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Abstract

One particular theory in Biology is that the formation of mammalian animal coat patterns is due
to concentrations of activator and inhibitor chemicals called morphogens. These morphogens react
and diffuse within the cell clusters; concentrations of the morphogens are the key to the spatial
patterns formed in the animal coat.

The purpose of this thesis is twofold. The first purpose is to study a particular Reaction-
Diffusion equation to see when it exhibits instability in its homogeneous equilibrium. These insta-
bilities, known as Turing instabilities, are where the animal coat patterns form. The second purpose
is the determine via Numerical Methods the stability of the solutions of the Reaction-Diffusion
equation near these Turing instabilities. These solutions are the key as to the actual patterns that
form. We will compare the stability of these solutions to published data by Murray.



I do not know what | may appear to the world; but to myself | seem to have been only
like a boy, playing on the sea-shore, and diverting myself, in now and then finding a
smoother pebble, or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.

— Sir Isaac Newton
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Chapter 1

Background

1.1 Motivation

The development of animal coat patterns in mammals has been an area of study by biologists. A
theory of how these patterns occur was introduced by a mathematician, Alan Turing [13]. Turing
introduced a model by which spacial patterns can grow in a particular type of equation from a
homogeneous equilibrium under certain circumstances. We will discuss the model by which these
patterns form mathematically.

1.1.1 Natural Motivation

Morphogenesis is the biological process by which form and structure is created during embryonic
development. Once the egg is fertilized, it begins to divide. At a certain period during gestation, the
cells begin to differentiate (biologically speaking). Cell differentiation is based on location within
the group of cells [9]. This process is not enough, however, to determine how the spots are formed
on a leopard, or the stripes on a zebra.

The notion of how animal coat patterns are formed is a process that occurs well after cell divi-
sion and differentiation. The color of hair in animal coats is due to pigment cells called melanocytes.
These cells are found in the innermost layer of the skin. The melanocytes create pigment, known as
melanin, which passes into and thus colors the hair. There are essentially only two types of melanin,
one that produces black and brown hair color, and one that produces yellow and red hair color.

Some Biologists believe that melanocytes produce melanin based on the presence of certain
activator and inhibitor chemicals [9]. Each animal coat pattern is thought to be the product of some
chemical pattern of these activators and inhibitors [8].
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1.1.2 Mathematical Motivation

In 1952, the mathematician Alan Turing published a paper in Theoretical Biology on the Chemical
Basis of Morphogenesis [13]. This paper put forth a model for spatial pattern formation which
is studied to this day. The model states that a set of chemicals reacting and diffusing throughout
tissue may exhibit spatial patterns under the proper circumstances. The model is that of a system
of partial differential equations aptly named a Reaction-Diffusion Model. The condition is that the
equilibrium solution, in the absence of diffusion, be linearly stable and unstable in the presence
of diffusion. Much study has been conducted as to the particulars of patterns formed [9], and the
mechanisms by which the patterns are selected in higher dimensions [12].

Spatial instabilities close to this homogeneous equilibrium produce patterns in the concentra-
tions of the chemicals in the system. These patterns can be thought of as the key to the actual
patterns of an animal coat, such as zebra stripes or leopard spots. These spatial instabilities are
known as Turing instabilities, or diffusion-driven instabilities. These patterns are the subject of this
thesis.

1.2 Reaction-Diffusion Model

A model under considerable study to explain the formation of mammalian coat patterns is the
Reaction-Diffusion Model. In this model, a set of objects are able to react with each other, and
move, or diffuse, through the domain. Applied to animal coat patterns, a system of two morphogens
are modelled by the following system of equations on a dorfainR"

= Au+y-f(uv)

(1.1)
W= dAv+y-gluv),

whereu(x,t),v(x,t) : Q — R represent the concentrations of the two morphogens, fviahdg,

the reaction kinetics afl andv respectively. This system of partial differential equations is mod-
elled as an isolated system, meaning no external influences are present. To formalize this notion,
homogeneous Neumann boundary conditions [11] are applied to the model, namely

=0
(1.2)
=0,

Vx € 0Q andn the unit outward normal adQ.



Chapter 1. Background 3

1.2.1 Applicability to Situation

The reaction kinetics that we will study are those described by equation (1.3). This set of non-
linearities was proposed by Thomas and thus will be referred to as the Thomas system. Much
research has been done with various reaction kinetics. Murray [9] provides much data using the
Thomas system with constants (1.4). We will use this non-linear system for comparison with pub-
lished data.

f(u,v) =a—u—h(u,v)

g(U,V) = (X(b— V) - h(U,V) (1.3)
. pruv
h(u,v) = 1+ u+ Ku?
a=150 b=100 a =15, p=13, andK =0.05. (1.4)

1.2.2 Derivation

In deriving the reaction-diffusion system (1.1), we will employ a continuum approach, as in [6].
There are many other approaches to deriving the model, including combinatoric and probabilistic
methods ( [6] and [9]).

Letc(x,t) : Q x R" — R be the concentration of morphogens in the system Q(att) be the
net creation rate of morphogensxat Q at timet. Let J(x,t) be the flux density. For any unit
vectorn € R", J-n is the net rate at which morphogens cross a unit area in a plane perpendicular to
n. For our purposes, we will assurd¢o be smooth, that i3 € ct.

LetB C Q be closed and integrable. We denote the morphogen masksyin

/cd\/,
B

wheredV = dxg - --dx, for X = (xq,. ..,xn)T. If we assume the rate of change of the morphogen
mass is due to particle creation and degradatidaamd flow thoughoB, then

d/ch:/ J-ndA+/QdV.
dt /e B B

Differentiating through the left hand side, and applying the Divergence Theorem to the right
hand side, we obtain

/bq dV:/B(—D-J+Q) av.

SinceB is an arbitrary subset of the domain, it must hold that

q=-0-J+Q. (1.5)
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Equation (1.5) represents a conservation law.
For the model, we must specify battandQ. For the flux density we will apply Fick’s Law [6].
Thus
J = -Dlc.

D € My(R) is has positive entries and is called the diffusivity. Applying Fick’s Law to (1.5) results
in
¢ = DAc+ Q.

Q is the reaction kinetics, and thus for our system, is a function of the concentration levels of the
morphogens() is a function ofc. Thus, the general form for the reaction diffusion model is

¢ = DAc+Q(c). (1.6)

The specific model we will be studying is a two morphogen system. Thus we have

_ [u(x,t)
c(x,t) = (v(x,t)) , @.7)
10
D= (O d) , (1.8)
and
Qu.Y) =v<f(“’v)> | (L.9)
g(u,v)

By applying (1.7), (1.8) and (1.9) to (1.6), we obtain (1.1).

1.2.3 Equilibrium Solution

One type of solution of particular interest is the equilibrium solution of a partial differential equa-
tion. Specifically of interest are attracting equilibrium solutions. These are time-independent solu-
tions which are stable to small perturbations. Stability comes in many forms. We wish to classify
equilibria which are linearly stable.
Equilibrium solutions to (1.1) are solutiomao,vo)T such thaty = v = 0. Thus, (1.1) turns
into
0= Au+y:-f(uyv)

(1.10)
0= dAv+y-g(u,v).

For the modelling of animal coat patterns, equilibria in the absence of diffusion are of key
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importance. A system without diffusion would hate = Av = 0. Thus, (1.10) becomes

f(
o

v)
(1.11)
\Y)

0
0 ).

u,
u,

So, for our model, equilibrium solutions in the absence of diffusion are those solytigng) "
which solvef (up, Vo) = g(Uo, Vo) = 0. Note that the definition of the reaction kinetics in (1.3) is not
dependent og or d. Thus, the equilibrium solution is independent of these parameters.

Since (1.10) is a non-linear system, we must employ numerical methods to solve the roots of
this system. Newton’s Method for systems of non-linear systems [7] was used to solve this system.
The equilibrium solution is calculated to be

U\ (37.7382108192137 (1.12)
Vo) \25.15880721280914 '
Now, the question of stability of the equilibrium solutions is addressed. An equilibrium solu-
tions is linearly stable if its linearization attracts small perturbations. We define a perturbation of

the equilibrium solution as
U—Up
W= .
(V—Vo)

Equation (1.3) can be linearized abdug, vp) by the following

F(U,V) ~ [f(u}?vo)] + fu(Uo, Vo) - (U— Uo) + fu(Uo, Vo) - (V— Vo)

= fu(LIo,Vo) : (U — Uo) + fv(UOaVO) ) (V_ Vo),

and similarly,

guv) ~ [g(uBvao)}  GulUo.¥0) - (U~ Uo) + Gu(Uo, V) - (v—vo)

= gu(Uo, Vo) - (U~ Uo) + Gv(Uo, Vo) - (V— Vo),
If we remove diffusion from (1.1) we obtain

b=y f(uV)

(1.13)
Vi =Y-9(u,Vv).
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Linearizing (1.13) aboutup, Vo), we obtain the following system

U = Y- [fu(Uo, Vo) - (U—Uo) + fy(Uo, Vo) - (V—Vo)]

Vi = Y- [Qu(Uo, Vo) - (U— Uo) + Gv(Uo, Vo) - (V—Vo)]

which can be written in matrix form

(1.14)

W =Vy-A-w, A= (fU(UOvVO) fv(UOaVO)> .

9u(Uo,Vo)  9v(Uo, Vo)

In linearizing (1.13), we have reduced the partial differential equation into a linear ordinary
differential equation. The solutiow is said to be linearly stable jfv| — 0 ast — . We wish to
determine the conditions on the eigenvalueg-& which make the solutiow linearly stable. The
proof of the following theorem is an adaptation of a proof from [10].

Theorem 1.1. The solutionw, of equation (1.14) is linearly stable if and only if all eigenvalues of
y- A have negative real part.

Proof. Given an initial perturbatiorw(0) = w,, the Fundamental Theorem for Linear Systems [10]
states that there exists a unique solution givemwtty = e"'wg. Thus,w(t) is linearly stable if and
only if

limw = t”ﬂ; etwy = 0.

t—oo

(=) Assume one eigenvalue @A, A = a+ ib has positive real pafia > 0). Then by [10], there
existswo € R? such thatvg # 0 and|e"twg| > € |wy|. Clearly |e"'wo| — « ast — 0, and thus

lim e™twyg £ 0.
t—o

Assume one eigenvalue @h, A = ib, has zero real part. Then by [10], there existse R? such
thatwg # 0 and one component of the solution is of the fatfcosbt or ctXsinbt for k > 0. Again,

lim Mg £ 0.

Thus, if any eigenvalue has real part greater than or equal to zero, we can not have a stable solution.
We will now show that if the real part of the eigenvalue is negative, we obtain stability.

(«) If all eigenvalues ofyA have negative real part, then by [10], there exist positive constants
a,m,M1 andk > 0 such that

mit ‘e~ |wo| < [€wo| < My (1+[t|)e*|wo|

for all wo € R? andt € R. We see thatl + |t|X)e~ (3% is bounded whef < ¢ < a. Thus we have



Chapter 1. Background 7
whenO < ¢ < a, there existd > 0 such that
mit|“e™*|wo| < |€"™'wo| < Me™|wy| (1.15)

for all wg € R? andt € R.
If we take the limit ag — o to both sides of inequality (1.15), we see by the Squeeze Theorem
that
lim |&"wo| = 0.

1.2.4 Diffusion Equation

Now we will consider solutions (1.1) in the absence of reactions, purely diffusion. With no reaction
kinetics, f (u,v) = g(u,v) = 0, and thus we have

u= Au
(1.16)
Vi = dAv.
Letw = (u,v)". We can rewrite (1.16) in the matrix form
10
w; = DAw , whereD = 0 d) (1.17)

Equation (1.17) is sometimes called the Heat equation or the Diffusion equation. It is a model for
the physical process of heat flow or diffusion through a body.

To solve this equation, we must prescribe both boundary and initial conditions. Homogeneous
Neumann boundary conditions éh= [0, 1] will be used, thus

Wy (0) =wx(1) =0

The initial conditions will be specified generically;

Wo(x
w(x,0) = o) .
Po(X)
The equilibrium solutions previously solved were independent of domain. The solutions to the
Diffusion equation are, however, not so simple. Thus, it is important to note again that the domain
under which our system is modelled(s= [0,1] C R.

The method of Separation of Variables will be used to solve the 1-dimensional diffusion equa-
tion with homogeneous boundary conditions. First, we assume the solution to (1.17) can be written
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as the product of two functions, one time-dependent, and the other space-dependent. Formally, this
is stated as
w(xt) = d(x)s(t) (1.18)

with ¢(x) # 0 ands(t) # 0. Substituting this into (1.17) we obtain

P(X)S (t) = S(t)xx(X).- (1.19)
We can now write (1.19) as
S _ O
s ¢

Sincedxx/¢ is independent of time, argl/sis independent of space, then each must be independent
of both, thus we can write

n | u

bxx
=Xk
¢

for somek € R.
Thus, we have reduced the second order partial differential equation to a system to the two
ordinary differential equations
s = —ks

(1.20)
—¢xx = k¢-

1.2.4.1 Time Dependent Solution

The first step in solving the Diffusion equation is to solve the time dependent part, nsitelye
wish to write down the general solution to

ds
—=-k 1.21
at s (1.21)
Equation (1.21) is a first order linear homogeneous differential equation with constant coefficients.
It has characteristic polynomial= —k?, which has one real root. Thus by [2], the general solution
to (1.21) is

s(t) = ce ™ (1.22)

Itis important to note that at this point the constiig arbitrary, with no restrictions. However,
the solution to the spatial equation will restrict the values of wikickan take. Ifk < O, then the
solution exponentially increasestas- . The physical reality prevents this case from happening,
as we will see in the next section.
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1.2.4.2 Spatial Solution (Eigenvalue Problem)

The second equation to solve for the separation of variables method is the spatial dependent solu-
tion,
—Ad =k (1.23)

under homogeneous Neumann boundary conditions. Solutions to equation (1.23) can be considered
eigenfunctions of the operaterA with eigenvaluek. Thus, we refer to equation (1.23) as an
eigenvalue problem.

Since our domain i€ = [0,1] C R, we can rewrite equation (1.23) as

) (1.24)

which is a second order linear homogeneous ODE with constant coefficients. The characteristic
polynomial for equation (1.24) isr? = k which has rootsty/—k.

If k> 0, then the roots to the characteristic polynomial are purely imaginasytivk. By [2],
the general solution to equation (1.24) is

& (x) = c1.cog Vkx) 4 casin(vkx). (1.25)

The boundary conditions can be written &$0) = ¢(1) = 0. We can see that by applying the
boundary condition at = 0, we obtain

o' (x) = —cyvksin(vkx) 4+ covkeog vkx)
¢'(0) =covk=0

= Cp = 0 sincek > 0.

The general solution can now be simplifieditx) = ¢; cog vkx). By next applying the boundary
condition atx = 1 we will see that we get a restriction on the vallkenay obtain.

%'(1) = —c1vksin(vk) =0
= vk=nmneZ\{0}
= k= n?re.

We do not consider the case of = 0, since this would result in an eigenfuncti¢r= 0, which
can not be an eigenfunction by definition. Thus, for- 0 we have eigenfunction$y(x) =
c1cogvkx) = ¢; cognrx) with eigenvaluek = n’Te.

If k= 0, the characteristic polynomial of equation (1.23)3s= 0 with repeated real rost= 0.
Thus the general solution of equation (1.23p{%) = c1 + cox. Under the boundary conditions, we
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have¢’(0) = ¢'(1) = c; = 0. Thus the general form of the solution is simglgx) = c;.
If k < 0O, then we want to solve the second order linear homogeneous ODE

¢xx: k*(l)

wherek* = —k > 0. The characteristic polynomial for this ODE 1i§ = k* which has two real
rootsr = +vk*. The general solution to this equationdi$x) = c1eV¥% 4 coe VKX |If we ap-
ply the boundary condition at= 1, we see a problem with this solutiog/(x) = civkrevkx
Co kre VKX — 0 implies thatc; = ¢, =0, sinceeVkx #0 ande VK #0vx € Q. Thus, fork <0
we only obtain trivial solutions to the eigenvalue problem. Thus, we will notektkia®d.

So, we have the eigenvalues and eigenfunctions of-theperator under homogeneous Neu-
mann boundary conditions are

k=n’m®,ne’Z

(1.26)
Pk (X) = ¢ cog VKx) = ¢; cognmx).

It is important to note that fon € Z, n?r@ > 0, and thuk > 0.

1.2.4.3 General Solution to the Diffusion Equation

Equation (1.18) describes the solution to the Diffusion equation as the product of two functions, one
time dependent and one space dependent. As described in the previous two sections, the general
form of the solution for the Diffusion equation is

w(x,t) = icnd)n(x)sw(t)
5 (1.27)
- Z)cne”z”2t cogNTX)

where the coefficient ternts, are determined from the Fourier expansion of the initial conditions

00

Wo = Z}Cﬂ cogNTx).

n=

The method of separation of variables is not guaranteed to find all solutions to the Diffusion

equation in general. However, for the one-dimensional Diffusion equation with homogeneous Neu-

mann boundary conditions, separation of variables gives all solutions [3]. Thus, equation (1.27)
fully describe the solutions to the Diffusion equation.
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1.3 Turing Instability

Patterns are formed through the instability of the homogeneous steady-state solution to small spa-
tial perturbations. If the homogeneous steady-state solution was stable, then small perturbations
from the steady-state would converge back to the steady-state. Alan Turing, in [13], showed how a
Reaction-Diffusion system can exhibit such instabilities to form patterns. We will present the con-
ditions under which Turing instabilities can occur (as described in [9]), and show that the Thomas
system meets these conditions, and thus will exhibit Turing instabilities.

1.3.1 Existence of Turing Instabilities

This section will present a derivation of the necessary and sufficient conditions for Turing instabil-
ities to be present in a Reaction-Diffusion model, as presented in [9]. For completeness, we will
define the Reaction-Diffusion model as

w; = DAW +Yy- F(w) (1.28)

W u(x,t) D— 10 F(w) = f(w)
v(xt) )’ 0 d/’ g(w)

andd,y > 0 on the domainQ = [0, 1] with initial conditionsu(x,0) andv(x,0), and Neumann
boundary conditions. If Neumann boundary conditions are not chosen, then the solutions to equa-
tion (1.28) will be partially determined by the boundary conditions. We choose to model an isolated
system with no external influences, hence the choice of Neumann boundary conditions.

The first condition under which Turing instabilities form is a condition imposed on the steady-
state solution in the absence of diffusion. For diffusion-driven instability to occur, the homogeneous
steady-state solution must be linearly stable in the absence of any spatial variation [9]. In Theorem
1.1, we proved the linear stability of the homogeneous steady-state salujiep) to be exactly
when Re\; < 0 and Re\, < 0for A1 andA; being the eigenvalues of the stability matrix

A=y fu(uo,vo)  fu(Uo, Vo) _y fu fy _
u(Uo, Vo)  Gv(Uo, Vo) G 9/,

with
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To calculate the eigenvalues &f we simply solve

YOu YO —A

= (Yfu—=A)(yav—A) —szvgu =0
=>)\2—V(fu+QV) +V2(fugv— fvgu) =0

(futov) £ \/( fu-+0gv)? —4(fugy — fvau)
2

=0

:>)\17)\2:y

Linear stability is guaranteed if

trA=f,+0g,<0
uT (1.29)
|A‘ = ngV_ f\/gu > O

We will now consider the full Reaction-Diffusion equation. Linearizing equation (1.28) about
the steady-stat@u, Vvp) in the same manner as done to derive equation (1.14) we get

fu f 10
w; = yAw+DAw, A= 4 Y ,D= . (1.30)
Ou Ov UoNo 0 d

Substituting (1.27) into (1.30) results in

Wy = YAw-+ DAw

Z)cn)\ne*Ant cognmx) = Z)yAcne*Ant cogNTx) + Z) —Dcpe Min?1e cognTx).
n= n= n=

For eachn € Z, we have

Crhnet cognx) = yAc,e Mt

AncogNTx) = yAcognmx) — Dn?12 cog NT)
Andn(X) = YA§n(x) — DK*pn(X)
0= (An— YA+ DK?)dn(x).

cognmx) — Dcpe Mt n?1 cog(nx)

Sincedn(X) is non-trivial Vn by construction, we must have tHa'hl — YA+ kzD\ = 0. For conve-
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nience we will drop the subscript an Thus,

Al —yA+K°D| =0

A —yfy+Kk? —yfy 0
—YOu A— YOv + k2d

= (A —yfu+ k) (A —yoy + K*d) — (=yf)(—ygu) = 0
= A+ [K3(1+d) —y(tr A)] +h(k?) =0,

whereh(k?) = dk* — y(d f, + gy k2 + V2| Al.

We have already imposed restrictions (1.29) to the steady-state solution in the absence of diffu-
sion, which must be applied to the general solution as well. Consider the conditions under which the
steady-state solution is unstable to with respect to perturbations, namaly-Rdor somek £ O.

This instability with respect to spatial perturbations is exactly what is needed for the formation of
patterns. Without this instability, small spatial perturbations would converge to the homogeneous
steady-state solution.

This can occur if the coefficient @f is negative, or ih(kz) < 0. However, by (1.29), tA < 0,
and sinced > 0, k?(1+4-d) > 0. So,

k?(1+d) —y(tr A) > 0.

So, the only possibility for R& > 0 comes whein(k?) < 0.

The only possibility foh(k?) < 0is if |A| < 0 or d f, 4 gy > 0. But by (1.29),|A| > 0, so the
only condition is ifd f, + gy, > 0. We can see clearly that+# 1, since if it did, thenf,+g, > 0
which contradicts (1.29). Thus, a third criterion for Turing instabilities is

dfy+gy > 0. (1.31)

Criterion (1.31) is sufficient, but not necessary, for’Re 0. Forh(k?) to be negative for some
k > 0, the minimum must be negative. With a change of varialdlesk?, and simple calculus, we
can calculate the minimum @i{k?) as follows

h(z) = dZ —y(dfy ‘|‘gv)z+y2 A
dh
dz
dh
45 = 0= 20z-y(dfy+gy) =0

=2dz—vy(df,+gv)

~ Y(dfy+g+v)
:>Z*_—2d
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It is clear thath is concave up on it’s entire domain, by the second derivative test, andh thilis
attain it's minimum at*. Thus

hmln -

d{ydf”gv] v(dfu+gv)[y(d“+gv] —YV|A

Vz(dfu+9v) ZVZ(dfqugv eI

:VZ[|A|_(dfu+gv) ]

4d

Thus, the condition thai(k?) < 0 for somek € N is

hmin < 0

_(dfu+gv)2

7 1A= (9] <o

(dfy+gv)?
4d

(dfu+gv)2
4d

|Al — <0

> |Al.
Thus, the necessary and sufficient conditions for the presence of Turing instabilities in (1.28) are

fu+ogv<O

fugv— fvgu >0

dfy+gv>0

(dfu+9v)* —4d(fugy — fugu) >0,

(1.32)

recalling that all partial derivatives are evaluateduat vo).

1.3.2 Existence of Turing Instabilities in the Thomas System

The Reaction-Diffusion model specified by equation (1.1) is quite general, and without specifying
the reaction-kinetics, would be impossible to study numerically. Thus, the work presented here
focuses on the study of the Thomas System. We will now show that it is possible for the Thomas
System to exhibit Turing instabilities by verifying it meets the criteria of (1.32).

From equation (1.3) we can calculate the first order partial derivatives evaluated at the homoge-
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neous steady state solution (1.12) as

fu =0.89958351470112
fy = —4.46212685010084
Ou = 1.89958351470112
v = —5.96212685010084

(1.33)

We will now determine for whatl the criteria of (1.32) are met. It is clear to see that- g, =
—5.0625433353997% 0 and f gy = fygy, = 3.11275157804915 0O, thus the first two conditions
are met. For the third condition, the functiéfd) = f,-d+ gy is a linear increasing function (since
d > 0) with x-intercept ofd = % = 6.62765241099565Thus, for alld > 6.62765241099565
dfy+gv>0.

The last condition forms a quadratic equatibfd) = f2-d? 4 (4f,gy — 2f,gy)d + 2. fis
concave up and has roots édt = 1.3158137652532hAnd d2 = 21.86205460075870 Thus we
know thatf (d) > Ofor all d € (—oo,d;)J(d2, ). Since the restrictions for condition 3 to hold are
d > 6.6276524109956%e conclude that for all four conditions to hottl;> 21.8620546007587.0
Thus, we have the conditions for which Turing instabilities occur in the Thomas system.

1.4 Purpose of Thesis

The purpose of this thesis is the develop some quantitative notion of the solution to equation (1.1)
on the domai2 = [0,1] C R. In this first part of this thesis, the bifurcation structure of (1.1) under
the reaction kinetics (1.3) will be developed. Both analytical and numerical methods will be used
to develop the structure. The bifurcations from equilibrium can be developed analytically. The
branches from the bifurcations are developed numerically using AUTO.

The second part of this thesis is the verification of results based on Murray [9]. In his develop-
ment of the relationship of scale and geometry to the solution of the Thomas system, he provides the
solutions of the system as a functionyadndd. It is my contention that this depiction is not accu-
rate. The last part of this thesis will develop a more accurate diagram, developed through numerical
methods.
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Numerical Methods

Two software systems are utilized in the numerical calculations of this thesis. To calculate bifur-
cation branches and equilibrium solutions, we utilize AUTO. To compute time-dependent solu-
tions and analyze stability of the calculated solutions, we utilize custom written MATLAB software
termed the Stability SystemSolutions calculated by AUTO are used as input into the Stability Sys-
tem. The Stability System evolves solutions over time at fixed spatial intervals. AUTO computes
solutions using adaptive methods, and provides solutions at non-fixed intervals. Clamped cubic
splines are utilized to approximate the solutions calculated by AUTO at the fixed spatial intervals
required by the Stability System.

2.1 Bifurcation Analysis with AUTO

AUTO [5] uses Pseudo-arclength continuation with Newton’s Method as a Predictor-Corrector

scheme to trace solution branches bifurcating off of the homogeneous equilibrium [4], described in
the following section. AUTO is also used to compute equilibrium solutions for the Thomas system.

These solutions are input for the Stability software, described in the following section.

2.1.1 Thomas System for AUTO

AUTO can do limited bifurcation analysis of systems of ordinary differential equations of the form

U/(t) = f(u(t)7 p)v f(,),U() € an (2.1)

wherep denotes one or more free parameters [5]. Since we want to have AUTO calculate bifur-
cations along the equilibrium of the Thomas system, we must rewrite equation (1.10) to be of the
form of equation (2.1).

1The code used for the time-dependent simulations was developed by Sander and Wanner for [12].

16
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To rewrite a system of second order ODEs as a system of first order ODESs, we employ a standard
trick of introducing new equations to the system. We will utilize the following equations

w(x) = U (X) 2.2)
Z(x) =V (x)
and thus can write equation (1.10) as
U (X) = w(x)
W (x) = —y- f(u,v)
V() =2(x) 23)
Z =Y g((ju,V)

2.1.2 Arclength Continuation

Equation (2.3) contains two system parametemsndd. For the computations of this thesis, we
will fix d and varyy, referred to as the continuation parameter. We can write equation (2.3) as

Ww=F(wy), YER, w=(wu,zV)".
To calculate the equilibrium solutions to equation (2.3), we need to solve the non-linear system
0=F(w,y). (2.4)

AUTO uses Predictor-Corrector continuation to solve equation (2.4), specifically Pseudo-
arclength continuation (predictor) with Newton’s method (corrector). The use of Predictor-
Corrector continuation instead of relying on some simple numerical method, such as Newton's
method alone, is the difficulty Newton’s method has with turning points. Solution branches can
fold and turn in ways that would make Newton’s method diverge.

We parameterize equation (2.4) by arclengttThus, (w,y) = ((W(s),u(s),z(s),v(s))T,y(s))

and dw\ 2 du\? dz\?2 dv 2 dy 2
() () +(5e) + (&) +(G) = (25)

Given a solutions along the solution brancly(s),y(s)), we predict the next solution
(w(s+1),Y(s+1)) along the tangential vector édy, V) of fixed lengthAs.
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We can approximate equation (2.5) by
~ \ds ds ds ds ds
w-w(s)\?, (u-us)\®, (z=28)\* (v=vs)\®, (Y-¥S)\®
() () () () () e
S—S§ S—S§ S—S§ S—§ S—s

(W—W(s))?+ (U—u(s))?*+ (2—2(s))* + (V= V(s))* + (Y= V(5))?
(s—s)2

and thus have
(W—w(s))*+(U—-u(s))*+ (2= 2(s))*+ (v=V(s))* + (y-¥(8))*— (5-8)°=0. (2.7
Thus, we have the system of equations

F(w,y) =0
(W—w(s))?+ (U—u(s))*+(z—2(s))*+ (V- V(s))*— (s—5)*=0

W= U;g@ (2.8)
_ v—V(s)
S—§

s—s =As,

five equations and five unknowns. Newton’s Method is used to solve this system, the solution
(WwwzW)T,y) = (0(S+1), Y(S+1))-

AUTO actually uses pseudo-arclength continuation. The difference between arclength and
pseudo-arclength continuation is that weights can be utilized in equation (2.7). We did not uti-
lize this weighting, and thus for our calculations, AUTO essentially used arclength continuation.

2.2 Stability Analysis

Let w(x,t) = (u(x,t),v(xt))" be an equilibrium solution of the Thomas System. If small pertur-
bations ofw converge taw ast — o, then we sayw is stable and attracting. The Stability System
computes solution of the Thomas System over time. One can see if a particular solution is non-
attracting by viewing the solutions over time evolving away from the equilibrium solution. If the
solutions over time converge to the equilibrium solution, then we can only suspect that the equilib-
rium is stable and attracting. We can only assume, since we do not know that for at a later time the
solutions would evolve away from the equilibrium.

Figure 2.2 shows a sample run of the Stability System starting y«tf200andd = 500 In
this run, the Stability System began with a perturbation of the homogeneous equilibrium and over
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time solved the system. Figure 2.2 shows the solution evolution over time.

Figure 2.1: Sample run of the Stability System
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Figure 2.2: Evolution of Solutions from Stability System (color indicates valugxt))
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The Stability System is an iterative method which uses a Discrete Cosine Transform to trans-
form the Thomas System of partial differential equations into an algebraic system. The algebraic
system is then solved, and the solution is transformed back to the PDE space by the Inverse Dis-
crete Cosine Transform. This is a standard technique in solving differential equations. Readers may
recall a analogous process in ordinary differential equations with the use of the Laplace Transform.
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Bifurcation Structure of Thomas System

Thus far, we have shown that the Thomas System has a linearly stable homogeneous equilibrium (in
the absence of diffusion). Thus, it can show Turing instabilities. We now want to determine where
along the homogeneous solution these instabilities occur. To determine where these instabilities
occur, we will vary control parameters in the Thomas system to determine changes in the qualitative
nature of the system. These qualitative changes are known as bifurcations.

3.1 Background

The simplest example of a bifurcation is the means by which fixed points are created and eliminated
in a system, taken from [1]. Consider the simple systg() = a— x?, a one-parameter family
of functions. An alternative way of defining this systemfis,x) = a— x?, which more clearly
emphasizes the dependence on the control parameteor our discussion, we will considdr:
| xR — Rwith | CR.

Fix a € I, and consider am € R such thatfa(x) = x. x is called a fixed point of,. For our
particular system, the fixed points &f are determined by

fa(X) =a—x% =x

—x2—x+a=0
X¥4+x—a=0
-1++1+4a
X=——+ 1=

2

The fixed points of our system are dependent on the control paramétbus, we can see that for
a< —1, no real fixed points exist. Far= —3, one fixed point exists, namely= —3. Finally for
a> —%1, two real fixed points exist. Figure 3.1 shows the creation of the fixed poirds/ases
from -1to 1.
The parameter value at which the number of fixed points changes is called a bifurcation value.
In our system, the poir(t—%, —%) is a bifurcation point, since one fixed point is created & —;11.

21
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Figure 3.2: Intersection of the grapps- x andy = a— x? asa varies.

The bifurcation valuea = —%1 is a particular type of bifurcation called a tangent bifurcation.
The tangent bifurcation occurs in systems of one-dimension, for wijich+1, and thus is tangent
to the liney = x. As avaries, the point at which two fixed points are created is called a saddle-node
bifurcation. In our systeng > —;11 is a saddle-not bifurcation.

You can clearly see how, ads varied, the fixed points are created and changed by Figure 3.1.

The bifurcations in the previous example were based on the number of fixed points present in
the system. This is not the only qualitative notion of a system for which bifurcations can occur. For
the Thomas system, bifurcations will occur when the number of non-trivial equilibrium solutions
change as a control parameter varies, namelyhese bifurcations are where Turing instabilities
exist, and where spatial patterns can be formed.
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3.2 Analytic Determination of Bifurcations

Much of the work presented in this thesis is quantitative in nature. However, there is some infor-
mation we can determine analytically. We have thus far determined that the Thomas system will
exhibit Turing instabilities, as described in Chapter 1.

The first step in studying the spatial pattern formation of the Thomas system is to determine
where along the homogeneous equilibrium the solution is unstable with respect to perturbations.
One means by which to obtain this information is to utilize AUTO to determine where these bifur-
cations occur. This will, under good circumstances, determine bifurcations along the homogeneous
equilibrium. We are not, however, guaranteed that AUTO will find all bifurcations along the ho-
mogeneous equilibrium. One circumstance for which AUTO may not detect a bifurcation is if the
control parameter is varied at too great a rate.

It would be of great benefit to have an analytical means of determining all bifurcations along
the homogeneous equilibrium. In [6], we find a standard means of analytically determining all of
the bifurcations along the homogeneous equilibrium, which we will develop here. Also of interest
is the inherit symmetry of the non-homogeneous solutions at the bifurcations. We will show that if
you have the first bifurcation along the homogeneous equilibrium, you can very easily generate the
others.

3.2.1 Derivation of Stability Changing Bifurcations

We wish to write the linearized form of the Reaction-Diffusion equation in a slightly different way,

thus
Wi = YAW + DAw

— (yA—DA) (w).

(3.1)

Since the family of eigenfunctions forms a complete basis for the set of solutions, we can substitute
for the A operator to further transform the Reaction-Diffusion equation into

w; = (YA—AD)w

— BnW

(3.2)

Non-trivial equilibrium solutions occur exactly whéB,| = 0. They values for whichB,| =0
correspond to bifurcations from the homogeneous equilibrium. Thus, we need to calculatg these
values, and thus will know where the Turing instabilities occur along the homogeneous equilibrium.

We will define a functionf of y, d andn € Z*, such that by fixingl, the roots off are the loca-
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tions of the bifurcations from the homogeneous equilibrium associated witfi'tee@enfunction.
fu f 1

v M) ey (50
Ou Ov 0 d

yfu n?Te yfy
— n?Td (3.3)

( 2T[2) (ng nznzd) VZ f\Qu
(fugv)Y — (PPTPd fy )y — (nP1egy)y — (n°10)%d — (fugu)Y?
= (fugv — fuQu)Y? — n*1e(d fy + gy )y — n*r'd.

f(y,d,n) =

By fixing both d andn, and utilizing Maple, we can solve for the roots bf and thus the
bifurcations from the homogeneous equilibrium. This can be an tedious task to find bifurcations.
An alternative method is to exploit the symmetry of the solutions to use the initial bifurcation to
calculate further bifurcations.

Let (ug, Vo) be the equilibrium solution foy, (n = 0). Define thent" concatenation ofug, o)
to be, ifnis even,

Ug(NX) 0<x<i
Uo(2—nx) L<x<2
W(X) =
(nx—n+2) 02 <x< -l
[ Uo(n—1—nx) el <x<
Vo(Nx) 0<x<?
Vo(2 —nx) Lax< 2
zZ(x)=¢
Vo(nx—n+2) =2 <x< =l
(n—1-nx) 1 <x<1
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and ifnis odd,

Ug(NX) 0<x<i
Ug(2 — Nnx) Lax<2
W(X) =
uo(nx—n+3) 28 <x< =2
u(n—1-nx) 22 <x< ol
up(nx—n—+1) =t <x<1
Vo(Nx) 0<x<1i
Vo(2—nx) Lax<2
z(x) =
Vo(nx—n+3) 028 <x< =2
Vo(n—1—nx) =2 <x< -l
Vo(nx—n+1) = <x<1

If up andvg satisfy homogeneous Neumann boundary conditions, then so da#% ¢becatenation
of up andvp. If Uy andvp are smooth, then theh concatenation ofiy andvy are smooth. By the
Chain Rule, we can see thaitv = nAup andAz = n2Avy.

Theorem 3.1. If (up, Vo) are non-trivial equilibrium solutions foyp with homogeneous Neumann
boundary conditions for sont; then then™ concatenation ofug, Vo), is a non-trivial equilibrium
solution forn?y, under homogeneous Neumann boundary conditions.

Proof. Without loss of generality, we will prove the theorem fgr Letw(x) be then'" concatena-
tion of up. Up being an equilibrium solution requires for alE [0, 1],

0 = YoAup(X) + DAUo(X).

Forw to be a non-trivial equilibrium fon?yp, we must showd = (n?yo)Aw-+ DAw. We know that
w(X) = Up(nx+ b) for x € [0,1] and0 < nx+b < 1, sincew is then'" concatenation afiy. Thus, we
haveAw(x) = n®Aup(nx+ b). So, we can write

(n%yo) AW(X) + DAW(X) = (n?yo) Al (NX+ b) + n?DAug(nx+ b)

= n?(YoAup(nx+ b) + DAU(nx+ b))
0
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3.2.2 Comparison of Bifurcations from Analysis and AUTO

The use of AUTO to generate solutions along bifurcations has its drawbacks. First, AUTO is not
guaranteed to find all bifurcations.

The general rule of thumb with AUTO is that if it finds something, it's there. But just
because it doesn’t find something doesn’t mean it's not there.

Unfortunately, since AUTO relies on numerical computations (which have errors associated with
them), this general rule can be broken, as we will see.

The previous section derives a means by which to generate a certain number of bifurcation
points at which Turing instabilities will occur. This section will, for particular choiced, @bmpare
the bifurcations calculated, and those found by AUTO. For this, we will find the first few bifurcation
points ford € {200,500, 1000 5000}

In Tables 3.2.2, 3.2.2 and 3.2.2 we can see a significant difference in the values for the bifurca-
tion points analytically determined and those computed by AUTO. We believe the error lies in those
bifurcation points generated by AUTO. For all AUTO calculations done for this work, we specified
a grid size of 20 in AUTO. We believe that dsincreases, the numerical complexity increases,
requiring a refinement of the grid. We, unfortunately, have not had time to test this theory.

Table 3.1: Some Bifurcation Points fdr= 200

Index | Calculated | Found by AUTO
11.59091676 11.59093
46.36366704 46.36367
104.3182509 104.3183
185.4546682 185.4547
289.7729190 289.7727
417.2730033 417.2730
539.9670228 539.9670

o O~ W N PP O
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Table 3.2: Some Bifurcation Points fdr= 500

Index | Calculated | Found by AUTO
0 11.20794733 11.20795
44.83178933 44.83182
100.8715260 100.8727
179.3271573 179.3476
280.1986832 280.3793
403.4861038
549.1894191 555.1231

o OB~ WN P

Table 3.3: Some Bifurcation Points fdr= 1000

Index | Calculated | Found by AUTO
11.08789331 11.08789
44.35157322 44.35160
99.79103976 99.79220
177.4062929 177.4256
277.1973326 277.3861
399.1641591 400.4164
543.3067720
709.6251715
898.1193577

o

o N o o WN P
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Table 3.4: Some Bifurcation Points fdr= 5000

Index | Calculated | Found by AUTO
10.99435321 10.99435
43.97741284 43.97743
98.94917888 98.95034
175.9096514 175.9415
274.8588304 275.0295
395.7967157 396.8544
538.7233073 543.6687
703.6386053 714.8568
890.5426100

o N o o WDN PP O

3.3 Bifurcation Structure

Having determined the bifurcations from the homogeneous equilibrium, we will now use AUTO to
determine the Bifurcation diagrams for these bifurcations. The bifurcation diagrams produced by
AUTO exhibit some interesting behavior. We see potential situations where secondary bifurcations
along the branch are followed, producing branches that are not symmetric with the branch of the
first bifurcation point (Figure 3.3.1 is an example of this). This could be an indicator of a symmetry-
breaking bifurcation.

3.3.1 Bifurcation Diagrams for d = 200

This is the form that we would expect, through symmetry (Thm 3.1), all bifurcation diagrams
calculated for this thesis to have. We see the bifurcation diagram following a path, but ultimately
returning to the initial bifurcation along the homogeneous equilibrium.
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Figure 3.3: Bifurcation branch gt= 11.59093andd = 200
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Figure 3.4: Bifurcation branch gt= 46.36367andd = 200
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The following four diagrams illustrate situations in which errors occurred in AUTO. During this
calculation, the path ultimately ended in a computational error within AUTO.
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Figure 3.5: Bifurcation branch gt= 104.3183andd = 200
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Figure 3.8: Bifurcation branch gt=417.2730andd = 200
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The last diagram shows an example of multiple branch jumping, potentially. The path of this
branch does not even resemble the form of Figure 3.3.1. We would suspect that there are branches
that are close together or even intersect.

Figure 3.9: Bifurcation branch gt= 539.9670andd = 200
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In the following three sections, we see further examples of bifurcation diagrams vatlying.
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3.3.2 Bifurcation Diagrams for d = 500

Figure 3.10: Bifurcation branch gt= 11.20795andd = 500

Figure 3.11: Bifurcation branch st= 44.83182andd = 500
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Figure 3.12: Bifurcation branch gt= 1008727andd = 500

2% )
/
21
26
s ]
|/
[
|
24 | “
||
|
||
2r |
i
2 VM
2 . . . . . .
0 200 40 600 800 1000 1200 1400

Figure 3.13: Bifurcation branch gt= 179.3476andd = 500
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Figure 3.14: Bifurcation branch gt= 280.3793andd = 500
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Figure 3.15: Bifurcation branch gt= 5551231andd = 500
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3.3.3 Bifurcation Diagrams for d = 1000

Figure 3.16: Bifurcation branch gt= 11.08789andd = 1000
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Figure 3.17: Bifurcation branch gt= 44.35160andd = 1000
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Figure 3.18: Bifurcation branch gt= 99.79220andd = 1000
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Figure 3.19: Bifurcation branch gt=277.3861andd = 1000
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Figure 3.20: Bifurcation branch gt= 277.3861andd = 1000
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3.3.4 Bifurcation Diagrams for d = 5000

Figure 3.21: Bifurcation branch gt= 10.99435andd = 5000
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Figure 3.22: Bifurcation branch gt= 43.97743andd = 5000
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Figure 3.23: Bifurcation branch gt= 98.95034andd = 5000
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Figure 3.24: Bifurcation branch gt= 1759415andd = 5000
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Chapter 4

Stability of Thomas System

Thus far we have been concerned with the instability of the homogeneous solution, and thus where
patterns will form. Now, we will shift out focus to the actual solutions along these bifurcations.
Pattern formation is believed to be due to patterns of concentrations of morphogens []. Stable
attracting solutions to the Thomas system will provide the patterns of concentrations of morphogens
which will result in animal coat patterns.

Murray [9] provides a visual of regions of stable solutions, and what the solutions look like,
in (y,d) space. We will not only attempt to find stable solutions using AUTO and the Stability
system, but we will compare these solutions to the solution space Murray provides. Murray provides
no explanation in [9] as to how these stable solutions were verified. Thus, verification of this
information is important.

4.1 Murray Proposed Stable Solution Space

Murray, in [9], provides the following two-dimensional picture of the regions in which various
stable solutions are found for the Thomas system

38
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Figure 4.1: Investigated regions of stable solution§iul) space.
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As you can see, foy = 200andd = 400, we would expect to see a stable solution like that
labelled 3. We will restrict our attention to a portion of this graph for verification, as shown below.

Table 4.1 summarizes the expected stability published by Murray. We will update this table
with our numerical findings in an attempt to verify these stable solutions.
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Table 4.1: Published Stable Solution Forms

d y | Form of Stable Solution(Murray)
200 | 100 1

200
300
400
500 | 50
100
200
300
400
1000| 50
100
200
300
400
5000 50
100
200
300
400

P PR R RRPRRPRRRRNRPRRELR®NON

4.2 Computed Stable solution space

To determine the stability of solutions at a particuaralue, we will utilize both AUTO and the
Stability Software. First, solutions are found by AUTO for particudaalong many bifurcation
paths. Then, these solutions are imported into the Stability Software. Once imported, the solutions
will be spatially perturbed and inspected to see if they "converge” to their original solution, or
possibly some other solution.

What is important to note is that just because a perturbed solution, demotet/erges to itself
or another solution, denoted., does not necessarily mean thgtis an attractive stable solution.
The most we can say is that it seems to be an attractive stable solution. Further work would need to
be done to determine through other meangifs an attracting stable solution.

Since we are attempting to verify results from Murray, we shall chabge align with the
results in Figure 4.1. Thus we shall have AUTO determine solutions for the following égtdof
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values, namelys x D, whereG = {50,100,200 300,400} andD = {200,500 100Q 5000}.

A convention that will be followed in the following sections is to show apparently attractive
stable solutions in blue and unstable solutions in red.

4.2.1 Apparent Stability at (y,d) = (100,200

Figure 4.2: Stable and Unstable solutiongyatl) = (100 200)
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4.2.2 Apparent Stability at (y,d) = (200,200

Figure 4.3: Stable and Unstable solutiongyatl) = (200,200
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4.2.3 Apparent Stability at (y,d) = (300,200

Figure 4.4: Stable and Unstable solutiongyatl) = (300 200)
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4.2.4 Apparent Stability at (y,d) = (400,200

Figure 4.5: Stable and Unstable solutiongyatl) = (400,200
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4.2.5 Apparent Stability at (y,d) = (50,500)

There are three solutions found for,d) = (50,500), two from the first branch and one from the
second branch. The solutions are shown in Figure 4.6. However, only two are stable.
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Figure 4.6: Stable and Unstable solutiongyatl) = (50,500)
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This adds a stable solution to the picture that Murray did not include, namely the symmetric
solution of solution 1 from Figure 4.1.

4.2.6 Apparent Stability at (y,d) = (100,500

Figure 4.7: Stable and Unstable solutiongyatl) = (100 500)
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4.2.7 Apparent Stability at (y,d) = (200,500

Figure 4.8: Stable
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4.2.8 Apparent Stability at (y,d) = (300,500)

Figure 4.9: Stable
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4.2.9 Apparent Stability at (y,d) = (400,500

Figure 4.10: Stable and Unstable solutiongyatl) = (400,500
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4.2.10 Apparent Stability at(y,d) = (50,2000

Figure 4.11: Stable and Unstable solutiongyatl) = (50,1000
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4.2.11 Apparent Stability at (y,d) = (100,1000

Figure 4.12: Stable and Unstable solution$yatl) = (100, 1000
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4.2.12 Apparent Stability at (y,d) = (200,1000

Figure 4.13: Stable and Unstable solutiongyatl) = (200,1000)
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4.2.13 Apparent Stability at (y,d) = (300,1000

Figure 4.14: Stable and Unstable solution$yatl) = (300, 1000
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4.2.14 Apparent Stability at (y,d) = (400,1000

Figure 4.15: Stable and Unstable solutiongyatl) = (400,1000)
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4.2.15 Apparent Stability at(y,d) = (50,5000

Figure 4.16: Stable and Unstable solution$yatl) = (50,5000
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4.2.16 Apparent Stability at (y,d) = (100,5000

Figure 4.17: Stable and Unstable solutiongyatl) = (100,5000)
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4.2.17 Apparent Stability at (y,d) = (200,5000

Figure 4.18: Stable and Unstable solution$yatl) = (2005000
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4.2.18 Apparent Stability at (y,d) = (300,5000

Figure 4.19: Stable and Unstable solutiongyatl) = (300,5000)
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4.2.19 Apparent Stability at (y,d) = (400,5000

Figure 4.20: Stable and Unstable solution$yatl) = (400, 5000
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4.3 Comparison with Published Data

The published data from Murray [9] is not inaccurate, but not likely altogether complete. Table 4.3
provides a comparison of the forms of stable solutions published by Murray and those calculated
via AUTO and the Stability System.
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Table 4.2: Comparison of Stable Solution Forms

51

d y | Form of Stable Solution(Murray) | Form of Stable Solution(Calculated)

200 | 100 1 1, symmetric 1, symmetric 2
200 2 1, symmetric 1, symmetric 2
300 2 symmetric 2
400 3 symmetric 2

500 | 50 1 1, symmetric 1
100 1 1, symmetric 1
200 1 1, symmetric 1
300 1 1, symmetric 1
400 2 1, symmetric 1

1000| 50 1 symmetric 1, symmetric 2
100 1 1, symmetric 1, symmetric 2
200 1 1, symmetric 1
300 1 1, symmetric 1
400 1 1, symmetric 1

5000| 50 1 symmetric 1, symmetric 2
100 1 symmetric 1, symmetric 2
200 1 symmetric 1, symmetric 2
300 1 symmetric 1, symmteric 2
400 1 symmetric 1, symmetric 2

What we see in this table is that there exists more stable equilibrium solutions than Murray
indicated. We find that the symmetric image of the solutions from Murray are also stable. And in a
few instances, we see the potential for the co-existence of solutions of different forms. This is much
different than that suggested by Murray, whose data indicates only one form of solutions is stable
at one time. It is important to note that the numerical errors encountered in the previous chapter
when computing the bifurcation points may also affect the results for the stable solutions. Thus it

is important to rerun these simulations when these numerical issues are dealt with.
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Conclusion

5.1 Findings

The stable solutions that Murray published in [9] may not be the entire picture. It appears that some
more stable solutions exist for particulgt d) values for the Thomas System. However, the work
in this thesis can not say definitively that this is the case; these solutions appear stable.

5.2 Further Work

There are clear areas where further research is needed. First, further development of the bifurcation
structure and solutions is needed. The work in this thesis has developed only a small subset of the
data to verify. Secondly, in this, numerical subtleties need to be worked out with AUTO in order to
ensure convergence when following certain bifurcation branches.

A second area, and arguably most important, is the determination of the stability of the solutions
generated by AUTO. The method used in this thesis provides a differing view of stable solutions
than that of Murray [9]. While Murray utilized Time-Evolution to determine stability, we went
one step further and utilized AUTO to compute equilibrium solutions. These solutions were then
evolved over time to determine stability. Other methods, such as index calculation, should be
employed in order to actually determine the stability of the solutions. This work will add more
evidence to either confirm or refute the published data provided by Murray.
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Source Code

Listing 6.1: AUTO Thomas System

#include "auto_f2c .h”
#include <math.h>

int func (integer ndim,const doublerealxu, const integer xicp,
const doublerealxpar, integer ijac,
doublereal«f, doublereal«dfdu, doublereal«dfdp) {
doublereal myf, my.g, myh, myu, myv;

my_h = (13.0«u[0]«xu[2]) / (1.0 + u[O] + (0.05«u[0]«xu[0]));
my_f = 150.0 — u[0] — my_h;

my.g = 1.5x(100.0 — u[2]) — my_h;
% %

xx f[0] = w

xx f[1] = —gammaf

xx f[2] = 2

xx f[3] = ( —gammag) / d

* %/

f[0] = u[l];

f[1] = —par[0] *« my_f;

f[2] = u[3];

f[3] = (—par[0] *x myg) / par[1l];

return O;
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int stpnt (integer ndim, doublereal t,
doublereal+u, doublerealxpar) {

[ % %

xx par[0]
xx par[1l]
x %/
par[0]
par[1]

gamma
d

10.0;
200.0;

[ %
% Uu[0]
% U[1]
% U[2]
w% U[3]
wox ]
u[0] = 37.73821,;
u[l] 0.0;
uf2] = 25.15881,;
ul[3] 0.0;

Il Il
N < = c

return O;

int bcnd (integer ndim,const doublerealxpar, const integer xicp,
integer nbc,const doublereal+«u0, const doublereal xul,
integer ijac , doublereakfb, doublerealxdbc) {

/+x Homogenious Neumann Boundary Conditions/

fb[0] = uO[1];
fb[1] = ul[1l];
fb[2] = u0[3];
fb[3] = ul[3];
return O;
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int icnd (integer ndim,const doublerealxpar, const integer xicp,
integer nint, const doublerealxu, const doublereal*uold,
const doublerealxudot, const doublerealxupold, integer ijac,
doublereal«fi, doublereal«dint) {
return O;

—

int fopt (integer ndim, const doublerealxu, const integer xicp,
const doublerealxpar, integer ijac,
doublereal«fs , doublereal«dfdu, doublerealxdfdp) {
return O;

int pvls (integer ndim,const doublerealxu,
doublereal«par) {

return O;
}
Listing 6.2: AUTO Constants File
4 401 NDIM, IPS ,IRS | ILP
10 NICP, (ICP(1),1=2 NICP)
204321340 NTST,NCOL, IAD, ISP ,ISW, IPLT ,NBC, NINT
1000 3.0 1300.0 0.0 500.0 NMX, RLO,RL1,A0,Al
100 1028530 NPR,MXBF, IID , ITMX, ITNW,NWTN, JAC
le—06 1e—06 0.0001 EPSL,EPSU, EPSS
0.001 0.0001 1.0 1 DS, DSMIN,DSMAX, IADS
0 NTHL, (/, 1, THL(1)),1=1,NTHL)
0 NTHU, (/, 1 ,THU(I)) , 1 =1,NTHU)

0 NUZR, (/ ,1,PAR(1)),1=1,NUZR)
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