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Abstract

A NEUROLOGICAL MODEL FOR SHELL PATTERN FORMATION

Tyler Matthew White

George Mason University, 2006

Honors Thesis Director: Evelyn Sander

The pattern formations of mollusk shells have been examined for millennia. We

consider a neurological model for the central ganglion control pigmentation in shell

pattern formation which is discrete in time and continuous in space. We will assume

that the pattern is governed by the central ganglion and the amount of pigmentation

to be secreted at a particular point in space and time is nonlocally coupled to all

points in space at the previous time. This model is nonlinear. Therefore previous

analyses are based on linearization and using eigenfunction expansions to approximate

solutions. In this project we are studying the degree of error that comes from using

these approximation techniques rather than the full nonlinear system. It is our hope

that the results of this analysis will lead us to be able to isolate why certain patterns

are selected over others.



Chapter 1: Introduction

The brilliant patterns of sea shells have fascinated mankind for millennia. Unlike ani-

mal coat patterns, the patterns of sea shells formed by the molluscs living inside them

do not appear to serve any defensive purpose. This is because molluscs spend almost

their entire lives buried in the mud. So instead, scientists look for a neurological

explanation to the formation of these patterns.

In this thesis, we will be using the neurological model for shell pattern formation

originally proposed by Ermentrout, Campbell, and Oster[3]. We examine the different

types of patterns which can be formed based on this model. We use a linearized version

of this model to predict which types of patterns arise based on the eigenvalues. Also,

we compare the linear solutions with the nonlinear solutions, and determine how long

we can expect the linear solution to accurately reflect the nonlinear solution.

1.1 The Mollusc

In studying the formation of patterns on the shells of molluscs, it helps to understand

some things about the creatures who create the shells. The class of mollusc’s we

will be concerning ourselves with is the class gastropoda. We should know a little

gastropods form their shells. The first thing to note is that a “gastropod is a living,

growing animal, and the opening of the shell is proportional to its body size. The

shell grows with the body. New shell is laid down at the aperture, and reflects the

1



2

Figure 1.1: Basic Gastropod Shell[8]

size of the growing body”[7]. From Figure 1.1, we can see that the aperture of the

shell is the opening of the shell. The shell of a gastropod takes the form of a spiral,

so the growth of a shell starts from a central point and spirals outward. Now we will

talk about some of anatomical features of gastropods.

This thesis is concerned with a neurological model for shell pattern formation,

thus we should know a little about the nervous system of the gastropod. Figure 1.2

shows an image of the inner workings of a particular gastropod. In this model, we

will be concerned with the central ganglia of the mollusc. The central ganglion is not

listed in Figure 1.2, but we believe the central ganglion is just a combination of the

all the various ganglions, such as the cerebral ganglion. Also from Figure 1.2, we can

see the mantle of the shell. In the model we will be working with in this thesis, we

will assume that the shell is formed at the mantel edge. Now that we have a basic

understanding of gastropods, we can begin studying the model.
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Figure 1.2: Gastropod Anatomy[7]

1.2 The Model

The model proposed by Ermentrout, Campbell, and Oster has the following assump-

tions[6]:

1. Cells at the mantle edge secrete material intermittently.

2. The secretion depends on (a) the neural stimulation, S, from surrounding re-

gions of the mantle, and (b) the accumulation of an inhibitory substance, R,

present in the secretory cell.
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3. The net neural stimulation of the secretory cells consists of the difference be-

tween the excitatory and inhibitory inputs from the surrounding tissue.

From these assumptions, we need a functional S : R × C0(Ω) → R to determine

the neural stimulation of the surrounding regions of the mantle. By C0(Ω), mean the

set of all continuous functions from Ω to Ω. We will also need a function R(t, x) :

N∪{0}×R → R which gives the amount of inhibitory substance at time t and location

x. The model also tells us that the amount of pigmentation, P (t, x) : N∪{0}×R → R

laid down at a particular time t and space x is the difference in the neural stimulation

and inhibitory substance. Based on this definition, we get the following recurrence

relationship for P :

P (t + 1, x) = S(x, P (t, x)) − R(t, x). (1.1)

We will also assume that R “depends linearly on the amount of pigment secreted

during the previous period while at the same time degrading at a constant rate δ”[6].

The recurrence relationship for R is

R(t + 1, x) = γP (t, x) + δR(t, x), (1.2)

where 0 < γ < 1 is the rate of increase of pigmentation material, and 0 < δ < 1 is

the rate of decrease of inhibitory material.

Now we will define the neural stimulation functional S. Based on our assumptions,

S is dependent on the surrounding regions of the mantle. We will further assume

that the areas closer to the mantle will provide more stimulation than those which

are further away. Thus, we need a filtering function which we will call wj, j ∈ {E, I}

where wE is the excitatory filter, and wI is the inhibitory filter. We will define
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wj : R → R in the following way:

wj(x) = 0 for |x| > σj, j ∈ {E, I},

wj(x) = qj

{

2p −
[

1 − cos

(

πx

σj

)]p}

for |x| ≤ σj, j ∈ {E, I}.
(1.3)

Equation (1.3) was defined this way in [3]. However, a truncated exponential function

would also work but would be discontinuous. The graph of this equation for a partic-

ular value of qj and σj can be seen in Figure 1.3. The parameter qj can be thought

of as a scaling factor that when multiplied to in integral in wj gives us αj as seen in

equation (1.4). The parameter p can be thought of as controlling the sharpness of

the cut-off.
∫

Ω

wj(x)dx = αj, j ∈ {E, I}. (1.4)

Therefore, we choose qj based on the parameter value αj, which is the amplitude of

the excitatory and inhibitory kernel functions. Also, σj is the measure of the range

of the kernels. Using wj as our filter, we now must apply it to P . Let us define

E : R× C0(Ω) → C0(Ω) to be the convolution of f with wE,

E(x, f) =

∫

Ω

wE(|x′ − x|)f(x′)dx′ = (wE ∗ f)(x). (1.5)

Let us define I : R× C0(Ω) → C0(Ω)

I(x, f) =

∫

Ω

wI(|x′ − x|)f(x′)dx′ = (wI ∗ f)(x). (1.6)
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Figure 1.3: The wj function for fixed qj and σj

Thus we are just performing a convolution on P and wj. Now we can define the

neural stimulation functional S : R× C0(Ω) → R as follows

S(x, f) = SE(E(x, f)) − SI(I(x, f)),

Sj : R → R,

Sj(u) = {1 + e−vj(u−θj)}−1, j ∈ {E, I}.

(1.7)

We see that SE(E(x, f)) and SI(I(x, f)) are well defined for a fixed x. Clearly from

the definition, the function S is nonlinear, making the model itself nonlinear. Thus,

we will need to use linearization methods to perform analysis on the model. This will

be done later in Chapter 3.

We can reduce equations (1.1) and (1.2) into one recurrence relation. To do this,

we will begin by taking equation (1.1) and taking one step forward in time. So we
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get,

P (t + 2, x) = S(x, P (t + 1, x)) − R(t + 1, x). (1.8)

Now take equation (1.2) and substitute it into equation (1.8). This give us,

P (t + 2, x) = S(x, P (t + 1, x)) − (γP (t, x) + δR(t, x)). (1.9)

Going back to equation (1.1), we can solve for R(t, x) which gives us R(t, x) =

S(x, P (t, x)) − P (t + 1, x). Take this value for R(t, x) and plug that into equation

(1.9) which gives us,

P (t + 2, x) = S(x, P (t + 1, x)) − (γP (t, x) + δ(S(x, P (t, x)) − P (t + 1, x))). (1.10)

Rearranging terms our recurrence relation becomes,

P (t + 2, x) = S(x, P (t + 1, x)) + δP (t + 1, x) − δS(x, P (t, x)) − γP (t, x). (1.11)

Equation (1.11) give us a recurrence relation for our model which does not depend

on R. From equation (1.11), we will generate our shell patterns. However, before we

begin this process, we must discuss the numerical techniques used to generate these

patterns and the accuracy of these methods.



Chapter 2: Numerical Methods

The numerical calculations performed in this thesis use a combination of custom

programs written in C++ , and the use of software packages such as Matlab and

Maple. The C++ programs are used to calculate the actual patterns using pre-built

libraries such as FFTW(Fastest Fourier Transform in the West). The Maple software

package was used to for stability analysis of the nonlinear system by using linear

approximations. Matlab was used to plot the patterns and aid in error analysis.

2.1 The Programs

A total of of three C++ programs were written for this thesis. The first program

calculated the nonlinear pattern, the second program calculated linearized pattern,

and final program made a comparison of the two patterns. Most of the programs are

very similar; their differences will be mentioned when they are relevant.

2.1.1 Homogeneous Equilibrium

For all the programs, we start by calculating a homogeneous equilibrium. First, a

definition of a homogeneous equilibrium.

Definition 2.1 (Homogeneous Equilibrium). An equilibrium is a point P (t, Ω) such

that

P (t1, Ω) = P (t2, Ω), ∀t1, t2 ∈ N ∪ {0},

8
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so P (t, x) is unvarying with respect to t, so we can say that P (t, x) = P (x). A

homogeneous equilibrium is an equilibrium point P (x) such that

P (x) = P (y), ∀y ∈ Ω.

So P (t, x) is unvarying with respect to t and x, so we can say that P (t, x) = P0 for

some constant P0 ∈ Ω.

Computing the Homogeneous Equilibrium

To compute the homogeneous equilibrium for the discrete time case, we start with

our basic recurrence relation

P (t + 2, x) = S(x, P (t + 1, x)) + δP (t + 1, x) − δS(x, P (t, x)) − γP (t, x)

To find a homogeneous equilibrium, we have to apply the fact that is constant in

space and time. Let us call our homogeneous equilibrium P0. Therefore, we can

rewrite our recurrence relation as

P0 = S(x, P0) + δP0 − δS(x, P0) − γP0. (2.1)

Equation (2.1) is nonlinear, so a one-dimensional Newton’s Method is used to solve

for P0 ∈ R.

2.1.2 Convolution

The model requires the use of the convolution of two functions in the computation of

the patterns. We require the use of numerical techniques to compute the convolution,

since in general, it does not have a closed form solution.
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Big Theta Notation

To understand the difficulty posed in computing the convolution of two functions, we

will begin by defining what is meant by “Big-Theta Notation:”

Definition 2.2 (Θ-Notation[2]). For a given function g(n), we denote by Θ(g(n))

the set of all functions

Θ(g(n)) = {f(n) : ∃c1, c2 ∈ R, c1, c2 > 0, and ∃n0 ∈ N such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), ∀n ≥ n0, n ∈ N}.

Let us say we have a function f : N → R
+ (where R

+ are the positive real

numbers) such that f(n) represents the number of operations required to perform an

algorithm on n data elements. For example, suppose we have a certain algorithm

that will require f(n) = 3n2 + n operations to sort an array of length n. It can be

easily shown that f(n) ∈ Θ(n2) by choosing c1 = 1 and c2 = 1000.

The Discrete Fourier Transform

Direct computation of the convolution using the standard methods of numerical in-

tegration have a runtime complexity of Θ(n2). Because of the large number of points

required to approximate this infinite dimensional model, the convolution operation

becomes the bottleneck of the program. Thus, in order to improve the efficiency of

the computation, we need to find another method of computing the convolution. The

following theorem provides us with an alternative.

Theorem 2.1 (Convolution Theorem[4]). Let f, g be two functions with Fourier

transforms, denoted F(f), F(g), then the convolution of f, g, denoted f ∗ g has the
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following relation

f ∗ g =

∫

Ω

f(t′)g(t − t′)dt′ = F
−1(F(f) · F(g)),

where F(f) · F(g) is the pointwise product in Fourier space.

Thus we can perform the convolution in linear time in Fourier space. However,

moving back and forth from Real space to Fourier space can bring about a new set of

problems. The direct method of computing the Discrete Fourier Transform of a set of

points has a runtime of Θ(n2), where n is the number of points in the discretization of

our domain [0, 2π]. However, there is a more elegant way of computing the Discrete

Fourier Transform that will increase the runtime complexity significantly.

The algorithm, known as the Fast Fourier Transform, is capable of computing

the Fourier transform of a set of n points with a runtime complexity of 5n log2 n ∈

Θ(n log n)[5](Note, it can be shown that Θ(n log n) ∩ Θ(n2) = ∅). This improvement

in speed with the Fast Fourier Transform algorithm comes with certain restrictions:

• all points must be equally spaced,

• values must be periodic,

• the number of points must be a power of two.

Note that if the points are not periodic, we can always extend it to be periodic.

So, it would take 2(5n log2 n) = 10n log2 n computations to convert the functions to

Fourier space. The pointwise product then takes n computations, followed by an

inverse Fourier Transform which adds an additional 5n log2 n computations. Thus,

the entire convolution operation using this method will take 15n log2 n computations.



12

Assuming the direct method takes n2 operations, and choosing n = 212, we expect

to see a speed up of over 23 times when compared to the direct method. Table 2.1

compares the run time of the convolution method using Fourier Transforms with the

direct method.

Table 2.1: Comparison of Direct Convolution to Fourier Transform Convolution

Number of Points Direct Method Fourier Method
210 .2454s .2718s
211 .5448s .4414s
212 1.434s .8314s
213 2.278s 1.4335s
214 6.3224s 1.4688s

Fastest Fourier Transform in the West

The fact that we do not see a speed up of 23 times in Table 2.1 has to do with the

initialization of the FFTW library, which performs check to find the optimal way

to perform the Fourier transform. However, if we were to continue to increase the

number of points, we would eventually see a speed up of at least 23 times.

The Fourier Transforms in this thesis were computed using a C library known

as the “Fastest Fourier Transform in the West” (FFTW). The FFTW library was

developed at MIT by Matteo Frigo and Steven G. Johnson. The FFTW library is a

standard method of computing the Fourier Transform used for example by Matlab.

However, we need to know the accuracy of this library in calculating the convolution.

The issue of accuracy is because the functions wE, wI have a very small support in

general. In fact, if we do not choose enough points, we could end up missing the

support all together.
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To test the accuracy of the FFTW compared, we compared the results to those

obtained directly by using the trapezoid method of numerical integration. For a fixed

set of parameters, we determined the || · ||∞ of the differences for a set of common

points.

Table 2.2: Error Comparison of Direct Convolution to Fourier Transform Convolution,

(FT = Fourier transform, DM = direct method)

Method, Number of Points FT, 211 DM, 211 FT, 212 FT, 213

FT, 211 - 0.0018 1.68 ·10−5 2.54 ·10−5

DM, 211 0.0018 - 0.0018 0.0018
FT, 212 1.68 ·10−5 0.0018 - 8.45 ·10−6

FT, 213 2.54 ·10−5 0.0018 8.45 ·10−6 -

In this way, we are measuring the convergence rate of the solution. It is clear

that the Fourier transform is converging faster than the direct method. Thus, with

the method of Fourier Transforms, not only do we get a time speed up, but we also

get a more accurate computation of the convolution. Now that we have the method

for computing the homogeneous equilibrium, along with a method for computing the

convolution, we will describe the process for generating the shell patterns.

2.1.3 Pattern Generation Using C++

The pattern generation code was written in C++. In order to generate these patterns,

we must approximate this infinite dimensional system with finitely many points. As

would be expected, the more points we used, the more accurate the approximation.

In this thesis, we have time range from time t = 0 to time t = 1999. Since our

domain is Ω = [0, 2π], we take 212 = 4096 evenly spaced points on Ω. So, 8192000
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total points are used in generating each pattern. Now we can discuss the generation

of the patterns.

In order to generate a pattern, we first start by computing the homogeneous equi-

librium as described earlier. In some cases there are multiple homogeneous equilibria.

Next, we take a nonhomogeneous random perturbation about the homogeneous equi-

librium. This is done by adding a random amount to each coordinate in the domain.

These values are generated randomly, and they are on the order of 10−3.

The first two time-steps, P (0, Ω) and P (1, Ω), are generated this way. We need

to do this because we are going to compute the pattern using Equation (1.11) which

computes each new time step based on the previous two time-steps. These first two

time-steps are the initial conditions for our system. We proceed iteratively to compute

each new time-step as specified by Equation(1.11). If our homogeneous equilibrium is

stable, and the perturbations stay within the basin of attraction, then the values will

be attracted back to the homogeneous equilibrium. In this case, there is no pattern

formation. However, if the homogeneous equilibrium is not stable, then we can see

some very interesting patterns. These patterns will be discussed in detail in Chapter

3.

2.2 Analysis Using Maple

Maple is a program which was developed to perform symbolic computer based calcu-

lations. Maple uses a combination of symbolic manipulation techniques, along with

numerical techniques to perform its computations. Maple also provides high level

language constructs which can be used to create new Mathematical routines. In

this thesis, we use Maple to compute the spectrum of the linearization of patterns
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generated by a given set of parameters.

The nonlinear nature of the model makes predicting the behavior extremely diffi-

cult. Therefore, a way to simplify the analysis of this model is needed. This is done

by linearizing the model and using the linear analysis to predict the behavior of the

nonlinear model. Even with a linearized model, analysis can be difficult. Therefore,

we used Maple to develop a program that when given a set of parameters, determines

the eigenvalues of the model and the type of bifurcation for the nonlinear model. The

Maple code can be seen in Appendix A.2.

2.3 Matlab

To end the numerical section of this thesis, we will discuss the other software program

that was widely used . Matlab was used for many purposes; the most common uses

were generating the patterns based on the data obtained from the C++ program,

and aiding in error analysis and debugging. The code used to generate the patterns

from the data produced by both the linear and nonlinear code, as well as graph of

the difference between the linear and nonlinear code, can be seen in Appendix A.3.



Chapter 3: Model Analysis

Thus far we introduced the model and showed the numerical methods that were used

in computing the shell patterns. Now we will begin the discussion of the analysis of

the model and results of that analysis.

3.1 Analysis of the Discrete Time Model

This discussion follows [6]. The discrete time model is a nonlinear system of equations

which makes any direct analysis difficult. Thus, to perform analysis on the model we

will linearize the model about a homogeneous equilibrium.

3.1.1 Linearization of the Discrete Time Model

Let us take P0 to be a homogeneous equilibrium. We will linearize about P0 by writing

P (t, x) = P0 + u(t, x), |u(t, Ω)| small . (3.1)

Now we will substitute this into equation (1.11) we get

P0 + u(t + 2, x) = S(x, P0 + u(t + 1, x)) − γ(P0 + u(t, x))−

− δ(S(x, P0 + u(t, x)) − (P0 + u(t + 1, x)).
(3.2)

The only nonlinear contribution in equation (3.2) is the functional S, so we will

now linearize S. To do this, we compute the Taylor series expansion about P0 for

16
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S(x, P0 + u(t, x)) and only keep the first order terms. Thus,

S(x, P0 + u(t, x)) ≈ S(x, P0) + DS(x, P0)(u(t, x)) =

= S(x, P0) + S ′

E(E(x, P0))DE(x, P0)(u(t, x))−

− S ′

I(I(x, P0))DI(x, P0)(u(t, x)).

(3.3)

Since E(x, P (t, x)) =
∫

Ω
wE(|x′ − x|)P (t, x′)dx′, and since P0 is constant ∀x′ ∈ Ω,

then

E(x, P0) =

∫

Ω

wE(|x′ − x|)P0dx′ = P0

∫

Ω

wE(|x′ − x|)dx′ = αEP0. (3.4)

Likewise, I(x, P (t, x)) for a fixed P0 we will get that

I(x, P0) =

∫

Ω

wI(|x′ − x|)P0dx′ = P0

∫

Ω

wI(|x′ − x|)dx′ = αIP0. (3.5)

Now let us determine what DS(x, P0)(u(t, x)).

DS(x, P0)(u(t, x)) = S ′

E(E(x, P0))DE(x, P0)(u(t, x))−

− S ′

I(I(x, P0))DI(x, P0)(u(t, x)).

(3.6)
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Evaluating DE(x, P0) we get

DE(x, P0)(u(t, x)) = lim
ε→0

(wE ∗ (P0 + εu(t, x)))(x) − (wE ∗ P0)(x)

ε
=

= lim
ε→0

(wE ∗ P0)(x) + ε(wE ∗ u(t, x))(x) − (wE ∗ P0)(x)

ε
=

= lim
ε→0

ε(wE ∗ u(t, x))(x)

ε
=

= (wE ∗ u(t, x))(x).

(3.7)

Similarly, we get DI(x, P0)(u(t, x)) = (wI ∗ u(t, x))(x). Finally, we get that

S(x, P0 + u(t, x)) ≈ S(x, P0) + S ′

E(αEP0)(wE ∗ u(t, x))(x)− S ′

I(αIP0)(wI ∗ u(t, x))(x).

(3.8)

Let us note that Equation (3.8) is different than the cooresponding equation in

both [6] and [3]. They both made a mistake differentiating the functional S and came

up with S ′

j(P0) instead of S ′

j(αjP0) for j ∈ {E, I}.

To simplify notations, we will define a functional L0, which will be the convolution

operator, as follows

L0(x, u(t, x)) = S ′(αEP0)(wE ∗ u(t, x))(x) − S ′(αIP0)(wI ∗ u(t, x))(x). (3.9)

From (3.8) we see that S(x, P0 + u(t, x)) ≈ S(x, P0) + L0(x, u(t, x)). Now, substi-

tuting back into equation (3.3) we get

P0 + u(t + 2, x) = S(x, P0) + L0(x, u(t + 1, x)) − γ(P0 + u(t, x))−

− δ(S(x, P0) + L0(x, u(t, x)) − (P0 + u(t + 1, x))).
(3.10)
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Finally, we can subtract equation (3.3) from equation (3.10) to get the recurrence

relation

u(t + 2, x) − L0(x, u(t + 1, x)) − δu(t + 1, x) + δL0(x, u(t, x)) + γu(t, x) = 0. (3.11)

Now that we have the linearization of the model, we will discuss the analysis of

the linear model.

3.1.2 Analysis of Linearized Model

To perform the analysis of the linear model, we will assume that u(t, Ω) ∝ λteikx.

Substituting this back into equation (3.11) we get

λt+2eikx − λt+1L0(x, eikx) − δλt+1eikx + δλtL0(x, eikx) + γλteikx = 0. (3.12)

Now, let us see what happens with L0(x, eikx)

L0(x, eikx) = S ′

E(αEP0)wE ∗ eikx − S ′

I(αIP0)wI ∗ eikx

= S ′

E(αEP0)

∫

Ω

wE(|x′ − x|)eikx′

dx′

− S ′

I(αIP0)

∫

Ω

wI(|x′ − x|)eikx′

dx′

= S ′

E(αEP0)

∫

Ω

wE(|x|)eik(x−x′)dx′

− S ′

I(αIP0)

∫

Ω

wI(|x|)eik(x−x′)dx′

= eikx[S ′

EWE(k) − S ′

IWI(k)] ≡ eikxL∗(k),

(3.13)

where we are defining WE(k) and WI(k) to be the Fourier transforms of wE(x) and



20

wI(x) over the domain Ω defined by

Wj(k) =

∫

Ω

wj(x)e−ikxdx, j = E,I . (3.14)

Now we substitute equation (3.13) into equation (3.12) to get

λt+2eikx − λt+1eikxL∗(k) − δλt+1eikx + δλteikxL∗(k) + γλteikx = 0. (3.15)

Each term in equation (3.15) has a common factor of λteikx, so by canceling out

these terms we get

λ2 − λL∗(k) − δλ + δL∗(k) + γ = 0,

λ2 − λ(L∗(k) + δ) + (δL∗(k) + γ) = 0.

(3.16)

Letting a(k) = −(L∗(k) + δ), and letting b(k) = δL∗(k) + γ we get finally get

λ2 + a(k)λ + b(k) = 0. (3.17)

Solving equation (3.17) using the quadratic equation we get that the eigenvalues

are

λ(k) =
−a(k) ±

√

a2(k) − 4b(k)

2
. (3.18)

Since the model is discrete in time, stability is attained if and only if |λ(k)| < 1, ∀k.

Therefore, we have a stable homogeneous equilibrium if and only if all the complex

eigenvalues are contained within the unit circle in the complex plane. Another way to

look at the stability of an equilibrium is to consider the (a,b)-plane. We want |λ| < 1,
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thus considering what occurs in the (a,b)-plane we need

|λ| =

∣

∣

∣

∣

−a ±
√

a2 − 4b

2

∣

∣

∣

∣

< 1. (3.19)

First let us consider what happens if we consider a2 − 4b < 0. This would give us

complex eigenvalues. Thus, we can write

∣

∣

∣

∣

−a ±
√

a2 − 4b

2

∣

∣

∣

∣

=

∣

∣

∣

∣

−a ± i
√

4b − a2

2

∣

∣

∣

∣

. (3.20)

Since −a + i
√

4b − a2 and −a − i
√

4b − a2 are complex conjugates of each other,

they have the same modulus. Therefore, we can write equation (3.19) as

√
a2 + 4b − a2 < 2 =⇒ b < 1. (3.21)

Now, let us consider what happens if we have real eigenvalues, thus a2 − 4b > 0.

Therefore, we get that

| − a ±
√

a2 − 4b| < 2. (3.22)

We will start with |−a+
√

a2 − 4b| < 2, this give us that −2+a <
√

a2 − 4b < 2+a.

From this, we know that a > −2. Since
√

a2 − 4b < 2 + a, then we can solve for b to

get

b > −a − 1 with a > −2 (3.23)

Now, let us take −2 + a <
√

a2 − 4b. If we square both sides, and solve for b, we

will get b < a − 1 and b > a − 1. Therefore, −2 + a <
√

a2 − 4b is not stable for any

value of (a, b).

Let us take | − a −
√

a2 − 4b| < 2 =⇒ |a +
√

a2 − 4b| < 2. Thus, −2 − a <
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√
a2 − 4b < 2 − a. This implies that a < 2, so now taking

√
a2 − 4b < 2 − a and

solving for b we get,

b > a − 1 with a < 2 (3.24)

Finally, consider −2 − a <
√

a2 − 4b. If we square both sides, and solve for b, we

will get b < −a − 1 and b > −a − 1. Therefore, −2 − a <
√

a2 − 4b is not stable for

any value of (a, b).

Taking the intersections of equations (3.21), (3.23), and (3.24) we see that the

region of stability occurs inside of a triangle in the (a, b)-plane. Figure (3.1) shows

the bounded regions. As you can see from Figure 3.1, there is a parabolic dividing

Figure 3.1: Bifurcation Triangle

line between the real region and the complex regions. This comes from the fact that

when a2 − 4b < 0 we have complex solutions. Thus, when b >
a2

4
, we have complex

solutions, otherwise we have real solutions.

Now let us consider what occurs if we have a stable equilibrium. We can represent
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all the eigenvalues of the system as a curve as a function of k in the (a, b)-plane,

using equation (3.18). If the curve is entirely contained within the triangle shown in

Figure 3.1, then we have stable homogeneous equilibrium. Now suppose we have a

curve which leaves the stable region. The curve on the (a, b)-plane will be seen to be

continuous. Therefore, the curve of the eigenvalues may intersect the triangle, but

the actual eigenvalues only occur at discrete intervals. We know the eigenvalues occur

at discrete time intervals because we are assuming periodic boundary conditions. So,

in order to have an unstable equilibrium, we must have a k ∈ N such that |λ(k)| > 1

where λ : N → R which will return the eigenvalue at k. Since there an |λ(k)| > 1,

and we assumed that u(t, x) ∝ λteikx, and |λteikx| = |λt|, and since |λ| > 1, then as

t → ∞, λt → ∞ and so u(t, Ω) must also go to ∞.

When the curve in the (a, b)-plane intersects the triangle in Figure 3.1, then we

have a bifurcation at that point. A bifurcation “refers to significant changes in the set

of fixed or periodic points or other sets of dynamic interest”[1]. The dynamic interest

we are concerned with is when by changing the parameter we go from a having an

attracting homogeneous equilibrium which creates no patterns, to having an unstable

homogeneous equilibrium which will form a pattern. For this model, we will see three

types of bifurcations. The first type is when there exists an eigenvalue λ > 1, we

will call this a bifurcation thru +1. The second type occurs when we there exists an

eigenvalue λ < −1, we will call this a bifurcation thru -1. The final type of bifurcation

we are concerned with is when there exists an eigenvalue λ which is complex, such

that |λ| > 1. Now we will examine how these bifurcations occur in Figure 3.1.

First we will consider when |λ| > 1 where λ is complex occurs in the in Figure 3.1.

Since λ is complex only when b > a2/4, and we only have stable complex eigenvalues
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when b < 1, then we will see |λ| > 1 only when b > 1. So, a complex bifurcation will

go through the upper part of the triangle in Figure 3.1

To see where a +1 bifurcation occurs in the (a, b)-plane, let us consider

−a(k) ±
√

a2(k) − 4b(k)

2
> 1. (3.25)

Solving Equation 3.25 for b we get two equations, b > −a − 1 and b < a − 1, so this

gives us

−a − 1 < a − 1 =⇒ a < 0. (3.26)

Now we will show that -1 bifurcations occurs on the right side of the triangle in Figure

3.1, when b = a − 1. Plugging b = a − 1 into equation (3.18) we get

−a ±
√

a2 − 4(a − 1)

2
=

−a ±
√

(a − 2)2

2
=

−a ± (a − 2)

2
=

=

{

−1 if +
−a + 1 if −

(3.27)

As you can see, the eigenvalues on the line b = a−1 will always be -1, so a bifurcation

through the right side of the triangle in Figure 3.1 will produce a bifurcation through

-1.

3.2 +1 Bifurcation

Now we will begin to analyze what occurs when we have a bifurcation through λ = +1.

From our previous analysis, we discovered that we will have a +1 bifurcation when

the λ curve intersects the left side of the triangle in Figure 3.1. To study the types of

patterns which form from these types of bifurcations, we will examine two parameter
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sets which give us this type of bifurcation. These parameter can be seen in Table

(3.1).

Table 3.1: Parameter Values for +1 Bifurcations

Set Number θE θI αE αI σE σI δ γ νE νI

1 0.0 0.0 8.0 6.0 0.1 0.2 0.1 0.2 1.3 1.3
2 1.2 1.5 13.0 9.0 0.4 1.0 0.5 0.1 1.0 1.0

These parameter values were obtained using the Maple code by varying the pa-

rameters to come up with parameter values that worked. The bifurcations for these

two parameter sets can be seen in Figure (3.2).

Now we will use the linearization to determine the types of patterns we will gen-

erate. We are assuming that our eigenvalues have the form λteikx, since we are only

concerned with positive real eigenvalues, then we can write this as λt cos(kx), where

k is the dominate frequency. Thus, at any particular time step, we will see a sinu-

soidal pattern with frequency 2π/k, with amplitude of λt. Since the frequency of the

pattern does not change from one time period to the next, then we should expect to

see striped pattern which is homogeneous in time. Now that we have some intuition

about the types of patterns we should see, we will now examine the pattern formed

by the first parameter set.

3.2.1 Parameter Set 1

In the original paper by Ermentrout et al., a parameter set which has a +1 bifurcation

was predicted to create “stationary spatial pattern of regularly spaced stripes”[3] by

the linear model. For parameter set 1, we can see the linear solution in Figure 3.3.

From the linear pattern, as well as the associated figure which shows time periods 40
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Figure 3.2: (a, b)-plane bifurcations for parameter set 1 and 2
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Figure 3.3: Linear Pattern for a +1 Bifurcation of parameter set 1, Linear Pattern

at t = 40, 41

and 41, we can see that there are 21 cycles, which gives us a wave length of 2π/21.

Since we have 21 wave cycles, we can expect to have 42 vertical stripes. Now if we

examine Figure 3.4, we can see this is well within the range of possible values that

the Maple code predicted.

Now let us consider the similarities and differences between the linear and non-

linear patterns. As you can see, Figure 3.3 also has a stationary spatial pattern as
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expected. Now, if we examine the nonlinear pattern, we expect to see something sim-

ilar. Figure 3.5 is the nonlinear pattern cooresponding to the linear pattern shown
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Figure 3.5: Nonlinear Pattern for a +1 Bifurcation of parameter set 1, Nonlinear

Pattern at t = 750

in Figure 3.3. Let us examine the similarities of this patterns. First, we can clearly

see that both the linear and nonlinear patterns seem to have approximately station-

ary spatial patterns of regularly spaced stripes. Also, both the linear and nonlinear

pattern has the same number of cycle, 21, and therefore the same number of vertical

stripes, 42. However, there are some differences. Notice that the nonlinear pattern



28

appears to be moving slightly to the left as time increases. This is a nonlinear be-

havior that does not seem to appear in the linear pattern. This may be the result of

some asymmetry that is inherent in the nonlinear model, which is not representable

in the linear model. The other major difference between the linear and nonlinear pat-

terns is that while the nonlinear solution is taken on some form of pattern, the linear

pattern is diverging off to infinity. Therefore, we can only expect the linear pattern

to give us a good approximation of the nonlinear pattern for a finite amount of time.

Now, we want to be able to measure how long the linear model will approximate the

nonlinear model for a given parameter set. We will do this by taking the ∞-norm of

the differences of the linear and nonlinear model for each time t. We will say that

the linear model approximates the nonlinear model as long as there difference is less

than 1. Now let us look at Figure 3.6. As you can see from Figure 3.6, the linear
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Figure 3.6: +1 Bifurcation Difference between Linear and Nonlinear

model appears to approximate the nonlinear model for about 29 time steps. We can

now ask, how a slight change in the parameters affects the time period that the linear

model approximates the nonlinear model. We will attempt a partial answer to this

question later on. For now, let us look at the second parameter set.
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3.2.2 Parameter Set 2

We have already seen from Figure 3.1 that the second parameter set also has a

bifurcation through the second quadrant. Despite this, we will see a very different

pattern from the first parameter set. First we will take a look at the linear pattern.

It can be seen in Figure 3.7. Once again, we see the horizontal striped pattern, but
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Figure 3.7: Linear +1 Bifurcation for Parameter Set 2, Linear Pattern at t = 40, 41

this time there are only 10 stripes, significantly less than the 42 we saw in Figure

3.3. The reason for this is the same as the reason in the previous problem set, the

dominate eigenvalues. Figure 3.8 shows us the positive eigenvalues. Now let us see
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Figure 3.8: Eigenvalues for Parameter Set 2
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what happens in this case with the nonlinear pattern. That pattern can be seen in

Figure 3.9. Once again, we see the similarities between the linear(Figure 3.7) and
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Figure 3.9: Nonlinear +1 Bifurcation for Parameter Set 2, Nonlinear Pattern at

t = 750

nonlinear(Figure 3.9) patterns. They both has 10 distinct stripes and they both take

have vertical stripe patterns. However, again we see some differences

As we saw in Figure 3.5, Figure 3.9 also moves to the left as time increases.

However, this time we also see that there appears to be some spatial variation in

the vertical stripes of the nonlinear pattern. We do not see this at all in the linear

pattern, meaning this again is nonlinear behavior that cannot be duplicated by the

linear pattern.

To finish this section, we would once again like to see how long the linear pattern

can approximate the nonlinear pattern. We can see this in Figure 3.10. This time we

see that the linear pattern approximates the the nonlinear pattern for about 24 time

iterates.
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Figure 3.10: +1 Bifurcation Difference between Linear and Nonlinear for Parameter

Set 2

3.2.3 Variation of Initial Conditions

One last topic we would like to explore before moving onto the next type of bifurcation

is what sort of differences, if any, do we see when we vary the initial conditions. It

turns out that if we vary the initial conditions of parameter set 2, we can end up with

a different number of vertical stripes. This can be seen in Figure 3.11.
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Figure 3.11: Nonlinear +1 Bifurcation of Parameter Set 1 with a Different Number

of Vertical Stripes

In Figure 3.4 we see λ(k) > 1 for both k = 21 and k = 22. Since they are both

unstable eigenvalues, it is possible for an eigenvalue which is not the largest eigenvalue

to dominate for a period of time depending on the initial conditions. Note, that this



32

effect occurs in both the linear and nonlinear models, since it is only a result of the

eigenvalues. Now we will discuss -1 bifurcations.

3.3 −1 Bifurcation

We know from before that −1 bifurcations occurs when the λ curve intersects the

triangle in Figure 3.1 on the right side of the triangle. Once again, to study these

types of bifurcations we will choose two parameter sets which have -1 bifurcations.

These parameter sets can be seen in Table 3.2.

Table 3.2: Parameter Values for -1 Bifurcations

Set Number θE θI αE αI σE σI δ γ νE νI

1 2.2 0.0 8.0 6.0 0.1 .2 0.3 0.1 1.5 1.5
2 1.0 2.0 15.0 13.0 1.0 0.1 0.2 0.1 0.5 0.5

Since we are looking at eigenvalues λ < −1, we can write

λteikx = (−1)t|λ|t cos(kx),

since we are only concerned with the real values of λ. Therefore, we should expect

to see a period two oscillation in time due to the (−1)t value. Also, just like +1

bifurcations, we expect sinusoidal behavior in space because of the cos(kx). Now that

we have some intuition of patterns should emerge, let us analyze the first parameter

set.

3.3.1 Parameter Set 1

First we will begin by looking at the bifurcation diagram in the (a, b)-plane. As you

can see by Figure 3.12, the λ curve intersects the right side of the triangle.
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Figure 3.12: (a, b)-plane Bifurcations for Parameter Set 1

Since this is a -1 bifurcation, we know we have a sinusoidal behavior in space.

We expect the wavelength of these patterns to be 2π
kM

, where |λ(kM)| is maximal.

However, Murray tells that the wavelengths vary “with wavenumbers k in the range

bounded by k1 and k2 with a maximum λ, λM = λ(kM)”[6]. Here k1 and k2 ∈ N∪{0},

where k1 is the smallest value in N ∪ {0} such that |λ(k1)| > 1 and k2 is the largest

value in N ∪ {0} such that |λ(k2)| > 1. So, in the long term behavior of the system,

we would expect to have wavelength of length
2π

kM

, however, at any particular time,

we could see wavelength varying from k1 < k < k2 where λ(k1), λ(k2) < −1. For the

first parameter set, we have a bulk bifurcation, meaning that kM = 0, as predicted

by the Maple Code, see Figure 3.13.

Therefore, we would expect the long term behavior of the wave length to be

“infinity,” which can be seen by the linear pattern shown in Figure 3.14. Figure 3.14

shows us that in this case, our pattern follows the behavior of kM , however, we shall

see that this not always the case.

Now, let us discuss how the linear pattern compares with the nonlinear pattern.



34

k

1.1

0.9

0.7

12.5

0.3

0.1

1.2

1.0

0.8

0.6

15.0

0.5

0.4

0.2

10.07.55.02.50.0

Figure 3.13: The eigenvalues for Parameter Set 1

Figure 3.14: Linear -1 Bifurcation for Parameter Set 1

The nonlinear pattern can be seen in Figure 3.15

Finally, we can see how long the linear pattern approximates the nonlinear pattern

by examining Figure 3.16

As you can see, the linear model for this parameter set approximates the nonlinear

one for about 47 time iterates. Now we will examine the second parameter set.

3.3.2 Parameter Set 2

As before, we will begin our discussion by examining the bifurcation diagram for pa-

rameter set 2 in the (a, b)-plane. Now, we want to look at the range of the eigenvalues
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Figure 3.15: Nonlinear -1 Bifurcation for Parameter Set 1
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Figure 3.16: Difference Between the Linear and Nonlinear Patterns for Parameter Set

1

of this parameter set to see what kind of pattern to expect. Figure 3.18 will show

us the range of the eigenvalues |λ| > 1. So, we can see from Figure 3.18 that we

can expect our k value to be 4 < k < 20 with kM ≈ 6. Now let us look at Figure

3.19 to see what the linear pattern actually looks like. From Figure 3.19, we see that

there are 12 vertical stripes, and by examining the linear pattern at t = 15, 16 we see

that there are exactly 6 cycles in that graph. This tell us that we have a wavelength

of 2π/6 which was predicted by Murray. Now let us examine the nonlinear pattern

and compare it to the linear pattern. We can see that the nonlinear pattern follows

exactly from the linear pattern. We see that the nonlinear pattern is period 2 in time
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and has 6 cycles in the graph. Now, let us consider the length of time that the linear

model approximates the nonlinear model for this parameter set. Figure 3.21 shows

that we can expect the linear pattern to approximate the nonlinear pattern for about

the first 20 time iterates. Now we shall examine how the patterns can change based

on a change in initial conditions, but leaving the parameters unchanged.
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Figure 3.20: Nonlinear -1 Bifurcation for Parameter Set 2, Nonlinear pattern at

t = 750, 751

3.3.3 Variation of Initial Conditions

If we vary the initial conditions of parameter set 1, we can see a different pattern

than the one shown in Figure 3.14. We know from Figure 3.13 that it is possible to

have k values ranging from 0 to about 30. Now let us examine Figure 3.22. From this

figure we can see that we have one cycle, implying that in this case we have k = 1.

Therefore, just as in the +1 bifurcations, we can see a different eigenvalue from the

most dominate one control how the pattern is formed for certain initial conditions.
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Figure 3.21: Difference Between the Linear and Nonlinear Pattern for Parameter Set
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Figure 3.22: Linear -1 Bifurcation for Parameter Set 1 with a Different Pattern

3.4 Complex Bifurcation

Complex bifurcations occur when the λ curve intersects the top part of the triangle

in Figure 3.1. To understand the patterns these types of bifurcations create, let us

take a look at the parameter values in Table 3.3.

Table 3.3: Parameter Values for Complex Bifurcations

Set Number θE θI αE αI σE σI δ γ νE νI

1 2.1 3.0 10.0 9.0 0.1 0.2 0.7 0.8 0.7 0.7
2 0.2 0.3 20.0 7.0 1.3 0.7 0.4 0.905 1.5 1.5

Since we have a complex bifurcation, then we have a λt = rteiθt, θ 6= 0, θ 6= π.
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Since |λ| > 1, then r > 1, so we see exponential growth. However, since this is a

complex bifurcation, arg(λ) > 0. This tell us that the pattern travels on the unit

circle by the amount arg(λ). Also, we still have the spatial variations as we he had in

+1 and -1 bifurcations. Because of this, we expect to see a spatio-temporal pattern[3].

Now, let us take a look at parameter set 1.

3.4.1 Parameter Set 1

First, we will look at the bifurcation graph for this parameter set. It can be seen in

Figure 3.23. Now we will calculate the spatial variations we should expect from this
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Figure 3.23: (a, b)-plane Bifurcations for Parameter Set 1

parameter set. From figure 3.24 we see that k1 = 0 and k2 ≈ 36 with kM ≈ 22. Thus,

we could see wavelengths anywhere from length “∞” to 2π/36. However, since we

have a complex bifurcation, we must also be concerned with the arg(λ). The arg(λ)

will determine the periodicity we see in time. We use the Maple code to compute

the arg(λ) and use this to compute the expected periodicity in time of this particular

pattern. The range of periodicity with respect to the k values can be seen in Figure
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3.25. We can expect the periodicity in time of parameter set 1 to a multiple n ∈ N
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Figure 3.25: The 2π/arg(λ) for Parameter Set 1

of a number between 6 and 7, since these are the values of arg(λ) when |λ| > 1. To

determine the periodicity of our parameter set in time, we will take our nonlinear

data and plot the t vs. t + 1 for a fixed x. This gives us the periodicity in time

because we expect our pattern to be periodic with period M . Thus, if we graph t

vs. t + 1 for a fixed x, then we will see at most a multiple of M points on the graph.

The multiplicity n will be determined by the number of points crossed by each line
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segment +1 in the t vs. t + 1 graph. Figure 3.26 shows us the t vs. t + 1 plot for

parameter set 1. From Figure 3.26, we see that no line segment crosses any points,
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Figure 3.26: Periodicity of Parameter Set 1

thus the multiplicity of our parameter set is n = 1. Now, counting the number nodes

in the graph, we see that the periodicity of this parameter set in time is slightly more

than 6, which is what we would expect.

Let us see if this parameter set behaves as expected. Figure 3.27 show the linear

pattern generated by parameter set 1, along with the 3 values u(t, Ω) for t = 550, 551,

and 552. We can see that there are 19 cycles in the linear pattern, cooresponding
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Figure 3.27: Linear Complex Bifurcation for Parameter Set 1, Linear Pattern at

t = 550, 551, 552

to a wavelength of 2π/19 which is in the predicted range. Also, we see that Figure
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3.27 varies both spatially and temporally as expected. Now, let us examine the

nonlinear pattern and see if it has the behavior we expect. Figure 3.28 has a spatio-
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Figure 3.28: Nonlinear Complex Bifurcation for Parameter Set 1, Nonlinear Pattern

at t = 900, 901, 902

temporal pattern as expected. We can see that there are 24 cycles, cooresponding to

wavelengths of 2π/24, which differs from the linear pattern. However, this wavelength

is still well within the expected range of values. However, other than the difference

in wavelengths, the linear and nonlinear patterns are identical.

Now we will look how long the linear pattern approximates the nonlinear pattern.

Let us take a look at Figure 3.29. Thus, this linear pattern approximates the nonlinear
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Figure 3.29: Difference Between the Linear and Nonlinear Patterns for Parameter Set

1
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pattern for about 70 time iterates in this parameter set. Now, let us look at some

interesting patterns that emerge from this parameter set.

Though this pattern seems simple, it actually has some interesting phenomena

associated with it. In fact, in some of the earlier time periods, the pattern is actu-

ally much more complicated. See Figure 3.30 to view both the linear and nonlinear

versions. As you can see, they both have this “V” shape, so it is not an oddity that

Figure 3.30: The “V” Shape for both the Nonlinear and Linear Models for Parameter

Set 1

is only captured in the nonlinear case. These strange patterns can be credited to

transience, and they are dampened out in the long run. Now let us take a look at the

second parameter set.

3.4.2 Parameter Set 2

Let us begin again by first examining the bifurcation diagram. We can see the bifur-

cation diagram for the second parameter set in Figure 3.31. We can see that the λ

curve intersects and crosses the upper part of the triangle, indicating that we have

a complex bifurcation for parameter set 2. We will now use the Maple code to see
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what type of pattern we should expect. Figure 3.32 we can see that k1 ≈ 7, k2 ≈ 10,
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Figure 3.32: Eigenvalues for Parameter Set 2

and kM ≈ 9. So we should expect between 7 to 10 cycles in space. Since this is a

complex bifurcation, we also want to use the arg(λ) to give us some more intuition

of what the pattern should look like. Figure 3.33 shows us that we should expect

the periodicity of parameter set 2 to be a multiple of a number between 4.7 and 5.8.

Now, let us take a look at the plot of t vs. t + 1 which can be seen in Figure 3.34.

We can see that this graph is approximately period 14. However, each edge crosses 2
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Figure 3.34: Periodicity of Parameter Set 2

points, thus the multiplicity of this graph is n = 3. Since 4.7 · 3 = 14.1 ≈ 14, then we

can see that the Maple code correctly predicted the periodicity of parameter set 2.

Now, we will normally we would examine the linear pattern, but there is a problem

with the linear code for this parameter set. We will explain more about this later on.

For now, let us examine the nonlinear pattern. Figure 3.35 shows us the nonlinear

pattern along with the graph for fixed time periods 750, 751, 752, and 753. From

the graph of the fixed time periods, we can see that there are 8 cycles in the graph,

cooresponding to a wavelength of 2π/8 which is in the expected range.

To understand the problem we are having with generating the linear pattern for
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Figure 3.35: Nonlinear Complex Bifurcation of Parameter Set 2, Nonlinear Pattern

at t = 750, 751, 752, 753

this parameter set, let us first see how long the linear code is approximating the

nonlinear code. From Figure 3.36 we can see linear and nonlinear patterns diverge

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Time

N
or

m
 o

f D
iff

er
nc

es

Difference between Linear and Nonlinear Attractor

Figure 3.36: Difference Between Linear and Nonlinear Patterns for Parameter Set 2

after only 11 time iterates. The problem we are having with the linear code in this

case is that we are not seeing any pattern formation. This could be caused by an

error in the linear code, though this seems unlikely since the same linear code is used

to produce all the other linear patterns. Another possibility is that the linear and

nonlinear code are diverging so quickly that this some how prevents the pattern from

forming.

Now, we would like to see what will happen if we fix the parameters and vary the
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initial conditions.

3.4.3 Variation of Initial Conditions

We are going to show that for a particular parameter set, a complex bifurcation can

have different periodicity in time. To see how this occurs, let us look at Figure 3.37

Table 3.4: Parameter Values for Complex Bifurcations with Period 5 and 19

Set Number θE θI αE αI σE σI δ γ νE νI

1 0.2 0.3 20.0 7.0 1.3 0.7 0.4 0.87 1.5 1.5

which show us the eigenvalues for this parameter set as well as the 2π/arg(λ). We
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Figure 3.37: Eigenvalues and 2π/arg(λ) for the Parameter Set in Table 3.4

can see that the only k values that gives us |λ(k)| > 1 are k = 7, 8, 9. Also, from the

graph of 2π/arg(λ) we see that we should expect the periodicity of this parameter

set to be approximately a multiple of a number between 4.8 to 5.8. For the first set

of initial conditions, we can see the periodicity based on these initial conditions in

Figure 3.38. We can see that the multiplicity is n = 1 and we see a period 5 pattern

as expected. Now, let us take a look at Figure 3.39 to see the periodicity of this
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Figure 3.38: Initial Conditions which are Period 5 in Time.

parameter set for the second set of initial conditions. We finish this discussion by
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Figure 3.39: Initial Conditions which are Period 19 in Time.

We can see that the periodicity of this parameter set for the second set of initial

conditions to be approximately period 19. We can see that each edge pass through 3

nodes, giving us a multiplicity of n = 4. This is consistent with the Maple code

since 4.8 · 4 = 19.32 ≈ 19.

examining the nonlinear patterns of this parameter set for the cooresponding initial

conditions. These patterns are seen in Figure 3.40. Now, we will consider what

happens when we have multiple bifurcations.
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Figure 3.40: Patterns generated for γ = .87 for a pattern which is period 5 in and

period 19 in time.

3.5 Multiple Bifurcations

A parameter set which has λ curve in the (a, b)− plane which intersects the triangle

in Figure 3.1 on multiple sides is said to have multiple bifurcations. We will not

be doing an in-depth analysis of these types of bifurcations. Instead, we will show

some of the interesting patterns these types of bifurcations creates. The first type of

bifurcation we will see is a bifurcation through complex and -1.

3.5.1 Bifurcations thru Complex and -1

The parameter set that produced the pattern that we will be examining can be seen

in Table 3.5. The nonlinear pattern for this parameter set can seen in Figure 3.41

Table 3.5: Parameter Values for Bifurcation which are both Complex and -1

Set Number θE θI αE αI σE σI δ γ νE νI

1 0.2 0.3 19.0 10.0 1.0 0.2 0.2 0.9 1.0 1.0

Now, we will be examining a pattern created from a +1 and -1 bifurcations.
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Figure 3.41: Nonlinear Bifurcation thru Complex and -1

3.5.2 Bifurcations thru +1 and -1

The parameter set used to generate the pattern we will be viewing can be seen in

Table 3.6. The nonlinear pattern for this parameter set can be seen in Figure 3.42.

Table 3.6: Parameter Values for Bifurcation which are both +1 and -1

Set Number θE θI αE αI σE σI δ γ νE νI

1 0.1 0.0 6.0 8.0 0.1 0.2 0.1 0.0 3.0 3.0

We conclude this thesis with a discuss of the rate of divergence of the linear and

Figure 3.42: Nonlinear Bifurcation thru +1 and -1

nonlinear model.
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3.6 Analysis of the Rate of Divergence

We will now consider the rate of divergence of the linear model with respect to the

nonlinear model. To do this, we will fix all parameters except for a single parameter

which will allow us to have an unstable solution bifurcate from a stable solution

to a unstable solution. Table 3.7 shows the parameter set we will be using. This

Table 3.7: Parameter Values for Bifurcation which are both +1 and -1

Set Number θE θI αE αI σE σI δ γ νE νI

1 2.1 3.0 10.0 9.0 0.1 0.2 0.7 variable 0.7 0.7

parameter set is the same as parameter set 1 in Table 3.3, except we are varying γ.

The bifurcation remains a complex bifurcation as we vary γ. Figures 3.43 and 3.44

show us how the λ curve moves through the bifurcation as we vary γ. The plot
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Figure 3.43: Complex Bifurcations for γ = .463 and γ = .7

the || · ||∞ of the differences of the linear and nonlinear model with respect to γ can

be seen in Figure 3.45. We see an exponential decay in the amount of time that the

linear and nonlinear models approximate each other. This is because as the λ curves

moves further through the complex bifurcation, the dominant eigenvalue,call it λM ,

increases in modulus. Thus, the rate at which the linear model diverges from the
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Figure 3.44: Complex Bifurcation for γ = .8 and γ = .999

nonlinear model increases exponentially as γ increases. In fact, this holds true for

any type of bifurcation since the further the λ curve moves through the bifurcation,

the large the modulus of the maximum eigenvalues become.
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Appendix A: Source Code

A.1 C++ Code

/***************************************************************************

* Copyright (C) 2005 by Tyler M. White *

* twhite5@gmu.edu *

* *

* This program is free software; you can redistribute it and/or modify *

* it under the terms of the GNU General Public License as published by *

* the Free Software Foundation; either version 2 of the License, or *

* (at your option) any later version. *

* *

* This program is distributed in the hope that it will be useful, *

* but WITHOUT ANY WARRANTY; without even the implied warranty of *

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *

* GNU General Public License for more details. *

* *

* You should have received a copy of the GNU General Public License *

* along with this program; if not, write to the *

* Free Software Foundation, Inc., *

* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *

***************************************************************************/

/*Description: This program was written by Tyler White to be used in his

/* Honors Thesis in Mathematics. This program implements an
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/* an algorithm used to produce shell patterns. The algorithm

/* this model was based on was original proposed by Ermentrout,

/* Campbell, and Oster in 1986. This code not only generates the

/* the nonlinear patterns, but also computes the linear patterns

/* based on the linearization of the nonlinear model and also

/* computes the infinity norm of the differences between the

/* linear and nonlinear patters.*/

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <iostream> //for basic output to console

#include <math.h> //for the basic C++ math libraries

#include <fstream> //for the file stream class to write to files

#include <vector> //for the Standard Template Library vector container

#include <fftw3.h> //for the fast fourier transform library

#include <algorithm> //for the Standard Template Library algorithms

#include <time.h> //to get the system time

#include <stdlib.h> //basic library functions such as rand()

#include <cstdlib>

using namespace std;

#define PI 3.14159265358979323846 //store highly accurate value for pi.

#define pwr 12 //used to set the size of the domain which will be 2^pwr

#define p 4
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/***********************************************************************/

/*This section is the functions used by main to interface with the rest*/

/*of the program */

void getInput();

//this function is used to get the input from the user

/* */

void patternGen();

//this function is the interface between main and the computation part

//of the program

/* */

void initializationVariables();

//this function initializes all the variables

void cleanUp();

//this function cleans up the variables at the end of the program

/***********************************************************************/

/*************************************************************************/

/*these functions are part of the original formulations of the model */

double wE( double x );

//This function evaluates wE for all values of x in the domain

double wI( double x );

//This function evaluates wI for all values of x in the domain

double SE( double x );

//This function evaluates SE for all values of Pt(x) of x in the domain

double SI( double x );
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//This function evaluates SI for all values of Pt(x) of x in the domain

double S( double x_E, double x_I );

//This function calls SE and SI and takes their difference and returns that

/**************************************************************************/

/***********************************************************************/

/*Functions used in determining the homogenous equilibrium solution */

/* */

double equationNewton(double x);

//Part of newtons method, basically the f(x) of newtons method */

/* */

double equationNewtonPrime(double x);

//Part of newtons method, basically the fprime(x) of newtons method */

/* */

double newtonMethodP0(double x);

//xt_p_1 = xt - f(x)/fprime(x) */

/* */

void computeEquilibrium();

/*uses fixed point iteration and newtons method to come up with a */

/*solution. */

/*These are the variables used for calculating the equilibrium solution*/

double equilibrium = -0.3938;

double precision;

double accuracy = 8;

/***********************************************************************/

/***********************************************************************/
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/*these functions are speifically used in the linearization */

/* calculations*/

double SprimeE( double x );

//this function determines the derivative of SE for a given value of x

double SprimeI( double x );

//this function determines the derivative of SI for a given value of x

void computeL0();

//this function commputes the convolution of ut and wE and wI and uses

//this to compute L0

/***********************************************************************/

/************************************************************************/

/*these are the auxillery fuctions which perform simple calculations */

/*help make the code more modular */

void arrayCpy( double a[], double b[] );

//Function that copies the values of array b into array a

void computeConvolution( fftw_plan&, fftw_complex[],

fftw_complex[], fftw_complex[] );

//This is used for computing the convolution operator

//It assumes that the variables have already been transformed into

//Fourier Space.

double infinity_norm(double*, double*);

//This uses the infinity norm to calculate the distance between two vectors

//in R^n, the first parameter is the Pt values and the second parameter is

//the Ut value.
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double rel_norm(double*, double*, double);

/*************************************************************************/

/**********************************************************/

/*These are the main parameters for this program */

double theta_E = .2;

double theta_I = 0.3;

double alpha_E = 20;

double alpha_I = 7;

double sigma_E = 1.3;

double sigma_I = .7;

double gamma1 = .85;

double delta = 0.4;

double nu_E = 1.5;

double nu_I = 1.5;

double q_E = alpha_E*4/(93*sigma_E); //parameter which depends on alpha,

//p, and sigma

double q_I = alpha_I*4/(93*sigma_I); //parameter which depends on alpha,

//p, and sigma

const int N = 1 << pwr; //evalutes 2^pwr using the bitshift operator

int max_time = 2000; //defines the length of the time interval, so

//time goes from 0 to max_time

/**********************************************************/

/************************************************************************/

/*These are the fourier transform plans used to execute */

/*the fourier tranforms */
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fftw_plan fft_wE; //for the fourier transform of wE(x)

fftw_plan fft_Pt; //for the fourier transform of Pt(x)

fftw_plan fft_wI; //for the fourier transform of wI(x)

fftw_plan fft_Ut;

fftw_plan ifft_SwE; //for the fourier transform of the conv of

//SE[Et(x)]

fftw_plan ifft_SwI; //for the fourier transform of the conv of

//SI[It(x)]

fftw_plan ifft_SwE1; //for the fourier transform of the conv of

//SE[Et(x)]

fftw_plan ifft_SwI1; //for the fourier transform of the conv of

//SI[It(x)]

/***********************************************************************/

/***********************************************************************/

/*These are variables used in the fourier transforms for input and output*/

double *in_wE; //input for the fft of wE(x)

double *in_wI; //input for the fft of wI(x)

double *in_Ut;

fftw_complex *out_Ut;

fftw_complex *out_wE; //output for the fft of wE(x)

fftw_complex *out_wI; //output for the fft of wI(x)

double *in_Pt; //input for the fft of Pt(x)

fftw_complex *out_Pt; //output for the fft of Pt(x)

fftw_complex *in_SwE; //input for the conv of Pt(x) and wE(x)

double *out_SwE; //output for the conv of Pt(x) and wE(x)

fftw_complex *in_SwI; //input for the conv of Pt(x) and wI(x)
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double *out_SwI; //output for the conv of Pt(x) and wI(x)

fftw_complex *in_SwE1; //input for the conv of Pt(x) and wE(x)

double *out_SwE1; //output for the conv of Pt(x) and wE(x)

fftw_complex *in_SwI1; //input for the conv of Pt(x) and wI(x)

double *out_SwI1; //output for the conv of Pt(x) and wI(x)

/**************************************************************************/

/**************************************************************************/

//these variables are used in the actual computations for Pt, Ut, and L0t

double *Pt; //the pigmentation from 2 iterations ago

double *Pt_p_1; //the pigmentation from 1 iteration ago

double *Pt_p_2; //the currently calculated pigmentation

double *Ut;

double *Ut_p_1;

double *Ut_p_2;

double *L0;

double *L0t;

double *L0t_p_1;

double *L0t_p_2;

double x_coor[N];

double temp_SwE[N];

double temp_SwE1[N];

double temp_SwI1[N];

double temp_SwI[N];

/**************************************************************************/

double diff = 2*PI/(N-1); //Sets up the difference between each
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//x values, all equall spaced

ofstream *file = NULL; //used create the file the data

//is stored in.

ofstream *file1 = NULL;

ofstream *file2 = NULL;

ofstream *file3 = NULL;

vector<double*> data_store; //a vector to store all pigmation

//patterns for all time iterations

vector<double*> data_store_1; //a vector to store all the

//linearization values

vector<double> dist; //stores the infinity norm for

//each iteration

vector<double> norm_dist;

bool testflag = true;

enum comp { real, imaginary }; //this is used to help me keep track of the

//multiplication of complex numbers.

int main(int argc, char *argv[])

{

string yes_no = "";

srand((int)time(NULL));

initializationVariables();

do

{

cout << "here again" << endl;

getInput();

computeEquilibrium();
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patternGen();

cout << "Continue?[y/n]: ";

cin >> yes_no;

cout << "here" << endl;

while( yes_no[0] != ’y’ && yes_no[0] != ’n’ )

{

cout << "Invalid Entry" << endl

<< "Continue?[y/n]:";

cin >> yes_no;

}

}while( yes_no[0] != ’n’ );

cleanUp();

return 0;

}

/*The main functions******************************************************/

void initializationVariables()

{

cerr << "Variable Initialization: ";

L0 = (double*)fftw_malloc(N*sizeof(double));

L0t = (double*)fftw_malloc(N*sizeof(double));

L0t_p_1 = (double*)fftw_malloc(N*sizeof(double));

cerr << "*";

L0t_p_2 = (double*)fftw_malloc(N*sizeof(double));

in_Ut = (double*)fftw_malloc(N*sizeof(double));

out_Ut = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

cerr << "*";
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in_wE = (double*)fftw_malloc(N*sizeof(double));

in_wI = (double*)fftw_malloc(N*sizeof(double));

out_wE = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

cerr << "*";

out_wI = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

in_Pt = (double*)fftw_malloc(N*sizeof(double));

out_Pt = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

cerr << "*";

in_SwE = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

out_SwE = (double*)fftw_malloc(N*sizeof(double));

in_SwI = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

cerr << "*";

out_SwI = (double*)fftw_malloc(N*sizeof(double));

in_SwE1 = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

out_SwE1 = (double*)fftw_malloc(N*sizeof(double));

cerr << "*";

in_SwI1 = (fftw_complex*)fftw_malloc(N*sizeof(fftw_complex));

out_SwI1 = (double*)fftw_malloc(N*sizeof(double));

Ut = (double*)fftw_malloc(N*sizeof(double));

cerr << "*";

Ut_p_1 = (double*)fftw_malloc(N*sizeof(double));

Ut_p_2 = (double*)fftw_malloc(N*sizeof(double));

Pt = (double*)fftw_malloc(N*sizeof(double));

cerr << "*";

Pt_p_1 = (double*)fftw_malloc(N*sizeof(double));

Pt_p_2 = (double*)fftw_malloc(N*sizeof(double));

fft_wE = fftw_plan_dft_r2c_1d(N, in_wE, out_wE, FFTW_EXHAUSTIVE);
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cerr << "*";

fft_wI = fftw_plan_dft_r2c_1d(N, in_wI, out_wI, FFTW_EXHAUSTIVE);

fft_Pt = fftw_plan_dft_r2c_1d(N, in_Pt, out_Pt, FFTW_EXHAUSTIVE);

fft_Ut = fftw_plan_dft_r2c_1d(N, in_Ut, out_Ut, FFTW_EXHAUSTIVE);

cerr << "*";

ifft_SwE = fftw_plan_dft_c2r_1d(N, in_SwE, out_SwE, FFTW_EXHAUSTIVE);

ifft_SwI = fftw_plan_dft_c2r_1d(N, in_SwI, out_SwI, FFTW_EXHAUSTIVE);

ifft_SwE1 = fftw_plan_dft_c2r_1d(N, in_SwE1, out_SwE1, FFTW_EXHAUSTIVE);

cerr << "*";

ifft_SwI1 = fftw_plan_dft_c2r_1d(N, in_SwI1, out_SwI1, FFTW_EXHAUSTIVE);

precision = 0.5*pow(10, -1*accuracy);

cerr << endl << "Initialization Complete" << endl;

return;

}

void getInput()

{

string temp;

cerr << "Enter theta_E[" << theta_E << "]: ";

if( testflag )

testflag = false;

else

cin >> ws;

getline(cin, temp, ’\n’);

if( temp != "" )

{

theta_E = atof( temp.c_str() );

}
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cerr << "Enter theta_I[" << theta_I << "]: ";

getline(cin, temp, ’\n’);

if( temp != "" )

{

theta_I = atof( temp.c_str() );

}

cerr << "Enter alpha_E[" << alpha_E << "]: ";

getline(cin, temp, ’\n’);

if( temp != "" )

{

alpha_E = atof( temp.c_str() );

}

cerr << "Enter alpha_I[" << alpha_I << "]: ";

getline( cin, temp, ’\n’);

if( temp != "" )

{

alpha_I = atof( temp.c_str() );

}

cerr << "Enter sigma_E[" << sigma_E << "]: ";

getline( cin, temp, ’\n’);

if( temp != "" )

{

sigma_E = atof( temp.c_str() );

}

cerr << "Enter sigma_I[" << sigma_I << "]: ";

getline( cin, temp, ’\n’);

if( temp != "" )
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{

sigma_I = atof( temp.c_str() );

}

cerr << "Enter gamma[" << gamma1 << "]: ";

getline( cin, temp, ’\n’ );

if( temp != "" )

{

gamma1 = atof( temp.c_str() );

}

cerr << "Enter delta[" << delta << "]: ";

getline( cin, temp, ’\n’ );

if( temp != "" )

{

delta = atof( temp.c_str() );

}

cerr << "Enter nu_E[" << nu_E << "]: ";

getline( cin, temp, ’\n’ );

if( temp != "" )

{

nu_E = atof( temp.c_str() );

}

cerr << "Enter nu_I[" << nu_I << "]: ";

getline( cin, temp, ’\n’ );

if( temp != "" )

{

nu_I = atof( temp.c_str() );

}
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}

void cleanUp()

{

fftw_free(L0);

fftw_free(L0t);

fftw_free(L0t_p_1);

fftw_free(L0t_p_2);

fftw_free(in_wI);

fftw_free(out_wE);

fftw_free(out_wI);

fftw_free(in_Pt);

fftw_free(out_Pt);

fftw_free(in_SwE);

fftw_free(out_SwE);

fftw_free(in_SwI);

fftw_free(out_SwI);

fftw_free(in_SwE1);

fftw_free(out_SwE1);

fftw_free(in_SwI1);

fftw_free(out_SwI1);

fftw_destroy_plan(fft_wE);

fftw_destroy_plan(fft_wI);

fftw_destroy_plan(fft_Pt);

fftw_destroy_plan(fft_Ut);

fftw_destroy_plan(ifft_SwE);

fftw_destroy_plan(ifft_SwI);
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fftw_destroy_plan(ifft_SwE1);

fftw_destroy_plan(ifft_SwI1);

}//end of cleanUp()

void patternGen()

{

cerr << "Calculations Begin: ";

q_E = alpha_E*4/(93*sigma_E);

q_I = alpha_I*4/(93*sigma_I);

Pt = (double*)fftw_malloc(N*sizeof(double));

Pt_p_1 = (double*)fftw_malloc(N*sizeof(double));

cerr << "*";

Pt_p_2 = (double*)fftw_malloc(N*sizeof(double));

if( file != NULL )

{

delete file;

delete file1;

delete file2;

delete file3;

}

file = new ofstream();

file1 = new ofstream();

file2 = new ofstream();

file3 = new ofstream();

cerr << "*";

file->open("/media/SEA__DISK/outfile.dat");

file1->open("/media/SEA__DISK/outfile1.dat");

file2->open("/media/SEA__DISK/outfile2.dat");
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file3->open("/media/SEA__DISK/outfile3.dat");

(*file) << "%theta_E: " << theta_E << " theta_I: " << theta_I << endl

//writes variable values to file

<< "%alpha_E: " << alpha_E << " alpha_I: " << alpha_I << endl

<< "%sigma_E: " << sigma_E << " sigma_I: " << sigma_I << endl

<< "%gamma: " << gamma1 << " delta: " << delta << endl

<< "%nu_E: " << nu_E << " nu_I: " << nu_I << endl

<< "%equilibrium: " << equilibrium << endl;

(*file1) << "%theta_E: " << theta_E << " theta_I: " << theta_I << endl

<< "%alpha_E: " << alpha_E << " alpha_I: " << alpha_I << endl

<< "%sigma_E: " << sigma_E << " sigma_E: " << sigma_I << endl

<< "%gamma: " << gamma1 << " delta: " << delta << endl

<< "%nu_E: " << nu_E << " nu_I: " << nu_I << endl

<< "%equilibrium: " << equilibrium << endl;

(*file2) << "%theta_E: " << theta_E << " theta_I: " << theta_I << endl

//writes variable values to file

<< "%alpha_E: " << alpha_E << " alpha_I: " << alpha_I << endl

<< "%sigma_E: " << sigma_E << " sigma_I: " << sigma_I << endl

<< "%gamma: " << gamma1 << " delta: " << delta << endl

<< "%nu_E: " << nu_E << " nu_I: " << nu_I << endl

<< "%equilibrium: " << equilibrium << endl;

for( int i = 0; i < N; i++ )

{ //initializes the variables

x_coor[i] = diff*i;

Ut[i] = ((double)(rand()%1000-500.0)/500000.0);

//chooses random points

Ut_p_1[i] = ((double)(rand()%1000-500.0)/500000.0);
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//near the equilibrium

Pt[i] = equilibrium+Ut[i]; //chooses random points

Pt_p_1[i] = equilibrium+Ut_p_1[i]; //near zero

in_wE[i] = wE(x_coor[i]);

in_wI[i] = wI(x_coor[i]);

}

cerr << "*";

data_store.push_back( Pt ); //stores the first

data_store.push_back( Pt_p_1 ); //and second iteration

data_store_1.push_back( Ut ); //of Pt, Ut and

data_store_1.push_back( Ut_p_1 ); //their difference

dist.push_back( infinity_norm( Pt, Ut ) );

norm_dist.push_back(rel_norm( Pt, Ut, dist[0] ) );

cerr << "*";

dist.push_back( infinity_norm( Pt_p_1, Ut_p_1 ) );

norm_dist.push_back(rel_norm( Pt_p_1, Ut_p_1, dist[1] ) );

arrayCpy( in_Pt, Pt );

arrayCpy( in_Ut, Ut );

fftw_execute(fft_Pt);

cerr << "*";

fftw_execute(fft_wE);

fftw_execute(fft_wI);

computeL0();

ofstream test;

cerr << "*";

computeConvolution( ifft_SwE, out_Pt, out_wE, in_SwE );

computeConvolution( ifft_SwI, out_Pt, out_wI, in_SwI );
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arrayCpy( L0t, L0 );

cerr << "*";

for( int i = 2; i < max_time; i++ )

{

arrayCpy( in_Ut, Ut_p_1 );

arrayCpy( in_Pt, Pt_p_1 );

fftw_execute(fft_Pt);

computeL0();

arrayCpy( L0t_p_1, L0 );

arrayCpy( temp_SwE, out_SwE );

arrayCpy( temp_SwI, out_SwI );

computeConvolution( ifft_SwE, out_Pt, out_wE, in_SwE );

computeConvolution( ifft_SwI, out_Pt, out_wI, in_SwI );

for( int j = 0; j < N; j++ )

{

Pt_p_2[j] = S(out_SwE[j]*2*PI/(N*N),out_SwI[j]*2*PI/(N*N)) -

gamma1*Pt[j] -

delta*( S(temp_SwE[j]*2*PI/(N*N),temp_SwI[j]*2*PI/(N*N)) -

Pt_p_1[j]);

Ut_p_2[j] = L0t_p_1[j] + delta*Ut_p_1[j] - delta*L0t[j] -

gamma1*Ut[j];

}

data_store_1.push_back(Ut_p_2);

data_store.push_back(Pt_p_2);

dist.push_back(infinity_norm(Pt_p_2, Ut_p_2));

norm_dist.push_back(rel_norm(Pt_p_2, Ut_p_2, dist[i]));

Ut = Ut_p_1;
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Pt = Pt_p_1;

Ut_p_1 = Ut_p_2;

Pt_p_1 = Pt_p_2;

Ut_p_2 = (double*)fftw_malloc(N*sizeof(double));

Pt_p_2 = (double*)fftw_malloc(N*sizeof(double));

arrayCpy(L0t, L0t_p_1);

}

cerr << "*";

for( int i = 0; i < max_time; i++ )

{

(*file) << dist[i] << " ";

(*file3) << norm_dist[i] << " ";

}

(*file) << endl;

(*file3) << endl;

for( int i = 0; i < 2000; i++ )

{

for( int j = 0; j < N; j++ )

(*file1) << data_store[i][j] << " ";

(*file1) << endl;

}

for( int i = 0; i < 2000; i++ )

{

for( int j = 0; j < N; j++ )

(*file2) << data_store_1[i][j] << " ";

(*file2) << endl;

}
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for( int i = 0; i < max_time; i++ )

{

fftw_free(data_store[i]);

fftw_free(data_store_1[i]);

}

cerr << "*";

data_store.clear();

data_store_1.clear();

dist.clear();

norm_dist.clear();

file->close();

file1->close();

file2->close();

file3->close();

delete file1;

delete file2;

delete file;

delete file3;

file3 = NULL;

file1 = NULL;

file2 = NULL;

file = NULL;

cerr << endl << "Calculations Complete" << endl;

}

/*End of the main functions***********************************************/

/*These functions are used to calculate S[Pt(x)]**************************/
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double wE( double x )

{

if( x > sigma_E && x < (2*PI-sigma_E) )

return 0;

else

{

if( x < sigma_E )

return (q_E * ( ( 1 << p) - pow(1 - cos(PI*x/sigma_E), p )));

else

{

return (q_E * ( ( 1 << p) -

pow(1 - cos(PI*(2*PI-x)/sigma_E), p )));

}

}

}

double wI( double x )

{

if( x > sigma_I && x < (2*PI-sigma_I) )

return 0;

else

{

if( x < sigma_I )

return (q_I * ( ( 1 << p ) - pow(1 - cos(PI*x/sigma_I), p )));

else

{

return (q_I * ( ( 1 << p ) -

pow(1 - cos(PI*(2*PI-x)/sigma_I), p )));
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}

}

}

double SE( double x )

{

return (1/(1+exp(-1*nu_E*(x - theta_E))));

}

double SI( double x )

{

return (1/(1+exp(-1*nu_I*(x - theta_I))));

}

double S( double x_E, double x_I )

{

return (SE(x_E)-SI(x_I));

}

/*End of the calculations used to S[Pt(x)]*******************************/

/*This sections is used to calculate the homogenous equilibrium *********/

double newtonMethodP0( double x )

{

double temp;

temp = x - equationNewton( x )/equationNewtonPrime( x );

return temp;

}
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double equationNewton( double x )

{

double temp;

temp = x - (1-delta)/(1+gamma1-delta)*(SE(alpha_E*x) - SI(alpha_I*x));

return temp;

}

double equationNewtonPrime( double x )

{

double temp;

temp = 1 - (1-delta)/(1+gamma1-delta)*(alpha_E*SprimeE(alpha_E*x)

- alpha_I*SprimeI(alpha_I*x));

return temp;

}

void computeEquilibrium()

{

double xt = 0, xt_p_1 = 0;

do

{

xt = xt_p_1;

xt_p_1 = newtonMethodP0(xt);

}while( fabs(xt - xt_p_1) > precision );

equilibrium = xt_p_1;

cerr << "Equilibrium: " << equilibrium << endl;

}

/*End of the section for computing the homogenous equilibrium***************/
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/*These functions are only used in the linearization calculations***********/

double SprimeE( double x )

{

return (nu_E*exp(-1*nu_E*(x - theta_E))/pow(1+exp(-1*nu_E*(x -

theta_E)),2));

}

double SprimeI( double x )

{

return (nu_I*exp(-1*nu_I*(x - theta_I))/pow(1+exp(-1*nu_I*(x -

theta_I)),2));

}

void computeL0()

{

fftw_execute(fft_Ut);

computeConvolution( ifft_SwE1, out_Ut, out_wE, in_SwE1 );

computeConvolution( ifft_SwI1, out_Ut, out_wI, in_SwI1 );

for( int i = 0; i < N; i++ )

L0[i] = SprimeE(alpha_E*equilibrium)*out_SwE1[i]*2*PI/(N*N) -

SprimeI(alpha_I*equilibrium)*out_SwI1[i]*2*PI/(N*N);

return;

}

/*End of the functions specifically used in the linearization calculations**/

/*These are the auxillery functions used to make the code more modular******/



79

void arrayCpy( double a[], double b[] )

{

for( int i = 0; i < N; i++ )

a[i] = b[i];

}

void computeConvolution(fftw_plan &plan, fftw_complex array1[],

fftw_complex array2[], fftw_complex array3[])

{

for( int i = 0; i < N; i++ )

{

array3[i][(int)real] = array1[i][(int)real]*array2[i][(int)real] -

array1[i][(int)imaginary]*array2[i][(int)imaginary];

array3[i][(int)imaginary] = array1[i][(int)real]*

array2[i][(int)imaginary] +

array1[i][(int)imaginary]*array2[i][(int)real];

}

fftw_execute(plan);

}

double infinity_norm(double *pt, double *ut)

{

double maximum = 0;

for( int i = 0; i < N; i++ )

maximum = max(fabs((pt[i]-equilibrium)-ut[i]), maximum) ;

return maximum;

}
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double rel_norm(double *pt, double *ut, double numerator)

{

double maximum = 0;

for( int i = 0; i < N; i++ )

maximum = max(fabs(ut[i]), maximum);

return numerator/maximum;

}

/**************************************************************************/

A.2 Maple Code

> restart;

> p:=4;thetae:=4;thetai:=3.3;alpe:=15; alpi:=13;sigmaE:=1.3;

sigmaI:=.4;gam:=.2; delta:=.1; vue:=.4; vui:=.4;

> plot([sqrt(gam)+del, 1+gam/(1+del), 1+gam/(1-del),

(1-gam)/del],del=0..1,y=0..2, legend=["1","2","3","4"]);

> sqrt(gam)+delta; 1+gam/(1+delta); 1+gam/(1-delta); (1-gam)/delta;

> f1:=2^p-(1-cos(Pi*x/sigmaE))^p;

> f2:=2^p-(1-cos(Pi*x/sigmaI))^p;

> qE:=alpe/int(f1,x=-sigmaE..sigmaE);

> qI:=alpi/int(f2,x=-sigmaI..sigmaI);

> we:=f1*qE; wi:=f2*qI;

> int(we,x=-sigmaE..sigmaE);int(wi,x=-sigmaI..sigmaI);

> plot({we,wi},x=-sigmaE..sigmaE);

> evalf(subs(x=sigmaE/2,we));evalf(subs(x=sigmaI/2,wi));
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> plot(wi,x=-sigmaI..sigmaI);

> fte:=(int(we*exp(I*k*x),x=-sigmaE..sigmaE)):

> fti:=(int(wi*exp(I*k*x),x=-sigmaI..sigmaI)):

> evalf(subs(k=1.00001,fte));

> plot({fte,fti},k=0..100);

> se:=x->1/(1+exp(-vue*(x-thetae)));

> si:=x->1/(1+exp(-vui*(x-thetai)));

> plot({p1,(1-delta)/(1+gam-delta)*(se(p1*alpe)-

si(p1*alpi))},p1=-1..1);

> p00:=fsolve((1-delta)/(1+gam-delta)*(se(p0*alpe)-

si(p0*alpi))=p0,p0=0);

> seprime:=evalf(subs(x=alpe*p00,diff(se(x),x)));

> siprime:=evalf(subs(x=alpi*p00,diff(si(x),x)));

> lstar:=(seprime*fte-siprime*fti):

> plot({lstar},k=0..150);

> lmin:=limit(lstar,k=0);

> a:=-Re(lstar)-delta:

> b:=delta*Re(lstar)+gam:

> sominus:=(-a-sqrt(a^2-4*b))/2:

> soplus:=(-a+sqrt(a^2-4*b))/2:

> plot({1,abs(soplus),abs(sominus)},k=0..300);

> with(plots):

> plot1:=plot(x-1,x=0..2,y=-1.5..1.5):

> plot2:=plot(-x-1,x=-2..0):

> plot3:=plot(1,x=-2..2):
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> plot4:=plot([a,b,k=0..10],color=blue):

> plot5:=plot([a,b,k=10..100],color=green):

> plot6:=plot(.25*k^2,k=-2..2):

> display({plot1,plot2,plot3,plot4,plot5,plot6});

A.3 Matlab Code

A.3.1 Nonlinear Pattern Grapher

x = linspace(0,2*pi,4096);

y = linspace(900,1000,101);

pcolor(x,y,outfile1(900:1000,:));

shading interp;

%caxis([0.038, .039]);

colorbar;

set(gca,’fontsize’,15);

xlabel(’Space’,’fontsize’,16);

ylabel(’Time’,’fontsize’,16);

title(’Nonlinear Bifurcation Thru Complex’, ’fontsize’, 16);

A.3.2 Linear Pattern Grapher

x = linspace(0,2*pi,4096);

y = linspace(500,520,21);

pcolor(x,y,outfile2(500:520,:));

shading interp;

%caxis([-1 1]);
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colorbar;

set(gca,’fontsize’,15);

xlabel(’Space’,’fontsize’,16);

ylabel(’Time’,’fontsize’,16);

title(’Linear Bifurcation Thru Complex’, ’fontsize’, 16);


