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Abstract

PARAMETER-DEPENDENT DYNAMICS OF SPATIO-TEMPORAL SYSTEMS

Sayomi Kamimoto, PhD

George Mason University, 2020

Dissertation Director: Dr. Evelyn Sander

Dynamical systems with intricate behavior are pervasive in many fields of science such

as biology, physics, climatology, ecology, engineering and robotics. Many of the most cu-

rious processes indicate the presence of a bifurcation, that is a phenomenon where a small

change in a system parameter causes changes in qualitative behavior of the dynamics. Some

dynamical systems are also characterized by a well defined spatial organization like a swarm

of drones or red coral population models, for instance. In order to properly describe their

dynamics, one must take into account both their spatial and temporal properties. Overall,

mathematical theoretical works in dynamical systems investigate the stability of constant

steady states, the existence of non-constant steady states, and bifurcation, which can be

used to deduce a standard parameter control relation and in return can provide a theoretical

basis for numerical simulations and experiments.

There are two parts in this dissertation. In the first part, we present a systematic

study of red coral population model, shedding light on the long-term dynamics of the red

coral populations. We can see the long-term effect of change in reproduction fitness as a

parameter. We establish the equilibrium structure and bifurcation points for the model,

find a set of stable periodic invariant cycles, and show that for a large range of reproduction

fitness these cycles get close to population extinction.



In addition to these observations, we present and implement methods which allow us to

rigorously validate the model’s equilibrium and bifurcation structure. From a mathematical

point of view, the advantage of rigorously validated computations is such that the outcomes

can be used as components in the building of mathematical theorems along with other

properties of the dynamical system.

In the second part, we introduce the analysis of bifurcation structures and numerical

simulations of a delay-coupled swarm model. We typically rely on mean-field equations to

analytically predict transitions between regimes of different collective swarm motions as a

function of model parameters, such as delay and coupling amplitude. However, the mean-

field does not capture global bifurcation behavior, such as multi-stability. By correctly

identifying the relevant spatio-temporal modes, we are able to accurately predict unstable

oscillations beyond the mean-field dynamics and multi-stability in large swarms. In addition,

we present that when communicating networks of a swarm have range-dependent delays,

rotational pattern in the swarm, which are typically periodic, undergo a bifurcation and

create swarm dynamics on a torus. The observed bifurcation yields additional frequencies

into the dynamics, which may lead to quasi-periodic behavior of the swarm.



Chapter 1: Introduction

1.1 Parameter-dependent dynamics, spatio-temporal systems

A dynamical system consists of a set of possible states together with a rule that determines

the present state in terms of past states. The rule is deterministic if we can determine the

present state uniquely from the past states. If there is a randomness in a rule, that is called

a random or stochastic process. For example, a mathematical model for the price of wheat

as a function of time would be able to predict today’s price to be that of yesterday plus

or minus some quantities with the two possibilities equally likely. If the rule is applied at

discrete times, it is called a discrete-time dynamical system which is also called a map. A

discrete dynamical system takes the current state as an input and updates by producing

a new state as an output. A continuous dynamical system is the limit of discrete system

with smaller and smaller updating times. The governing rule in that case becomes a set of

differential equations and the term continuous-time dynamical system is used [88].

Dynamical systems with intricate behavior are pervasive in many fields of science such

as biology, physics, climatology, ecology, engineering and robotics. Many of the most cu-

rious processes indicate the presence of a bifurcation, that is a phenomenon where a small

change in a system parameter causes changes in qualitative behavior of the dynamics [46].

Bifurcation theory has become a rich field of research in its own right and evaluating the

bifurcation behavior of a given dynamical system can be challenging, and we most often

have to rely on numerical solvers or simulations to aid our analysis. Overall mathematical

theoretical works in dynamical systems investigate the stability of constant steady states,
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the existence of non-constant steady states, and bifurcation, which can be used to deduce

a standard parameter control relation and in return can provide a theoretical basis for

numerical simulations and experiments.

Some dynamical systems are also characterized by a well defined spatial organization

like a swarm of drones [2], aggregation of bacteria [9] or red coral population models [52],

for instance. In order to properly describe their dynamics, one must take into account both

their spatial and temporal properties. Especially from a physical point of view, one should

note that interactions in space can give rise to large scale spatio-temporal patterns such as

spiral waves, spatio-temporal turbulence, stationary patterns and transitions between these

modes. Complex spatio-temporal systems may exhibit irregular behaviors when driven far

from equilibrium. Those are systems exhibiting nonlinear, non-stationary, and possibly

even chaotic behavior which is generally difficult to model or analyze as their occurrence

and properties are largely independent of the precise interaction structure. Our aim is

to understand the robustness of the systems to changes in the mathematical model of a

problem; this could inform efforts in various field of studies in order to understand or

prepare for an abrupt transitions that may occur as system parameters drift.

In this dissertation, we will discuss two aspects of parameter-dependent dynamics of

spatio-temporal systems. The computer assisted study of red coral population dynam-

ics found in the second chapter is a joint work with Hye Kyung Kim, Evelyn Sander and

Thomas Wanner, that will appear in Pure and Applied Functional Analysis [45]. The second

portion of the thesis deals with understanding the dynamics of large scale swarms with com-

munication delay. First two sections of the third chapter are part of the work at Nonlinear

Dynamical Systems Section of Plasma Physics Division of the US. Naval Research Labora-

tory. The first section, Large-scale swarms having range-dependent delay, was published in

[75] jointly with Ira B. Schwartz, Victoria Edwards, Klimka Kasraie, M. Ani Hsieh, Ioana

Triandaf and Jason Hindes. The second section, Unstable modes and bi-stability in delay-

coupled swarms, appeared in [39] with Jason Hindes, Victoria Edwards, Ioana Triandaf and

Ira B. Schwartz. We conclude the last chapter of the dissertation with the discussion of

2



future work, which will be done in the capacity of National Research Council postdoctoral

research associateship, tenured at the U.S. Naval Research Laboratory.

1.2 Computer assisted study of red coral dynamics

We often are unable to follow a particular solution with complete certainty because there

is round off error in the calculations or we are using some numerical scheme to find the

solution. In particular to the setting of zero finding problems in dynamical systems, we

rely on root finding solvers so that accuracy of fixed point finding methods matters. We

are interested to know whether the approximate solution we calculate is related to a true

solution of the exact equations. In rigorous numerics, also known as computer assisted

proofs, we care about providing a mathematically rigorous statement about the validity of

a concrete numerical simulation, unlike scientific computing where the goal is to achieve

highly reliable result for a very complicated problem.

Likewise, unlike numerical analysis where the analysis is a tool to develop a sophisticated

computational methods to solve applied problems, our primary focus is to use computa-

tional framework to construct mathematical statements in order to establish the numerical

result as a theoretical proof. The distinction is that there are some convergence and error

statements for the general or typical numerical case, but there is no rigorous statement that

we have not found a worst case in which the numerics did not work as advertised. With

rigorous numerics, we are able to guarantee every single case that we calculate is as good as

we claim. In the second chapter, we concentrates on implementing techniques to establish

such proofs for equilibrium depending on a parameter in a dynamical system.

Rigorous numerics requires a setup that allows analysis and numerics to go hand in

hand. In the context of equilibria branch validation, we need to find

1. A good numerical approximation of the equilibrium, usually by using Newton’s method.

2. A mathematical theorem which establishes an actual zero near the approximation,

including error bounds.

3



3. A computational framework which allows us to verify the assumptions of the theorem

rigorously

The implicit function theorem is modified in such a way that is better suited for the use

in numerics in a sense that we can actually go beyond “the existence” and come up with a

particular value of a rigorous bound of the neighborhood in which the theorem guarantees

the unique zero of the fixed point equation that is calculated numerically [73]. Besides

mathematical theorems, rigorous validation uses the tool of interval arithmetic. The interval

arithmetic is done by controlling, enclosing and propagating rounding and truncation errors

which are inherent problems in computer numbers. With all the ingredients in place, we

can provide a mathematically rigorous statement about the validity of the numerically

calculated bifurcation diagram. In our work, we have used the interval arithmetic package

INTLAB within MATLAB [69,71].

1.2.1 Red coral population dynamics

Figure 1.1: Photographs of red coral colonies. The individual polyps are visible particularly
in the right-hand image. Photos from [5,27].

Red coral is a foundation of many Mediterranean ecosystems as it provides critical habitat

for other marine lives. It is long lived and slow growing, and is now endangered due to

over-harvesting, pollution, ocean acidification and global warming [51]. Bramanti, Iannelli,

and Santangelo [24,52] investigated red coral populations by scraping samples off the coast
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of Italy in Calafuria in the Western Ligurian Sea, and observing their growth rate over

a four-year period. They used this data to construct a Leslie-Lewis transition matrix, a

static life table, and a 13-dimensional dynamical population model. Using this model, they

studied population trends by comparing small young colonies and bigger older colonies.

However, they only considered a small range of population trends. We present a systematic

study of this coral population model, shedding light on the long-term dynamics of the red

coral populations. We can see the long-term effect of change in reproduction fitness. We

establish the equilibrium structure and bifurcation points for the model, find a set of stable

periodic invariant cycles, and show that for a large range of reproduction fitness these cycles

get close to population extinction.

In addition to these observations, we present and implement methods which allow us

to rigorously validate the model’s equilibrium and bifurcation structure, including both

a saddle-node and a Neimark-Sacker bifurcation. These validations use a modification of

the Newton-Kantorovitch type method developed in [73, 89, 90]. The previous version of

this method merely used natural continuation. However, the natural continuation is not the

numerical state of the art, and therefore we extended the rigorous method to the numerically

efficient method. The current work being presented contains an extension of these results

in which we consider rigorous validation using pseudo-arclength continuation [30, 47]. In

addition, we use computer-assisted proof methods to prove the existence of saddle-node and

Neimark-Sacker bifurcation points on the equilibrium branch. These methods significantly

extend the range of applications of the constructive implicit function theorem which was

introduced in [73].

1.3 Dynamics of swarms with communication delay

A swarm is a coordinated group of individuals, such as a flock of birds, a school of fish,

African locusts, or a collection of interacting drones. Swarms consist of individuals with
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simple rules but can self-organize into complex structures. As a result of this social inter-

action, one sees emergent collective behavior and dynamic pattern formation in a swarm.

These systems are particularly interesting to the robotics community because they allow

simple individual agents to achieve complex tasks in ways that are scalable in communica-

tion topology, extensible in space, and robust to failures of individual agents [48]. Given

the many examples across a wide range of space and time scales, significant progress has

been made in understanding swarming by studying simple dynamical models with general

properties [1, 62,86].

In addition, these swarming behaviors are able to form and persist in spite of complicat-

ing factors such as delayed actuation, latent communication, localized number of neighbors

each agent is able to interact with, heterogeneity in agent dynamics, and environmental

noise. These factors have been the focus of previous theoretical research in describing the

bifurcating spatial-temporal patterns in swarms [42,63,76,82]. Likewise, the application of

swarms have been experimentally realized in areas, such as mapping [68], leader-following

[64, 91], and density control [58]. To guarantee swarming behavior experimentally, control

is typically employed [14, 26, 44, 80, 87] to prove convergence to a given state by relying

on strict assumptions to guarantee the desired behavior. However, by relaxing certain as-

sumptions, a number of studies show that even with simple interaction protocols, swarms

of agents are able to converge to organized, coherent behaviors in a self-emergent manner;

i.e. autonomously without control.

In almost all swarm models, there exists only a relatively small number of controllable

parameters since the agents have just a few simple rules. The parameter set usually consists

of a self-propulsion force, a potential function governing attracting and repelling forces be-

tween agents. Consider a system of mobile agents, or swarmers, moving under the influence

of three forces: self-propulsion, friction, and mutual attraction. In the absence of attrac-

tion, each swarmer tends to a fixed speed, which balances propulsion and friction but has

no preferred direction. The agents are assumed to communicate through a network with

time delays. Namely, each agent is attracted to where its neighbors were at some moment
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Figure 1.2: Diagram of a global coupled delay swarm model

in the past. A general model for N interacting self propelled agents in the plane based on

Newton’s laws of motion. The equation of the i-th particle is given by:

r̈i = κiF
prop(ri(t))− κi

∑
j∈Ni

∇riU(ri(t), rj(t− τ)).

where Fprop is a self-propulsion and frictional drag forces given by (1 − ||ṙi||2)ṙi. The

parameter τij represents the time delayed position of rj relative to ri, and Ni is a set of

nodal connections to i. κi is a heterogeneous acceleration factor, a is a coupling amplitude.

For U : R2n → R, a potential function of the two agents’ position, we use a spring potential

with short-range repulsion:

U(ri, r
τ
j ) = cre

−||ri−rj ||
lr − a

2N
(|ri − rτj |)2, rj(t− τj) = rτj .

In both robotic and biological swarms, an additional parameter appears as a delay

between the time information is perceived and the actuation (reaction) time of an agent.
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Such delays have now been measured in swarms of bats, birds, fish, and crowds of people

[19,28,65].

Understanding the effects of delay is key to understanding many swarm behaviors in

natural, as well as engineered, systems. The theoretical approach is in conjunction with

ongoing experiments conducted in mixed reality swarm research at the US. Naval Research

Laboratory.

1.3.1 Swarms with range-dependent delay

Figure 1.3: Drones used in the experiments in the works presented. Photo from [17]

Previously, there have been a number of studies done for fixed delay [42,78]. Based on the

previous work of global coupled delay case, we consider range dependent distributed delay

which is novel and more realistic for swarm analysis. The basic idea is that if the delayed

distance is within an ε ball, then we evaluate the coupling without delay and otherwise the

delay is on. As ε→ 0, we recover the global coupling delay case, for which we already know

some basic structures of dynamics.

The relative distances of j-th agent(s) with respect to the i-th agent, a distance function

can be computed as:

Dτ
i,j ≡ ||ri − rτj ||.
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Figure 1.4: Diagram of swarm with range dependent delay discussed in [75]

We use Heaviside function H(x), that is zero when x ≤ 0, and 1 otherwise. Then we

have the coupling term at the i-th agent as:

Ci = − a

N

∑
j∈Ni

(ri − rτj )H(Dτ
i,j − ε)

− a

N

∑
j∈Ni

(ri − rj)(1−H(Dτ
i,j − ε)).

Finally, the equation of the i-th particle for the range dependent delay case for the

spring potential without repulsion is given by:

r̈i = κiF
prop(ri(t))−

a

N

∑
j∈Ni

(ri − rτj )H(Dτ
i,j − ε)−

a

N

∑
j∈Ni

(ri − rj)(1−H(Dτ
i,j − ε)).

This model contains individual agents and the simulations predict complex self-organized

dynamic patterns which change as parameters of the model are varied. Our specific goal

is to characterize this behavior as a function of physical parameters. We use a combi-

nation of computational packages and mathematical analysis in order to characterize the
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dynamical behavior and locate bifurcation points of the delay differential equation that

models the swarm. This allows us to predict bifurcations resulting from stability changes

of delay-coupled swarms. We have done a number of numerical simulations by varying

the communication delay and coupling strength, and we have observed some interesting

dynamical behaviors of the center of mass of the swarm.

• In order to make the analysis of range-dependent case tractable, we consider the

mean field of the full system as seen in the case of the global coupled delay model

[94]. We used MATLAB toolbox DDE BIFTOOL, but bifurcation plots of the mean-

field model in our publication were done with a compartment model for τ computed

with AUTO. This bifurcation analysis could lead to a better understanding, leading

to further simulation.

• The current model uses a spring potential. We plan to consider different potential

functions such as a Morse potential. We will compare difference in the emerging

pattern formation as a result. This will be further discussed in the future work.

• In order to capture more detailed behavior of the swarm not described by the mean

field equation, it is necessary to test the relationship between the individual model

and the mean field model, since mean field analysis is only relevant in the limit of

large numbers. There are three types of behaviors in the swarms: translating, ring

and rotating [94]. Our current mean field model is a first order approximation, and

does not predict all behaviors such as bi-stability. A natural matter of a sequence

seems to do a higher-order approximation of the mean-field, the technique that might

predict bi-stability qualitatively, it suffers from quantitative inaccuracy and is difficult

to analyze [95].

The last point leads to the topic discussed in the second section in the third chapter.
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1.3.2 Unstable modes and bi-stability in delay-coupled swarms

We have demonstrated that generally, research on the spatio-temporal patterns of swarm

dynamics presents results that are valid in the limit where the number of agents is assumed

to be large. We typically rely on mean-field equations to analytically predict transitions

between regimes of different collective swarm motions as a function of model parameters,

such as delay, coupling amplitude, or the radius outside of which communication delay is

assumed. However, there is a limitation to mean-field analysis in swarm dynamics since

it does not capture global bifurcation behavior, such as multi-stability. We have shown

that it is necessary to test the relationship between a whole swarm model and the mean-

field model. By correctly identifying the relevant spatio-temporal modes, we are able to

accurately predict unstable oscillations beyond mean-field dynamics and multi-stability in

large swarms.

It is known that introducing time delays into the communication network of mobile-

agent swarms produces coherent rotational patterns, from both theory and experiments.

Often such spatio-temporal rotations can be bi-stable with other swarming patterns, such

as milling and flocking. Yet, most known bifurcation results related to delay-coupled swarms

rely on inaccurate mean-field techniques. As a consequence, the utility of applying macro-

scopic theory as a guide for predicting and controlling swarms of mobile robots has been

limited. To overcome this limitation, we perform an exact stability analysis of two pri-

mary swarming patterns in a general model with time-delayed interactions. By correctly

identifying the relevant spatio-temporal modes, we are able to accurately predict unstable

oscillations beyond the mean-field dynamics and bi-stability in large swarms, laying the

groundwork for comparisons to robotics experiments.

1.3.3 Future work

The proposed future work uses the foundation of single swarm dynamics towards a com-

prehensive analysis of multiple interacting swarms, a topic which is still in its infancy,
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and remains an active area of research. Our aim is to develop new theories of interacting

swarms dynamics in order to control multiple swarm behaviors. The future research will

enable us to solve the problem of employing small and large swarms to sense and control

other swarms. The interactions will be based on human leadership/animal hierarchical net-

works, but will be autonomous in application. Our results will aid in designing interacting

swarms of robotic agents that can perform more complex tasks than a single swarm alone

can, with resilience and robustness.
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Chapter 2: Computer Assisted Study of Red Coral Dynamics

Coral plays an important role in the marine ecosystem, and coral reefs provide habitats

to many sea animals and protect coastlines from breaking waves and storms. Red coral

is a long-lived, slow-growing species, dwelling on Mediterranean rocky bottoms. Red coral

populations are at risk due to both global climate change and overharvesting [51]. Bramanti,

Iannelli, and Santangelo [24, 52] investigated red coral populations by scraping samples off

the coast of Italy in Calafuria in the Western Ligurian Sea (43◦30′ N, 10◦20′ E, Italy,

at a depth between 20 and 45m depth) and observing their growth rate over a four-year

period. They used this data to construct a Leslie-Lewis transition matrix, a static life

table, and a 13-dimensional dynamical population model. Using this model, they studied

population trends by comparing small young colonies and bigger older colonies. However,

they only considered a small range of population trends. In the current chapter, we present a

systematic study of this coral population model, shedding light on the long-term dynamics

of the red coral populations. We can see the long-term effect of change in reproduction

fitness. We establish the equilibrium structure and bifurcation points for the model, find

a set of stable periodic invariant cycles, and show that for a large range of reproduction

fitness these cycles get close to population extinction.

In addition to these observations, we present and implement methods which allow us

to rigorously validate the model’s equilibrium and bifurcation structure, including both a

saddle-node and a Neimark-Sacker bifurcation. These validations use a modification of the

Newton-Kantorovitch type method developed in [73, 89, 90]. While the previous version of

this method merely used natural continuation, this chapter contains an extension of these

results in which we consider rigorous validation using pseudo-arclength continuation [30,

47]. In addition, we use computer-assisted proof methods to prove the existence of saddle-

node and Neimark-Sacker bifurcation points on the equilibrium branch. These methods

13



significantly extend the range of applications of the constructive implicit function theorem

which was introduced in [73]. While for the purposes of this chapter we restrict ourselves

to the case of finite-dimensional Euclidean spaces, the results can easily be adapted to the

general Banach space setting, with little change. Thus, the pseudo-arclength results can be

used for example in the setting of partial differenial equations, such as the setting described

in [74]. In other words, the present chapter presents a functional analytic foundation for

using pseudo-arclength continuation in the context of computer-assisted proofs based on

the constructive implicit function theorem presented in [73].

The remainder of this chapter is organized as follows. We introduce the age-based red

coral model in Section 2.1. In addition, we present a bifurcation diagram of fixed points

and stability of the model, along with a detailed discussion of oscillations. These results

show how even at high fitness levels, the oscillations lead to extreme vulnerability of the

population. Section 2.2 contains a functional-analytic approach to the rigorous validation

of the regular branches in the bifurcation diagram, which is based on a constructive version

of the implicit function theorem. Subsequently, Section 2.3 details the validation for the

three bifurcation points on the main fixed point branch; namely, the saddle-node bifurcation

in 2.3.2, the Neimark-Sacker bifurcation in 2.3.1, and the transcritical bifurction in 2.3.3.

Section 2.4 contains conclusions and future work.

2.1 Red coral population model

In this section we present the red coral population model of Bramanti, Iannelli, and San-

tangelo [24, 52], based on their experimental and field data and a Leslie-Lewis transition

matrix. In addition, we describe the dynamics of the model in terms of its bifurcation

structure and discuss its implications.

2.1.1 Description of the model
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Figure 2.1: Polyp is a tiny jellyfish like creature that forms a colony. The new colonies are
called recruits. From [5].

A coral population is a self-seeding independent group consisting of polyps, tiny soft-bodied

organisms related to jellyfish. Polyps form into colonies, which are distinct clusters with

polyps residing on a surface, as shown in Figure 1.1. A polyp is born to a parent colony in a

free-swimming larval stage. At the end of the larval stage, the polyp permanently attaches

itself to a colony and cannot move again. The age of a colony has implications in terms of

its size and polyp density. As a result, colony age determines the polyp attachment rate,

the larval birth rate, and the polyp survival rate. Based on these factors, larvae will attach

either to an existing colony or, especially if there is a high polyp density, recruitment will

occur. That is, larvae do not attach to existing colonies, but instead form new colonies.

Red coral polyps can reproduce larvae starting two years after their birth, implying that

there is no birth in a colony less than two years old, since none of the polyps are old enough

to reproduce. Reproduction occurs at a discrete time in summer, implying that a discrete

population model is a natural modeling assumption.

Based on the setting above, rather than modeling the total large number of polyps in a

coral population, the age-based model is a discrete time model for (x1, x2, . . . , xd), where xk

is the number of colonies of age group k. The value d is the oldest colony in the population.

While in principle this d could be large, in the observations made there was no colony of age
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Figure 2.2: Life cycle of the coral population

group greater than 13. The value of xk changes with respect to time (in years), where xnk

denotes the number of colonies of age group k at year n. The colony life cycle is displayed

in the schematic diagram shown in Figure 2.2. The downward arrows in Figure 2.2 indicate

that xk+1, the number of colonies in age group k + 1, is determined exclusively by the

number of colonies in age group k in the previous year. This relation is linear with respect

to population, with the survival rate constant Sk, i.e., we have xnk+1 = Skx
n−1
k . The survival

rate values are determined by observation, and are given in Table 2.1, based on [24, Table 2].

The upward arrows Figure 2.2 indicate that recruits may be larvae from any colony of

age two or greater. Though it is not obvious from the schematic diagram, the recruitment

rate is not linear, and it depends on both the total number of polyps in the colonies, as well

as on the larvae birth rates. Considering that the base variables xk denote the number of

colonies in age group k, the total number of polyps can be deduced from the numbers pk of

polyps per colony in a colony of age group k, and the birth rates bk depend on the fertility

rates Fk given in Table 2.1. Combined with the observational data in [52], Bramanti et al.

have then derived empirical expressions for the polyp per colony numbers pk and the birth
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Class k Survival rate Sk Fertility Fk
1 0.89 0
2 0.63 0
3 0.70 0.36
4 0.52 0.64
5 0.44 0.82
6 0.29 0.97
7 0.57 0.98
8 0.33 0.99
9 0.75 1
10 1 1
11 0.33 1
12 1 1
13 1

Table 2.1: Observational red coral data from [24]. Our calculations are based on their fitting
functions given in (2.1) and (2.2), which were established using this data.

rates bk, which are given by

pk = 1.239 k2.324 and bk = Fk k
2.324 . (2.1)

For our calculations in the present section, we use these fitting functions rather than the

original data, in keeping with the equations in [52]. In addition to the birth rates, the

number of recruits x1 depends also on a nonlinear function φ, which in turn depends on the

density of polyps per unit area. This function φ is given by

φ(y) =
c1e
−αy

y2 + c2e−βy
, with c1 = 1.8 · 105, c2 = 1.3 · 107, (2.2)

α = 5 · 10−4, β = 3.4 · 10−3 ,

which again is a fit for the observational data in [52]. The shape of this nonlinearity is

depicted in Figure 2.3. For a small density of polyps, the function φ increases with polyp

density, whereas too large of a polyp density inhibits the creation of new colonies due to
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Figure 2.3: The recruits-to-larvae ratio function φ plotted with respect to polyp density P .

competition for resources.

We now explain how to compute the polyp population density P . We have already seen

that the numbers pk of polyps per colony in a colony of age group k satisfy the empirical

formulas in (2.1). Thus, the total number of polyps in age group k is given by pkxk. Now

let Ω denote the total area of the population site, which was measured to be equal to 36 dm2

in [52]. Moreover, let x = (x1, x2, . . . , xd) be a column vector giving the number of colonies

of each age group, and let p = (p1, p2, . . . , pd) denote the vector of polyps per colony in each

age group. Then the total number of polyps in the (non-recruit!) population Q and the

polyp population density P satisfy the identities

Q =

d∑
k=2

pkxk and P =
Q

Ω
. (2.3)

Based on these preliminaries, let xn = (xn1 , x
n
2 , . . . , x

n
d ) represent the vector containing the

number of colonies at year n, and let P be the polyp population density defined in (2.3). If
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we now define

L(λ, x) =



λb1φ(P ) λb2φ(P ) . . . λbd−1φ(P ) λbdφ(P )

S1 0 . . . 0 0

0
. . .

. . .
...

...
. . .

. . . 0
...

0 . . . 0 Sd−1 0


, (2.4)

where the bifurcation parameter λ is described below, then our model is given by

xn+1 = L(λ, xn)xn . (2.5)

The model (2.4) and (2.5) is an age-structured, nonlinear, discrete-time dynamical model.

For the parameter value λ = 1, it is precisely based on the observational data in [52]. The

nonlinearity arises only in the evolution of the variable x1, which describes the number of

recruit colonies. In a slight reformatting of notation, let the function f : R × Rd → Rd be

given by f(λ, x) = L(λ, x)x. Then xn+1 = f(λ, xn), meaning that the dynamical population

variation corresponds to the iteration of the parameter-dependent nonlinear map f .

We still have to justify the introduction of the bifurcation parameter λ in the above

formulas. Previous work concentrated on the effect of varying the biologically relevant

reproductive number R, the total number of larvae produced by a single colony during its

life span. This parameter is directly proportional to λ, as we will show in Section 2.1.3. The

birth rate parameters bk in the above equation are determined by observation of a specific

coral population over a small time period. In order to consider a population model in which

the population is placed under stress, such as in the case of climate change, it is necessary

to change the parameters beyond what has been observed. While we could also consider

modification of other parameters, we choose to follow along the lines of [52] and vary the

birth rates, making the assumption that every birth rate parameter will be equally affected.
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Therefore, in our subsequent analysis, for every k we let the birth rate be given by λbk, a

fixed scaling factor compared to the originally observed birth rate.

2.1.2 Fixed points of the coral population model

We now consider the set of fixed points for the coral population model, given by the nonlinear

function f defined above, and how this set changes as a function of the parameter λ. That

is, we wish to determine the set of all pairs (λ, x) ∈ R × Rd such that f(λ, x) = x. As it

turns out, this can be reformulated equivalently as a one-dimensional problem. To see this,

assume that we have x = f(λ, x). Then for all indices k = 1, . . . , d−1 one has xk+1 = Skxk.

Using these statements iteratively, one readily obtains

x2 = S1x1 , x3 = S2S1x1 , . . . xd = Sd−1 · · ·S2S1x1 .

Thus, for all k = 2, . . . , d we have xk = akx1, where one uses the abbreviation

ak =

k−1∏
i=1

Si , (2.6)

and we further define a1 = 1 then one also has x1 = a1x1. Since we can write each

component xk for k ≥ 2 as a function of x1 alone, the fixed point problem is a one-

dimensional problem, which is only a matter of determining x1. Recall that we defined the

polyp population density P in (2.3), and let b = (b1, b2, . . . , bd). Then the equation for x1

is given by

x1 = λ(b · x) φ(P ) .

Moreover, let a = (a1, a2, . . . , ad). This immediately implies the identities

x = x1a , P =
x1
Ω

d∑
k=2

pkak , and b · x = (b · a) x1 .
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Altogether, this shows that a vector x = (x1, . . . , xd) is a fixed point for the map f(λ, ·) if

and only if x = x1a and its first component x1 satisfies the nonlinear equation

x1 = λ (b · a)x1 φ

(
x1
Ω

d∑
k=2

pkak

)
. (2.7)

From this equation, one can then determine all fixed points of the coral population model.

Notice that we clearly have the trivial solution x = 0 for all values of the parameter λ,

which corresponds to an extinct population.

2.1.3 The basic reproduction number

An important biological parameter for the coral population is the total number of larvae

produced by a single colony in its entire life span. This number only depends on the birth

and survival rates, and one can easily see that it is given by

R = λb1 + λb2S1 + λb3S2S1 + · · ·+ λbdSd−1Sd−2 . . . S1 = λ

d∑
i=1

aibi . (2.8)

The number R is called the basic reproduction number . Using the notation from the last

subsection, the above equation can be rewritten as

R = (b · a)λ . (2.9)

In particular, while it is possible to vary R in such a way that the relationship between the

birth rate constants vary, under our assumptions, the vectors b and a are fixed constant

vectors, and we therefore have a fixed linear relationship between R and λ. To make it easy

to compare our results with those of previous works, we have chosen to plot all bifurcation

diagrams with respect to the basic reproduction number R.
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Figure 2.4: The bifurcation diagram of polyp density P as a function of the reproductive
number R. While the diagram covers the range R ∈ (12, 300), the birth rate data collected
by Bramanti et al. in [52] are for R ≈ 29.

2.1.4 The fixed point bifurcation diagram

We now turn our attention to a description of the bifurcation diagram of the fixed points

for the coral population system. This diagram is shown in Figure 2.4, where the set of fixed

points is plotted in terms of the reproductive number R versus polyp population density P .

The color in the diagram depicts the stability of the fixed points, and the diagram indicates

the existence of three bifurcation points: a saddle-node and a Neimark-Sacker bifurcation

on the nontrivial branch, which itself bifurcates from the trivial branch at a transcritical

bifurcation. While following subsections of this section will be used to verify the bifurcation

diagram using computer-assisted proofs, the remainder of the current subsection is devoted

to the discussion of dynamical aspects which are observed through numerical simulations.

Throughout our computations, we used the case of d = 13 age groups. The bifurca-

tion diagram in Figure 2.4 was computed using a numerical continuation method starting

at reproduction number R = 300, and allowing R to decrease. There appears to be a
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saddle-node point for R ≈ 12.28 (which corresponds to λ ≈ 0.4213), after which the basic

reproduction number R of the fixed points begins to increase again. In Section 2.3 we use a

computer-assisted proof to rigorously validate this saddle-node bifurcation point. The curve

continues further until the population density reaches zero, which corresponds to an extinct

population. We will see later that the extinction point can be found explicitly, and that it

occurs at R ≈ 72.22 (which corresponds to λ ≈ 2.478). Moreover, the stability of the trivial

solution x = 0 can readily be determined from the Jacobian matrix of f at the origin, and

this shows that the extinction fixed point is stable for small R, corresponding to low fitness,

and unstable for all larger values of the basic reproduction number R, with instability index

1. The bifurcation between the extinction fixed point being stable and unstable occurs at

the transcritical bifurcation point. All of these statements will be established rigorously in

Section 2.3, including the appearance of the transcritical bifurcation point. Unlike the other

two bifurcation points, no computer-assisted proofs are necessary along the trivial solution.

As mentioned before, the stability of the fixed points x∗ ∈ R13 is indicated by color,

with blue indicating stable fixed points and red representing unstable ones. The local

stability at each fixed point in Figure 2.4 is determined numerically, based on whether all

the eigenvalues of the Jacobian matrix Dxf(λ, x) lie inside the unit circle or not. In the

bifurcation diagram, we have not distinguished the index of the stability. If at least one

of the eigenvalues lies outside the complex unit circle, then the fixed point is colored red,

meaning unstable.

2.1.5 Oscillations

Figure 2.4 only shows the existence and stability behavior of fixed point solutions. But

what about the dynamical behavior of the system? In this last subsection of Section 2.1, we

focus on dynamical aspects of the model, in particular its oscillatory behavior on attract-

ing invariant circles that form as a result of the Neimark-Sacker bifurcation. For a fixed

parameter value R > 154.1 and for a typical initial condition, solutions converge to these

invariant circles, and therefore the age-structured coral populations oscillate as time varies.
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Figure 2.5 shows the dynamics of initial populations near fixed points, starting at a vari-

ety of different parameters and different initial aged-structured population vectors y ∈ R13.

At reproduction number R = 8.744 (which corresponds to λ = 0.3), the solutions converge

to the stable fixed point zero, i.e., the point of extinction. For R = 29.15 (corresponding

to λ = 1), if we start at initial conditions ranging roughly from 0.15y to 2y, where y is a

vector of age-structured initial number of colonies which was chosen with polyp population

density P = 1500, then solutions converge to a nontrivial stable fixed point. There is also

an unstable fixed point denoted by the red line. In addition, one can observe bistability

at this parameter value. If we start at a smaller value of P , such as for example at initial

populations with polyp population density smaller than 0.15y, solutions converge to zero,

i.e., the coral population becomes extinct. At the basic reproduction number R = 87.4437

(λ = 3), though it takes longer time than 100 years, the solutions still converge to a stable

nontrivial fixed point. In contrast, at R = 160.31 (λ = 5.5), population starting at P = 1.5y

oscillate. We used connected lines to show these oscillations more effectively, but recall that

the map is in fact discrete.

Figure 2.7: Invariant cycles for ten (left) and 500 (right) different parameter values. Even
though we are guaranteed that some of the cycles contain stable periodic orbits, the periods
are sufficiently high and the parameter ranges for which they exist are sufficiently small
that it is hard to see them even in a close zoom (not depicted). Each orbit was computed
using 100,000 iterates.
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Figure 2.5: Dynamical behavior of some sample orbits of the red coral population model.
All of these figures show the temporal evolution of the polyp population density P , and
they are simulated over a time frame of 100 years each, at various parameter values.

The oscillations seen in the lower right subplot of Figure 2.5 form as a result of the

Neimark-Sacker bifurcation. The fixed point stability switches from stable to unstable, and

an invariant circle gains stability. Trajectories with initial conditions near fixed points but

after the bifurcation are displayed in Figure 2.6. Perturbations around an unstable fixed

point are repelled from the fixed point after the bifurcation, converging to an invariant closed

curve. As the parameters R and λ increase, the size of the closed curve also increases, and

the minimum population of a curve approaches the extinction point at the origin. That is,

red coral populations become vulnerable at a large reproduction number, and a very small

perturbation of the population would endanger the survival of the population despite the

existing long recovery cycle.

In order to better understand the stable invariant limit cycles that form after bifurcation,

we have computed the rotation number, meaning the average angle of rotation per iterate,
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Figure 2.6: After the Neimark-Sacker bifurcation, oscillating orbits appear. After removing
transients in the orbit, the orbit lies on an invariant closed curve. On the left, we plot
the x1- and x2-components of these limit cycles. As the parameter R increases, the size
of the closed curve increases. For large values of R, the coral population is close to the
extinction point at the origin. On the right, the same orbits are shown with respect to R,
along with the corresponding unstable fixed points at the same parameter value.

as a function of the parameter R. Specifically, we used the projection to the x1x2-plane

to compute the rotation numbers. Our computations are performed using the weighted

Birkhoff average method described in [13]. Figure 2.7 shows cycles at ten distinct parameter

values on the left, and for 500 distinct parameters on the right. The corresponding rotation

numbers are shown in Figure 2.8. The values are angles, but they are rescaled to have values

in the range (0, 1). Each rotation number was computed by considering the angle difference

between successive iterates when measured with respect to the point (2500, 2500). To verify

our numerics and check that we have used a sufficient number of iterates in our calculation,

we compared the rotation number computed with 50,000 iterates to the rotation number

computed with 40,000 for a series of test parameters. In these test parameters, the answer

differs by 10−15 or less.

Note that we would expect to see a devil’s staircase in the rotation numbers at the

parameter values when there are periodic orbits, but what we see looks smooth even when

quite zoomed in. This is due to the fact that the periodic orbits are extremely high period.

In particular, we are able to use a Farey tree calculation to find the smallest denominator,

corresponding to the lowest period, of a periodic orbit for the case of a rational rotation
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Figure 2.8: The rotation number for the cycles shown in Figure 2.7 (top left) and a close up
view of the rotation numbers (top right), this time with one million iterates. The periodic
orbits are of such high periods that we cannot detect the devil’s staircase type behavior
of the rotation number within the Arnold tongue locking regions. The rotation number is
computed using the angle difference between successive values of (x1, x2), computed with
respect to the point (x1, x2) = (2500, 2500), and the angle versus angle difference is depicted
here (bottom) for the cycles for ten different R values. The minimum occurs at the angle
pointing towards the extinction point.

number for this range of rotation numbers, using the method in [70, 72]. In particular, we

find that the lowest denominator in the range [0.126, 0.129] is 39 (fraction 5/39). Not only

is the lowest possible period quite large and therefore hard to distinguish from a limit cycle,

but also the large periodicity implies that the Arnold tongue locking regions are very small

parameter ranges, meaning that we are not able to resolve them without more delicate

computations.
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The average rotation number gives only the mean of how much the population is chang-

ing with respect to time. This leaves out some information as to how the change in popu-

lation depends on the location of the population. In the bottom subplot in Figure 2.8, we

show the angle difference as a function of the angle for ten different values of R. That is,

for each point in the invariant circle, we graph how much the population is changing in one

iterate (corresponding to one year) at each point in the invariant circle. The smallest angle

difference, corresponding to the slowest change, occurs for angle ≈ 0.625, corresponding

to the values closest to the origin extinction point. Therefore, a portion of the invariant

circles is getting dangerously close to the origin, such that a small perturbation could result

in the extinction of the whole coral population. To compound matters further, the orbits

are staying near the extinction point for longer than they remain in any other region, since

at these points the observed angle differences are very close to zero. Thus the population

remains extremely vulnerable for a particularly long time.

2.2 Branch validation and continuation

We now turn to the rigorous validation of fixed points, both for regular and bifurcation

values. Our general approach is the constructive implicit function theorem from [73]. This

is a rigorous result that combines with a numerical interval arithmetic calculation to give

rise to a validated method for finding a branch in the zero set of a function which depends

on a single parameter. In the following four subsections, we will first recall the construc-

tive implicit function theorem, and then define an extended system which can be used for

pseudo-arclength continuation. After that, we prove two results which form the basis of

our approach, and describe the necessary preconditioning for the coral population model

application.
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2.2.1 The constructive implicit function theorem

Before stating the full result, here is a summary. Given an approximate zero (α∗, x∗) of a

functionG(α, x) where x is contained in a Banach space and α ∈ R, under certain hypotheses

on G and its derivatives evaluated at the approximate zero (α∗, x∗), combined with Lipschitz

estimates near this point, there exist two regions in parameter and phase space. First, the

accuracy region, which contains a curve of the zero set. Second, a uniqueness region, in

which that zero set curve is unique. See the schematic in Figure 2.9. The blue dot shows

the initial approximate zero. The orange curve is the zero set curve, which is guaranteed to

lie within the accuracy region (the blue region). Note that the approximate zero does not in

general lie on the zero set. The accuracy region is contained within the uniqueness region,

shown in orange. The uniqueness region is largest in phase space when the parameter is

closest α∗. As the parameter varies, the uniqueness region shrinks (meaning we have worse

isolation). The constructive implicit function theorem guarantees that the uniqueness region

is characterized by a linear norm condition, as depicted by the straight sides in the schematic

diagram. The accuracy region has best (i.e., smallest) accuracy when the parameter is near

the parameter of the original point α∗. The accuracy region grows (meaning we have worse

accuracy) with a quadratic norm condition. This is depicted schematically by its parabolic

shape. We now state the formal theorem.

Theorem 2.2.1 (Constructive Implicit Function Theorem). Let P, X , and Y be Banach

spaces, suppose that the nonlinear operator G : P × X → Y is Fréchet differentiable, and

assume the following hypotheses.

(H1) Small residual: There exists a pair (α∗, x∗) ∈ P × X and a ρ > 0 such that

‖G(α∗, x∗)‖Y ≤ ρ .
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Figure 2.9: A schematic depiction of the constructive implicit function theorem. The theo-
rem guarantees that under appropriate hypothesis, an approximate zero (blue dot) guaran-
tees that within a uniqueness region (orange region) there is a curve in the zero set with a
unique point at each fixed α value (red curve), and the this curve is located within an accu-
racy region (blue region). The uniqueness region contains the accuracy region. It is bounded
in norm by straight lines, and the accuracy region is bounded in norm by parabolas.

(H2) Bounded derivative inverse: There exists a constant K > 0 such that

∥∥DxG(α∗, x∗)−1
∥∥
L(Y,X )

≤ K ,

where ‖ · ‖L(Y,X ) denotes the operator norm in L(Y,X ).

(H3) Lipschitz bound: There exist positive real constants L1, L2, `x, as well as `α ≥ 0 such

that for all (α, x) ∈ P × X with ‖x− x∗‖X ≤ `x and ‖α− α∗‖P ≤ `α we have

‖DxG(α, x)−DxG(α∗, x∗)‖L(X ,Y) ≤ L1 ‖x− x∗‖X + L2 ‖α− α∗‖P .

(H4) Lipschitz-type bound: There exist positive real constants L3 and L4, such that for all
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parameters α ∈ P with ‖α− α∗‖P ≤ `α one has

‖DαG(α, x∗)‖L(P,Y) ≤ L3 + L4 ‖α− α∗‖P ,

where `α is the constant that was chosen in (H3).

Finally, suppose that

4K2ρL1 < 1 and 2Kρ < `x . (2.10)

Then there exist pairs of constants (δα, δx) with 0 ≤ δα ≤ `α and 0 < δx ≤ `x, as well as

2KL1δx + 2KL2δα ≤ 1 and 2Kρ+ 2KL3δα + 2KL4δ
2
α ≤ δx , (2.11)

and for each such pair the following holds. For all α ∈ P with ‖α− α∗‖P ≤ δα there exists

a uniquely determined element x(α) ∈ X with ‖x(α)− x∗‖X ≤ δx such that G(α, x(α)) = 0.

In other words, if we define

BXδ = {ξ ∈ X : ‖ξ − x∗‖X ≤ δ} and BPδ = {p ∈ P : ‖p− α∗‖P ≤ δ} ,

then all points of the solution set of the equation G(α, x) = 0 in the product set BPδα × BXδx
lie on the graph of the function α 7→ x(α).

In its classical form, the implicit function theorem is one of the central tools of bifurca-

tion theory. Not only can it be used to establish the existence of small solution branches in

nonlinear parameter-dependent equations, but by applying it as a tool to modified problems

it can frequently be used to provide sufficient conditions for bifurcations. For example, the

celebrated Crandall-Rabinowitz result [12] on bifurcation from a simple eigenvalue proves

the existence of a bifurcating branch by applying the implicit function theorem to a modifica-

tion of the original nonlinear problem which removes the trivial solution. The constructive

implicit function theorem can similarly be used as a tool for bifurcation analysis, yet in
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Figure 2.10: Left, the validated bifurcation diagram of polyp density P as a function of
the reproductive number R, along with the three validated bifurcation points. The blue
curve consists of 5000 continuation steps, corresponding to 5000 linked boxes, for the pre-
conditioned map with α = 0.8 δα. The initial validated box contains (R,P ) = (300, 3256),
which is in the upper right corner of the bifurcation diagram, and the last validated box
contains (R,P ) = (71.91, 1.493), which is close to the green transcritical bifurcation point.
For comparison purposes, 4000 continuation steps for the unconditioned map are shown in
red within the extremely small square region in the upper right-hand corner. Right, the
norm of the uniqueness region of the solution. As the solution gets near the transcritical
bifurcation at the origin, the uniqueness region gets smaller. This is expected, since there
is no longer any uniqueness when the two branches of the solution curve meet.

a computer-assisted proof setting. In fact, some first applications in this direction have

already been provided in [56,73]. With the current work, we add two more applications.

More precisely, in the following we will be applying Theorem 2.2.1 in two different

situations. In the remainder of this section, we apply it for branches of regular points.

Through the introduction of a suitable extended system we can reformulate a validated

step of pseudo-arclength continuation as an application of the constructive implicit function

theorem to this extended system. Combined with suitable linking conditions, this establishes

the existence of entire branches covered by slanted boxes.

In addition, in Section 2.3 we use Theorem 2.2.1 to validate bifurcation points. In that

setting, and motivated by our earlier work [56], we will apply the theorem to an extended

system without any parameter, as the parameter will be incorporated into the function for

which we find a root. This parameter-free case means that we no longer need to find the

Lipschitz constants relevant to the parameter variations, and we set these unused constants
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equal to zero.

2.2.2 Continuation and an extended system

To elaborate further on the validation of regular fixed points, the constructive implicit func-

tion theorem as stated in [73] only applies to a single region, validated at a single point.

The same paper contains a version of this theorem for slanted boxes, using natural continu-

ation in order to validate a branch of solutions by linking their validation sets to validate a

larger portion of the branch. However, natural continuation leaves something to be desired

in terms of efficiency. In this section, we develop a method of validation of bifurcation

branches using pseudo-arclength continuation which allows for the direct application of the

constructive implicit function theorem, and apart from Lipschitz estimates, only requires

estimates at a single point in each box. This method is an improvement on the previous

natural continuation method in that we can continue at limit points without having to

change coordinates. The methods in this section apply for regular orbits along branches.

In the next section, we will show how to adapt the constructive implicit function theorem

in order to rigorously validate bifurcation points.

Before launching into further technicalities, we describe our results. Applying the

pseudo-arclength continuation method to a preconditioned version of the coral model (pre-

conditioning is discussed in Section 2.2.3 below), the resulting rigorously validated curve

of fixed points is shown in Figure 2.10. While Figure 2.4 shows a similar picture, the dis-

tinction is that those points were found using numerical methods, and though we have a

priori error estimates for these methods, we cannot guarantee existence or accuracy. In

contrast, the points shown on the new figure are rigorously validated. The depicted points

are an accurate indication of existing fixed points of the system, with known and validated

accuracy and uniqueness region. In particular, the accuracy of our solutions is known in-

dividually for each separate box, and is always less than 1.453 · 10−13, where the error in

x ∈ R13 is measured in the maximum norm. Figure 2.10 shows the norm of the uniqueness
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Figure 2.11: A schematic diagram of the the pseudo-arclength continuation method. Top
left image: The result guarantees a uniqueness region for the zero set. This takes place in
an adapted coordinate system, meaning that the box is slanted, but the uniqueness region is
still bounded by straight lines. Since we only continue the curve in one direction, this figure
only depicts the left half of the uniqueness region. The center line segment of this region is
given by (λ∗k, u

∗
k) + α(µk, vk) for 0 ≤ α ≤ δα. At a fixed α value, we use Newton’s method

to find the next approximate zero along the line (λ∗k, u
∗
k) + α(µk, vk) + (σ, x), where (σ, x)

denotes the vector pointing from (λ∗k, u
∗
k)+α(µk, vk) to the point (λ∗k, u

∗
k)+α(µk, vk)+(σ, x),

and which is orthogonal to (µk, vk). Top right image: After we fixed the value α = α∗, we
label this next approximation (λ∗k+1, u

∗
k+1). Bottom image: Inside the uniqueness region

(orange) is an accuracy region (blue). The accuracy region is bounded by curves which are
parabolic in norm in the adapted coordinate system.

for each separate box. The uniqueness shrinks when the curve approaches zero. This is not

surprising, since x = 0 is part of the zero set, putting a barrier on the size of the uniqueness

region.

We now proceed with the constructive implicit function theorem for a validated pseudo-

arclength continuation. In each continuation step we use continuation in a box with slanted

sides, where the predictor step is performed along the middle of the box in the direction

a specified vector (µ, v) (usually the estimated tangent to the zero set curve), and the

corrector step uses a computation such as Newton’s method to refine the estimate. This
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refinement is performed in a direction orthogonal to the predictor direction (µ, v). This is

depicted in Figure 2.11. The left-hand image is a schematic diagram showing the box with

its midline between two blue dots. The midline is the estimated tangent line in the direction

(µ, v). Our validation gives us a maximum length of the box for which we can guarantee

accuracy and uniqueness of the solution. The predictor, shown with a red dot, must be

chosen inside that box. The corrector, shown with a green dot is along an orthogonal line

to the midline. The right-hand image shows the accuracy region in blue and the uniqueness

region in orange. Note that the uniqueness region has large width near the starting point,

and the accuracy region grows towards the ending point. In Figure 2.11, the uniqueness

region for the box is approximately diamond shaped, whereas in Figure 2.12, the box is not

only slanted but also has a uniqueness region which is asymmetric, more of a half-diamond.

The half-diamond shape is in fact only half of the uniqueness box. In particular, as we are

merely continuing in one direction, which in Figure 2.12 is to the left, we only show one side

of the uniqueness box. The fact that we could continue to the right as well is not relevant

for our continuation.

We now turn to the technical details of this approach. For this, we consider F : R ×

U → U , where U denotes an arbitrary Euclidean space. Our goal is to implement pseudo-

arclength continuation based on Theorem 2.2.1 to find branches of zeros of the nonlinear

function F . For the specific application of this work, we will consider U = R13 and F (λ, x) =

f(λ, x)−x, where f is the coral model. Nevertheless, we use the more general notation based

on F to indicate that these methods are general. In fact, the methods readily generalize to

the Banach space setting as well. However, in this work for convenience of notation we only

consider the Euclidean space case. For any (λ0, u0) ∈ R × U , an approximate zero of F ,

and for a fixed direction vector (µ0, v0) ∈ R×U , define G : R× (R×U)→ R×U as follows

G(α, (σ, x)) =

 µ0σ + vt0x

F (λ0 + αµ0 + σ, u0 + αv0 + x)

 . (2.12)
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The zeros of G as the parameter α varies correspond to the pseudo-arclength continuation

solutions of F for a single continuation box. The first component of the function G guaran-

tees that the pair (σ, x) is orthogonal to the direction (µ0, v0). As we will show in the next

subsection, one can apply the constructive implicit function theorem from [73] directly to

the extended function G and thereby perform rigorously validated pseudo-arclength contin-

uation.

Since we will need them later, we close this subsection by explicitly stating the derivatives

of G with respect to both the variables (σ, x) and with respect to the parameter α. These

are respectively given by

D(σ,x)G(α, (σ, x)) =

 A11 A12

A21 A22

 , (2.13)

where

A11 = µ0 , A12 = vt0 ,

A21 = DλF (λ0 + αµ0 + σ, u0 + αv0 + x) , (2.14)

A22 = DuF (λ0 + αµ0 + σ, u0 + αv0 + x) ,

as well as

DαG(α, (σ, x)) =

 B1

B2

 , (2.15)
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where

B1 = 0 ,

B2 = DλF (λ0 + αµ0 + σ, u0 + αv0 + x)µ0 (2.16)

+DuF (λ0 + αµ0 + σ, u0 + αv0 + x)v0

Pseudo-arclength validation theorem

We are now in a position to start establishing assumptions under which we can validate

a branch in the zero set of F using pseudo-arclength continuation. For this we need the

following modified set of assumptions. For the purposes of this work, we use the vector

norm ‖(α, x)‖ = max{|α|, ‖x‖U} for all (α, x) ∈ R × U , even though this could easily be

modified.

(P1) We assume both

‖F (λ0, u0)‖U ≤ ρ and ‖DλF (λ0, u0)µ0 +DuF (λ0, u0)v0‖U ≤ ξ . (2.17)

(P2) Assume that there exists an explicit constant K > 0 which is a bound on the operator

norm of the inverse of the matrix

D(σ,x)G(0, (0, 0)) =

 µ0 vt0

DλF (λ0, u0) DuF (λ0, u0)

 ,

i.e., we suppose that

∥∥D(σ,x)G(0, (0, 0))−1
∥∥
L(R×U,R×U)

≤ K .

For this, we interpret the matrix as a linear map on the product space R × U , and
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the operator norm is the norm in L(R× U,R× U).

(P3) Let M1, M2, M3, and M4 be Lipschitz constants such that for all pairs (λ, u) which

satisfy ‖u− u0‖ ≤ du and |λ− λ0| ≤ dλ we have the estimates

‖DuF (λ, u)−DuF (λ0, u0)‖L(U,U) ≤ M1‖u− u0‖U +M2|λ− λ0| ,

‖DλF (λ, u)−DλF (λ0, u0)‖L(R,U) ≤ M3‖u− u0‖U +M4|λ− λ0| ,

where as usual we will identify the norm in L(R, U) with the norm ‖ · ‖U in the

following.

We would like to point out that all of the above three conditions are formulated in terms

of the nonlinear parameter-dependent function F and an approximate solution (λ0, u0) of

the equation F (λ, u) = 0.

We now turn our attention to the extended system described by the operator G intro-

duced in (2.12). It turns out that the above three assumptions are tailor-made to establish

the hypotheses (H1) through (H4) from the constructive implicit function theorem for the

mapping G. One can easily see that (P1) implies

‖G(0, (0, 0))‖R×U ≤ ρ ,

i.e., hypothesis (H1) is satisfied. Furthermore, using the explicit derivative formulas from

the end of the last subsection, the assumption (P2) immediately yields the estimate

‖D(σ,x)G(0, (0, 0))‖L(R×U,R×U) ≤ K ,

which establishes (H2). It remains to show that (P3) furnishes the estimates in (H3)
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and (H4). For this, let ξ be defined as in (2.17), and define the four constants

L1 = max(M1 +M3,M2 +M4) ,

L2 = (M1 +M3)‖v0‖U + (M2 +M4)|µ0| ,

L3 = ξ ,

L4 = (M1‖v0‖U +M2|µ0|)‖v0‖U + (M3‖v0‖U +M4|µ0|)|µ0| .

Then the constants L1 through L4 are the Lipschitz constants for the extended function G

as required by (H3) and (H4). For this, first note that in view of (2.13) and (2.14) we have

D(σ,x)G(α, (σ, x))−D(σ,x)G(0, (0, 0)) =

 0 0

DλF (w1)−DλF (w2) DuF (w1)−DuF (w2)

 ,

where DλF and DuF are evaluated at w1 = (λ0 +αµ0 +σ, u0 +αv0 +x) and w2 = (λ0, u0).
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Then one can readily see that (H3) follows from (P3) and the estimates

‖D(σ,x)G(α, (σ, x))−D(σ,x)G(0, (0, 0))‖L(R×U,R×U)

≤ ‖DuF (λ0 + αµ0 + σ, u0 + αv0 + x)−DuF (λ0, u0)‖L(U,U)

+ ‖DλF (λ0 + αµ0 + σ, u0 + αv0 + x)−DλF (λ0, u0)‖L(R,U)

≤ M1(|α|‖v0‖U + ‖x‖U ) +M2(|α||µ0|+ |σ|)

+ M3(|α|‖v0‖U + ‖x‖U ) +M4(|α||µ0|+ |σ|)

= (M1 +M3)‖x‖U + (M2 +M4)|σ|

+((M1 +M3)‖v0‖U + (M2 +M4)|µ0|)|α|

= L1‖(σ, x)‖R×U + L2|α| .

Similarly, using (2.15) and (2.16) one can show that (H4) follows from (P1) and (P3), in

combination with the inequalities

‖DαG(α, (0, 0))‖L(R,R×U)

≤ ‖DλF (λ0, u0)µ0 +DuF (λ0, u0)v0‖U

+ ‖DuF (λ0 + αµ0, u0 + αv0)v0 −DuF (λ0, u0)v0‖U

+ ‖DλF (λ0 + αµ0, u0 + αv0)µ0 −DλF (λ0, u0)µ0‖U

≤ ξ + (M1‖v0‖U +M2|µ0|)|α|‖v0‖U

+(M3‖v0‖U +M4|µ0|)|α||µ0|

= L3 + L4|α| .

Altogether, these estimates lead to the following result.
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Theorem 2.2.2 (Pseudo-arclength continuation for a branch segment). Consider the fixed

pairs (u0, λ0) and (v0, µ0) in R × U , let dλ and du be two positive constants, and suppose

that our hypotheses (P1), (P2), and (P3) are satisfied. Moreover, assume that both

4K2ρ < 1 and 2Kρ < du

hold. Then we can choose constants

0 < δα ≤ dλ , 0 < δu ≤ du , where δα‖(µ0, v0)‖+ δu ≤ min(du, dλ) ,

and such that

2KL1δu + 2KL2δα ≤ 1 and 2Kρ+ 2KL3δα + 2KL4δ
2
α ≤ δu .

Then for every α ≤ δα there exists a unique (σ, x) in the zero set of G with ‖(σ, x)‖ ≤ δu.

These statements guarantee that there is a unique element of the zero set of F which

lies on the hyperplane orthogonal to the center line in the slanted box between (λ0, u0) and

(λ0 + δαµ0, u0 + δαv0) and passes through the point (λ0 + αµ0, u0 + αv0). This unique zero

is given by (λ0 + αµ0, u0 + αv0) + (σ, x). Additionally, let

δmin = 2Kρ .

Then for α = 0 we can guarantee that the resulting pair in the zero of G is accurate

within δmin of (λ0, u0), and this zero is unique within the set ‖(σ, x)‖ ≤ min{(2KL1)
−1, du, dα}.

Proof. To show the theorem we follow the proof of [73, Theorem 5]. Aside from the changes

in the Lipschitz constants which have already been derived before the formulation of the

theorem, the only changes to the cited proof are due to the fact that for a fixed parameter

of G, the values of both the parameter λ and the phase space value x of F can vary.

Therefore, in order to guarantee that the Lipschitz estimates on F hold, we need to assure
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Figure 2.12: Left image: Associated with each successive approximation, there is a unique-
ness region and an accuracy region. Right image: In order to guarantee that the k-th and
(k + 1)-st region enclose the same component of the zero set (the green curve), we must
verify the linking condition. This requires that the accuracy curve of the (k + 1)-st box at
α = 0 (such as the blue point on the upper edge of the (k + 1)-st blue box) is contained in
the uniqueness region of the k-th box (orange region).

that for every α ≤ δα and all ‖(σ, x)‖ ≤ δu the norm ‖α(µ0, v0) + (σ, x)‖ is bounded by

both du and dλ. This immediately leads to the additional constraints in the formulation of

the theorem.

The above theorem gives a method for validating a branch segment of the zero set within

a single slanted box. In practice we use this result successively to validate a whole solution

branch. For each pair (λ∗k, u
∗
k), and for the approximate tangent (µk, vk), we then define an

extended function Gk, and validate a branch segment for F within the k-th box. For a fixed

parameter value αk ≤ δα, we then use Newton’s method to find an approximate zero of F

which is orthogonal to (µk, vk), i.e., which is a zero of Gk. We abbreviate this approximate

zero as (λ∗k+1, u
∗
k+1), and can now repeat the entire process for the (k+1)-st branch segment,

see also Figure 2.12. What remains to be shown is that the successive validated boxes are

linked, meaning that the branch segment in the k-th box and the branch segment in the

(k + 1)-st box are on the same branch. That is, the accuracy region of the (k + 1)-st box

has to be contained within the uniqueness region of the k-th box at the point αk where

we made the numerical estimate. We give the linking condition for two boxes in the next

theorem.
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Theorem 2.2.3 (Linking branch segments). Let δk+1,min = 2Kk+1ρk+1 be the accuracy of

the solution

(λ∗k+1, u
∗
k+1) = (λ∗k + αkµk + σ∗, u∗k + αkvk + x∗) .

In order to guarantee that the two validated boxes are linked, we require the estimates

|αk|+
δk+1,min

‖(µk, vk)‖
< δk,α and |(σ∗, x∗)|+ δk+1,min < δk,u .

Proof. The accuracy of the (k + 1)-st solution at α = 0 is given by δk+1,min. That is, there

exists a unique exact solution to F = 0 of the form

(λ̃, ũ) = (λ∗k+1 + σnew, u
∗
k+1 + xnew) ,

where ‖(σnew, xnew)‖ < δk+1,min. In order to derive our linking condition we need to estab-

lish that this solution is contained in the uniqueness region of the k-th segment. We can

therefore write

(λ̃, ũ)− (λ∗k, u
∗
k) = (αk + α+)(µk, vk) + (σ∗ + σ+, x∗ + x+) ,

where (σnew, xnew) = α+(µk, vk)+(σ+, x+), and (µk, vk) is orthogonal to the vector (σ+, x+).

Thus we have

‖α+(µk, vk) + (σ+, x+)‖ < δk+1,min .

By the orthogonality of the two vectors, both the estimate |α+|‖(µk, vk)‖ < δk+1,min and

the estimate ‖(σ+, x+)‖ < δk+1,min are satisfied. In order to satisfy the linking condition,

we have to require that both |αk + α+| < δk,α and ‖(σ∗ + σ+, x∗ + x+)‖ < δk,u hold. This

translates into the conditions

|αk + α+| ≤ |αk|+
δk+1,min

‖(µk, vk)‖
< δk,α ,
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as well as

‖(σ∗ + σ+, x∗ + x+)‖ ≤ ‖(σ∗, x∗)‖+ δk+1,min < δk,u .

This completes the proof of the theorem.

2.2.3 Preconditioning the coral map

If we use the above method on the coral system, it is extremely slow to produce the bi-

furcation diagram. This is due to the different relative sizes of the components of the

population and the parameter. We are able to significantly speed up the method by using

preconditioning. In particular, for k = 1, . . . , d let

f̃k(R̃, ũ) =
fk(100R̃, (s1ũ1, . . . , sdũd))

sk
,

where s1, . . . , sd are empirically determined positive scale constants. Then it is clear that

if we write (R, u) = (100R̃, (s1ũ1, . . . , sdũd)), then (R, u) is a fixed point of f if and only

if (R̃, ũ) is a fixed point of the preconditioned map f̃ . However, the map f̃ is better

scaled in the sense that we expect all components and the parameter to be of the same

order of magnitude. Therefore the pseudo-arclength continuation can be performed more

efficiently. In particular, we find that the size of δα in the preconditioned version is (in

comparable coordinates) around two orders of magnitude larger than those for the system

without modification. This means that we are able to validate a much larger portion of

the bifurcation diagram with the same number of continuation steps. Figure 2.10 shows

5000 continuation steps for the preconditioned case starting at R = 300 in the upper right

corner, shown in blue. For comparison purposes, 4000 continuation steps are shown in red

for the unmodified case. The bifurcation curve goes through a limit point and almost to

‖u‖ = 0 for the preconditioned case, but is hardly even a visible piece of red curve for

the original unmodified map. A similar preconditioning is performed in the case of the
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bifurcation points, as described in the next section.

2.3 Validation of the bifurcation points

In this section, we discuss the validation of the bifurcation points. Namely, we have used

a computer-assisted proof to validate the Neimark-Sacker bifurcation point, where the in-

variant circles form in Section 2.3.1 and the saddle-node bifurcation point in Section 2.3.2.

In each case, to do so we create an extended system H such that H = 0 guarantees the

needed conditions for a bifurcation point. We then apply the constructive implicit function

theorem to H. In both cases, we use interval arithmetic for a separate computational vali-

dation of the extra transversality and nondegeneracy conditions. We also prove that there

is a transcritical bifurcation point on the extinction axis. However, this last case does not

require a computer-assisted proof for validation, since the calculations are simple enough

for a closed form calculation.

2.3.1 Validation of the Neimark-Sacker bifurcation point

In Sections 2.1.4 and 2.1.5, we observed that at (R,P ) ≈ (154.1, 2689), there is a change in

stability of the fixed points, and for R > 154.1, typical initial conditions converge to popu-

lations which are oscillating in time. This is the behavior associated with a Neimark-Sacker

bifurcation. In this section we detail the process of rigorous validation of the Neimark-

Sacker bifurcation point seen in the upper right corner of Figure 2.4. While this is the

first time that a rigorous validation of a Neimark-Sacker bifurcation has been performed in

this way, rigorous validation of Hopf bifurcations was performed in [84] in the context of

ordinary and partial differential equations, but using a quite different method. Rather than

considering conditions along a curve of fixed points or equilibria, instead the method used a

validated continuation of periodic orbits with a renormalization technique, validating that

there was a bifurcation of equilibria at the turning point of this invariant closed curve of

solutions. Moreover, computer-assisted proofs were used in [10] to rigorously establish an
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invariant circle in a two-dimensional map, which is created via a Neimark-Sacker bifurca-

tion. They do not, however, establish the bifurcation point itself directly. While it would

be interesting to adapt their method to the coral model, this lies beyond the scope of the

current work.

We now proceed with our validation of the Niemark-Sacker bifurcation. As a first step,

we state the standard theoretical Neimark-Sacker bifurcation theorem found in a bifurcation

theory textbook. We then show how to adapt this classical result to create a rigorous

computer-assisted bifurcation theorem.

Theorem 2.3.1 (Neimark-Sacker bifurcation point). There is a Neimark-Sacker bifurcation

for the coral system in (2.4) and (2.5) for the basic reproduction number R∗ ≈ 154.1 and

with polyp population density P∗ ≈ 2689. The precise error bounds are stated in Table 2.2.

The remainder of this subsection is devoted to the proof of this theorem. Our approach is

to verify the classical conditions for a Neimark-Sacker bifurcation, as described for example

in [50] — and which we briefly review in the following. Consider a smooth map f : R×Rd →

Rd. Furthermore, we begin by assuming the following two conditions:

(a) Existence of a fixed point: The map f has a fixed point at a specific parameter value,

i.e., we assume that f(λ0, x0) = x0.

(b) Pair of imaginary eigenvalues on the unit circle: The Jacobian matrix Dxf(λ0, x0)

has exactly one simple conjugate pair of imaginary eigenvalues on the unit circle. We

denote these eigenvalues by e±iθ0 , for some angle 0 < θ0 < π.

These two conditions have to be supplemented by another three transversality and nonde-

generacy conditions, which will be stated in detail below. For this, however, we first need

to introduce some additional notation.

Due to the implicit function theorem, as long as the Jacobian matrix in (b) does not

have the eigenvalue 1, there exists a smooth curve of locally unique fixed points, which we
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denote by (λ, x0(λ)). Moreover, we define

A(λ) = Dxf(λ, x0(λ)) .

We would like to point out that in our application to the coral system, the rigorously

established existence of the branch of fixed points as a side effect also implies that along

the branch near the Neimark-Sacker point, the Jacobian matrix never has an eigenvalue 1.

Now let p ∈ Cd and q ∈ Cd denote the right eigenvectors of A(λ0) corresponding to eiθ0

and e−iθ0 , respectively, and normalized in such a way that 〈p, q〉 = 1, where the bracket

notation denotes the usual complex scalar product 〈p, q〉 := ptq. Finally, by Taylor’s formula

we can expand the function f in the form

f(λ0, x)− x0 = A(λ0)x+
1

2
B(x, x) +

1

6
C(x, x, x) +O(‖x‖4) , (2.18)

where B and C denote the second- and third-order derivative terms at the point (λ0, x0) in

the form

Bi(y, z) =
d∑

j,k=1

∂2f

∂xj∂xk
(λ0, x0)yjzk

and

Ci(y, z, w) =

d∑
j,k,l=1

∂3f

∂xj∂xk∂xl
(λ0, x0)yjzkwl .

After these preparations, we can now complete our description of the conditions needed for

the Neimark-Sacker theorem:

(c) Transversality condition: Using the notation above, suppose that

Re

(
e−iθ0

〈
p,
dA

dλ
(λ0)q

〉)
6= 0 .
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(d) Nondegeneracy condition I: Suppose that

θ0 6=
π

2
and θ0 6=

2π

3
.

(e) Nondegeneracy condition II: Suppose that

Re ( e−iθ0(〈p, C(q, q, q̄)〉+ 2〈p,B(q, (I −A)−1B(q, q̄))〉

+〈p,B(q, (e2iθ0I −A)−1B(q, q))〉) ) 6= 0 .

To summarize, the transversality condition implies that the pair of complex conjugate eigen-

values at λ0 crosses the imaginary axis with nonzero speed. The first nondegeneracy condi-

tion indicates that the eigenvalues e±iθ0 are not k-th roots of unity for k = 1, . . . , 4. Since

the proof of the Neimark-Sacker theorem is based on the Poincaré normal form theorem,

this condition excludes resonances. Finally, the left-hand side of the second nondegeneracy

condition gives the coefficient of the cubic term in the complex Poincaré normal form, and

its sign distinguishes between a sub- and super-critial Neimark-Sacker bifurcation. For more

details we refer the reader to the part of [50, Section 5.4] devoted to the Neimark-Sacker

bifurcation.

Under the above conditions, the Neimark-Sacker theorem guarantees that a locally

unique invariant closed curve bifurcates from the set of fixed points at the point (λ0, x0). As

already mentioned, the type of bifurcation depends on the sign of the left-hand side of (e).

In order to create the validation version of this theorem, we use a suitable extended

system to validate assumptions (a) and (b). After having established an existence and

uniqueness result for this extended system, one can then validate conditions (c), (d), and (e)

separately using interval arithmetic. For convenience, we have converted the complex system

into the following real system of equations. We are seeking zeros of the function Hns : Rm →
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R λ x1 P

154.1 5.286 1794 2689

δ1 δ2 ρ K

1.473 · 10−10 1.220 · 10−8 6.166 · 10−11 1.000

L1 (c) (d) (e)

4.097 · 107 4.338 · 10−2 46.85 −1.21 · 10−6

Table 2.2: Validation constants for the system (2.19) at the Neimark-Sacker bifurcation
point. All values are written with four decimal places, unless less accuracy is known. For
more efficient computation, we multiplied by a preconditioning matrix and determined
the bounds ρ, K, and L1. We selected a matrix close to the Jacobian matrix of Hns,
whose inverse was used as a preconditioner. The accuracy constant δ1 and the isolation
bound δ2 were derived using ρ, K and L1. For the three conditions (c), (d), and (e), which
were checked separately after the validation involving Hns, we used an interval arithmetic
enclosure of the approximate solution with radius δ1. Note that the angle in (d) is given in
degrees.

Rm, which is defined as

Hns(x, λ,w, u, a, b) =



f(λ, x)− x

Dxf(λ, x)w − aw + bu

Dxf(λ, x)u− bw − au

a2 + b2 − 1

‖w‖2 − 1

‖u‖2 − 1


. (2.19)

The first equation in the system is the fixed point condition. The second through fourth

equations form the simple complex eigenvalue pair condition, where we write e±iθ0 = a± ib,

and the eigenvectors p and q are given by u±iw, up to normalization. The last two equations

are included to single out a locally unique eigenvector.

For a function of the form f : R× Rd → Rd, we have x ∈ Rd, λ ∈ R, u,w ∈ Rd, as well

as a, b ∈ R. Therefore, the extended system Hns : Rm → Rm lives in dimension m = 3d+ 3.
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In our numerical validation, we are working with a 13-dimensional system, implying that

this extended system has dimension 42.

Using standard numerical methods, we obtained an approximate bifurcation point sat-

isfying Hns(x, λ,w, u, a, b) = 0, for the function Hns in (2.19), and with values for R, λ, x1,

and P as stated in Table 2.2. Since Hns is parameter free, we only seek rigorous solutions

of the extended system in (2.19) which satisfy Hns = 0 in R42. Thus we only need to verify

the hypotheses of the constructive implicit function theorem which involve the values of ρ,

K, L1, and `x > 0 at our computed approximation point. See also Theorem 2.2.1. Table

2.2 summarizes the constants found for the validation of the solution of system (2.19).

We obtain the bounds ρ and K by using interval arithmetic. While the bound ρ can

be found in a straightforward way, the constant K cannot easily be found by using interval

arithmetic to compute matrix inverses. Therefore, we first compute an approximate nu-

merical inverse. However, we still need a bound on the exact inverse, and a bound on the

accuracy of the approximate inverse. This is required in both the computation of K and

twice when we verify condition (e). The required quantities can be determined using the

following lemma. While we apply this lemma only for matrices, it is stated for the case of

Banach spaces.

Lemma 2.3.2 (Inverse bounds). Let A be a bounded linear operator between two Banach

spaces, and let B be an approximate inverse of A. Assume further that

‖I −BA‖ ≤ ρ1 < 1 as well as ‖B‖ ≤ ρ2 .

Then A is one-to-one, onto, and we have both

‖A−1‖ ≤ ρ2
1− ρ1

and ‖B −A−1‖ ≤ ρ1ρ2
1− ρ1

.

The bound on A−1 is due to a Neumann series argument, and the proof can be found

in [73]. In addition, the second bound is a consequence of ‖B −A−1‖ ≤ ‖I −BA‖‖A−1‖.

50



Having described how the constants ρ and K can be estimated rigorously, we now turn

our attention to the Lipschitz constant L1. It can be determined using the mean value

theorem for multivariate functions from the calculations in (2.20) below. For this, suppose

that the function Hns : Rm → Rm is differentiable and let hij(x) = (∂(Hns)i/∂xj)(x).

Then hij : Rm → R, and we let h : Rm → Rm×m denote the matrix-valued function with

entries hij . Throughout our computations, we used the maximum norms for vectors x,

and the induced matrix norm for matrices A. Recall that one then has ‖x‖ = ‖x‖∞ =

maxi=1,...,m |xi|, as well as ‖A‖ = ‖A‖∞ = maxi=1,...,m
∑m

j=1 |Aij |. After these preparations,

the mean value theorem implies

|hij(x)− hij(y)| ≤ max
c∈D
‖∇hij(c)‖1 ‖x− y‖ ,

where D denotes the line segment between the points x and y. Together with the definition

of the functions hij one further obtains

|hij(x)− hij(y)| ≤ max
c∈D

∥∥∥∥(∂2(Hns)i
∂x1∂xj

(c), . . . ,
∂2(Hns)i
∂xn∂xj

(c)

)∥∥∥∥
1

‖x− y‖

≤ m max
c∈D, k=1,...,m

∣∣∣∣∂2(Hns)i
∂xk∂xj

(c)

∣∣∣∣ ‖x− y‖ .
This finally furnishes

‖h(x)− h(y)‖ = max
i=1,...,m

m∑
j=1

|hij(x)− hij(y)|

≤ max
i=1,...,m

m∑
j=1

(
m max

c∈D, k=1,...,m

∣∣∣∣∂2(Hns)i
∂xk∂xj

(c)

∣∣∣∣) ‖x− y‖ . (2.20)

The factor in front of ‖x− y‖ on the right-hand side is then the Lipschitz constant L1, and
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it can be determined via interval arithmetic and automatic differentiation.

Altogether, our rigorous computer-assisted proof of Theorem 2.3.1 can be summarized

as follows. After completing the validation of the conditions that guarantee that the con-

structive implicit function theorem holds, we are able to verify the accuracy and uniqueness

regions for the bifurcation point. In addition, we can use Intlab [69] to rigorously show

that the Jacobian matrix Dxf(λ0, u0) has in fact only two eigenvalues on the unit circle,

by verifying that the remaining eleven eigenvalues all lie inside the unit disk. This implies

that a bifurcation occurs within the specified error of the approximate bifurcation point.

We then verify that this bifurcation is indeed a Neimark-Sacker bifurcation by showing that

conditions (c), (d), and (e) hold using interval arithmetic on these conditions. Here are a

few remarks which give a more detailed explanation:

• For each condition, we show that the interval containing the exact answer does not

contain zero for (c) and (e), and does not contain any of the avoided angles for (d).

• While we are able to work with real-valued quantities a, b, u, v in the initial calculations

of parts (a) and (b), we must switch to the complex case to verify the extra conditions

(c), (d), (e), and we normalize the complex vectors p and q using the normalization

condition 〈p, q〉 = 1.

• We need to be able to guarantee that all three conditions are satisfied for the entire

accuracy region. Therefore we evaluate these conditions on an interval vector whose

midpoint is the approximate bifurcation point, and whose radius is δ1. That is, every

component of the vector is an interval. The actual computed values of the conditions

(c)-(e) are intervals, but the values given in Table 2.2 are the worst-case scenario

values. Even with the interval calculations, conditions (c) and (d) are known to more

than four significant digits, but condition (e) is only known to three digits of accuracy.

This completes the proof of Theorem 2.3.1.
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R λ x1 P δ1 δ2
12.28 0.4213 569.5 853.4 3.306 · 10−12 4.015 · 10−7

ρ K L1 (c) (d)

1.653 · 10−12 1 1.245 · 106 −353.4 −9.924 · 10−4

Table 2.3: Validation constants for the extended system in (2.21) at the saddle-node bifur-
cation point. All values are written up to four decimal places. For more efficient compu-
tation, we multiplied by a preconditioning matrix and obtained the bounds ρ, K, and L1.
We selected a matrix close to the Jacobian matrix of Hsn, whose inverse was used as a
preconditioner. The accuracy constant δ1 and the isolation bound δ2 were derived using ρ,
K, and L1. For the two conditions (c) and (d), which were checked separately after the val-
idation involving Hsn, we used an interval arithmetic enclosure of the approximate solution
with radius δ1.

2.3.2 Validation of the saddle-node bifurcation point

In this section, we use a computer-assisted proof to show that there is a saddle-node bifur-

cation point in the coral model. The precise result can be stated as follows.

Theorem 2.3.3 (Saddle-node bifurcation point). The coral model in (2.4) and (2.5) has

a saddle-node bifurcation point near the basic reproduction number R∗ ≈ 12.28, which cor-

responds to the parameter value λ∗ ≈ 0.4213, and for polyp population density P∗ ≈ 853.4.

The precise error bounds are stated in Table 2.3.

As in the previous subsection, the remainder of the present one is devoted to the veri-

fication of this theorem via computer-assisted rigorous methods. In order to establish the

theorem, we need to verify the following conditions from the classical saddle-node bifurcation

theorem, see for example [50]. Let f : R × Rd → Rd be a smooth mapping. Furthermore,

assume the following four conditions:

(a) Existence of a fixed point: The map f has a fixed point at a specific parameter value,

i.e., we assume that f(λ0, x0) = x0.

(b) Simple eigenvalue 1: The Jacobian matrix Dxf(λ0, x0) has a simple eigenvalue of 1.

Let p and q denote the corresponding left and right eigenvectors, and suppose they
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are normalized to satisfy ptq = 1.

(c) Transversality condition: Using the above notation we assume

ptDλf(λ0, x0) 6= 0 .

(d) Nondegeneracy condition: Now let A(λ0) = Dxf(λ0, x0), and consider the expansion

of f given in (2.18). Then we suppose further that

ptB(q, q) 6= 0 .

Then the classical saddle-node bifurcation theorem guarantees a saddle-node bifurcation at

the pair (λ0, x0).

In order to validate our bifurcation point using this theorem, we use again an extended

system of the form Hsn = 0 to validate conditions (a) and (b), and then we verify condi-

tions (c) and (d) separately afterwards. This time, the extended mapping Hsn is a map

Hsn : R27 → R27, and it is defined as

Hsn(x, v, λ) =


f(λ, x)− x

Dxf(λ, x)v − v

‖v‖2 − 1

 . (2.21)

In order to validate (c), and (d), we use interval arithmetic for both of these conditions,

and show that 0 does not lie in the interval containing the resulting answer. Note that the

vector q is just a multiple of v, and p can be found in a verified way using Intlab [69]. The

summary of the constants of this validation process is given in Table 2.3. This computer-

assisted proof is quite similar to the one used for the Neimark-Sacker bifurcation in the last

subsection, and therefore we do not give any more elaboration on the technique used to
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compute these values. This completes the proof of Theorem 2.3.3.

2.3.3 Validation of the transcritical bifurcation point

We close this section by showing that there is indeed a transcritical bifurcation on the

trivial solution curve, i.e., the extinction curve. This time, it is not necessary to perform a

computer-assisted proof, as the bifurcation can be established directly by hand.

Theorem 2.3.4 (Transcritical bifurcation point). For the coral population model in (2.4)

and (2.5) there exists a transcritical bifurcation point for basic reproduction number R∗ =

c2/c1 ≈ 72.22, which corresponds to the parameter value λ∗ = R∗/(b·a) and to x∗ = 0 ∈ R13.

Recall that the constants c1 and c2 were introduced in (2.2), and the vectors a and b were

defined in (2.6) and the following paragraph.

Proof. It is clear from the model that x = 0 is a fixed point for all values of the parameter λ.

Furthermore, one can easily show that

det(Dxf(λ, 0)− I) = λ− c2
c1(b · a)

.

Therefore, the Jacobian matrix of f(λ, ·) at the origin has a simple eigenvalue of 1 if and

only if λ equals

λ∗ =
c2

c1(b · a)
.

Now denote the right and left eigenvectors of Dxf(λ∗, x∗) by v and w, respectively. One

can show directly that v = a defined in (2.6), and w is such that

w1 = b · a , wd = bd , and wk = bk + Skwk+1 for k = 2, . . . , d− 1 .

Then in order to establish the transcritical bifurcation, two nondegeneracy conditions have

55



to be verified. Since we have wtDλf(λ∗, x∗) = 0, one first has to show that

wtDxλf(λ∗, x∗)v =
(b · a)c1
c2

wtb

is nonzero, which is clearly satisfied since all the terms of b and w are non-negative, and

contains terms of the form b2k (which are strictly positive for each nonzero bk).

Second, we need to show that wtDxxf(λ∗, x∗)[v, v] 6= 0. Since only the first component

of f , which we call f1, is nonlinear, one merely needs to consider the second derivative of

this component function. We get the following formula.

Dxxf1(λ∗, x∗)[v, v] =
2(β − α)

Ω

d∑
k=2

pkak.

By looking at the corresponding parameter values, this value is also nonzero, and therefore

the second nondegeneracy condition holds. This completes the proof of the theorem.

2.4 Conclusion

In this chapter, we have considered an age-structured population model for red coral pop-

ulations with a parameter of fitness. When the fitness increases sufficiently, a set of stable

invariant closed curves of oscillating orbits form, and these stable curves persist for large val-

ues of the fitness parameter. It is not surprising that for small fitness parameters, solutions

limit to extinction, but we see that even for large fitness, populations become extremely

vulnerable, as they limit to oscillation spending long period of time near extinction.

The coral population model has a curve of fixed points containing a Neimark-Sacker,

saddle-node, and transcritical bifucation point. We develop new methods based on previous

computer-assisted proof methods and use these methods to validate the branch of fixed

points, and the three bifurcation points.
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Chapter 3: Dynamics of Swarms with Communication Delay

Swarming behavior, which we define as the emergence of spatio-temporal group behaviors

from simple local interactions between pairs of agents, is widespread and observed over a

range of application domains. Examples can be found in biological systems over a range of

length scales, from aggregates of bacterial cells and dynamics of skin cells in wound healing

[9, 53, 67] to dynamic patterns of fish, birds, bats, and even humans [28, 36, 54, 83]. These

systems are particularly interesting because they allow simple individual agents to achieve

complex tasks in ways that are scalable, extensible, and robust to failures of individual

agents. In addition, these swarming behaviors are able to form and persist in spite of

complicating factors such as delayed actuation, latent communication, localized number

of neighbors each agent is able to interact with, heterogeneity in agent dynamics, and

environmental noise.

These factors have been the focus of previous theoretical research in describing the

bifurcating spatial-temporal patterns in swarms, as seen for example in Refs. [42,63,76,82].

Likewise, the application of swarms have been experimentally realized in areas, such as

mapping [68], leader-following [64, 91], and density control [58]. To guarantee swarming

behavior experimentally, control is typically employed [14,26,44,80,87] to prove convergence

to a given state by relying on strict assumptions to guarantee the desired behavior. However,

by relaxing certain assumptions, a number of studies show that even with simple interaction

protocols, swarms of agents are able to converge to organized, coherent behaviors in a self-

emergent manner; i.e. autonomously without control.

Different mathematical approaches yielded a wide selection of both agent-based [36,54,

83, 85] and continuum models that predict swarming dynamics [16, 67, 82]. In almost all

models, since the agents have just a few simple rules, there exists only a relatively small

number of controllable parameters. The parameter set usually consists of a self-propulsion
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force, a potential function governing attracting and repelling forces between agents, and a

communicating radius governing the local neighborhood at which the agents can sense and

interact with each other.

In both robotic and biological swarms, an additional parameter appears as a delay

between the time information is perceived and the actuation (reaction) time of an agent.

Such delays have now been measured in swarms of bats, birds, fish, and crowds of people

[19,28,65]. The measured delays are longer than the typical relaxation times of the agents,

and may be space and time dependent. Robotic swarms experience communication delays

which provide similar effects to the delay experienced in natural swarms. Incorporating

stationary delays along with a minimal set of parameters in swarm models results in multi-

stability of rotational patterns in space [17,41,77,78,94].

In particular, for delays that are equal and fixed, one observes three basic swarming

states or modes: Flocking, or translation state, which is a translating center of mass, Milling,

or ring state, where the agents are splayed out on a ring in in phase about a stationary

center of mass, and a Rotating state, where the center of mass itself rotates (see Fig. 3.1.)

Note that rotational state is a product of fixed delays, not previously seen in cases without

any delays. This has been verified both theoretically and experimentally [17,78]. However,

in situations with robots, even simple communication models are based on the distance

between agents [43, 96]. Accordingly, if one assumes that the delays are range dependent,

the problem becomes one of studying state dependent delays where delays depend implicitly

on the relative positions between agents.

3.1 Swarms with range-dependent delay

In general, range-dependent delay is a delay that depends only on distance between agents.

When placing swarms in realistic environments, delays are not necessarily a continuous func-

tion of range, but rather it is the increasing probability of delays increasing stochastically
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Figure 3.1: Three basic swarm states.

when agents move further away from one another beyond a certain radius [20,21]. That is,

the rate of communication becomes spatially dependent, whereby near agents see a signal

with a fast rate of communication, but due to shading and fading of signals, communication

rates are slowed and complex outside a given radius. Underwater communication of marine

robot teams is an excellent swarm example where delays outside a significant radius impart

rates of communication of one to two orders of magnitude greater than local communication

rates [4].

The following swarm model takes a globally coupled swarm, and explicitly relaxes the

fixed delay assumption, by including range dependent delay based on a fixed communi-

cation radius. We show that when range-dependent delays are included, new frequencies

are introduced in the swarm center of mass, generating bifurcations and creating swarm

dynamics on a torus. Our findings are important for robotic swarming where one of the

goals is to produce desired patterns autonomously, without external controls. The pattern

formations predicted in this section show how delayed information, whether coming from

communication, actuations, or both, impacts the stability of swarm states, such as ring

and/or rotating states. In an attempt to locate those parameter regions where patterns are

destabilized, we may provide a more comprehensive characterization of the autonomously
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accessible swarm states in the presence of range-dependent delay.

3.1.1 The swarm model

Consider a swarm of delay-coupled agents in R2. Each agent is indexed by i ∈ {1, . . . , N}.

We use a simple but general model for swarming motion. Each agent has a self-propulsion

force that strives to maintain motion at a preferred speed and a coupling force that governs

its interaction with other agents in the swarm. The interaction force is defined as the

negative gradient of a pairwise interaction potential U(·, ·). All agents follow the same

rules of motion; however, mechanical differences between agents may lead to heterogeneous

dynamics; this effect is captured by assigning different acceleration factors (denoted κi) to

the agents. In this section, we assume κi = 1 for all i. For the effect of heterogeneity on

the swarm bifurcations, see [76].

Agent-to-agent interactions occur along a graph G = {V, E}, where V is the set of vertices

vi in the graph and E is the set of edges eij . The vertices correspond to individual swarm

agents, and edges represent communication links; that is, agents i and j communicate with

each other if and only if eij ∈ E . All communications links are assumed to be bi-directional,

and all communications occur with a time delay τ . That is, range dependence is not

included. Let ri ∈ R2 denote the position of the agent i and let Ni = {vj ∈ V : eij ∈ E}

denote its set of neighbors of agent i. The motion of agent i is governed by the following

equation:

r̈i = κi(1− ‖ ṙi ‖2)ṙi − κi
∑
j∈Ni

∇xU(ri(t), r
τ
j (t)), (3.1)

where superscript τ is used to denote time delay, so that rτj (t) = rj(t− τ), ‖ · ‖ denotes the

Euclidean norm, and ∇x denotes the gradient with respect to the first argument of U . The

first term in Eq. 3.1, (1− ‖ ṙi ‖2)ṙi, is the self-propulsion and frictional drag forces on each

agent. Therefore, in the absence of coupling, agents tend to move on a straight line with

unit speed ‖ ri ‖ = 1 as time goes to infinity.
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To analyze the dynamics of a large scale swarm, we use a harmonic interaction potential

with short-range repulsion.

U(ri, r
τ
j ) = cre

−‖ ri−rj ‖
lr +

a

2N

∥∥ ri − rτj
∥∥2 . (3.2)

In Eq. 3.1, it is assumed that the communication delay, τ , is independent of the distance,

or range, between any pair of agents. (Notice that the exponent of the repulsion term is

independent of the delay since the repulsion force is local.) With the addition of delays

in the network, it was shown in homogeneous communication networks that in addition to

the usual dynamical translating and milling (or ring) states, for sufficiently large τ , new

rotational states emerge [78]. In particular, for a a given attractive coupling strength, there

is a delay that destabilizes the periodic ring state into a rotating state, in which the agents

coalesce to a small group and move around a fixed center of rotation; this behavior is quite

different from the ring state where agents are spread out in a splay state phase. The rotating

state is only observed with delay introduced in the communication network, and it appears

through a Hopf bifurcation as previously studied [94].

However, in real-world robotic swarms, communication delays are not uniform between

all pairs of agents; delays may be stochastic or even state-dependent. In order to handle

range dependent delays, we will make an approximation that depends on a communication

range radius.

Approximating range dependent delayed coupling

For the coupling term, we are interested in introducing an approximation to range based

coupling delay. Since all communicating agents send signals with some delay, we compute

relative distances defined as

Dτ
i,j ≡ ||ri − rτj ||. (3.3)
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We define a Heaviside function, H(x), that is zero when x ≤ 0 and 1 otherwise, and we

employ global coupling based on a spring potential. For our range dependent metric, we

let ε ≥ 0 denote the range radius. Suppose that when the separation between two agents is

small, that is less than ε, then sensing between two agents is almost immediate. In practice,

the time needed for sensing depends on several factors, such as actuation times, and so

distances in practice are computed with delay. Therefore, we model the coupling term for

the ith agent as

Ci(ri, rj , r
τ
j , ε) = − a

N
(∇xU(ri(t), r

τ
j (t)))H(Dτ

i,j − ε)

− a

N
(∇xU(ri(t), rj(t)))(1−H(Dτ

i,j − ε)), (3.4)

where the first coupling term has delay turned on since the distance is outside a ball of

radius ε, while the second term has no delay since the distance is within the ε ball. The

resulting swarm model with range dependence from Eq. 3.4 is now

r̈i = κi(1− ‖ ṙi ‖2)ṙi − κi
∑
j∈Ni

Ci(ri, rj , r
τ
j , ε). (3.5)

If the delayed distance is within an ε ball, then we evaluate the coupling without delay.

Otherwise the coupling is delayed. Thus the coupling function takes into account when

delay is active or not between pairs of communicating agents, and depends on the range

radius, ε.

The Heaviside function of the right hand side of Eq. 3.9 renders the differential delay

equation derivatives discontinuous, and as such poses a numerical integration problem. To

mollify the lack of smoothness, we approximate H(x) by letting H(x) ≈ 1
π arctan(kx) + 1

2 ,

where k � 1 and constant, and limits on the Heaviside function as k →∞.

Using only the delayed distance to compute a range dependent coupling assumes that

any measurement is not instantaneous. If one were to be able to compute the ideal situation
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where delay would not be a sensing factor, then certain issues would need to be resolved,

which we do not consider here.

Numerical simulations of full swarms

Examples of simulations using the swarm model with the range dependent coupling are

shown below. Here the number of agents, N = 150, and the coupling strength, a = 2.0. For

the remainder of the analysis, we set cr = 0, and note that the attractors persist when the

repulsive amplitude is sufficiently small [78].

Figure 3.2: Three snapshots of swarm state in space for ε = 0.01, a = 2.0, τ = 1.75. Sample
times t0, t1 = t0 + 20, t2 = t0 + 40 .

Note that even when ε is very small, as shown in Fig. 3.2, we observe a mix of clustered

states which are a combination of pure ring and rotation states. The agents tend to cluster

into local groups, and the clusters move in clockwise and counter-clockwise directions as

in the ring state. Here, however, the phase differences between agents are non-uniform.

When examining a single random agent, as shown in Fig 3.3, it is periodic with a sharp
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frequency of rotation, and the relative positions of all individual agents are phase locked.

When considering the center of mass of the positions over all agents, R ≡ 1
N

∑
i ri, the

center of mass does small amplitude oscillations about a fixed point (not shown).

As the radius ε increases, instability of the periodic mixed state occurs, giving rise to

more complicated behavior, as seen in Fig. 3.3. New frequencies are introduced, causing

the ring state to appear as a quasi-periodic attractor. Moreover, the dynamics of the center

of mass has its own non-trivial dynamics which includes the effects of new frequencies.

Figure 3.3: Left: Swarm Ring State ε = 0.01, a = 2.0, τ = 1.75.(a) Time series of the x-
component of a single agent. (b)The power spectrum, that was computed by FFT method
in MATLAB, showing a sharp frequency. (c) A phase portrait of the orbit of a single agent.
The red point denotes the center of mass. Right: Swarm instability ε = 0.25, a = 2.0, τ =
1.75. (a)Time series of the x-component of a single agent. (b)The Power spectrum showing
a slight broadening and birth of a new frequency. (c)A phase portrait of the orbit of a single
agent.

By examining the Poincare map of the attractors, the instability gives rise to dynamics
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which we conjecture is motion on a torus. Letting (Mx,My) denote the time averaged

center of mass over all agents, we compute the sequence x(ti), i = 1..M when y(ti) = 0 and

x(ti) > Mx. The result is shown in the two panels in Fig. 3.4. Panel (a) shows a complicated

toroidal motion after transients are removed of the center of mass in Fig. 3.3c. For a single

frequency, the dynamics of the center of mass would be a single fixed point. The addition

of new frequencies is revealed in the Poincare map as complicated motion on a torus. For

larger values of ε, the motion on the torus converges to a periodic attractor in panel (b).

Figure 3.4: Poincare map of Eqs. 3.1-3.4 for (a) ε = 0.25, (b) ε = 0.5. Other parameters
are fixed: a = 2.0, τ = 1.75. See text for details.

3.1.2 Mean-field equation of range dependent delay coupled swarm

In order to shed some light on the origin of the bifurcation to dynamics on a torus, we

examine the full swarm model from a mean-field perspective. The mean field is much lower

dimensional, and a full bifurcation analysis may be done. We consider the case of all-to-all

communication. We define R =
1

N

N∑
i=1

ri and ri = R+ δri, where δri is a fluctuation term
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with the identity

N∑
i=1

δri = 0. (3.6)

Then we can write Eq. 3.5 as

R̈+ δr̈i = (1− |Ṙ+ δṙi|2)(Ṙ+ δṙi)

− a

N

N∑
j=1,j 6=i

((R+ δri)− (Rτ + δrτj ))C1,i

− a

N

N∑
j=1,j 6=i

((R+ δri)− (R+ δrj))C2,i, (3.7)

where

C1,i = H(‖ri − rτj ‖ − ε)

= H(‖(R+ δri)− (Rτ + δrτj )‖ − ε)

= H(‖R−Rτ + δri − δrτj ‖ − ε)

and

C2,i = 1− C1,i.

We use the following to reduce the equations of motion to the mean field: From Eq. 3.6, we

note

N∑
i=1

δrτi =

N∑
j=1,j 6=i

δrτj + δrτi = 0 ⇐⇒

−
N∑

j=1,j 6=i
δrτj = δrτi . (3.8)
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We further assume that all perturbations from the mean, δri, are all negligible. (This

is always true if the coupling amplitude is sufficiently large.) In addition, we use the fact

that
a(N − 1)

N
limits to a, as N → ∞. Therefore, we obtain mean field approximation for

the center of mass of range dependent coupled delay case:

R̈ = (1− |Ṙ|2) · Ṙ− a(R−Rτ ) ·H(‖R−Rτ‖ − ε) (3.9)

3.1.3 Numerical analysis of the mean field equation

Examples of rotational attractors

(a)

(b)

Figure 3.5: Periodic motion of the mean field Eq. 3.9 for ε = 0.01, a = 0.64, τ = 1.6. (a)
Time series of the x-component of the mean field. (b) Power spectra of the time series.
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Figure 3.6: Quasi-periodic motion of the mean field Eq. 3.9 for ε = 0.01, a = 0.64, τ = 1.609.
(a) Time series of the x-component of the mean field. Solid (red) line denotes period length
of dominant spectral peak. Dashed line denotes period length of secondary peak. (b) Power
spectra of the time series.

As in the case for the full multi-agent system, we see the existence of periodic behavior

for τ sufficiently below an instability threshold, as shown in the time series of Fig. 3.5. As

we increase τ , we expect the periodic orbit to lose stability, resulting in a new attractor.

In particular, one notices the emergence of a new frequency in addition to the existing

dominant one, as shown in Fig. 3.6 The additional frequency usually implies a bifurcation

to dynamics on a torus, or a higher dimensional torus.

We now investigate this transition by tracking the stability via monitoring the Floquet

exponents corresponding to the periodic orbit. For a general differential delay equation given

by ẋ(t) = F (x(t),x(t− τ)), if φ(t) = φ(t+ T ) for all t ≥ 0, then stability is determined by
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examining the linearized equation along φ(t):

Ẋ(t) =
∂F

∂x(t)
(φ(t),φ(t− τ))X(t)

+
∂F

∂x(t− τ)
(φ(t),φ(t− τ))X(t− τ). (3.10)

The stability of the periodic solution is determined by the spectrum of the time integration

operator U(T, 0) which integrates Eq. 3.10 around φ(t) from time t = 0 to t = T. This

operator is called the monodromy operator and its (infinite number of) eigenvalues, which

are independent of the initial state, are called the Floquet multipliers [31]. For autonomous

systems, it is necessary and sufficient there exists a trivial Floquet multiplier at 1, corre-

sponding to a perturbation along the periodic solution [32, 34]. The periodic solution is

stable provided all multipliers (except the trivial one) have modulus smaller than 1; it is

unstable if there exists a multiplier with modulus larger than 1. Bifurcations occur when-

ever Floquet multipliers move into or out of the unit circle. Generically three types of

bifurcations occur in a one parameter continuation of periodic solutions: a turning point,

a period doubling, and a torus bifurcation where a branch of quasi-periodic solutions origi-

nates and where a complex pair of multipliers crosses the unit circle [31]. We have tracked

a set of stable periodic orbits for various radii of ε, and located the change in stability by

computing the Floquet multipliers as detailed above. The results plotted in Fig. 3.7 show

that for a range of radii ε, there exists a bifurcation to a torus at some delay. Notice that

as ε increases, there results an increase in the size of the orbits, which qualitatively agrees

with our full agent based simulations.

Since there exists a range of delays which destabilize periodic swarm dynamics for each

ε, we summarize the onset of torus bifurcations by plotting the locus of points at which

stability changes as a a function of coupling amplitude and delay. The results are plotted

in Fig. 3.8, with AUTO by using compartment model for τ . Fig. 3.8 is revealing in that
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Figure 3.7: Bifurcation plot on the mean field equation showing the L2norm of the periodic
orbits as a function of delay τ . Parameter a=0.68. Red (blue) markers denote unstable (sta-
ble) orbits.Cyan symbols denote the change in stability where a pair of complex eigenvalues
cross the imaginary axis.

it shows a functional relationship of the bifurcation onset that is similar over a range of

ε. For larger values of ε, it is clear that lower values of delay and coupling are required

to generate bifurcations. This holds true over two orders of ε. For a fixed value of ε, we

also see monotonic relationship between delay and coupling strength, so that it is easier for

smaller delays to destabilize periodic motion for larger coupling strengths.

3.1.4 Conclusions

We considered a new model of a swarm with delay coupled communication network, where

the delay is considered to be range dependent. That is, given a range radius, delay is on if

two agents are outside the radius, and zero otherwise. The implication is that small delays

do not matter if the agents are close to each other.

The additional range dependence creates a new set of bifurcations not previously seen.

For general swarms without delay, the usual states consist of flocking (translation) or ring /

rotational state (milling), with agents spread in phase. With the addition of a fixed delay,
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Figure 3.8: Plotted is the locus of points at which torus bifurcations emerge as a function
of coupling amplitude a, delay τ for various range radii ε for the mean field Eq. 3.9.

a rotational state bifurcates that has all agents in phase and rotate together [39]. Range

dependence introduces a new rotational bifurcating state that exhibits behavior observed

as a new mixed state combining dynamics of both ring and rotating states.

The radius parameter ε was used to quantify the bifurcation of the rotational mixed

state. For small ε, we see dynamics for the full swarm shows clustered counter-rotational

behavior that is periodic. This agrees for small radius values in the mean field description

as well. As the radius increases, the mixed periodic state generates new frequencies in the

full model, which are manifested as torus bifurcations in the mean field. Mean field analysis

was done by tracking Floquet multipliers that cross the imaginary axis as complex pairs.

Frequency analysis explicitly shows the additional frequencies in the mean field.

Finally, we tracked the locus of coupling amplitudes and delay for various values of

ε locating the parameters at which torus bifurcation occur. The results reveal that as ε

increases, torus bifurcations onset at lower values of coupling amplitude and delay. The

implications are that more complicated behavior than periodic motion has a greater prob-

ability of being observed in both theory and experiment if range dependence of delay is
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included.

3.2 Unstable modes and bi-stability in delay-coupled swarms

Deriving inspiration from nature, embodied artificial swarm systems have been created to

mimic emergent pattern formation– with the ultimate goal of designing robotic swarms that

can perform complex tasks autonomously [6–8,93]. Recently robotic swarms have been used

experimentally for applications such as mapping [68], leader-following [64, 91], and density

control [58]. To achieve swarming behavior, often, robots are controlled based on models,

where swarm properties can be predicted exactly [14, 26, 44, 80, 87]. Such approaches rely

on strict assumptions to guarantee behavior. Any uncharacterized dynamics can cause

patterns to be lost or changed. This is particularly the case for robotic swarms that move

in uncertain environments and must satisfy realistic communication constraints.

In general, time-delays in swarms may result in multi-stability of rotational patterns

in space, and the possibility of switching between patterns [2, 17, 33, 37, 41, 49, 77, 78, 94].

Though observed in simulations and experiments, swarm bi-stability due to time-delay has

lacked an accurate quantitative description, which we provide in this section.

Consider a system of mobile agents, or swarmers, moving under the influence of three

forces: self-propulsion, friction, and mutual attraction. In the absence of attraction, each

swarmer tends to a fixed speed, which balances propulsion and friction but has no preferred

direction. The agents are assumed to communicate through a network with time delays.

Namely, each agent is attracted to where its neighbors were at some moment in the past.

A simple model which captures the basic physics is

mr̈l =
(
α− β ‖ ṙl ‖2

)
ṙl +

a

N

∑
j 6=l

[rj(t− τ)− rl] + ξl(t). (3.11)

where m is the mass of each agent, α is a self-propulsion constant, β is a friction constant,

a is a coupling constant, τ is a characteristic time delay, N is the number of agents, rl is
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the position-vector for the l-th agent in two spatial dimensions, and ξl(t) is a small noise

source [15,18,23,57,94]. Equation (3.11) has been implemented in experiments with several

robotics platforms including autonomous cars, boats, and quad-rotors [17,78]. Note that we

we take m = α = β = 1 and neglecting noise, we recover Equation (3.1) for κi = 1 case from

the previous section. Again in this section, we consider the simple case of spring interaction

forces and global communication topology for illustration and ease of analysis; however,

these assumptions can be relaxed with predictable effects on the dynamics [11,42,78,82].

3.2.1 Swarming pattern and stability

From generic initial conditions a swarm described by Eq.(3.11) tends to one of two spatio-

temporal patterns: a ring (milling) state, or a rotating state – depending on initial conditions

and parameters [23]. The two patterns can be seen in Fig.3.9(b). Note that the snapshots in

time are drawn from simulations of Eq.(3.11) with Gaussian white-noise, <ξ
(c)
l (t) ξ

(c′)
j (t′)>=

0.02 ·δ(t−t′)δljδcc′ , where c and c′ denote the Cartesian components, x or y. The emergence

and stability of the ring and rotating patterns are often qualitatively described using mean-

field approximations, in which the motions of agents relative to the swarm’s center-of-mass

are neglected [61,94]. Though useful, such descriptions do not capture bi-stability and noise-

induced switching, let alone the more complex motions observed in experiments [17, 78].

What’s more, higher-order approximation techniques predict bi-stability qualitatively, but

suffer from quantitative inaccuracy, and are difficult to analyze [95]. Hence, an analyzable

and accurate description of stability is needed, especially for robotics experiments which

use Eq.(3.11) (and its generalizations) as a basic autonomy-controller. In support of such

experiments, we analyze the linear stability of the ring and rotating states exactly for large

N in the noiseless limit, and compare our predictions to simulations.
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Ring state

First, since the ring and rotating states are effectively two types of phase-locked solutions

with different phase distributions and frequencies, it is useful to transform Eq.(3.11) into

polar coordinates where each can be naturally represented as fixed-point solutions in ap-

propriately chosen rotating reference frames. Introducing the coordinate transformations

rl≡〈rl cos(φl) , rl sin(φl)〉, substituting into Eq.(3.11), and neglecting noise, we obtain:

mrlφ̈l =
[
α− β

(
r2l φ̇

2
l + ṙ2l

)]
rlφ̇l − 2mṙlφ̇l (3.12)

+
a

N

∑
j 6=l

rj(t− τ) sin
(
φj(t− τ)− φl

)
,

mr̈l =
[
α− β

(
r2l φ̇

2
l + ṙ2l

)]
ṙl +mrlφ̇

2
l (3.13)

+
a

N

∑
j 6=l

[
rj(t− τ) cos

(
φj(t− τ)− φl

)
− rl

]
.

For large N we can approximate the restricted sums in Eqs.(3.12-3.13), over all but

one of the agents, with sums over all of the agents. In this case, ring-state formations are

solutions of Eqs.(3.12-3.13) where radii and frequencies are constant [94], and phases are

splayed uniformly,

rj(t) =

√
mα

βa
, φj(t) =

2π(j − 1)

N
+

√
a

m
t. (3.14)

This is easy to check by direct substitution. In general, many related ring states also exist,

i.e, where some number of agents have the opposite frequency, −
√
a/m, and are distributed

uniformly around a concentric ring. In our stability analysis below, we focus on the case

where all agents rotate in the same direction for three reasons: this case persists when small

repulsive forces are added (as in robotics experiments [17, 78]), the stability of any given
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Figure 3.9: Stability diagram for delay-coupled swarms. (a) The blue (upper) curve denotes
a Hopf bifurcation for the ring state (b, upper). The red (lower) curve denotes a combined
line for saddle-node and double-Hopf bifurcations for the rotating state (b, lower). Points
denote simulation-determined stability changes for N = 600: a ring state with all agents
rotating in the same direction (blue circles), a ring state with half the agents rotating in
the opposite direction (blue squares), and a rotating state (red diamonds). (b) Snapshots
for both states in the x-y plane (a=1, τ=2.6, N=100). Positions are drawn with red circles
and velocities with blue arrows. In all panels m=α=β= 1.

ring pattern has only a weak dependence on the number of nodes rotating in each direction

(as demonstrated with simulations), and analytical tractability.

To determine the local stability of the ring state we need to understand how small

perturbations to Eq.(3.14) grow (or decay) in time. Our first step is to substitute a general

perturbation, rj(t) =
√
mα/βa +Bj(t) and φj(t) = 2π(j − 1)/N +

√
a/m t +Aj(t), into

Eqs.(3.12-3.13) and collect terms to first order in Aj(t) and Bj(t) (assuming |Aj | , |Bj | �

1 ∀j). The result is the following linear system of delay-differential equations for N � 1

with constant coefficients – the latter property is a consequence of our transformation into
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the proper coordinate system and is what allows for an analytical treatment:

√
mα

βa

[
mÄl + 2αȦl

]
+2

√
a

m

[
mḂl + αBl

]
(3.15)
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a

N

∑
j

[
Bτ
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mτ
)
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mα
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√
a
mτ
)]
,

mB̈l − 2m

√
α

β
Ȧl =

a

N

∑
j

[
Bτ
j cos

(
2π(j−l)
N −

√
a
mτ
)
−(Aτj −Al)

√
mα

βa
sin
(
2π(j−l)
N −

√
a
mτ
)]

(3.16)

where Aτj ≡Aj(t− τ) and Bτ
j ≡Bj(t− τ).

Given the periodicity implied by the equally-spaced phase variables in Eq.(3.14), it

is natural to look for eigen-solutions of Eqs.(3.15-3.16) in terms of the discrete Fourier

transforms of Aj(t) and Bj(t). In fact, by inspection we can see that only the first harmonic

survives the summations on the right-hand sides of Eqs.(3.15-3.16), because of the sine and

cosine terms, and hence we look for particular solutions: Aj(t) = A exp{λt− 2πi(j− 1)/N}

and Bj(t) = B exp{λt − 2πi(j − 1)/N}. Substitution and a fair bit of algebra gives the

following transcendental equation for the stability exponent, λ, of the ring state:

mλ2 +2αλ− a
2e
−τ
[
λ+i
√

a
m

]
2m
√

a
mλ− a

2ie
−τ
[
λ+i
√

a
m

] +

2
√

a
m

[
mλ+ α

]
− a

2ie
−τ
[
λ+i
√

a
m

]
mλ2 − a

2e
−τ
[
λ+i
√

a
m

] = 0. (3.17)

In general, the ring state will be linearly stable if there are no solutions to Eq.(3.17) with

Re[λ]> 0. In fact, varying a and τ while fixing the other parameters, we discover a Hopf

bifurcation, generically, at which λ=±iωc [50]. An example Hopf line is shown in Fig.3.9(a)

in blue for m=α=β= 1. Based on our analysis, we expect the ring state to be locally stable
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below the blue line and unstable above it. For comparison, the blue circles in Fig.3.9(a)

denote simulation-determined transition points: the largest τ(a) for which a swarm of 600

agents, initially prepared in a ring state with a small random perturbation (i.e., independent

and uniformly distributed Aj and Bj over [−10−5, 10−5]), returns to a ring configuration

after an integration time of t = 20000. Numerical predictions from Eq.(3.17) show excellent

agreement with these simulation results. Similarly determined transition points for a ring

formation in which half the agents rotate in one direction, and half rotate in the opposite

direction, are shown with blue squares. We can see that the ring’s Hopf-transition line still

gives a good approximation for this more general case, especially for larger values of a.
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Figure 3.10: Frequency of unstable modes near bifurcation. (a) unstable frequency for the
ring state at the Hopf bifurcation (black line) determined from the power spectrum of the
swarm’s center-of-mass (red circles). (b) unstable frequency for the rotating state at the
double-Hopf bifurcation (black line) determined from the power spectrum for a single agent.
Inlet panels show example spectra for both states: (a) when (a=1.565, τ=3.243), (b) when
(a=3.5, τ=1.059). In all panels m=α=β= 1.
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In addition to the transition points, we can check the frequency of oscillations around the

ring state, implied by the existence of an unstable mode for τ(a) slightly above the Hopf

bifurcation. First we perform a simulation initially prepared in the ring state with a small

perturbation (as described in the preceding paragraph), and compute the peak frequency,

ω∗, in the Fourier spectrum of the swarm’s center-of-mass, R(t)≡∑j rj/N . An example is

shown in the inlet panel of Fig.3.10(a) for (a=3.243, τ =1.565); the symbol P denotes the

absolute value of the Fourier transform. Second, we plot ωc =ω∗−
√
a/m and compare to

predictions from solutions of Eq.(3.17) with λ=±iωc 6= 0 for a range of time delays. The

comparison is shown in Fig.3.10(a) with excellent agreement.

Rotating state

Next, we perform a similar stability analysis for the rotating state, which has a different

bifurcation structure and unstable modes. Unlike the ring state, the rotating state entails

a collapse of the swarm on to the center of mass with complete phase and amplitude syn-

chronization (in the noiseless limit). In polar coordinates, the agents satisfy rj(t) =R and

φj(t)=Ωt [94], where

0 = mΩ2 −a
[
1− cos Ωτ

]
, (3.18)

R =
1

|Ω|

√
α− a sin(Ωτ)/Ω

β
. (3.19)

In order to determine the local stability of the rotating state we substitute rj(t) = R +

Bj exp{λt} and φj(t) = Ω t + Aj exp{λt}, into Eqs.(3.12-3.13) and, again, collect terms to

first order in Aj and Bj (assuming |Aj | , |Bj | � 1 ∀j). The result is another linear system

of equations with constant coefficients. After some algebra, and replacing the restricted
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sums in Eqs.(3.12-3.13) by sums over all particles, we obtain:

R
[
mλ2 −λ(α−3βR2Ω2)+a cos(Ωτ)

]
Al + Ω

[
2mλ−α+3βR2Ω2

]
Bl (3.20)

=
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N
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[
R cos(Ωτ)Aj − sin(Ωτ)Bj

]
,

[
aR sin(Ωτ)−2mRΩλ

]
Al+

[
mλ2 −mΩ2 −λ(α−βR2Ω2) + a]Bl (3.21)

=
ae−λτ

N

∑
j

[
R sin(Ωτ)Aj + cos(Ωτ)Bj

]
.

There are two primary categories of solutions to Eqs.(3.20-3.21). The first is Al=A and

Bl =B, which we call the homogeneous modes. Because all agents move together (equal

to the the center-of-mass motion) the stability entailed by the homogeneous modes should

match the mean-field approximation mentioned above and analyzed in [94]. Because the

mean-field is known to be quantitatively inaccurate for capturing stability [17,95], we focus

on the second set of solutions:
∑

j Aj/N = 0 and
∑

j Bj/N = 0. The stability-exponents,

λ, for these modes satisfy

2mΩλ− a sin(Ωτ)

mλ2 − λ(α− 3βR2Ω2) + a cos(Ωτ)
−

mλ2 −mΩ2 − λ(α− βR2Ω2) + a

Ω
[
α− 3βR2Ω2 − 2mλ

] = 0. (3.22)

Equation (3.22) has four complex solutions.

In general, the rotating state will be linearly stable if there are no solutions to Eq.(3.22)

with Re[λ]>0. In practice, we find that changing a and τ while keeping all other parameters

fixed, produces saddle-node, Hopf and double-Hopf bifurcations [40,50]. In the former case,
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a single real eigenvalue approaches zero, when

tan(Ωτ) =
mΩ2 − a

Ω(α− 3βR2Ω2)
. (3.23)

Equation (3.23) gives the stability-line for the rotating state with small a and large τ .

For large a and small τ , the stability changes through a double-Hopf bifurcation where

two frequencies become unstable simultaneously, λ = ±iω1, ±iω2 6= 0. Fig.3.9(a) shows

the predicted composite stability-curve for the rotating state, combining both bifurcations.

Plotted is the maximum τ , for fixed a, where Re[λ]> 0. Above the red line the rotating

state is expected to be locally stable, and below it, unstable, which we have shown in [38].

As with the ring state, we compare our stability predictions to simulations, and deter-

mine the smallest value of τ(a) for which a swarm of N = 600 agents, initially prepared in

the rotating state with a small, random perturbation, returns to a rotating state after a time

of t = 20000. These points are shown with red diamonds in Fig.3.9(a) for several values of

coupling. Again, we find excellent agreement with predictions. Another consequence of our

analysis is the clear quantitative prediction of swarm bistability (between the red and blue

curves in Fig.3.9) and noise-induced switching between ring and rotating patterns, which

can now be precisely tested in experiments [17,77,78].

Lastly, just as with the ring state, we can compare the frequency of oscillations around

the rotating state for τ(a) slightly below the double-Hopf bifurcation values, where we ex-

pect weak instability of modes orthogonal to the center-of-mass-motion. First we perform a

simulation initially prepared in the rotating state with a small perturbation, and compute

the peak frequency, ω∗, in the Fourier spectrum of rj − R, where j is a randomly selected

agent. An example is shown in the inlet panel of Fig.3.10(b) for (a = 3.5, τ = 1.059).

This peak frequency is compared to predictions from numerical solutions of Eq.(3.22) with

λ = ±iω1, ±iω2 6= 0 for a range of coupling strengths. In Fig.3.10(b) the smaller of the

two frequencies, ω1 is plotted along with ω∗ – showing excellent agreement. Note that in

this comparison, we do not subtract off the rotating state’s frequency, Ω, since rj does not
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oscillate in the rotating state but is equal to R.

3.2.2 Conclusion

In this section we studied the stability of ring and rotational patterns in a general swarming

model with time-delayed interactions. We found that ring states change stability through

Hopf bifurcations, where spatially periodic modes sustain oscillations in time. On the

other hand, rotating states undergo saddle-node, Hopf, and double-Hopf bifurcations, where

modes with orthogonal dynamics to the center-of-mass-motion change stability. For both

states, the unstable oscillations correspond to dynamics not captured by standard mean-

field approximations. Our results were verified in detail with large-agent simulations. Future

work will extend our analysis to include the effects of repulsive forces, noise, and incomplete

(and dynamic) communication topology – all of which are necessary for parametrically

controlling real swarms of mobile robots.

3.3 Future work: On interacting swarm dynamics

The proposed future work uses the foundation of single swarm dynamics towards a com-

prehensive analysis of multiple interacting swarms, a topic which is still in its infancy,

and remains an active area of research. Our aim is to develop new theories of interacting

swarms dynamics in order to control multiple swarm behaviors. The future research will

enable us to solve the problem of employing small and large swarms to sense and control

other swarms. The interactions will be based on human leadership/animal hierarchical net-

works, but will be autonomous in application. Our results will aid in designing interacting

swarms of robotic agents that can perform more complex tasks than a single swarm alone

can, with resilience and robustness.
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3.3.1 Statement of the problem

In recent years, improved mechanics in computer vision algorithms have enabled engineers to

collect data and analyze the motions of individual agents in biological flocks, and formulate

more accurate, empirical models for collective motion strategies of flocking species such

as birds and fish [59, 81], resulting in the translation of swarm theory to communicating

robotic systems. The swarm systems are particularly interesting to the robotics communities

because they allow agents having simple rules to achieve complex objectives in ways that

are scalable and robust to failures of individual agents.

Swarms of robots are now conducting tasks including search and rescue, density control,

and mapping [58,68]. The dynamics of single swarms and their bifurcation structures have

been studied over the past decade, and it is well documented that swarms are able to

converge to organized, coherent behaviors, which persist in spite of complicating factors

such as communication delay, heterogeneity in agent dynamics, and environmental noise

[63, 78]. In many applications, beyond the dynamics of single swarms, multiple swarms

interact and produce even more complex spatio-temporal behavior [3, 48].

Our interacting swarms research will explore and develop control rules using external and

internal forces to employ one swarm to modify the behavior of other swarms. In particular,

to establish a task-oriented swarm control, we will consider swarm splitting techniques using

swarm leader formation inspired by human leadership styles [29] and hierarchical networks

in animal systems [25]. Bifurcation and stability analysis of interacting swarms will be

viewed as high-dimensional nonlinear dynamical systems. We hope to answer questions

such as how and when one swarm can capture/redirect another swarm, or how hierarchical

topology might affect the motion and robustness of swarming patterns.

3.3.2 Background and relevance of previous work

In almost all models that predict a single swarm’s dynamics, there are a relatively small

number of controllable factors, since typically the agents operate based on just a few simple
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rules and parameters. The parameter set is associated to the forces acting on the swarm

which usually consists of a self-propulsion force and a potential function governing attract-

ing and repelling forces between agents. In addition, latency, or delay, of communication

between agents, as well as complex communication topology, may create new patterns not

observed in ideal models which assume homogeneous communication.

Especially for delays that are fixed, one observes three basic swarming states or modes:

translating, in which a center of mass of the swarm moves in a straight line with a constant

velocity; ring, where the agents are splayed out on a ring in phase about a stationary center

of mass; and rotating, where the center of mass itself rotates while the agents are clustered

around it. Particularly, it has been shown that a fixed delay creates the rotational pattern,

which is not observed in the case without any delay, both theoretically and experimentally

[77, 78]. Furthermore, if we assume that the delays are range-dependent rather than uni-

form, we discover that rotational states which are typically periodic undergo a bifurcation

that creates swarm dynamics on a torus. The observed bifurcation introduces additional

frequencies into the dynamics, which may lead to quasi-periodic behavior of the swarm [75].

Generally, research on the spatio-temporal patterns of swarm dynamics presents results

that are valid where the number of agents is assumed to be large. In such cases, we typically

rely on mean-field equations to analytically predict transitions between regimes of different

collective swarm motions as a function of model parameters, such as delay, coupling ampli-

tude, or the radius outside of which communication delay is assumed. However, there is a

limitation to mean-field analysis in swarm dynamics since it is based on an approximation

of the center of mass of a swarm, failing to capture global bifurcation behavior, such as

multi-stability. In particular, we have recently shown that it is necessary to test the rela-

tionship between a whole swarm model and the mean-field model [38, 39], as seen in the

previous sections.

To guarantee swarming behavior experimentally, a control is typically employed [35,64]

to show convergence to a given state by relying on strict assumptions to ensure the desired
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behavior. Consideration of emergent behaviors based on distance between agents or range-

dependence has played some role in swarm control methods. In [91], two cases of control are

analyzed, one with the nearest few neighbors allowing the swarm to follow the leader, and

another without a leader but with a virtual spring damper mesh that connects the nearest

neighboring robots. Another example of range-dependence in control method includes a

coordination of an adaptive navigation mechanism in robotic swarms that assumes local

interaction in a task-oriented control setting [66]. This method was inspired by a natural

phenomenon: when schools of fish that are faced with obstacles, they can split themselves

into a plurality of smaller groups to avoid collision and then merge into a single group after

passing around the obstacles [92].

Range-dependent interactions in a single swarm have been extended to interacting

swarms, helping to develop a control mechanism on how one swarm drives another to a

desired location [55]. In any robotic swarm, delay also plays a role in sensing other agents.

Every agent behaves as though the other agents are at the positions they occupied previ-

ously; therefore control actuation is affected. For instance, when two delay-coupled swarms

with finite-scale sensing functions collide, they scatter, mill or flock together, depending on

their relative motion, coupling strength, and delay [48]. These preliminary results suggest

the possibility of having one swarm modify the intent of another by either capturing it,

or redirecting the mean direction of the flock by taking the delay effect on a single swarm

and extend it to interacting swarms. However, since most swarm-swarm applications are

simulated on a case-by-case basis, there is no general theory that underscores the predictive

principles for emergent dynamics in multiple swarm systems. In contrast to the abundance

of promising results in works on single swarm dynamics, the analysis of multiple swarm

interaction dynamics and control methods are still in a developmental stage.

3.3.3 General methodology and procedures

Notions such as nearest neighbors and range-dependence introduce a sense of quantitative

order, which induces a hierarchical leadership structure in the relationships among agents in
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swarming systems. The ability to infer and control differential influence is a vital component

in understanding emergent group actions among interacting swarms. To effectively create

a chain of command in a swarm of mobile agents, we first conceptualize different types

of leadership analogous to those of hierarchical network structures in human leadership.

There are different types of human leadership and each style is used in accordance with task

and goal-specific purposes [29]. Consider an army as an analogy: There is a commander

allocating different tasks to each battalion within the army; the commander has a holistic

view of the army’s goals and how to actualize them. Each battalion has a leader that

can interact with all of its soldiers. The commander gives orders to the battalion leaders

and collects information from them. In addition, the commander can either be a battalion

leader, or can operate from outside the battalions, unconnected to the individual soldiers.

There can be a ranking among the battalion leaders so that if one leader is compromised, an

emergent structure is in place to sustain a chain of command at a given time. We will use

the ideas exemplified in the army analogy of hierarchical network structure to organize and

derive mechanisms for interacting swarms to accommodate more task-oriented dynamics.

For instance, we will study the bifurcations of swarms whose communication topologies [42]

have hubs, directed (asymmetric) links, and fractal structures composed of teams of teams.

At first, with the range-dependent swarming model we used in [75], we choose an agent

as a leader at random to follow an independent and user-specified path. The basic idea is

to strengthen local coupling to the leader so that other agents within the prescribed range

with respect to the leader are drawn to the designated path. We note that it is not a trivial

task to find a suitable potential function that can capture some agents within ε radius of

the leader. We have tried the well potential in [79], and attracting Morse potential from

[60], but we seek to devise a better mechanism for the leader attracting other agents by

designing a potential function that takes into account a relationship between leader and

followers in terms of their new positions. Some potential functions, such as Lennard-Jones,

can diverge when agents approach one another. This may create instabilities that require

special treatment in case of swarm dynamics analysis and simulations.
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Building on the initial work, we will create rules for leader formation dynamically, and

methods to sustain the leadership structure from a single to multiple swarms in terms of

explicit hierarchical topology. A general mathematical model in [25] describes hierarchical

networks in animal systems such as schooling, herding, or flocking. More specifically for

delay-coupled swarms, interaction through heterogeneous networks that have a relatively

small fraction of highly connected nodes defined as ”motherships” [42] can mimic the in-

fluence of leaders in social networks or the insertion of highly interacting controllers into a

network of autonomous mobile robots, and can alter a swarms motion. We will explore how

hierarchical network combined with the delay effects among swarms [48] may help us to

specify generic conditions under which one swarm can capture or redirect other swarms de-

pending on interaction rules and/or initial swarm states. Hierarchical topology will help to

design swarms that can be more easily controlled, and more robust to noise and mechanical

failures.

3.3.4 Explanation of new or unusual techniques

So far, the majority of research in swarm-control theory involves designing interfaces and

algorithms that allow a human operator to influence swarm systems [55,66]. The proposed

research seeks to control interacting swarms using the foundation of swarm dynamics, by ob-

serving emergent behaviors of multiple swarms from a leader creation. This is an uncharted

territory in the field of autonomy.

It should be noted that there is no general theory in the dynamics of multiple inter-

acting swarms explaining when and how changes in pattern formations occur. By treating

interacting swarms as high-dimensional nonlinear dynamical systems and analyzing their

bifurcation structures, we will be able to identify changes in dynamic modal structures in

different regions of parameter space due to effects of communication delay or noise. For

instance, the U.S. Naval Research Laboratory (NRL) nonlinear dynamics group has recently

identified techniques for embedding swarms on manifolds. Such techniques facilitate exact

calculations of swarm pattern stability, and will be used in the interacting-swarms problems
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discussed above.

Based on theory from the analysis of bifurcation structures, we can classify communi-

cation parameters of swarms by region. The parameters can be optimized dynamically in

order to mitigate the effects of noise and delay on a particular spatio-temporal pattern,

or even use them as a way to optimally control the swarms. In addition to model-based

analysis, we plan to explore model-free techniques, such as machine-learning [22], to infer

noise and delay sources in a swarm from position and velocity observations.

Most known bifurcation results related to delay-coupled swarms rely on mean-field ap-

proximation techniques. As a consequence, the utility of applying macroscopic theory as

a guide for predicting and controlling swarms of mobile robots has been limited. To over-

come, along with case specific methods [38, 39], rigorous numerics methods that appear in

the previous chapter [45,73] may be used to guarantee a precise bound on the error for our

specific problem in contrast to general a priori estimates for the standard expected error.

The classical implicit function theorem, which guarantees only the existence of a unique

solution to the equation, is modified for use in numerics with interval arithmetic, such that

we can also guarantee a precise error bound.

3.3.5 Expected results and their significance

The results of the proposed work will help develop general principles and tools for controlling

multiple interacting swarms. We expect such interactive swarm control to open up new

areas of research in the dynamics of multi-agent systems control. If successful, our control

results with the modeling of leadership styles will represent a large step forward in the field

of autonomy. We expect our approach to be a major leap in controlling the behavior of

multi-agent autonomous systems, ensuring their resilience.

In terms of robotics platforms, a comprehensive interacting swarm-control theory will

give us a theoretical understanding for current and future experiments at NRL and the Uni-

versity of Pennsylvania with interacting swarms of mobile robots. Furthermore, our results

may help design interacting swarms that are robust to internal and external perturbations
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and interference, and/or that can perform more complex tasks which a single swarm alone

cannot accomplish.

Finally, since interacting complex groups occur in research fields not just limited to

physically coupled groups, our research can show in such systems how to achieve more

resilient and robust behavior regarding the multi-group system as a unified body. Such

fields include biological or social group dynamics, bacterial cluster formation, as well as

recruitment of individuals and avoidance behavior in the presence of a threat or disease.
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