an iterative method which uses a Discrete Cosine Transform to trans-

form the Thomas System of partial differential equations into an algebraic system. The algebraic

system is then solved, and the solution is transformed back to the PDE space by the Inverse Dis-

crete Cosine Transform. This is a standard technique in solving differential equations. Readers may

recall a analogous process in ordinary differential equations with the use of the Laplace Transform.



Chapter 3

Bifurcation Structure of Thomas System

Thus far, we have shown that the Thomas System has a linearly stable homogeneous equilibrium (in

the absence of diffusion). Thus, it can show Turing instabilities. We now want to determine where

along the homogeneous solution these instabilities occur. To determine where these instabilities

occur, we will vary control parameters in the Thomas system to determine changes in the qualitative

nature of the system. These qualitative changes are known as bifurcations.

3.1 Background

The simplest example of a bifurcation is the means by which fixed points are created and eliminated

in a system, taken from [1]. Consider the simple systemfa(x) = a− x2, a one-parameter family

of functions. An alternative way of defining this system isf (a,x) = a− x2, which more clearly

emphasizes the dependence on the control parametera. For our discussion, we will considerf :

I ×R→ R with I ⊂ R.

Fix a ∈ I , and consider anx ∈ R such thatfa(x) = x. x is called a fixed point offa. For our

particular system, the fixed points offa are determined by

fa(x) = a−x2 = x

−x2−x+a = 0

x2 +x−a = 0

x =
−1±√1+4a

2
.

The fixed points of our system are dependent on the control parametera. Thus, we can see that for

a <−1
4, no real fixed points exist. Fora =−1

4, one fixed point exists, namelyx =−1
2. Finally for

a > −1
4, two real fixed points exist. Figure 3.1 shows the creation of the fixed points asa varies

from -1 to 1.

The parameter value at which the number of fixed points changes is called a bifurcation value.

In our system, the point
(−1

4,−1
2

)
is a bifurcation point, since one fixed point is created ata =−1

4.

21
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Figure 3.1: The graphs ofy = x andy = a−x2 for a =−1,−.25,1.
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Figure 3.2: Intersection of the graphsy = x andy = a−x2 asa varies.

The bifurcation valuea = −1
4 is a particular type of bifurcation called a tangent bifurcation.

The tangent bifurcation occurs in systems of one-dimension, for whichf ′a is +1, and thus is tangent

to the liney = x. As a varies, the point at which two fixed points are created is called a saddle-node

bifurcation. In our system,a >−1
4 is a saddle-not bifurcation.

You can clearly see how, asa is varied, the fixed points are created and changed by Figure 3.1.

The bifurcations in the previous example were based on the number of fixed points present in

the system. This is not the only qualitative notion of a system for which bifurcations can occur. For

the Thomas system, bifurcations will occur when the number of non-trivial equilibrium solutions

change as a control parameter varies, namelyγ. These bifurcations are where Turing instabilities

exist, and where spatial patterns can be formed.
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3.2 Analytic Determination of Bifurcations

Much of the work presented in this thesis is quantitative in nature. However, there is some infor-

mation we can determine analytically. We have thus far determined that the Thomas system will

exhibit Turing instabilities, as described in Chapter 1.

The first step in studying the spatial pattern formation of the Thomas system is to determine

where along the homogeneous equilibrium the solution is unstable with respect to perturbations.

One means by which to obtain this information is to utilize AUTO to determine where these bifur-

cations occur. This will, under good circumstances, determine bifurcations along the homogeneous

equilibrium. We are not, however, guaranteed that AUTO will find all bifurcations along the ho-

mogeneous equilibrium. One circumstance for which AUTO may not detect a bifurcation is if the

control parameter is varied at too great a rate.

It would be of great benefit to have an analytical means of determining all bifurcations along

the homogeneous equilibrium. In [6], we find a standard means of analytically determining all of

the bifurcations along the homogeneous equilibrium, which we will develop here. Also of interest

is the inherit symmetry of the non-homogeneous solutions at the bifurcations. We will show that if

you have the first bifurcation along the homogeneous equilibrium, you can very easily generate the

others.

3.2.1 Derivation of Stability Changing Bifurcations

We wish to write the linearized form of the Reaction-Diffusion equation in a slightly different way,

thus
wt = γAw+D∆w

= (γA−D∆)(w).
(3.1)

Since the family of eigenfunctions forms a complete basis for the set of solutions, we can substitute

for the∆ operator to further transform the Reaction-Diffusion equation into

wt = (γA−λnD)w

= Bnw.
(3.2)

Non-trivial equilibrium solutions occur exactly when|Bn|= 0. Theγ values for which|Bn|= 0

correspond to bifurcations from the homogeneous equilibrium. Thus, we need to calculate theseγ
values, and thus will know where the Turing instabilities occur along the homogeneous equilibrium.

We will define a functionf of γ, d andn∈ Z+, such that by fixingd, the roots off are the loca-
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tions of the bifurcations from the homogeneous equilibrium associated with thenth eigenfunction.

f (γ,d,n) =

∣∣∣∣∣γ
(

fu fv
gu gv

)
− (n2π2)

(
1 0

0 d

)∣∣∣∣∣

=

∣∣∣∣∣

(
γ fu−n2π2 γ fv

γgu γgv−n2π2d

)∣∣∣∣∣
=

(
γ fu−n2π2)(

γgv−n2π2d
)− γ2 fvgu

= ( fugv)γ2− (n2π2d fu)γ− (n2π2gv)γ− (n2π2)2d− ( fvgu)γ2

= ( fugv− fvgu)γ2−n2π2(d fu +gv)γ−n4π4d.

(3.3)

By fixing both d and n, and utilizing Maple, we can solve for the roots off , and thus the

bifurcations from the homogeneous equilibrium. This can be an tedious task to find bifurcations.

An alternative method is to exploit the symmetry of the solutions to use the initial bifurcation to

calculate further bifurcations.

Let (u0,v0) be the equilibrium solution forγ0 (n = 0). Define thenth concatenation of(u0,v0)
to be, ifn is even,

w(x) =





u0(nx) ,0≤ x < 1
n

u0(2−nx) , 1
n ≤ x < 2

n
...

u0(nx−n+2) , n−2
n ≤ x < n−1

n

u0(n−1−nx) , n−1
n ≤ x≤ 1

z(x) =





v0(nx) ,0≤ x < 1
n

v0(2−nx) , 1
n ≤ x < 2

n
...

v0(nx−n+2) , n−2
n ≤ x < n−1

n

v0(n−1−nx) , n−1
n ≤ x≤ 1
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and ifn is odd,

w(x) =





u0(nx) ,0≤ x < 1
n

u0(2−nx) , 1
n ≤ x < 2

n
...

u0(nx−n+3) , n−3
n ≤ x < n−2

n

u0(n−1−nx) , n−2
n ≤ x < n−1

n

u0(nx−n+1) , n−1
n ≤ x≤ 1

z(x) =





v0(nx) ,0≤ x < 1
n

v0(2−nx) , 1
n ≤ x < 2

n
...

v0(nx−n+3) , n−3
n ≤ x < n−2

n

v0(n−1−nx) , n−2
n ≤ x < n−1

n

v0(nx−n+1) , n−1
n ≤ x≤ 1

If u0 andv0 satisfy homogeneous Neumann boundary conditions, then so does thenth concatenation

of u0 andv0. If u0 andv0 are smooth, then thenth concatenation ofu0 andv0 are smooth. By the

Chain Rule, we can see that∆w = n2∆u0 and∆z= n2∆v0.

Theorem 3.1. If (u0,v0) are non-trivial equilibrium solutions forγ0 with homogeneous Neumann

boundary conditions for somed, then thenth concatenation of(u0,v0), is a non-trivial equilibrium

solution forn2γ0 under homogeneous Neumann boundary conditions.

Proof. Without loss of generality, we will prove the theorem foru0. Let w(x) be thenth concatena-

tion of u0. u0 being an equilibrium solution requires for allx∈ [0,1],

0 = γ0Au0(x)+D∆uo(x).

For w to be a non-trivial equilibrium forn2γ0, we must show0 = (n2γ0)Aw+D∆w. We know that

w(x) = u0(nx+b) for x∈ [0,1] and0≤ nx+b≤ 1, sincew is thenth concatenation ofu0. Thus, we

have∆w(x) = n2∆u0(nx+b). So, we can write

(n2γ0)Aw(x)+D∆w(x) = (n2γ0)Au0(nx+b)+n2D∆u0(nx+b)

= n2(γ0Au0(nx+b)+D∆u0(nx+b))

= 0

¥
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3.2.2 Comparison of Bifurcations from Analysis and AUTO

The use of AUTO to generate solutions along bifurcations has its drawbacks. First, AUTO is not

guaranteed to find all bifurcations.

The general rule of thumb with AUTO is that if it finds something, it’s there. But just

because it doesn’t find something doesn’t mean it’s not there.

Unfortunately, since AUTO relies on numerical computations (which have errors associated with

them), this general rule can be broken, as we will see.

The previous section derives a means by which to generate a certain number of bifurcation

points at which Turing instabilities will occur. This section will, for particular choices ofd, compare

the bifurcations calculated, and those found by AUTO. For this, we will find the first few bifurcation

points ford ∈ {200,500,1000,5000}.
In Tables 3.2.2, 3.2.2 and 3.2.2 we can see a significant difference in the values for the bifurca-

tion points analytically determined and those computed by AUTO. We believe the error lies in those

bifurcation points generated by AUTO. For all AUTO calculations done for this work, we specified

a grid size of 20 in AUTO. We believe that asd increases, the numerical complexity increases,

requiring a refinement of the grid. We, unfortunately, have not had time to test this theory.

Table 3.1: Some Bifurcation Points ford = 200

Index Calculated Found by AUTO

0 11.59091676 11.59093

1 46.36366704 46.36367

2 104.3182509 104.3183

3 185.4546682 185.4547

4 289.7729190 289.7727

5 417.2730033 417.2730

6 539.9670228 539.9670
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Table 3.2: Some Bifurcation Points ford = 500

Index Calculated Found by AUTO

0 11.20794733 11.20795

1 44.83178933 44.83182

2 100.8715260 100.8727

3 179.3271573 179.3476

4 280.1986832 280.3793

5 403.4861038

6 549.1894191 555.1231

Table 3.3: Some Bifurcation Points ford = 1000

Index Calculated Found by AUTO

0 11.08789331 11.08789

1 44.35157322 44.35160

2 99.79103976 99.79220

3 177.4062929 177.4256

4 277.1973326 277.3861

5 399.1641591 400.4164

6 543.3067720

7 709.6251715

8 898.1193577
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Table 3.4: Some Bifurcation Points ford = 5000

Index Calculated Found by AUTO

0 10.99435321 10.99435

1 43.97741284 43.97743

2 98.94917888 98.95034

3 175.9096514 175.9415

4 274.8588304 275.0295

5 395.7967157 396.8544

6 538.7233073 543.6687

7 703.6386053 714.8568

8 890.5426100

3.3 Bifurcation Structure

Having determined the bifurcations from the homogeneous equilibrium, we will now use AUTO to

determine the Bifurcation diagrams for these bifurcations. The bifurcation diagrams produced by

AUTO exhibit some interesting behavior. We see potential situations where secondary bifurcations

along the branch are followed, producing branches that are not symmetric with the branch of the

first bifurcation point (Figure 3.3.1 is an example of this). This could be an indicator of a symmetry-

breaking bifurcation.

3.3.1 Bifurcation Diagrams for d = 200

This is the form that we would expect, through symmetry (Thm 3.1), all bifurcation diagrams

calculated for this thesis to have. We see the bifurcation diagram following a path, but ultimately

returning to the initial bifurcation along the homogeneous equilibrium.
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Figure 3.3: Bifurcation branch atγ = 11.59093andd = 200
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Figure 3.4: Bifurcation branch atγ = 46.36367andd = 200
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The following four diagrams illustrate situations in which errors occurred in AUTO. During this

calculation, the path ultimately ended in a computational error within AUTO.
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Figure 3.5: Bifurcation branch atγ = 104.3183andd = 200
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Figure 3.6: Bifurcation branch atγ = 185.4547andd = 200
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Figure 3.7: Bifurcation branch atγ = 289.7737andd = 200
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Figure 3.8: Bifurcation branch atγ = 417.2730andd = 200
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The last diagram shows an example of multiple branch jumping, potentially. The path of this

branch does not even resemble the form of Figure 3.3.1. We would suspect that there are branches

that are close together or even intersect.

Figure 3.9: Bifurcation branch atγ = 539.9670andd = 200
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In the following three sections, we see further examples of bifurcation diagrams, withd varying.
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3.3.2 Bifurcation Diagrams for d = 500

Figure 3.10: Bifurcation branch atγ = 11.20795andd = 500
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Figure 3.11: Bifurcation branch atγ = 44.83182andd = 500
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Figure 3.12: Bifurcation branch atγ = 100.8727andd = 500
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Figure 3.13: Bifurcation branch atγ = 179.3476andd = 500
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Figure 3.14: Bifurcation branch atγ = 280.3793andd = 500
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Figure 3.15: Bifurcation branch atγ = 555.1231andd = 500
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3.3.3 Bifurcation Diagrams for d = 1000

Figure 3.16: Bifurcation branch atγ = 11.08789andd = 1000
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Figure 3.17: Bifurcation branch atγ = 44.35160andd = 1000
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Figure 3.18: Bifurcation branch atγ = 99.79220andd = 1000
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Figure 3.19: Bifurcation branch atγ = 277.3861andd = 1000
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Figure 3.20: Bifurcation branch atγ = 277.3861andd = 1000
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3.3.4 Bifurcation Diagrams for d = 5000

Figure 3.21: Bifurcation branch atγ = 10.99435andd = 5000
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Figure 3.22: Bifurcation branch atγ = 43.97743andd = 5000

0 500 1000 1500 2000 2500 3000 3500
21.5

22

22.5

23

23.5

24

24.5

25

25.5

Figure 3.23: Bifurcation branch atγ = 98.95034andd = 5000
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Figure 3.24: Bifurcation branch atγ = 175.9415andd = 5000
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Chapter 4

Stability of Thomas System

Thus far we have been concerned with the instability of the homogeneous solution, and thus where

patterns will form. Now, we will shift out focus to the actual solutions along these bifurcations.

Pattern formation is believed to be due to patterns of concentrations of morphogens []. Stable

attracting solutions to the Thomas system will provide the patterns of concentrations of morphogens

which will result in animal coat patterns.

Murray [9] provides a visual of regions of stable solutions, and what the solutions look like,

in (γ,d) space. We will not only attempt to find stable solutions using AUTO and the Stability

system, but we will compare these solutions to the solution space Murray provides. Murray provides

no explanation in [9] as to how these stable solutions were verified. Thus, verification of this

information is important.

4.1 Murray Proposed Stable Solution Space

Murray, in [9], provides the following two-dimensional picture of the regions in which various

stable solutions are found for the Thomas system

38
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Figure 4.1: Investigated regions of stable solutions in(γ,d) space.

As you can see, forγ = 200 andd = 400, we would expect to see a stable solution like that

labelled 3. We will restrict our attention to a portion of this graph for verification, as shown below.

Table 4.1 summarizes the expected stability published by Murray. We will update this table

with our numerical findings in an attempt to verify these stable solutions.
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Table 4.1: Published Stable Solution Forms

d γ Form of Stable Solution(Murray)

200 100 1

200 2

300 2

400 3

500 50 1

100 1

200 1

300 1

400 2

1000 50 1

100 1

200 1

300 1

400 1

5000 50 1

100 1

200 1

300 1

400 1

4.2 Computed Stable solution space

To determine the stability of solutions at a particularγ value, we will utilize both AUTO and the

Stability Software. First, solutions are found by AUTO for particulard along many bifurcation

paths. Then, these solutions are imported into the Stability Software. Once imported, the solutions

will be spatially perturbed and inspected to see if they ”converge” to their original solution, or

possibly some other solution.

What is important to note is that just because a perturbed solution, denotedw converges to itself

or another solution, denotedwc, does not necessarily mean thatwc is an attractive stable solution.

The most we can say is that it seems to be an attractive stable solution. Further work would need to

be done to determine through other means ifwc is an attracting stable solution.

Since we are attempting to verify results from Murray, we shall choosed to align with the

results in Figure 4.1. Thus we shall have AUTO determine solutions for the following set of(γ,d)
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values, namelyG×D, whereG = {50,100,200,300,400} andD = {200,500,1000,5000}.
A convention that will be followed in the following sections is to show apparently attractive

stable solutions in blue and unstable solutions in red.

4.2.1 Apparent Stability at (γ,d) = (100,200)

Figure 4.2: Stable and Unstable solutions at(γ,d) = (100,200)
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4.2.2 Apparent Stability at (γ,d) = (200,200)

Figure 4.3: Stable and Unstable solutions at(γ,d) = (200,200)
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4.2.3 Apparent Stability at (γ,d) = (300,200)

Figure 4.4: Stable and Unstable solutions at(γ,d) = (300,200)
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4.2.4 Apparent Stability at (γ,d) = (400,200)

Figure 4.5: Stable and Unstable solutions at(γ,d) = (400,200)
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4.2.5 Apparent Stability at (γ,d) = (50,500)

There are three solutions found for(γ,d) = (50,500), two from the first branch and one from the

second branch. The solutions are shown in Figure 4.6. However, only two are stable.
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Figure 4.6: Stable and Unstable solutions at(γ,d) = (50,500)
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This adds a stable solution to the picture that Murray did not include, namely the symmetric

solution of solution 1 from Figure 4.1.

4.2.6 Apparent Stability at (γ,d) = (100,500)

Figure 4.7: Stable and Unstable solutions at(γ,d) = (100,500)
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4.2.7 Apparent Stability at (γ,d) = (200,500)

Figure 4.8: Stable and Unstable solutions at(γ,d) = (200,500)
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4.2.8 Apparent Stability at (γ,d) = (300,500)

Figure 4.9: Stable and Unstable solutions at(γ,d) = (300,500)
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4.2.9 Apparent Stability at (γ,d) = (400,500)

Figure 4.10: Stable and Unstable solutions at(γ,d) = (400,500)
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4.2.10 Apparent Stability at (γ,d) = (50,1000)

Figure 4.11: Stable and Unstable solutions at(γ,d) = (50,1000)
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4.2.11 Apparent Stability at (γ,d) = (100,1000)

Figure 4.12: Stable and Unstable solutions at(γ,d) = (100,1000)
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4.2.12 Apparent Stability at (γ,d) = (200,1000)

Figure 4.13: Stable and Unstable solutions at(γ,d) = (200,1000)
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4.2.13 Apparent Stability at (γ,d) = (300,1000)

Figure 4.14: Stable and Unstable solutions at(γ,d) = (300,1000)
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4.2.14 Apparent Stability at (γ,d) = (400,1000)

Figure 4.15: Stable and Unstable solutions at(γ,d) = (400,1000)
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4.2.15 Apparent Stability at (γ,d) = (50,5000)

Figure 4.16: Stable and Unstable solutions at(γ,d) = (50,5000)
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4.2.16 Apparent Stability at (γ,d) = (100,5000)

Figure 4.17: Stable and Unstable solutions at(γ,d) = (100,5000)
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4.2.17 Apparent Stability at (γ,d) = (200,5000)

Figure 4.18: Stable and Unstable solutions at(γ,d) = (200,5000)

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

4.2.18 Apparent Stability at (γ,d) = (300,5000)

Figure 4.19: Stable and Unstable solutions at(γ,d) = (300,5000)
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4.2.19 Apparent Stability at (γ,d) = (400,5000)

Figure 4.20: Stable and Unstable solutions at(γ,d) = (400,5000)
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4.3 Comparison with Published Data

The published data from Murray [9] is not inaccurate, but not likely altogether complete. Table 4.3

provides a comparison of the forms of stable solutions published by Murray and those calculated

via AUTO and the Stability System.
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Table 4.2: Comparison of Stable Solution Forms

d γ Form of Stable Solution(Murray) Form of Stable Solution(Calculated)

200 100 1 1, symmetric 1, symmetric 2

200 2 1, symmetric 1, symmetric 2

300 2 symmetric 2

400 3 symmetric 2

500 50 1 1, symmetric 1

100 1 1, symmetric 1

200 1 1, symmetric 1

300 1 1, symmetric 1

400 2 1, symmetric 1

1000 50 1 symmetric 1, symmetric 2

100 1 1, symmetric 1, symmetric 2

200 1 1, symmetric 1

300 1 1, symmetric 1

400 1 1, symmetric 1

5000 50 1 symmetric 1, symmetric 2

100 1 symmetric 1, symmetric 2

200 1 symmetric 1, symmetric 2

300 1 symmetric 1, symmteric 2

400 1 symmetric 1, symmetric 2

What we see in this table is that there exists more stable equilibrium solutions than Murray

indicated. We find that the symmetric image of the solutions from Murray are also stable. And in a

few instances, we see the potential for the co-existence of solutions of different forms. This is much

different than that suggested by Murray, whose data indicates only one form of solutions is stable

at one time. It is important to note that the numerical errors encountered in the previous chapter

when computing the bifurcation points may also affect the results for the stable solutions. Thus it

is important to rerun these simulations when these numerical issues are dealt with.
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Conclusion

5.1 Findings

The stable solutions that Murray published in [9] may not be the entire picture. It appears that some

more stable solutions exist for particular(γ,d) values for the Thomas System. However, the work

in this thesis can not say definitively that this is the case; these solutions appear stable.

5.2 Further Work

There are clear areas where further research is needed. First, further development of the bifurcation

structure and solutions is needed. The work in this thesis has developed only a small subset of the

data to verify. Secondly, in this, numerical subtleties need to be worked out with AUTO in order to

ensure convergence when following certain bifurcation branches.

A second area, and arguably most important, is the determination of the stability of the solutions

generated by AUTO. The method used in this thesis provides a differing view of stable solutions

than that of Murray [9]. While Murray utilized Time-Evolution to determine stability, we went

one step further and utilized AUTO to compute equilibrium solutions. These solutions were then

evolved over time to determine stability. Other methods, such as index calculation, should be

employed in order to actually determine the stability of the solutions. This work will add more

evidence to either confirm or refute the published data provided by Murray.
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Source Code

Listing 6.1: AUTO Thomas System

# inc lude ” a u t o f 2 c . h ”

# inc lude <math . h>

i n t func ( i n t e g e r ndim , cons t d o u b l e r e a l ∗ u , cons t i n t e g e r ∗ i cp ,

cons t d o u b l e r e a l ∗ par , i n t e g e r i j a c ,

d o u b l e r e a l ∗ f , d o u b l e r e a l ∗ dfdu , d o u b l e r e a l∗ dfdp ) {
d o u b l e r e a l myf , my g , my h , my u , my v ;

my h = ( 1 3 . 0∗ u [ 0 ]∗ u [ 2 ] ) / ( 1 . 0 + u [ 0 ] + ( 0 . 0 5∗ u [ 0 ]∗ u [ 0 ] ) ) ;

my f = 1 5 0 . 0 − u [ 0 ] − my h ;

my g = 1 . 5∗ ( 1 0 0 . 0 − u [ 2 ] ) − my h ;

/∗ ∗
∗∗ f [ 0 ] = w

∗∗ f [1 ] = −gamma∗ f

∗∗ f [ 2 ] = z

∗∗ f [3 ] = ( −gamma∗g ) / d

∗ ∗ /

f [ 0 ] = u [ 1 ] ;

f [ 1 ] = − par [ 0 ] ∗ my f ;

f [ 2 ] = u [ 3 ] ;

f [ 3 ] = ( − par [ 0 ] ∗ my g ) / pa r [ 1 ] ;

re turn 0 ;
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}

i n t s t p n t ( i n t e g e r ndim , d o u b l e r e a l t ,

d o u b l e r e a l ∗ u , d o u b l e r e a l ∗ par ) {
/∗ ∗
∗∗ par [ 0 ] = gamma

∗∗ par [ 1 ] = d

∗ ∗ /

par [ 0 ] = 1 0 . 0 ;

pa r [ 1 ] = 2 0 0 . 0 ;

/∗ ∗
∗∗ u [ 0 ] = u

∗∗ u [ 1 ] = w

∗∗ u [ 2 ] = v

∗∗ u [ 3 ] = z

∗ ∗ /

u [ 0 ] = 3 7 . 7 3 8 2 1 ;

u [ 1 ] = 0 . 0 ;

u [ 2 ] = 2 5 . 1 5 8 8 1 ;

u [ 3 ] = 0 . 0 ;

re turn 0 ;

}

i n t bcnd ( i n t e g e r ndim , cons t d o u b l e r e a l ∗ par , cons t i n t e g e r ∗ i cp ,

i n t e g e r nbc , cons t d o u b l e r e a l ∗ u0 , cons t d o u b l e r e a l ∗ u1 ,

i n t e g e r i j a c , d o u b l e r e a l∗ fb , d o u b l e r e a l ∗ dbc ) {

/∗ ∗ Homogenious Neumann Boundary C o n d i t i o n s∗ ∗ /

fb [ 0 ] = u0 [ 1 ] ;

fb [ 1 ] = u1 [ 1 ] ;

fb [ 2 ] = u0 [ 3 ] ;

fb [ 3 ] = u1 [ 3 ] ;

re turn 0 ;

}
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i n t i cnd ( i n t e g e r ndim , cons t d o u b l e r e a l ∗ par , cons t i n t e g e r ∗ i cp ,

i n t e g e r n i n t , cons t d o u b l e r e a l ∗ u , cons t d o u b l e r e a l ∗ uold ,

cons t d o u b l e r e a l ∗ udot , cons t d o u b l e r e a l ∗ upold , i n t e g e r i j a c ,

d o u b l e r e a l ∗ f i , d o u b l e r e a l ∗ d i n t ) {
re turn 0 ;

}

i n t f o p t ( i n t e g e r ndim , cons t d o u b l e r e a l ∗ u , cons t i n t e g e r ∗ i cp ,

cons t d o u b l e r e a l ∗ par , i n t e g e r i j a c ,

d o u b l e r e a l ∗ f s , d o u b l e r e a l ∗ dfdu , d o u b l e r e a l∗ dfdp ) {
re turn 0 ;

}

i n t p v l s ( i n t e g e r ndim , cons t d o u b l e r e a l ∗ u ,

d o u b l e r e a l ∗ par ) {
re turn 0 ;

}

Listing 6.2: AUTO Constants File

4 4 0 1 NDIM, IPS , IRS , ILP

1 0 NICP , ( ICP ( I ) , I =2 NICP )

2 0 4 3 2 1 3 4 0 NTST ,NCOL, IAD , ISP , ISW , IPLT ,NBC, NINT

1 0 0 0 3 . 0 1 3 0 0 . 0 0 . 0 5 0 0 . 0 NMX, RL0 , RL1 , A0 , A1

1 0 0 1 0 2 8 5 3 0 NPR,MXBF, IID , ITMX, ITNW,NWTN, JAC

1e−06 1e−06 0 .0001 EPSL , EPSU , EPSS

0 . 0 0 1 0 . 0 0 0 1 1 . 0 1 DS, DSMIN,DSMAX, IADS

0 NTHL, ( / , I , THL( I ) ) , I =1 ,NTHL)

0 NTHU, ( / , I ,THU( I ) ) , I =1 ,NTHU)

0 NUZR, ( / , I , PAR( I ) ) , I =1 ,NUZR)
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